Journal of

'Software: Evolution and Process

JOURNAL OF SOFTWARE: EVOLUTION AND PROCESS
J. Softw. Evol. and Proc. 2016; 28:589-618
Published online 9 December 2015 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/smr.1760

Empirical analysis of the relationship between CC and SLOC
in a large corpus of Java methods and C functions

Davy Landman'*', Alexander Serebrenik?, Eric Bouwers® and Jurgen J. Vinjul’z’4

' Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
’Eindhoven University of Technology, Eindhoven, The Netherlands
3Software Improvement Group, Amsterdam, The Netherlands
4INRIA Lille Nord Europe, Lille, France

ABSTRACT

Measuring the internal quality of source code is one of the traditional goals of making software development
into an engineering discipline. Cyclomatic complexity (CC) is an often used source code quality metric, next
to source lines of code (SLOC). However, the use of the CC metric is challenged by the repeated claim that
CC is redundant with respect to SLOC because of strong linear correlation.

We conducted an extensive literature study of the CC/SLOC correlation results. Next, we tested correla-
tion on large Java (17.6 M methods) and C (6.3 M functions) corpora. Our results show that linear corre-
lation between SLOC and CC is only moderate as a result of increasingly high variance. We further observe
that aggregating CC and SLOC as well as performing a power transform improves the correlation.

Our conclusion is that the observed linear correlation between CC and SLOC of Java methods or C func-
tions is not strong enough to conclude that CC is redundant with SLOC. This conclusion contradicts earlier
claims from literature but concurs with the widely accepted practice of measuring of CC next to SLOC.
Copyright © 2015 John Wiley & Sons, Ltd.

Received 19 February 2015; Revised 10 August 2015; Accepted 21 October 2015

KEY WORDS: McCabe cyclomatic complexity; empirical validation; software maintenance; metrics

1. INTRODUCTION

In previous work [1], one of the authors analyzed the potential problems of using the cyclomatic
complexity (CC) metric to indicate or even measure source code complexity per Java method. Still,
because understanding code is known to be a major factor in providing effective and efficient
software maintenance [2], measuring the complexity aspect of internal source code quality remains
an elusive goal of the software engineering community. In practice, the CC metric is used on a daily
basis for this purpose precisely, next to another metric, namely source lines of code (SLOC) [3, 4].

There exists a large body of literature on the relation between the CC metric and SLOC. The general
conclusion from experimental studies [5—8] is that there exists a strong linear correlation between these
two metrics for arbitrary software systems. The results are often interpreted as an incentive to discard
the CC metric for any purpose that SLOC could be used for as well, or as an incentive to normalize the
CC metric for SLOC.

At the same time, the CC metric appears in every available commercial and open-source source code
metrics tool, for example, http://www.sonarqube.org/, and is used in the daily practice of software

*Correspondence to: Davy Landman, Centrum Wiskunde & Informatica, Amsterdam, The Netherlands.
"E-mail: davy.landman@cwi.nl

Copyright © 2015 John Wiley & Sons, Ltd.

590 DAVY LANDMAN ETAL.

assessment [4] and fault/effort prediction [9]. This avid use of the metric directly contradicts the
evidence of strong linear correlation. Why go through the trouble of measuring CC?

Based on the related work on the correlation between CC and SLOC, we have the following
working hypothesis:

Hypothesis 1
There is strong linear (Pearson) correlation between the CC and SLOC metrics for Java methods and C
functions.

Note that the current paper both includes and extends the contributions of a previously published
conference paper, which focused on the Java language [10]. The new contributions of this paper are
as follows:

* construction of a big C corpus,

* corpus-based analysis of CC/SLOC correlation for another programming language (C),

* asignificantly extended literature study,

* comparison between the results for C and Java,

» more detailed study of possible explanations for higher correlation after aggregation on the file
level, and

* study of the possibly confounding effect of the size of the corpora.

We studied a C language corpus because it is most representative of the languages analyzed in
literature, and we could construct a large corpus based on open-source code. Java is an interesting
case next to C as it represents a popular modern object-oriented language, for which we could also
construct a large corpus. A modern language with a comparable but significantly more complex
programming paradigm than C, such as Java, is expected to provide a different perspective on the
correlation between SLOC and CC.

Both for Java and C, our results of investigating the strong correlation between CC and SLOC are
negative, challenging the external validity of the experimental results in literature as well as their
interpretation. The results of analyzing a linear correlation are not the same for our (much larger)
corpora of modern Java code that we derived from Sourcerer [11] and C code derived from the
packages of Gentoo Linux. Similarly, we observe that higher correlations can only be observed after
aggregation to the file level or when we arbitrarily remove the larger elements from the corpus.
Based on analyzing these new results, we will conclude that CC cannot be discarded based on
experimental evidence of a linear correlation. We therefore support the continued use of CC in
industry next to SLOC to gain insight in the internal quality of software systems for both the C and
the Java languages.

The interpretation of experimental results of the past is hampered by confusing differences in
definitions of the concepts and metrics. In the following, Section 2, we therefore focus on
definitions and discuss the interpretation in related work of the evidence of correlation between
SLOC and CC. We also identify six more hypotheses. In Section 3, we explain our experimental
setup. After this, in Section 4, we report our results, and in Section 5, we interpret them before
concluding in Section 6.

2. BACKGROUND THEORY

In this section, we carefully describe how we interpret the CC and SLOC metrics, we identify related
work, and introduce the hypotheses based on differences observed in related work.

2.1. Defining SLOC and CC

Although defining the actual metrics for lines of code and CC used in this paper can be easily
performed, it is hard to define the concepts that they actually measure. This lack of precisely defined
dimensions is an often lamented, classical problem in software metrics [12, 13]. The current paper
does not solve this problem, but we do need to discuss it in order to position our contributions in
the context of related work.

Copyright © 2015 John Wiley & Sons, Ltd. J. Sofiw. Evol. and Proc. 2016; 28:589-618
DOI: 10.1002/smr

EMPIRICAL ANALYSIS OF THE RELATIONSHIP BETWEEN CC AND SLOC 591

First, we define the two metrics used in this paper.

Definition 1

SLOC A line of code is any line of program text that is not a comment or blank line, regardless of the
number of statements or fragments of statements on the line. This specifically includes all lines con-
taining program headers, declarations, and executable and non-executable statements [14, p. 35].

Definition 2

CC The cyclomatic complexity of a program? is the maximum number of linearly independent circuits
in the control flow graph of said program, where each exit point is connected with an additional edge to
the entry point [15].

As explained by McCabe [15], the CC number can be computed by counting forks in a control flow
graph and adding 1, or equivalently counting the number of language constructs used in the abstract
syntax tree (AST), which generate forks (‘if’, ‘while’, etc.), and adding 1.

This last method is the easiest and therefore preferred method of computing CC. Unfortunately,
which AST nodes generate decision points in control flow for a specific programming language is
not so clear because this depends on the intrinsic details of programming language semantics. The
unclarity leads to metric tools generating different values for the CC metric, because they count
different kinds of AST nodes [16]. Also, derived definitions of the metric exist, such as ‘extended
cyclomatic complexity’ [17] to account for a different way of computing CC. Still, the original
definition by McCabe is sufficiently general. If we interpret it based on a control flow graph, it is
applicable to any programming language, which has subroutines to encapsulate a list of imperative
control flow statements. Section 3 describes how we compute CC for C and Java.

Note that we include the Boolean && and || operators as conditional forks because they have short-
circuit semantics in both Java and C, rendering the execution of their right-hand sides conditional. Still,
this is not the case for all related work. For completeness sake, we therefore put the following
hypothesis up for testing as well:

Hypothesis 2
The strength of linear correlation between CC and SLOC of neither Java methods nor C functions is
significantly influenced by including or excluding the Boolean operators && and |1.

We expect that exclusion of && and || does not meaningfully affect correlations between CC and
SLOC, because we expect Boolean operators not to be used often enough and not in enough
quantities within a single subroutine to make a difference.

2.2. Literature on the correlation between CC and SLOC

We have searched methodically for related work that experimentally investigates a correlation between
CC and SLOC. This results, to the best of our knowledge, in the most complete overview of published
correlation figures between CC and SLOC to date. Our previous literature study [10] resulted in 15
relevant papers obtained by scanning the titles of 600 papers. For the current overview, we scanned
the full text of 326 new papers identifying 18 new relevant papers.

In our previous literature study, we used Google Scholar to find all papers citing Shepperd’s paper
from 1988 [12], which also investigate Hypothesis 1. Furthermore, in the same study, we scanned the
titles of the 200 most relevant search results® for papers citing McCabe’s original paper [15] and
matching the ‘Empirical’ search query.

The previous literature study can be seen as a restricted form of snowballing [18]. To extend our
coverage of the literature, and correct for limitations of snowballing [19], we combine snowballing
and systematic literature review (SLR). We formulated the PICO criteria inspired by the SLR
guidelines of Kitchenham and Charters [20]:

In this context, a ‘program’ means a subroutine of code like a procedure in Pascal, function in C, method in Java, sub-
routine in Fortran, and program in COBOL. From here on, we use the term ‘subroutine’ to denote either a Java method or
a C function.

¥Google Scholar’s sort by relevancy.

Copyright © 2015 John Wiley & Sons, Ltd. J. Sofiw. Evol. and Proc. 2016; 28:589-618
DOI: 10.1002/smr

592 DAVY LANDMAN ETAL.

Population Software

Intervention CC or Cyclomatic or McCabe
Comparison SLOC or LOC or Lines of Code
Outcomes Correlation or Regression or Linear or R*

Ideally, following the Kitchenham and Charters’ guidelines [20], we should have constructed a
query using the PICO criteria: ‘Software and (CC or Cyclomatic or McCabe) and (SLOC or LOC or
Lines of Code) and (Correlation or Regression or Linear or R?)’. Unfortunately, Google Scholar
does not support nested conditional expressions. Therefore, we have used the PICO criteria to create
1 x3x3x4=36 different queries producing 24 K results. Because Google Scholar sorts the results
on relevancy, we chose to read only the first two pages of every query, leaving 720 results.

After noise filtering and duplication removal, 326 papers remained, containing 11 of the 15 papers
included in our previous literature study [10].

Together, we systematically scanned the full text of these papers, using the following inclusion criteria:

Is the publication peer-reviewed?

Is SLOC or LOC measured?

Is CC measured (possibly as weight in Weighted Methods per Class [21])?

Is Pearson correlation or any other statistical relation between SLOC and CC reported?

Are the measurements performed on method, function, class, module, or file level (higher levels
are ignored)?

Al

Using this process, we identified 18 new papers. The resulting 33 papers are summarized in Table I.

The SLR guidelines require the inclusion and the search queries to be based on the title, abstract, and
keywords. We deviated from this because for the current study, we are interested in a reported relation
between SLOC and CC, whether the paper focuses on this relation or not. This required us to scan the
full text of each paper, which the Kitchenham and Charter process does not cater for. Note that Google
Scholar does index the body of papers.

The result of the previous process is summarized by the multi-page Table 1. All levels and corpus
descriptions in the table are as reported in the original papers: the interpretation of these might have
subtle differences, for example, Module and Program in Fortran could mean the same. Because the
original data are no longer available, it is not possible to clarify these differences. The variables
mentioned in the correlation column are normalized as follows. If all lines in a unit (file, module,
function, or method) were counted, LOC was reported. If comments and blank lines were ignored,
SLOC was reported. If the line count was normalized on statements, we reported logical lines of
code. We normalized R to R? by squaring it whenever R was originally reported.

Figure 1 visualizes the R> from the related work in Table I grouped by language and aggregation
level. Most related work reports R? higher than 0.5, and there is not a clear upward or downward
trend over the years. The only observable trends are that newer work (after 2000) predominantly
performed aggregation on a file level (with the notable exception of four papers [8, 22, 42, 44]) and
that while the early studies have been mostly conducted on Fortran, the most common languages
analyzed after 2000 are Java and C.

In the rest of this section, we will formulate hypotheses based on observations in the related work:
different aggregation methods (Section 2.3), data transformations (Section 2.4), and the influence of
outliers and other biases in the used corpora (Section 2.5).

2.3. Aggregating CC over larger units of code

Cyclomatic complexity applies to control flow graphs. As such, CC is defined when applied to code
units, which have a control flow graph. This has not stopped researchers and tool vendors to sum
the metric over larger units, such as classes, programs, files, and even whole systems. We think that
the underlying assumption is that indicated ‘effort of understanding’ per subroutine would add up to
indicate total effort. However, we do not clearly understand what such sums mean when interpreted
back as an attribute of control flow graphs, because the compositions of control flow graphs that
these sums should reflect do not actually exist.

Copyright © 2015 John Wiley & Sons, Ltd. J. Sofiw. Evol. and Proc. 2016; 28:589-618
DOI: 10.1002/smr

593

EMPIRICAL ANALYSIS OF THE RELATIONSHIP BETWEEN CC AND SLOC

(sanuyuoy))

‘diysuonera1 reaurjuou
9 JojJ Juowngre ue se pawojrad

sem Q[qerrea DO oy Sutrenbs 790 WRISAS UOSOII UE JO SO[NPOW ()€ pauodorun) D0 A 00T S[NpoON [61 000C
wasKs
6L 0 [BIOJOWIWOS & JO s9[npow ()09 104900 DD A DOIS s [sel L661
9L 0x surexgord 3 ¢ T090D D0 sA DOT weIsorq [¥€] €661e
DD JO sjueLIeA O071S
Juaroytp paredwod osfe roded oYL, 060 MOST ‘ssmpowt 8 ,mEom%—, o% 710490D pue [eosed DD A DOTIS S[NPON [e€] 16610
s109(01
"POAOWIAI 9IOM SIAIINO %0 OF'0 9SIN0S /7 WOIJ s[npoul 186 [eoseq DD sA D01 S[NPON [z€] 0661
080, swrei3oxd juoprs [¢ 104900 DD sA D01 wre1sord [1€] 0661
sampaooid ¥ £
96°0, ‘WAISAS [BIOIOUIIOD QUO[B-PUE)S | [eoseq DD SA DOIS Ipadoig [o€] 6861
‘UenIo I0j puodes (L0 ueniod DOTIS A CI1 ‘Tedsed DOIS
oy ‘[edsed I0J SeA J[NSAIISIY YL 7L, S ZET ‘SoUnNOI I G ‘WAISAS | uenIo pue [edseq DD SA DOIS aunnoy [62] 6861°
'68°0) 01 paseaIdul Ly oy ‘widlshsqns - /8°0
JsIg 2y) uo wojsuen romod © 10V €8°0 SO[NPOW /9 YIIM SWOISASqNS om [, €S DD SA DOIS S[NpoN [82] L861
"UOTJB[AII0D PAJOI[as Jo sjofd
Ioneos pue ‘sndiod Jyy Jo wei3oisiy DOIS 021 9 0T Jo
Suimoys ‘somewt ¢ Suredwod ApmS 780 a3uel ‘syuowuSIsse Juapms GG ueIIO DD SA DOTIS wei3old [£2] L8610
‘uone[al0d Y3y ay) payodar Aoy ‘spuzod
pIvp 241/ IsaY) IAQ “13oNng 1d DD
oSe10A® oY) paje[NO[eRd puk (9zIs AQ)
syeonq oAy ojut sepnpow padnoid
s1oyIne 9y) uay [, ‘DD [Npow pue
DOIS 9[NPOW UIMI2q UOTR[ALIOd ON $6°0 WQJSAS QUO JO SIUAWIAS 9p0d /]G UBIIO DD sA DOIS 9[NpoIN [L] ¥861°
§9°0 se[mpowr LgT 1940 HOTS A §°6C uenioq DD sA DOTIS S[MPON [9¢] 1861°
060 DOTS 6€£€ ‘sdmpout O] uenioq DD sA D01 S[MPON [ccl 08610
06°0x saunnolIqns 9g uenioq DD SADOT Qunnoigng [Tl 6L61°
SjuowaIe)s 4G Jo
060x ueIpaw & yim sweisord /6] 1/71d (DD)30[sa (DOTT30[wes3oid [9] 6L61°
LS 01 9¢ woly
10 Suruer DOTS Wim swersord /g uenioq DD sA DOTS urergord (] 6L6T-
‘[9A9] wreaSoxd € uo st Jnsar
PUODS Y} PUE ‘[OAJ] dUNNOIqNS U0 [§°(67T 01 G woxy
UOTIE[OII0D D)D) © JOJ ST J[NSAI ISIY oYL, S9°(« SurSuer HOTS Pim swrerdoxd /g uenioq DD SADOTIS eunnoiqng [¢2] 6L61°
SjuUaUIWIO)) A sndio) a3en3ue| UOIR[A1I0)) [0AT e X

‘102 03 dn DOIS pue DD UO YIoMm PIJE[I JO MIATAIIAQ T J[qeL,

J. Sofiw. Evol. and Proc. 2016; 28:589-618

Copyright © 2015 John Wiley & Sons, Ltd.

DOLI: 10.1002/smr

(sanuyuo)))

'L6°0 pue
‘€6°0 “L8°0 i, SIL[NO[EIAI PUB UOISSAITAI

uerpow pojeadar e 9je[nored sIoyine €L0
AU} ‘@0UBLIBA 9PIM IIY) pue DD pue DO €8°0 9310,4201n0g
10q JO uonnquusip oy SuIssnosIp Loy 8L°0 wouy s199fo1d pozT ++D pue D pue eAgf (DD)301 sa (DOD30] g [9%] 6002°
so[npow
<0 eaef Arejoudord ¢8y BAR(DD sA DOIS o [S¥1 600C
"D I0J SUOTIB[AIIOD IOMO[
PaAIasqo sroyjne Y], ‘syoeford g/ woiy 74 pue
SJJIP UOISIAQI 9U) UO PISeq SUONE[ALI0d uoykd pue JHd pue
Juareyp Auew surejuod roded oy, 950 93104001M0§ WOl SPIP N €] ++D pue) pue eaef D0 sA DOT Ha [¥+] 800¢-
‘poAOwaI
QI19M 9p0OJ pAjeIOUAS Furaq Jo pajoadsns Sy S 69
i SO[Y I [‘2[qeLeA DOTS oy Suisn L8°0 ‘sofexoed qsgoaL] o) (DD)301 sa (DOTS)30] g [ev] LOOT
= SAIY 09C 1940 DOTS
= 150, M 601 1aloid SININX o) DD sA DOTIS uopoung [zv] L00T
Z -a3uaqreyd 1od ueow o) Junenored 1ye
AMn ParR[NO[Ed SeM UOTIR[AIIOD U], "d[qeLIeA
a DD 9y} UO Paseq PAAOWRI dI9M SIAIINQ
ANn *SaSUQ[TeYD JURIIIP 66 JO uonejuatua[dur
H Jrdnnu surejuod sndiod Ay, 8L°0 sweigoxd [rews) // ++) pue D DD sA DO1 g [1%] LoOT
> DOTIII ‘sary
s 1L°0 M CT 198 BIRP N[VSVYN D DD A DOT g [ov] 900T
‘uonjeoriqnd oy J0J vEp Se Surales
Jo asodind 9[o0s ayy M s1oyIne oy £q
UaPLIM dIom pazATeue sweidoxd oy, 6S°0 swerdoxd [rews T4 [eoseq DD SA D01 S[MpoN [6€]1 S00T
20T 00T
980 sweiSord ¢67 Ddd DD sA DO o [8€] 100C
*SSB[O B JO SPOYIou Y} 10§ D)) JO Wins
B ST DINAA ‘SOt QQ I0J 9ZIs JO I0J0eJ
Surpunojuod oy SuIsSnIsIp Apnis v LLO SOSSB[D L[+D DD sA DOIS SSe[D (€] 100CT
So[Y 3 G ‘yonums Auoydord)
¥6°0 Jo wasAsqns JOTINGS'I SSId pue O DD sA DOT ol [9¢1 000¢C
Slicliitilve) A sndio) o3en3ue| uone[R1I0) [9A9T e X
(ponunuo)) T 9[qeL
<
A

J. Sofiw. Evol. and Proc. 2016; 28:589-618

Copyright © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/smr

595

EMPIRICAL ANALYSIS OF THE RELATIONSHIP BETWEEN CC AND SLOC

'sse[D) J1od SpOyIS] PAYSIOM ‘DN 9P09d JO Saul] ‘DT 9pod JO saul] 221n0s DOS Arxadwos onewodLd ‘)
*([zz] enoyrejn 1deoxa) 9[qe) SIY} UI pajedIpul Jou 210JIdY) pue ‘payiodar J1 ‘y3iy sAkeme sem doueoyusis feonsnels oy, Joded ay) jo snoojy
urewr ay) sem DOIS Pue DD U9m)aq UONR[I Y] JBY) SAJOUP , Y, [OAJ] UNNOIGNS) UO SUONE[ALIOD AJBIIPUI () IBIS B [IIM SUONR[AILI0D Y], "[Z1] 9[qed s proddays spuaxa siyg,

98°0 198 vIEp TIND VSVN o) 20 sa DO'T SMMPOIN [6¥] v10C
JuUBOYIUIIS 80°0 DD uedw pue
A[[eo1S1IE]S 10U 19M SUONB[AIIO)) AN SISSB[D €T 198 BIep Y BAR[DD xew sA DOIS Sse[D [zzl 1102
sy00fo1d oornos-uado
99°0 pavyord-puey 71 1040 DOTS M 008 ++D pue eaef DD sA DOTS sseD [8¥] 010C-
"UONR[ALIOD
Ayl uo DOIS Jo souer Je Juroo|
JO douanpur 9y) MOUS SIOyINe Y[, 9SAY)
SUIAOWAI J9)Je ST UONB[AIIOd PUOIIS A,
"9sned Y} SB SI[Y JOpeaY PA[BIAI SISATeur S9[J Jopeay-uou 3)0 Yorym jo
Toyuny pue ‘OIS PUE DD UsemIdq 69°0 ‘SO 3 00€
UONE[2LIOD MO[B PIAISSqO Koy “Af[eniuf 650 ‘sogexed xnuryory o) (DD)30r sA (DOTS)S0] oI (L] 010C-
SjuaIwIo)) N% mB&oU ommsmﬁad uoneRLIo) [2A97] Jea X

(ponunuo)) T J[qeL

J. Sofiw. Evol. and Proc. 2016; 28:589-618

Copyright © 2015 John Wiley & Sons, Ltd.

DOLI: 10.1002/smr

596 DAVY LANDMAN ETAL.

1.00 -
= A
A
A A
. A
0.75 -] . A 4 L] Language
] A A ® COBOL
A Fortran
@ Pascal
A A o C
A 4 [] A ® Java
#0350 Other
A Aggregation

B None
A File

0.25 - ® Other

[J
0.00 -
1980 1990 2000 2010
Year

Figure 1. Visualization of the R* reported in related work (Table I). The colors denote the most common

languages, and the shape the kind of aggregation; aggregation ‘None’ means that the correlation has been

reported on the level of a subroutine. Note that for languages such as COBOL, the lowest level of measure-

ment of cyclomatic complexity and source lines of code is the file level. Therefore, these are reported as an
aggregation of ‘None’ (similar to the * indication in Table I).

Perhaps not surprisingly, in 2013, Yu ef al. [50] found a Pearson correlation of nearly 1 between
whole system SLOC and the sum of all CC. They conclude the evolution of either metric can
represent the other. One should keep in mind, however, that choosing the appropriate level of
aggregation is vital for validity of an empirical study: failure to do so can lead to an ecological
fallacy [51] (interpreting statistical relations found in aggregated data on individual data). Similarly,
the choice of an aggregation technique can greatly affect the correlation results [52-54].

Curtis and Carleton [13] and Shepherd [12] were the first to state that without a clear definition of
what source code complexity is, it is to be expected that metrics of complexity are bound to measure
(aspects of) code size. Any metric that counts arbitrary elements of source code sentences actually
measures the code’s size or a part of it. Both Curtis and Carleton, and Shepherd conclude that this
should be the reason for the strong correlation between SLOC and CC. However, even though CC is
a size metric, it still measures a different part of the code. SLOC measures all the source code, while
CC measures only a part of the statements, which govern control flow. Even if the same dimension is
measured by two metrics, that fact alone does not fully explain a strong correlation between them.
We recommend the work of Abran [55], for an in-depth discussion of the semantics of CC.

Table I lists which studies use which level of aggregation. Note that the method of aggregation is
sum in all but one of the papers reviewed. A possible explanation for strong correlations could be
the higher levels of aggregation. This brings us to our third hypothesis:

Hypothesis 3
The correlation between aggregated CC for all subroutines and the total SLOC of a file is higher than
the correlation between CC and SLOC of individual subroutines.

If this hypothesis is true, it would explain the high correlation coefficients found in literature when
aggregated over files: it would be computing the sum over subroutines that causes it rather than the
metric itself. Hypothesis 3 is non-trivial because it depends, per file, on the ratio between the size of
the bodies and the amount of bodies what the influence of aggregation may be. This influence needs
to be observed experimentally.

A confounding factor when trying to investigate Hypothesis 3 is the size of the code outside of the
subroutines, such as import statements and class and field declarations in Java, and macro-definitions
and function headers, typedefs, and structs in C. For the sake of brevity, we refer to this part of
source code files as the ‘header’, even though this code may be spread over the file. A large variance
in header size would negatively influence correlation on the file aggregation level, which may hide
the effect of summing up the CC of the subroutines. We do not know exactly how the size of the

Copyright © 2015 John Wiley & Sons, Ltd. J. Sofiw. Evol. and Proc. 2016; 28:589-618
DOI: 10.1002/smr

EMPIRICAL ANALYSIS OF THE RELATIONSHIP BETWEEN CC AND SLOC 597

header is distributed in C or Java files and how this size relates to the size of subroutines. To be able to
isolate the two identified factors on correlation after aggregation, we also introduce the following
hypothesis:

Hypothesis 4
The more subroutines we add up the CC for, the more this aggregated sum correlates with aggregated
SLOC of these subroutines.

This hypothesis isolates the positive effect of merely summing up over the subroutines from the
negative effect of having headers of various sizes. Hypothesis 4 is non-trivial for the same reasons
as Hypothesis 3 is non-trivial.

2.4. Data transformations

Hypothesis 1 is motivated by the earlier results from the literature in Table I. Some newer results of
strong correlation are only acquired after a log transform on both variables [6, 43, 46, 47]: indeed,
log transform can help to normalize distributions that have a positive skew [56] (which is the case
both for SLOC and for CC), and it also compensates for the ‘distorting’ effects of the few but
enormous elements in the long tail. A strong correlation, which is acquired after log transform, does
not directly warrant dismissal of one of the metrics, because any minor inaccuracy of the linear
regression is amplified by the reverse log transform back to the original data. Nevertheless, the
following hypothesis is here to confirm or deny results from literature:

Hypothesis 5
After a log transform on both the SLOC and CC metrics, the Pearson correlation is higher than the
Pearson correlation on the untransformed data.

We note that the literature suggests that the R* values for transformed and untransformed data are
not comparable [57, 58]. However, we do not attempt to find the best model for the relation
between CC and SLOC, rather to understand the impact of log transformation as used by previous
work on the reported R? values.

2.5. Corpus bias

The aforementioned log transform is motivated in literature after observing skewed long-tail distributions
of SLOC and CC [43, 46, 47, 59]. On the one hand, this puts all related work on smaller data sets, which
do not interpret the shape of the distributions in a different light. How to interpret these older results? Such
distributions make relatively ‘uninteresting’ smaller subroutines dominate any further statistical
observations. On the other hand, our current work is based on two large corpora (Section 3). Although
this is motivated from the perspective of being as representative as possible for real-world code, the
size of the corpus itself does emphasize the effects of really big elements in the long tail (the more we
look, the more we find) as well as strengthens the skew of the distribution towards the smaller elements
(we will find disproportionate amounts of new smallest elements). Therefore, we should investigate the
effect of different parts of the corpus, ignoring either elements in the tail or ignoring data near the head:

Hypothesis 6
The strength of the linear correlation between SLOC and CC is improved by ignoring the smallest sub-
routines (as measured by SLOC).

Hypothesis 7
The strength of the linear correlation between SLOC and CC is improved by ignoring the largest sub-
routines (as measured by SLOC).

Hypothesis 6 was also inspired by Herraiz and Hassan’s observation of an increasing correlation for
the higher ranges of SLOC [47]. One could argue that the smallest of subroutines are relatively
uninteresting, and a correlation that only holds for the more nontrivial subroutines would be
satisfactory as well.

Copyright © 2015 John Wiley & Sons, Ltd. J. Sofiw. Evol. and Proc. 2016; 28:589-618
DOI: 10.1002/smr

598 DAVY LANDMAN ETAL.

Hypothesis 7 investigates the effect of focusing on the smaller elements of the data, ignoring (parts
of) the tail. Inspired by related work [32, 41, 43] that assumes that these larger subroutines can be
interpreted as ‘outliers’. It is important for the human interpretation of Hypothesis 1 to find out what
their influence is. Although there are not that many tail elements, a linear model that ignores them
could still have value.

3. EXPERIMENTAL SETUP

In this section, we discuss how the study has been set up. To perform empirical evaluation of the
relation between SLOC and CC for subroutines, we needed a large corpus of such subroutines. To
construct such a corpus, we have processed Sourcerer [11], a collection of 19 K open-source Java
projects (Section 3.1), and Gentoo,! a full Linux distribution containing 9.6 K C packages
(Section 3.2). Then SLOC and CC have been computed for each method or function
(subroutine) in the corpus (Sections 3.3 and 3.4). Finally, we performed statistical analysis of
the data (Section 3.5).

3.1. Preparing the Java corpus

Sourcerer [11] is a large corpus of open-source Java software. It was constructed by fully downloading
the source code of 19 K projects, of which 6 K turned out to be empty.

* Remove non-Java files While Sourcerer contains a full copy of each project’s source code man-
agement (SCM), because of our focus on Java, we excluded all non-Java files.

* Remove SCM branches When Sourcerer was compiled, the whole SCM history was cloned. In
particular, this means that multiple versions of the same system are present. However, inclusion of
multiple similar versions of the same method would bias statistical analysis. Therefore, we re-
moved all directories named /tags/, /branches/, and /nightly/, which are commonly used to indicate
snapshot copies of source trees or temporarily forked development.

* Remove duplicate projects Sourcerer projects have been collected from multiple sources includ-
ing Apache, Java.net, Google Code, and SourceForge. Based on Sourcerer’s meta-data, we de-
tected 172 projects, which were extracted from multiple sources—for example, from both
SourceForge and Google Code. Similarly to removal of SCM branches, we have kept only one
version of each project; in this case, we chose the largest version in bytes.

* Manually reviewed duplicate files We calculated the MDS5 hash per file. The 278 projects con-
taining more than 300 duplicate files (equal hash) were manually reviewed and fixed in case the
duplication could be explained. Common reasons were non-standard SCM structure (different la-
bels for tags and branches) and the code of third-party libraries. A list of the duplicate projects and
manually removed directories is available online. I

* Remove out-of-scope code Finally, we have decided to remove code that is either external to the
studied project or is test code. It is a priori not clear whether test code exhibits the same relation
between SLOC and CC as non-test code. We removed all directories matching the following
case-insensitive regular expression: /[/\-]tests?\/|\/examples?\/| (third]|3rd)
[\-_17?party/. This filtering differs from the one used in the previous paper [10] and was
based on insight gained during the construction of the C corpus. This is also why the numbers
for Java in Section 4 differ from those reported previously [10].

Performing these steps, we have reduced the 390 corpus to 14.3 containing 13 K projects over 2 M
files. The resulting corpus has been made publicly available [60].

"[https://www.gentoo.org/
TAIl code and data are available at http://www.cwi.nl/~landman/jsep2015/

Copyright © 2015 John Wiley & Sons, Ltd. J. Sofiw. Evol. and Proc. 2016; 28:589-618
DOI: 10.1002/smr

https://www.gentoo.org/
http://www.cwi.nl/~landman/jsep2015/

EMPIRICAL ANALYSIS OF THE RELATIONSHIP BETWEEN CC AND SLOC 599

3.2. Preparing the C corpus

We are not aware of a C corpus of size, age, and spread of domains comparable with Sourcerer.
Therefore, we have constructed a new corpus based on Gentoo’s Portage packages.””

We have chosen Gentoo because its packages cover a wide range of domains. Compared with other
Linux distributions, Gentoo distributes the source code instead of pre-compiled binaries, enabling our
analysis.

On October 14, 2014, the repository contained 65 K packages. The extensions of 40 K packages
indicated an archive (e.g., tar.gz). The following process was used to construct our C corpus based
on these packages.

* Remove non-code packages We filtered debug symbols, patch collections, translations, binary
installers, data packages, binary packages, auxiliary files, and texlive modules.

* Remove multiple versions The Portage repository of Gentoo contains multiple versions of pack-
ages. We kept only the newest version of every package. Note that Portage does come with meta-
data—‘ebuild’—to collect the latest Gentoo packages, selecting a sub-set of the entire repository.
We refrained from using this meta-data, because it is based on design decisions, which would in-
troduce a selection bias (like hardening for security and library compatibility).

* Extract packages The remaining 20 K packages were unpacked, resulting in 8 M files.

* Detect C code C and C++ code share file extensions. Both .c and .h can contain C or C++ code.
Using heuristics inspired by GitHub’s linguist [61], we developed a tool to detect if a file
contained either C or C++ code. The heuristics uses syntactical differences to detect C++ and dif-
ferences between the often included standard library header files for C and C++. Of the 1.35 M
files with C extensions, 1.02 M contained C code, and 0.33 M contained C++. We removed
all the files with C++ code.

* Remove out-of-scope code Similarly to the preparation of our Java corpus, we have chosen to
remove code that is not part of the application or library studied. We have used the exact same
filter, removing the folders: tests, examples, and third party.

* Detect duplicates Similarly to the preparation of our Java corpus, we calculated the MDS5 hash of
all the files. The 223 packages containing more than 300 duplicate files were manually reviewed
and fixed in case the duplication could be explained. Common reasons were failures in detecting
multiple versions (90 packages), forks, and included third-party libraries.

* Keep only related files For the packages still containing C files, we also kept all files related to
the possible compilation of the library. All other files were removed.

Performing these steps resulted in a corpus of 19 containing 9.8 K packages with 13 of C code in
809 K files. The corpus is publicly available [62].

3.3. Measuring Java’s SLOC and CC

While numerous tools are available to measure SLOC and CC on a file level,” to perform our study,
we require to calculate SLOC and CC per method and to precisely control the definition of both
metrics. We use the M> framework [63], which is based on the Eclipse JDT,“' to parse the full Java
source code and identify the methods in the corpus. This also generates full AST for each method
for further analysis. Figure 2 depicts the source code of computing the CC from the AST of a
method. The code recursively traverses the AST and matches the enumerated nodes, adding 1 for
each node that would generate a fork in the Java control flow graph.

For SLOC, we decided not to depend on the information in the Eclipse AST (AST are not designed
for precisely recording the lexical syntax of source code). Instead, we use the AST only to locate the
source code of each separate method. To compute its SLOC, we defined a grammar in RASCAL
[64] to tokenize Java input into newlines, whitespace, comments, and other words. The parser

*fhttps://packages.gentoo.org/
TTFor example, http://cloc.sourceforge.net/, http://www.sonarqube.org/
htp://www.eclipse.org/jdt

Copyright © 2015 John Wiley & Sons, Ltd. J. Sofiw. Evol. and Proc. 2016; 28:589-618
DOI: 10.1002/smr

600 DAVY LANDMAN ETAL.

1: int calcCC(Statement impl) {

2: int result = 1;

3 visit (impl) {

4 case \if(_,_) : result += 1;

5 case \if(_,_,_) : result += 1;

6 case \case(_) : result += 1;

7 case \do(_,_) : result += 1;

8 case \while(_,_) : result += 1;

9 case \for(_,_,_) : result += 1;

10: case \for(_,_,_,_) : result += 1;
11: case foreach(_,_,_) : result += 1;
12: case \catch(_,_): result += 1;

13: case \conditional(_,_,_): result += 1;
14: case infix(_,"&&",_) : result += 1;
15: case infix(_,"||",-) : result += 1;
16:

17: return result;

18: }

Figure 2. RASCAL source code to calculate the CC of a given method. The visit statement is a combination
of a regular switch and the visitor pattern. The cases pattern match on elements of the AST.

produces a list of these tokens, which we filter to find the lines of code that contain anything else but
whitespace or comments. We tested and compared our SLOC metric with other tools measuring full
Java files to validate its correctness.

To be able to compare SLOC of only the subroutines compared with SLOC of the entire file, we
store the SLOC of each Java method body separately (Hypothesis 4).

For Java, files without method bodies, such as interface definitions, were ignored. Out of the 2 M
files, 306 K were ignored because they did not contain any method bodies.

3.4. Measuring C’s SLOC and CC

To perform our analysis on the C code, we use the Software Analysis Toolkit of the Software
Improvement Group®*. This proprietary toolkit uses a robust analysis approach, processes over a
billion SLOC per year, and forms the basis of the consultancy services of Software Improvement
Group. As part of these services, the measurements performed by the toolkit are continuously
validated, both by the internal development team as well as externally by the development teams of
clients and third-party suppliers.

The measurement process of the Software Analysis Toolkit consists roughly of four phases:
preprocessing, tokenization, scope creation, and measurements. In the first phase, preprocessor
directives are removed from the source-code. This step is required to solve issues such as illustrated
in Figure 3 where only one unit declaration ends up in the final binary depending on whether debug
is defined. When both parts are kept two unit headers, but only a single close bracket would be used
as input to the next phase. To prevent problems in the scope creation phase, that is, not being able
to find the correct units, only the first code blocks of conditional preprocessor directives are kept.
That is, in the code in Figure 3, only the second and the sixth lines are passed on to the next phase.

This pragmatic approach is used because running the preprocessor is prone to errors and labor
intensive because of projects relaying on specific tools and versions. Moreover, choosing a
representative set of system constants is often not possible and adds unnecessary complexity to the
assessment process. Processing all sources in the same way reduces overhead and makes the
measurement step more objective. In our experience, choosing the first preprocessor block captures
most of the code and provides reliable results in assessments where the results are validated with the
development teams. Because this validation step is not possible in this experiment, all files, which
after processing contain unbalanced curly braces, are removed from the corpus.

In the second phase, the code is tokenized using an internally developed tokenizer. The resulting list
of tokens is used in the scope creation phase to extract a scope tree containing subroutines, modules,
and packages (depending on the language). For C, the token list is inspected for patterns
representing the headers of subroutines (e.g., the second line in the aforementioned code) and the

Shitp://www.sig.eu

Copyright © 2015 John Wiley & Sons, Ltd. J. Sofiw. Evol. and Proc. 2016; 28:589-618
DOI: 10.1002/smr

EMPIRICAL ANALYSIS OF THE RELATIONSHIP BETWEEN CC AND SLOC 601

1: #ifdef debug

2 void get_string(char prefix) {
3: #else

4: void get_string() {

5: #endif

6.

Figure 3. C code example with conditional pre-processor directives.

body blocks (the brackets on line two and six). These scope blocks are then put into an internal graph
structure.

To perform the actual measurements, all nodes representing subroutines are processed by a visitor,
which works on the list of tokens associated with the node. Similar to the approach for Java, SLOC is
measured by identifying all lines within a function, which contain anything else than comments or
whitespace. To calculate the CC, all tokens representing the keywords case, if, for, and while and
the operators |l, &&, and ? are counted. Note that because we match on tokens instead of AST
nodes, the while token also captures any do...while statements, making this implementation equal to
the one defined for Java (Figure 2).

C code is split over .c and .h files. Herraiz and Hassan [47] ignored all headers files (.h), but we did
include them. The reason is that for C, although it is a less common idiom, putting functions in a header
file is possible. Our C corpus contains 356 K header files. We chose to ignore all .c and .h files without
any function bodies (similar to Java interfaces). This results in removing 331 K .h and 25 K .c files.

3.5. Visualization and statistics methods

Before discussing the results (Section 4), we will first discuss the chosen visualizations and statistical
methods.

3.5.1. Distributions. Before comparing SLOC and CC, we describe the distributions in our data using
histograms and descriptive statistics (median, mean, min, and max). The shape of distributions does
have an impact on the correlation measures used, as explained earlier. All results (Section 4) should
be interpreted with these distributions in mind.

3.5.2. Hexagonal scatter plots. Scatter plots with SLOC on the x-axis and CC on the y-axis represent
the data in a raw form. Because of the long-tail distributions of both CC and SLOC, the data are
concentrated in the lower-left quadrant of the plots, and many of the dots are placed on top of each
other. Therefore, we also use log—log scatter plots. We use hexagonal scatter plots [65] to address
overplotting and type I errors (false positives). The latter method divides the two-dimensional plane
of the plot area in 50x50 hexagons. It then counts how many of the data points fall into each
individual hexagon and uses a logarithmic 255-step grayscale gradient to color it. Compared with
vanilla scatter plots, the hexagonal plots are much less confusing; the main problem is that a limited
resolution on paper can create artifacts such as big black blobs of ink where in fact the raw data do
not feature maximum density at all (i.e., overplotting causing type I errors). Nevertheless, it should
be noted that the gradient and human perception have a limited resolution, and as such, hexagonal
plots can still hide the full impact of the skewness of the distributions and the variance in the data.

3.5.3. Correlation. Most related work, if reported, uses Pearson product-moment correlation
coefficient [66] (hereafter Pearson correlation), measuring the degree of linear relationship between
two variables. The square of Pearson correlation is called the coefficient of determination (R%). R>
estimates the variance in the power of one variable to predict the other using a simple linear
regression. Hereafter, we report the R” to describe a correlation.

Many researchers have observed that the distributions of SLOC (and CC) are right-skewed. While
opinions differ on robustness of the Pearson correlation against normality violations [56, 67], a
number of earlier studies attempt to compensate for the skewness of the distribution by applying a
log transform and then compute the Pearson correlation [6, 43, 46].

The important matter of interpreting the results after a log transform back to the original data is
discussed in Section 5.

Copyright © 2015 John Wiley & Sons, Ltd. J. Sofiw. Evol. and Proc. 2016; 28:589-618
DOI: 10.1002/smr

602 DAVY LANDMAN ETAL.

Other researchers have transformed the data using more advanced methods in order to improve the
chances for linear correlation. For example, using Box-Cox transformation [47] or performing the
repeated median regression (RMR) method on a random sample [46]. Box-Cox is a power transform
similar to the basic log transform. We have chosen to stick with the simpler method, following the
rest of the related work, which we are trying to reproduce (Hypothesis 5).

The next method, RMR, may be useful to find some linear model, but it entails a lossy
transformation. The median regression method reduces the effect of random measurement errors in
the data by computing a running median. We do not have random errors in the CC or SLOC
measurements, so a running median would hide interesting data. Therefore, RMR is outside the
scope of this paper.

If no linear correlation is to be expected, or is found using Pearson’s method, we use Spearman’s
rank-order correlation coefficient [68] (hereafter Spearman correlation or p). Similarly to the Pearson
correlation, Spearman’s correlation is a bivariate measure of correlation/association between two
variables. However, opposed to the Pearson correlation, Spearman’s correlation is employed with
rank-order data, measuring the degree of monotone relationship between two variables. We apply
this method only for completeness sake, because it does not generate a predictive model, which we
could use to discard one of the metrics.

3.5.4. Regression. The square of Pearson’s correlation coefficient is the same as the R? in simple
linear regression. Hence, if we would find a strong correlation coefficient, we would be able to
construct a good predictive linear model between the two variables, and one of the metrics would be
obsolete. It is therefore important to experimentally validate the reported high correlation
coefficients in literature (Table I). In general, for other correlation measures (such as Spearman’s
method), this relation between regression and correlation is not immediate. In particular, a strong
Pearson correlation coefficient after a log transform does not give rise to an accurate linear
regression model of the original data. We discuss this in more detail later when interpreting the
results in Section 5.

4. RESULTS

In this section, we report the results of our experiments and the statistics we applied to it. We postpone
discussion of these results until Section 5.

4.1. Distributions for Java and C

Figure 4 shows the histogram of SLOC per project, and Table II describes this distribution. The Java
corpus contains 17.6 M methods spread out over 1.7 M files, and the C corpus has 6.3 M functions
spread over 462 K files. The C corpus seems to have a disproportional number of packages with a
low SLOC, even on the logarithmic scale. After randomly inspecting a number of packages in the
range between 1 and 20 files, we concluded that next to naturally small packages, these are C files that
are part of larger packages written in other languages such as Java, Python, or Perl. Lacking any
argument to dismiss these files, we assume them to be just as representative of arbitrary C code as the rest.
Figure 5 shows the distribution of SLOC per Java method and C function. Table III describes their
distributions. We observe skewed distributions with a long tail. To measure the degree of skewness,
we calculate the moment coefficient of skewness [69], that is, the third standardized moment of the
probability distribution. A positive value indicates that the right-hand tail is longer or fatter than the
left-hand one. A negative value indicates the reverse. A value close to zero suggests a symmetric
distribution. For our corpora, the moment coefficient of skewness equals 234.7488 for SLOC in Java
and 107.277 for SLOC in C. After the log transform, it equals 1.053 for Java and 0.4042721 for C.
This means that the mean values are not at all representative for the untransformed corpora and that
the smallest subroutines dominate the data. For Java, 8.8 M of the methods have 3 SLOC or fewer.
This is 50% of all data points. There are 1.2M methods with 1 or 2 SLOC; these are the methods
with an empty body, in two different formatting styles or (generated) methods without newlines. The
other 7.6 M methods of 3 SLOC contain the basic getters, setters, and throwers pattern frequently

Copyright © 2015 John Wiley & Sons, Ltd. J. Sofiw. Evol. and Proc. 2016; 28:589-618
DOI: 10.1002/smr

EMPIRICAL ANALYSIS OF THE RELATIONSHIP BETWEEN CC AND SLOC 603

200+
300-
150-
> >
2 2
S 200- P
=) 2 100-
[} (9]
il kol
3 3
100- 5ol
0- ,.‘l - 0- 1 III ..
1e+00 le+01 1e402 1e403 le+04 1405 1e+06 1c400 le+01 16402 1e+03 le404 1e405 1e+06
Total SLOC Total SLOC
(a) Java projects (b) C packages

Figure 4. Distribution of the non-empty projects/packages over their total source lines of code (SLOC).
SLOC is on a log;q scale; bin width is 0.05.

Table II. Statistics of the total SLOC per project in the corpus.

Corpus Min. 25% Median Mean 75% Max.
Java 1009 3219 15,270 10,250 2,207,000
C 1 671 3036 21,200 12,430 3,333,000
SLOC, source lines of code.
1e+07 1
le+05 4
le+05 4
z oy
§ § 1e+03
S 1e+03 - g
=3} 53}
le+01 - le+01 4
[] 1 EE
I 10 100 1000 10000 i 10 100 1000 10000
SLOC SLOC

(a) Java methods (b) C functions

Figure 5. Histogram of the source lines of code (SLOC) per subroutine in both corpora, in log—log space (bin

width is 0.1). Here, we see that for both Java and C, small methods and functions are the most common. The

bar around 1000 for Java and 3000 for C are two cases where a project contained multiple files of generated
code that slightly differed per file. See Figure 7 to compare the distribution.

Table III. Descriptive statistics of the SLOC and CC per Java method and C function.

Corpus Variable Min. 25% Median Mean 75% Max.

Java SLOC 1 3 3 9.38 9 33,850
CcC 1 1 1 2.33 2 4377

C SLOC 1 6 12 26.36 27 44,880
CcC 1 1 3 5.98 6 18,320

CC, cyclomatic complexity; SLOC, source lines of code.

seen in Java methods—often called one-liners. For C, this is less extreme; only 13% of the functions
have an SLOC of 3 or less. The corpora differ in the strength of the skewness here: the C corpus has
proportionally fewer of the smallest subroutines than the Java corpus has. Nevertheless both plots
have their mode at 3 SLOC.

J. Sofiw. Evol. and Proc. 2016; 28:589-618

Copyright © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/smr

604 DAVY LANDMAN ETAL.

Figure 6 shows the distribution of CC per Java method and C function. For the Java corpus, 15.2 M
methods have a CC of 3 or less. This is 86% of all data points. There are 11.6 M methods without any
forks in the control flow (1 CC), that is, 65%. This observation is comparable with the 64% reported by
Grechanik et al. for 2K randomly chosen Java projects from SourceForge [70]. We observe that the
lion’s share of Java methods is below the common CC thresholds of 10 (97.00%) [15] or 15
(98.60%) [71]. The C corpus shows a comparable picture, but again with a more even distribution,
which puts less emphasis on the smallest subroutines. For C, the median is at 3, while for Java, it
was 1. Still, 33% of the C subroutines have a CC of 1 (straight line code). We do see that both
corpora have their mode of CC at 1. For C, 85.60% functions are below the common CC threshold
of 10 and 91.70% below 15.

Comparing the shape of Java’s and C’s distributions is complicated by the difference in corpus size.
To visualize the difference in the distribution, we have used relative frequency polygons (Figure 7).
These relative frequency polygons are normalized by the size of the corpus, and thus, the area under
the curve is 1. This more clearly shows the difference in distribution between Java and C; for Java,
there are more methods with a small SLOC and CC than C functions. The shape of the distributions
is a controversial matter, which we consider outside the scope of this article.

4.2. Scatter plots

Figure 8 shows two zoomed in (CC<500 and SLOC<1800) hexagonal scatter plots of the
subroutines in our corpus. Because of the skewed data, this figure still shows 99.98% of all data
points. Figure 9 shows the same hexagonal scatter plots in a log—log space, allowing showing more

1e+05 1

1e+03 1

le+01 1
Il | |

1e+07 -

le+05 -
1e+03 -
le+01 -
i
1

Figure 6. Histogram of the Cyclomatic Complexity (CC) per subroutine in both corpora, in log—log space
(bin width is 0.1). Here, we see that for both Java and C, methods and functions with little control flow
are the most common. See Figure 7 to compare the distribution.

Frequency
Frequency

]
lb 1(‘)0 ldOO i lb 1(‘)0 1600 10600
cc cc
(a) Java methods (b) C functions

— Java — Java

0.6 0.6
> >
Q Q
= =}
o 5}
ES =
o 04- 3 04
2 =1
= =
E 2
ks =
L Q
I~ 0.2 & 0.2

0.0 4

00- "
1 10 100 1000 10000 1 10 100 1000 10000
SLOC cC

Figure 7. Relative frequency polygons for both corpora and both variables. The variables are displayed on a

logarithmic scale. Relative frequency polygons are histograms normalized by the amount of data points; the

area under the curve is 1. They visualize the relative difference between distributions. CC, cyclomatic com-
plexity; SLOC, source lines of code.

Copyright © 2015 John Wiley & Sons, Ltd. J. Sofiw. Evol. and Proc. 2016; 28:589-618
DOI: 10.1002/smr

EMPIRICAL ANALYSIS OF THE RELATIONSHIP BETWEEN CC AND SLOC 605

500 -

400 -

300 -

CcC

200 -

100 -

0 500 1000 1500
SLOC
(a) Java

500 -

400 -

300 -

CcC

200 -

100 -

0 500 1000 1500
SLOC
(b)c

Figure 8. Scatter plots of Source Lines of Code (SLOC) versus Cyclomatic Complexity (CC) zoomed in on
the bottom left quadrant. The solid and dashed lines are the linear regression before and after the log
transform. The grayscale gradient of the hexagons is logarithmic.

4000 1 4000 1

1000 1000 4

100 4

CcC

1 lb 1 60 1 dOO 4600 i lb 1 60 1 060 4600
SLOC SLOC
(a) Java (b) C

Figure 9. Scatter plots of source lines of code (SLOC) versus cyclomatic complexity (CC) on a log—log
scale. The solid and dashed lines are the linear regression before and after the log transform. The grayscale
gradient of the hexagons is logarithmic.

data. The two black lines in both figures show the linear regressions before and after the log transform,
which will be discussed in Section 4.3. The logarithmic grayscale gradient of the points in the scatter
plot visualizes how many subroutines have that combination of CC and SLOC: the darker, the more
data points. Figure 10 shows an even more zoomed in range of the scatter plots; in these box plots,

Copyright © 2015 John Wiley & Sons, Ltd. J. Sofiw. Evol. and Proc. 2016; 28:589-618
DOI: 10.1002/smr

606 DAVY LANDMAN ETAL.

140 -
120 -
100 1

80 -

cc

60 -

g

20 30 40 50 60 70 80 90 100

" iSSP e

Figure 10. Box plots of cyclomatic complexity (CC) per source lines of code (SLOC) on the lower range,
illustrating the wide spread of Figure 9a and 9b. The median is the black line in the box; bottom and top
of the box are the first and third quartile; the hinges are at the traditional 1.57 * inter-quartile range [72].

we can more clearly see the variance of CC increasing as SLOC increases. Moreover, the median is
increasing, but so is the inter-quartile range. We have not created these plots for the full range of the
data because these plots do not scale.

Figures 8 and 9 show a widely scattered and noisy field, with a high concentration of points in the
left corner. The outline of these concentrations might hint at a positive (linear) monotone relation.
However, the same outline is bounded by the minimum CC number (1) and the expected maximum
CC number (CC is usually not higher than SLOC given a source code layout of one conditional
statement on a single line).

We do find some points above the expected maximum CC, which we found out to be generated code
and code with dozens of Boolean operators on one single line.

In previous work on the same Java corpus, we reported the same data as plotted in Figure 9a in a
normal scatter plot (Figure 5 in our previous work [10]). There, we observed several ‘lines’, which
might be attributed to common code idioms. The current hexagonal plot does not show these lines (see
Section 3.5.2, which motivates hexagonal plots).

4.3. Pearson correlation

In Table IV, the first row shows the Pearson correlation over the whole corpus. The R? of SLOC and CC
is 0.40 for Java and 0.44 for C. Figure 8a and 8b respectively depicts these linear fits, CC=0.92
+0.15-SLOC and CC=1.70+0.16 - SLOC, as a solid black line. These R? are much lower than the
related work in Table I, even if we focus on the related work at the subroutine/function/method level.

The Pearson correlation after a log transform showed higher numbers, which are more in line with
related work that also applies a log transform [6, 43, 46, 47]. The fit for Java, the dashed line in

Copyright © 2015 John Wiley & Sons, Ltd. J. Sofiw. Evol. and Proc. 2016; 28:589-618
DOI: 10.1002/smr

EMPIRICAL ANALYSIS OF THE RELATIONSHIP BETWEEN CC AND SLOC 607

Table IV. Correlations for part of the tail of the independent variable SLOC.

(a) Java methods

Min. SLOC Coverage (%) R? log R* p Methods

1 100 0.40 0.68 0.80 17,633,256

3 50 0.37 0.58 0.74 8,816,628

5 40 0.36 0.50 0.67 7,053,303

9 25 0.34 0.38 0.60 4,408,314

11 20 0.33 0.33 0.57 3,526,652

20 10 0.30 0.20 0.50 1,763,326

77 1 0.21 0.03 0.33 176,333

230 0.100 0.14 0.00 0.21 17,634

688 0.010 0.08 0.00 0.17 1764

(b) C functions

Min. SLOC Coverage (%) R? log R? p Methods
1 100 0.44 0.71 0.83 6,259,031
12 50 0.42 0.52 0.71 3,129,516
16 40 0.41 0.47 0.68 2,503,613
27 25 0.39 0.37 0.64 1,564,758
33 20 0.38 0.33 0.62 1,251,807
56 10 0.36 0.22 0.56 625,904
218 1 0.28 0.05 0.39 62,591
703 0.100 0.20 0.01 0.30 6260
2627 0.010 0.12 0.00 0.01 626

All correlations have a high significance level (p<1x107').
SLOC, source lines of code.

Figures 8 and 9, is log;o(CC)=—0.28 +0.65 - log;o(SLOC) & CC=10"2%.SLOC*®. The fit for C
(Figure 8b and 9b) is CC=10""*'-SLOC"”°. More on the interpretation of this transform and the
results is discussed in Section 5.

As discussed earlier, the data are skewed towards small subroutines and simple control flow graphs.
Because 50% of Java’s method and 13% of C’s functions have an SLOC between 1 and 3, these points
have a high influence on the correlation. We could argue that the relation—between SLOC and CC—
for these smaller subroutines is less interesting. Therefore, to test Hypothesis 6, Table IV also shows
the Pearson correlations for parts of the tail of the SLOC variable™. Each row shows a different
percentage of the tail of the data, and the minimum SLOC for that part.

Perhaps surprisingly, the higher the minimum SLOC (Table 1V), the worse the correlation. This
directly contradicts results from Herraiz and Hassan [47], who reported improving correlations for
higher regions of SLOC. However, Jbara et al. [8] also reported decreasing correlations, except that
they looked at higher CC instead of SLOC.

In three papers we cited earlier [32, 41, 43], the largest subroutines are removed from the data before
calculating correlation strength, as opposed to removing the smallest subroutines (see the preceding
text). To be able to compare, we report in Table V the effect of removing different percentages of the
tail (related to Hypothesis 7). We mention the maximum SLOC, which is still included in each sub-set.

We further explore removing both the smallest and the largest subroutines. We observed that for a
fixed maximum SLOC, increasing the minimum SLOC results in lower R? (similarly to Table IV). We
further observe that for a fixed minimum SLOC, increasing the maximum SLOC results in the increase
of R* followed by the decrease (similarly to Table V). Finally, we observe that the optimal R* values
are obtained when no small subroutines are eliminated and the maximum SLOC is 130 for Java
(R>=0.60) and 430 for C (R>=0.67). While the optimal R*> values seem to be quite close, the
maximum SLOC for C exceeds the maximum SLOC for Java by more than three times. This factor

TNormal quantiles do not make sense for this data because the first few buckets would hold most of the data points for
only a few of the CC and SLOC values (e.g., 1-4).

Copyright © 2015 John Wiley & Sons, Ltd. J. Sofiw. Evol. and Proc. 2016; 28:589-618
DOI: 10.1002/smr

608 DAVY LANDMAN ETAL.

Table V. Correlations for part of the tail of the independent variable SLOC removed.

(a) Java methods

Max. SLOC Coverage (%) R? log R? p) Methods
33,851 100 0.40 0.68 0.80 17,633,256
934 99.995 0.53 0.68 0.80 17,632,374
688 99.990 0.54 0.68 0.80 17,631,492
230 99.900 0.59 0.68 0.80 17,615,622
77 99 0.59 0.67 0.79 17,456,923
20 90 0.51 0.55 0.74 15,869,930
11 80 0.43 0.41 0.66 14,106,604
9 75 0.37 0.32 0.60 13,224,942
5 60 0.07 0.04 0.28 10,579,953
3 50 0.00 0.00 0.02 8,816,628

(b) C functions

Max. SLOC Coverage (%) R? log R? p) Methods
44,881 100 0.44 0.71 0.83 6,259,031
3715 99.995 0.63 0.71 0.83 6,258,718
2622 99.990 0.63 0.71 0.83 6,258,405
703 99.900 0.67 0.70 0.83 6,252,771
218 99 0.66 0.69 0.83 6,196,440
56 90 0.56 0.61 0.80 5,633,127
33 80 0.47 0.54 0.75 5,007,224
27 75 0.44 0.50 0.73 4,694,273
16 60 0.33 0.38 0.65 3,755,418
12 50 0.26 0.29 0.59 3,129,515

All correlations have a high significance level (p<1x 107'%).
SLOC, source lines of code.

is reminiscent of the apparent ratios between 1st quartile, median, mean, and 3rd quartile of the Java
and C corpora in Table IIL

As we will discuss in Section 5, the increasing variance in both dimensions causes the largest
subroutines to have a large effect on linear correlation strength. To dig further, we did read the code
of a number of elements in these long tails (selected using a random number generator). For Java,
we read 10 methods out of 1762 with SLOC > 688, and for C, we also read 10 functions out of the
652 with SLOC >2622. We observed that five out of these 10 methods in Java were clearly
generated code and four out of the 10 sampled C functions as well.

We further analyze the strength of the linear correlation after log transform (Hypothesis 5).
Figure 11 shows the residual plot of the dashed line shown in the scatter plots. A residual plot

= =
= =
| |
5 0- 5 07
[~ [~
- -]
~10- =10+ =
=
~100- -100
0 1 10 100 1000 4000 0 1 10 100 1000 4000
SLOC SLOC
(a) Java (b) C

Figure 11. Residual plot of the linear regressions after the log transform, where both axes are on a log scale.
The grayscale gradient of the hexagons is logarithmic. SLOC, source lines of code.

Copyright © 2015 John Wiley & Sons, Ltd. J. Sofiw. Evol. and Proc. 2016; 28:589-618
DOI: 10.1002/smr

EMPIRICAL ANALYSIS OF THE RELATIONSHIP BETWEEN CC AND SLOC 609

displays the difference between the prediction and the actual data. For a good model, the error should
contain no pattern and have a random distribution around the zero-line. Here, we clearly see the
variance in CC increasing as SLOC increases. This further supports results from Table IV, where
the prediction error for CC grows with higher SLOC.

This increasing variance we observed is a form of heteroscedasticity. Heteroscedasticity refers to the
non-constant variance of the relation between two variables. The Breusch—Pagan test [73] confirmed
(p <2.20x 107 '°) that the relation between CC and SLOC is indeed heteroscedastic for both Java
and C. Heteroscedasticity may bias estimated standard errors for the regression parameters [73],
making the interpretation of the linear regression potentially error prone.

4.4. Alternative explanations

This subsection will explorer alternative explanations to further understand the impact of different
choices made by related work (Section 2.2).

4.4.1. CC variant. As discussed in Section 2.1, there is confusion on which AST nodes should be
counted for CC. To understand the effect of this confusion on the correlation, we have also
calculated the CC without counting the && and || Boolean operators. The CC changed for 1.3 M
of the 17.6 M Java methods, of which the CC of 74.2 K methods changed by more than 50%.
For C, 1.5M of the 6.3M functions had a different CC, of which the CC of 73.3K functions
changed by more than 50%. However, this change has negligible effect on correlation. For Java,
the R? changed from 0.40 to 0.41, and for C, it stayed at 0.44. Similarly, small effects were
observed for other ranges of Tables IV and V.

4.4.2. Aggregation. To investigate Hypothesis 3, we have also aggregated CC and SLOC on file level.
This A/B experiment isolates the factor of aggregation. In Table VI, the ‘None’ rows repeat the R*
before aggregation for Java and C (cf. the first rows in Table V). The ‘File’ rows show the R? for
the aggregated CC and SLOC before and after the log transform.

Figure 12 shows the hexagonal scatter plots for the aggregation on file level. The two black lines
show the linear regression before and after the log transform. The dashed line is the regression after
log transform. It can be observed that for larger files, these regressions do not seem to fit the data,
that is, smaller files dominate the fitting of the regression line.

Because the previous experiment includes the confounding factor of header size, we now report on
another A/B test to investigate Hypothesis 4. We aggregate the subroutine values of CC and SLOC on
file level. The ‘Y. Method’ and *Y’ Function’ rows in Table IV indicate the increase of R* both for Java
and C.

In Section 4.3, we showed how the non-constant variance (heteroscedasticity) causes the largest
subroutines to have a large impact on the correlations. To investigate the difference between file-
level (Hypothesis 3) and subroutine-level (Hypothesis 4) aggregation, we also report the effect of
removing the largest files on the correlations. Removing the 5%co largest files from Java (848 files)
and C (231 files)—similarly to Section 4.3—improves R* to 0.83 (from 0.64) for Java and 0.64 for
C (from 0.39).

Table VI. Correlations (before and after a log transform) between the aggregated
SLOC and CC metrics on a file level (Hypothesis 3) and after summing only the bodies
of the subroutines (Hypothesis 4).

Language Aggregation R? log R?

Java None 0.40 0.68
File 0.64 0.87
X Method 0.73 0.90

C None 0.44 0.71
File 0.39 0.84
% Function 0.70 0.90

The first rows per language are a copy of the first rows in Tables V.

Copyright © 2015 John Wiley & Sons, Ltd. J. Sofiw. Evol. and Proc. 2016; 28:589-618
DOI: 10.1002/smr

610 DAVY LANDMAN ETAL.

2000 - : 2000
1500 - 1500

© 1000 -

S 1000

S 1000 -

500 - 500 4

0 2000 4000 6000 0 2000 4000 6000

SLOC SLOC
(a) Java (b) C

Figure 12. Scatter plots of source lines of code (SLOC) versus cyclomatic complexity (CC) for Java and C
files. The solid and dashed lines are the linear regression before and after the log transform. The grayscale
gradient of the hexagons is logarithmic.

Digging further to see what kind of code could have such a large impact, we used a random number
generator to sample 10 large files for both corpora (SLOC > 3601 for Java and SLOC > 19934 for C).
We then manually inspected the source code in these files. Five out of 10 files were clearly generated
code in the Java selection and nine out of 10 in the C selection. Two of these generated C files were the
result of a process called ‘amalgamation’ where the developer includes all hand-written code of a
library project into a single file to help C compiler optimization or ease deployment.

4.5. Spearman correlation

Although our main hypothesis is about linear Pearson correlation, we can compute Spearman’s
correlation to find out if there is a monotone relation. The results are also in Tables IV and V,
showing reasonably high p values, but decreasing rapidly when we move out of the lower ranges
that the distribution skews towards.

This indicates that for the bulk of the data, it is indeed true that a new conditional leads to a new line
of code, an unsurprising and much less profound observation than the acceptance or rejection of
Hypothesis 1. However, it is still interesting to observe the decline of the Spearman correlation for
higher SLOC, which reflects the fact that many different combinations of SLOC and CC are being
exercised in the larger methods of the corpus.

5. DISCUSSION

Here, we interpret the results from Section 4. Note that we only have results for Java and C and we
sometimes compare these informally to results on different programming languages summarized in
Table 1.

5.1. Hypothesis 1—strong Pearson correlation

Compared with R? between 0.51 and 0.96 [6, 8, 23, 24, 29-31, 34, 35] summarized in Table I, our R? of
0.40 and 0.44 are relatively low. This is reason enough to reject the hypothesis: for Java methods and C
functions, there is no evidence of a strong linear correlation between SLOC and CC in these large
corpora, suggesting that—at least for Java and C—CC measures a different aspect of source code
than SLOC, or that other confounding factors are generating enough noise to miss the relation. Here,
we focus on related work with the same aggregation level and without log transforms. We conclude
that these results, for different programming languages and smaller corpora, do not generalize to our
corpora. For higher aggregation levels, see our discussion of Hypothesis 3 in the succeeding text.

The cause of the low R? in our data seems to be the high variance of CC over the whole range of
SLOC. We observe especially that the variance seems to increase when SLOC increases: the density
of control flow statements for larger subroutines is not a constant. This heteroscedasticity is

Copyright © 2015 John Wiley & Sons, Ltd. J. Sofiw. Evol. and Proc. 2016; 28:589-618
DOI: 10.1002/smr

EMPIRICAL ANALYSIS OF THE RELATIONSHIP BETWEEN CC AND SLOC 611

confirmed by the Breusch—Pagan test. Of course, the shape of the distribution influences the results as
well, which we investigate while answering Hypothesis 5.

There is no evidence for strong linear correlation between CC and SLOC. Lower R? values can be
attributed to high variance of CC for the whole range of SLOC.

5.2. Hypothesis 2—no effect of Boolean operators

The results show that the corpora did not contain significant use of the short-circuit Boolean operators.
At least, there is not enough support to change the conclusion of Hypothesis 1. We can therefore not
reject Hypothesis 2.

Nevertheless, the CC of 8% Java methods and 23% C functions that do use Boolean operators are
influenced. It is interesting to note that these subroutines sometimes had very long lines. These
subroutines would be missed when counting only SLOC or when ignoring the operators for CC.

What we conclude is that the difference between related work and our results cannot be explained by
a different version of CC, because changing it does not affect the correlation. Our recommendation is
that for Java and C, the CC computation should include the && and || Boolean operators, because they
do measure a part of the control flow graph as discussed in Section 2.

Lack of correlation cannot be explained by including or excluding Boolean operators in the
calculation of CC.

5.3. Hypotheses 3 and 4—effect of aggregation (sum)

Related work [5, 7, 9, 22, 25-28, 32, 33, 3641, 43, 45—49] reported high correlations between CC and
SLOC on a larger than methods/functions/subroutines level. For Java, we found similar high
correlation after aggregating CC and SLOC on a file level, however not for C. After removing the
largest 5%oo files for C, we also do not find better correlations. Hypothesis 3 can therefore not be
rejected for Java, but it is rejected for the C corpus. Hence, for the Java corpus, we may conclude
that a high R? is indeed caused by summing up CC. For the C corpus, we investigated if another
influencing factor such as the variance in the header code (Sections 2.3 and 4.4.2) could explain the
rejection of Hypothesis 3.

Hypothesis 4 was introduced, therefore, to investigate the impact of the header code (in files) on the
correlation values as opposed to summation of the values at the subroutine level. The only difference
between Hypotheses 3 and 4 is the inclusion or exclusion of SLOC outside the subroutine bodies for
the entire corpus. For Java and C, we both found high correlations after aggregating CC and SLOC
on a subroutine level, that is, taking the sum of the CC and SLOC for all subroutines in a file. These
observations support Hypothesis 4 (now also for the C corpus) and indicate that the variance of
SLOC in the header was indeed a confounding factor for the previous experiment. High correlation
between the number of methods and the number of fields reported by Grechanik ef al. [70] might
explain why header size did not have confounding effect for Java. We conclude that Hypothesis 4 is
not rejected for both Java and C.

Previously, we rejected Hypothesis 1—a strong Pearson correlation for non-aggregated data. So, we
have a strong indication that the related work reporting a high correlation based on a file-level
aggregation is likely caused by the aggregation itself rather than a linear relation between SLOC and
CC. Because we cannot literally reproduce the data of the related work, this conclusion must remain
a conjecture, but the previous experiments do isolate a strong effect of aggregation on our corpora.

In conclusion, the number of subroutines is a factor of system size, and aggregation influences the
correlation positively. Similar observation has been made for the relation between SLOC and the
number of defects [52]. Therefore, we deem aggregated CC more unnecessary as level of
aggregation grows larger (classes, packages, systems). If CC should be aggregated for another
(external) reason, more advanced aggregation techniques such as econometric inequality indexes
[52-54] should be used rather than sum.

Summing CC and SLOC on a file level could have caused high correlations reported in related work.

Copyright © 2015 John Wiley & Sons, Ltd. J. Sofiw. Evol. and Proc. 2016; 28:589-618
DOI: 10.1002/smr

612 DAVY LANDMAN ETAL.

5.4. Hypothesis 5—positive effect of the log transform

As reported in related work [6, 43, 46, 47], a log transform indeed increases the R? values (from 0.40 to
0.68 for Java and from 0.44 to 0.71 for C). Because of this, we do not reject Hypothesis 5. This finding
agrees with the earlier observation on the impact of the log transform on R? [58].

However, what does a high Pearson correlation after log transform suggest for the relation between
SLOC and CC? Does it have predictive power?

Recall that the Pearson correlation estimates a linear model like this: CC=a+f - SLOC. Hence, if
the model after the log transform is log;o(CC)=a+p-1log;o(SLOC), then CC= 10%- SLOC”?, which
implies the nonlinear and monotonic model. Note that the R* of 0.68 and 0.71 do not have a natural
interpretation in this nonlinear model. Indeed, as recognized in the literature [74, 75], the log-scale
results must be retransformed to the original scale, leading to ‘a very real danger that the log scale
results may provide a very misleading, incomplete, and biased estimate of the impact of covariates
on the untransformed scale, which is usually the scale of ultimate interest’ [74]. The experiment
resulting in a Spearman p at 0.80 and 0.83 does confirm the monotonicity as well as the correlation,
but it does not help interpreting these results.

Comparing this R? after the log transform to the R* before transformation is a complex matter;
indeed, the literature suggests that the R* values are not comparable [57, 58]. In the lower range of
SLOC and CC, the effect of the log transform is small; however, as SLOC increases, so does the
impact of the transform. Furthermore, the variance of the model after the transform increases much
with higher SLOC as well (Figure 11). We conclude that the observations of an R* being higher
after transform reinforce the conclusion of Hypothesis 1 (there is no strong Pearson correlation) but
do not immediately suggest that there exists an exponential relation between SLOC and CC. The
variance is too high and not predictable enough.

In combination with aggregation (sum), log transform has lead to the highest R* values observed (cf.
Table IV). However, the regression lines do not fit the data for larger files (cf. Figure 12). This is
caused by the heavy skew of the distributions towards the smaller values.

What we conclude is that the relatively high correlation coefficients after a log transform in literature
are reinforced by our own results. These results provide no evidence of CC being redundant to SLOC
because the nonlinear model cannot easily be interpreted with accuracy.

A log transform increases the R* values between CC and SLOC; however, interpreting the model
in terms of the untransformed variables is complex.

5.5. Hypotheses 6 and 7—positive effect of zooming

The final try was to find linear correlation on parts of the data, in order to compensate for the shape of
distributions. Our results show that zooming in on tails reduced the correlation, while zooming in on
the heads improved it for the 80—100% range. Intuitively, if we remove all elements from the tail of
the distributions, then we may achieve the highest R? (0.59 for Java and 0.67 for C).

Based on the data, we reject Hypothesis 6 (hypothesizing an effect of the smallest elements), and we
do not reject Hypothesis 7 (hypothesizing an effect of a long tail). These results are corroborated in
Tables IV and V, showing that the log transform only improves the correlation for the whole range.

We interpret the large effect of tail elements to the increasing variance with high SLOC
(heteroscedasticity), rather than label them as ‘outliers’. There is no reason to assume the code is
strange, erroneous, or false more than the elements in the prefix of the data can be considered
strange. The benefit of having the two big corpora is that there are enough elements in the tail to
reason about their effect with confidence.

Our analysis, however, does motivate that (depending on the goals of measuring source code) tool
vendors may choose to exclude elements from the tail when designing their predictive or qualitative
models. Note, however, that even the head of the data suffers from heteroscedasticity, so the same
tool vendors should still not assume a linear model between SLOC and CC.

The results for Hypothesis 6 and Hypothesis 7 support our original interpretation for the main
Hypothesis 1: CC is not redundant for Java methods or C functions. Nevertheless, the data also
show enormous skew towards the smallest subroutines (2 or 3 lines), for which clearly CC offers no

Copyright © 2015 John Wiley & Sons, Ltd. J. Sofiw. Evol. and Proc. 2016; 28:589-618
DOI: 10.1002/smr

EMPIRICAL ANALYSIS OF THE RELATIONSHIP BETWEEN CC AND SLOC 613

additional insight over SLOC. If a Java system consists largely of very small methods, then its inherent
complexity is probably represented elsewhere which can be observed using OO specific metrics such
as the Chidamber and Kemerer suite [21].

For the larger subroutines, and even the medium-sized subroutines, correlation decreases rapidly.
This means that for all but the smallest subroutines, CC is not redundant. For example, looking at
the scatter plot in Figure 8 and the box plots in Figure 10, we see that given a Java method of 100,
CC has a range between 1 and 40, excluding the rare exceptions. In our Java corpus, there are still
104 K methods larger than or equal to 100. For such larger Java methods, CC can be a useful
metric to further discriminate between relatively simple and more complex larger methods. We refer
to our previous work [1] and the work of Abran [55] for a discussion on the interpretation of the CC
metric on large subroutines.

Large subroutines have a negative influence on the correlations. They are not always generated
code; therefore, labeling them as outliers should be performed with care.

5.6. Comparing Java and C

Java and C are different languages. While Java’s syntax is strongly influenced by C (and C++), the
languages represent different programming paradigms (respectively object-oriented programming
and procedural programming). While one could write procedural code in Java (the most common
model for C), OO style is encouraged and expected.

In our corpora, C functions are larger and have more control flow than Java methods (Figures 7 and 8).
Future work could investigate whether this difference is caused by the difference in programming
paradigm and coding idioms or this is caused by another factor such as application domain.

Note that the mode of both SLOC and CC are the same for Java and C. We also observe similar
shapes in the scatter plots (Figures 8 and 9): both corpora feature increasingly high variance. We
must conclude that although the corpora quantitatively have a different relation between CC and
SLOC, qualitatively we come to the same conclusions of a relatively weak linear correlation.

On the one hand, for the C language, we observed that after aggregation to the file level the
correlation strength went down. We attributed the cause to the SLOC of C header code (the code
outside the function bodies) having high variance. This obscures the relation between SLOC and CC
for the C language on the file level, which was confirmed by testing for an increased correlation
strength after measuring only the SLOC sum of functions per file. On the other hand, for Java, it
appears the header code is not a confounding factor. Again, this is not the point of the current paper,
but we conjecture that the stronger encapsulation primitives, which Java offers, bring upon a
stronger relation (cohesion) between header code and subroutine bodies.

The differences between C and Java code do not offer additional insight for the relation between
SLOC and CC in open-source code, other than an increased external validity of the analysis of
Hypothesis 1. Our conclusions hold for both languages.

5.7. Threats to validity

Next to the threats to validity we have identified in the experimental setup (Section 3) and the previous
discussion, we further discuss a few other important threats to validity here.

5.7.1. Construct validity. Construct validity pertains to our ability to model the abstract hypothesis
using the variables we have measured [76]. We do not believe our study to be subject to construct
validity threats because the abstract hypothesis we have tested (Hypothesis 1) has already been
formulated in terms of measurable variables (SLOC, CC, and R?) as opposed to more abstract
constructs (e.g., maintainability or development effort).

As to the use of Pearson’s coefficient, this was motivated by its common use in related work, which
we tried to replicate. Our negative conclusions, meaning we deem the observed R? values significantly
lower, are subject to the critical examination of the reader.

Copyright © 2015 John Wiley & Sons, Ltd. J. Sofiw. Evol. and Proc. 2016; 28:589-618
DOI: 10.1002/smr

614 DAVY LANDMAN ETAL.

5.7.2. Internal validity. We have tested the tools we developed for our experiments and compared the
output to manually expected results and other free and open-source metric tools. Moreover, to mitigate
any unknown issues and to allow for full reproducibility, we have also published both our data and
scripts at http://homepages.cwi.nl/~landman/jsep2015/.

To handle the preprocessor statements in C, we have used a heuristic (Section 3). This heuristic
filtered away 7% of the code in the corpus. We also filtered all C files with unbalanced braces,
which may have been introduced by the aforementioned preprocessor heuristics —not a } for every {.
This removed 4K files (0.50%) from the corpus. There is no reason to expect these filters have
introduced a bias for either the SLOC or the CC variables, but without these filters, the corpus would
have contained invalid data.

Different from related work [47], we chose not to exclude all .h files (Section 3.4). If we do ignore
all .h files, the R? for the subroutine level changes from 0.435 to 0.441, that is, both 0.44 when rounded
to two significant digits.

5.7.3. External validity. Both our corpora were constructed from open-source software projects
containing either Java or C code. Therefore, our results should not be immediately generalized to
proprietary software or software written in other programming languages. We should observe that
although both languages and their respective corpora are significantly different, we do arrive at
similar conclusions regarding our hypotheses. We therefore conjecture that given a comparably large
corpus for C-like programming languages (e.g., C++, Pascal, C#), the results should be comparable.
A recent study of rank-based correlation between CC and SLOC in Scala GitHub repositories [77]
suggests that our results might be valid for Scala as well. While CC adaptations have also been
proposed for such languages as Miranda [78] and Prolog [79], those adaptations are quite remote
from the original notion of CC as introduced by McCabe [15], and therefore, the relation between
CC and SLOC for these languages might be very different.

Moreover, we are aware that the size of the corpus may be a confounding factor and therefore should
be investigated [80] and that our study might have been biased by presence of certain accidental data
points in our corpora.

Therefore, we performed an additional sensitivity analysis [81] for which the results are reported in
the succeeding text. To assess whether the size of the corpus has an important influence on the result,
we test whether the strength of the linear correlation between SLOC and CC is similar for randomly
selected sub-corpora of half the size. Figure 13 shows the distribution of R* values for 1000 random
sub-corpora.

The medians of the R* values are very close—up to two significant digits—to the R* of the full
corpora. However, there is a visible spread for the non-transformed variables, before and after
aggregation on file level. The log transform has a clearly stabilizing effect because of compression

1.00 - 1.00

0.75 - 0.75 4

0.50 - ‘ 0.50 -
——
—x—
——] +
0.25 - 0.25 4 ‘
0.00 - 0.00 +
Java C log(Java) log(C) Java C log(Java) log(C)
(a) Subroutine (b) File

Figure 13. Box plots of the R?, for the different transformations, for 1000 randomly sampled sub-corpora of
half the size. The * denotes the R for the full corpus.

Copyright © 2015 John Wiley & Sons, Ltd. J. Sofiw. Evol. and Proc. 2016; 28:589-618
DOI: 10.1002/smr

EMPIRICAL ANALYSIS OF THE RELATIONSHIP BETWEEN CC AND SLOC 615

of the tail. Because of the latter observation, we argue once more that the observed effects can be
explained by the increasing variance in the tail of the data (cf. Table V). Randomly selected sub-
sets filter a number of elements from the tail, explaining the spread between the 1000 experiments.
Moreover, the R? in these experiments are not contradicting our previous discussion of the
hypotheses.

The previous experiment mitigates the risk of the size factor confounding our observations and
conclusions: it can be expected that for random sub-corpora of half the size the correlation strength
is the same as for the full corpora.

In contrast, we believe that the large size of the corpora has made it possible to observe the relation
between CC and SLOC on arbitrary real-world code with no other known biases.

6. CONCLUSION

The main question of this paper was if CC correlates linearly with SLOC and if that would mean that
CC is redundant. In summary, as opposed to the majority of the previous studies, we did not observe a
strong linear correlation between CC and OC of Java methods and C functions. Therefore, we do not
conclude that CC is redundant with SLOC.

Factually, on our large corpora of Java methods and C functions, we observed (Section 4) the
following:

* CC has no strong linear correlation with SLOC on the subroutine level.

* The variance of CC over SLOC increases with higher SLOC.

* Ignoring && and |1 has no influence on the correlation.

» Aggregating CC and SLOC over files improves the strength of the correlation.

* A log transform improves the strength of the correlation.

* The correlation is lower for larger (SLOC) methods and functions.

* Excluding the largest methods and functions improves the strength of the correlation.

* The largest methods and functions are not just generated code and therefore should not be ignored
when studying the relation between SLOC and CC.

From our interpretation of this data (Section 5), we concluded the following:

* CC summed over larger code units measures an aspect of system size rather than internal com-
plexity of subroutines. This largely explains the often reported strong correlation between CC
and SLOC in literature.

* Higher variance of CC over SLOC observed in our study as opposed to the related work can be
attributed to our choice for much larger corpora, enabling one to observe many more elements.

* The higher correlation after a log transform, supporting results from literature, should not be
interpreted as a reason for discarding CC.

* All the linear models suffered from heteroscedasticity, that is, non-constant variance, further
complicating their interpretation.

Our work follows the ongoing trend of empirically re-evaluating (or even replicating [82]) earlier
software engineering claims (cf. [83, 84]). In particular, we believe that studying big corpora allows
to observe features of source code that would otherwise be missed [85].

REFERENCES

1. Vinju JJ, Godfrey MW. What does control flow really look like? Eyeballing the cyclomatic complexity metric. 9th
IEEE International Working Conference on Source Code Analysis and Manipulation (SCAM), IEEE Computer
Society, 2012.

2. von Mayrhauser A, Vans AM. Program comprehension during software maintenance and evolution. /EEE Computer
1995; 28(8):44-55.

3. Baggen R, Correia JP, Schill K, Visser J. Standardized code quality benchmarking for improving software maintain-
ability. Sofiware Quality Journal 2012; 20(2):287-307. DOI:10.1007/s11219-011-9144-9.

4. Heitlager I, Kuipers T, Visser J. A practical model for measuring maintainability. Proceedings of 6th International
Conference on Quality of Information and Communications Technology, 2007; 30-39.

Copyright © 2015 John Wiley & Sons, Ltd. J. Sofiw. Evol. and Proc. 2016; 28:589-618
DOI: 10.1002/smr

616 DAVY LANDMAN ETAL.

10.

11.

12.

13.

15.

16.

18.

19.

20.

21

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

. Sheppard SB, Curtis B, Milliman P, Borst MA, Love T. First-year results from a research program on human factors

in software engineering. AFIPS Conference Proceedings, vol. 48, New York, NY, USA, 1979; 1021-1027.

. Feuer AR, Fowlkes EB. Some results from an empirical study of computer software. Proceedings of the 4th Interna-

tional Conference on Software Engineering, ICSE °79, IEEE Press: Piscataway, NJ, USA, 1979; 351-355.

. Basili VR, Perricone BT. Software errors and complexity: an empirical investigation. Communications of the ACM

1984; 27(1):42-52.

. Jbara A, Matan A, Feitelson DG. High-MCC functions in the Linux kernel. Empirical Sofiware Engineering 2014;

19(5):1261-1298. DOI:10.1007/s10664-013-9275-7.

. Fenton N, Ohlsson N. Quantitative analysis of faults and failures in a complex software system. Software Engineer-

ing, IEEE Transactions on Aug 2000; 26(8):797-814. DOI:10.1109/32.879815.

Landman D, Serebrenik A, Vinju JJ. Empirical analysis of the relationship between CC and SLOC in a large corpus
of Java methods. 30th IEEE International Conference on Software Maintenance and Evolution, ICSME 2014, IEEE,
2014; 221-230, DOI:10.1109/ICSME.2014.44.

Linstead E, Bajracharya SK, Ngo TC, Rigor P, Lopes CV, Baldi P. Sourcerer: mining and searching internet-scale
software repositories. Data Mining and Knowledge Discovery 2009; 18(2):300-336. DOI:10.1007/s10618-008-
0118-x.

Shepperd M. A critique of cyclomatic complexity as a software metric. Software Engineering Journal Mar 1988;
3(2):30-36. DOI:10.1049/s€j.1988.0003.

Curtis B, Carleton A. Seven plus + two software measurement conundrums. Proceedings of the Second International
Software Metrics Symposium, 1994; 96-105.

. Conte SD, Dunsmore HE, Shen VY. Software Engineering Metrics and Models. Benjamin-Cummings Publishing

Co., Inc.: Redwood City, CA, USA, 1986.

McCabe TJ. A complexity measure. [EEE Transactions Software Engineering 1976; 2(4):308-320.

Lincke R, Lundberg J, Lowe W. Comparing software metrics tools. Proceedings of the 2008 International Sympo-
sium on Software Testing and Analysis, ISSTA *08, ACM: New York, NY, USA, 2008; 131-142, DOI:10.1145/
1390630.1390648.

. Myers GJ. An extension to the cyclomatic measure of program complexity. SIGPLAN Notices October 1977,

12(10):61-64. DOI:10.1145/954627.954633.

Wohlin C. Guidelines for snowballing in systematic literature studies and a replication in software engineering. /8th
International Conference on Evaluation and Assessment in Software Engineering, EASE, ACM, 2014; 38:1-38:10.
DOI:10.1145/2601248.2601268.

da Mota Silveira Neto PA, Engstrom E, de Carmo Machado I, de Almeida ES. On the reliability of mapping studies
in software engineering. Journal of Systems and Software 2013; 86(10):2594-2610. DOI:10.1016/j.js5.2013.04.076.
Kitchenham B, Charters S. Guidelines for performing systematic literature reviews in software engineering.
Technical Report EBSE 2007-001, Keele University and Durham University Joint Report 2007.

. Chidamber SR, Kemerer CF. A metrics suite for object oriented design. IEEE Transactions on Software Engineering

Jun 1994; 20(6):476-493. DOI:10.1109/32.295895.

Hindle A, Godfrey M, Holt R. Reading beside the lines: indentation as a proxy for complexity metric. /[EEE
International Conference on Program Comprehension, 2008; 133—142, DOI:10.1109/ICPC.2008.13.

Capiluppi A, Fernandez-Ramil J. A model to predict anti-regressive effort in open source software. /EEE Interna-
tional Conference on Software Maintenance, 2007, ICSM 2007, 2007; 194-203, DOI:10.1109/ICSM.2007.4362632.
Malhotra R, Singh Y. On the applicability of machine learning techniques for object oriented software fault
prediction. Sofiware Engineering: An International Journal 2011; 1:24-37.

Yu L, Mishra A. An empirical study of Lehman’s law on software quality evolution. International Journal of
Sofiware & Informatics 2013; 7(3):469-481.

Posnett D, Filkov V, Devanbu P. Ecological inference in empirical software engineering. 26th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE), 2011; 362-371. DOI: 10.1109/ASE.2011.6100074.
Vasilescu B, Serebrenik A, van den Brand MGJ. By no means: a study on aggregating software metrics. 2nd Inter-
national Workshop on Emerging Trends in Sofiware Metrics, WETSoM, ACM, 2011; 23-26.

Vasilescu B, Serebrenik A, van den Brand MGJ. You can’t control the unfamiliar: a study on the relations between
aggregation techniques for software metrics. [EEE 27th International Conference on Software Maintenance,
ICSM2011, 2011; 313-322. DOI:10.1109/ICSM.2011.6080798.

Mordal K, Anquetil N, Laval J, Serebrenik A, Vasilescu B, Ducasse S. Software quality metrics aggregation in
industry. Journal of Software: Evolution and Process 2013; 25(10):1117-1135. DOI:10.1002/smr.1558.

Abran A. Cyclomatic Complexity Number: Analysis of Its Design. Software Metrics and Software Metrology.
chap. 6, Clements A (ed.). Wiley-IEEE Computer Society Pr, 2010; 131-143.

Jay G, Hale JE, Smith RK, Hale DP, Kraft NA, Ward C. Cyclomatic complexity and lines of code: empirical
evidence of a stable linear relationship. Journal of Software Engineering and Applications 2009; 2(3):137-143.
Herraiz I, Gonzalez-Barahona JM, Robles G. Towards a theoretical model for software growth. Proceedings of the
Fourth International Workshop on Mining Sofiware Repositories, MSR *07, IEEE Computer Society: Washington,
DC, USA, 2007; 21:1-21:8, DOI:10.1109/MSR.2007.31.

Herraiz I, Hassan AE. Beyond lines of code: Do we need more complexity metrics? Making Software What Really
Works, and Why We Believe It. chap. 8, Oram A, Wilson G (eds.). O’Reilly Media, 2010; 126—141.

Sheskin DJ. Handbook of Parametric and Nonparametric Statistical Procedures, 4 edn. Chapman & Hall/CRC, 2007.

Copyright © 2015 John Wiley & Sons, Ltd. J. Sofiw. Evol. and Proc. 2016; 28:589-618

DOI: 10.1002/smr

35

38.

39.

40.

41.
42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

EMPIRICAL ANALYSIS OF THE RELATIONSHIP BETWEEN CC AND SLOC 617

. Kvalseth TO. Cautionary note about R’. The American Statistician 1985; 39(4):279-285.
36.
37.

Loehle C. Proper statistical treatment of species-area data. Oikos 1990; 57(1):143-145.

Troster J, Tian J. Measurement and defect modeling for a legacy software system. Annals of Sofiware Engineering
1995; 1:95-118. DOI:10.1007/BF02249047.

Henry S, Selig C. Predicting source-code complexity at the design stage. Sofiware, IEEE March 1990; 7(2):36-44.
DOI:10.1109/52.50772.

van der Meulen MJ, Revilla MA. Correlations between internal software metrics and software dependability in a
large population of small C/C++ programs. Proceedings of the The 18th IEEE International Symposium on Software
Reliability, ISSRE ’07, IEEE Computer Society: Washington, DC, USA, 2007; 203-208, DOI:10.1109/
ISSRE.2007.6.

Landman D. A curated Corpus of Java source code based on Sourcerer (2015). Available from: http://persistent-iden-
tifier.org/?identifier=urn:nbn:nl:ui:18-23357 2015. [25 February 2015].

GitHub. Linguist: language savant. Available from: https:/github.com/github/linguist 2015. [10 February 2015].
Landman D. A large corpus of C source code based on Gentoo packages. Available from: http://persistent-identifier.
org/?identifier=urn:nbn:nl:ui: 18-23154 2015. [10 February 2015].

Basten B, Hills M, Klint P, Landman D, Shahi A, Steindorfer M, Vinju J. M:a general model for code analytics in
Rascal. Proceedings of the first International Workshop on Sofiware Analytics, SWAN, 2015. [To appear].

Klint P, van der Storm T, Vinju JJ. RASCAL: a domain specific language for source code analysis and manipulation.
Proceedings of the 9th IEEE International Working Conference on Source Code Analysis and Manipulation (SCAM),
IEEE, 2009; 168-177. DOI:10.1109/SCAM.2009.28.

Carr DB, Littlefield RJ, Nicholson WL, Littlefield JS. Scatterplot matrix techniques for large N. Journal of the
American Statistical Association 1987; 82(398):424-436.

Pearson K. Note on regression and inheritance in the case of two parents. Proceedings of the Royal Society of London
1895; 58:240-242.

Edgell SE, Noon SM. Effect of violation of normality on the ¢ test of the correlation coefficient. Psychological
Bulletin 1984; 95(3):576-583.

Spearman C. The proof and measurement of association between two things. The American Journal of Psychology
1904; 15(1):72-101.

Joanes DN, Gill CA. Comparing measures of sample skewness and kurtosis. Journal of the Royal Statistical Society:
Series D (The Statistician) 1998; 47(1):183-189. DOI:10.1111/1467-9884.00122.

Grechanik M, McMillan C, DeFerrari L, Comi M, Crespi S, Poshyvanyk D, Fu C, Xie Q, Ghezzi C. An empirical
investigation into a large-scale Java open source code repository. Proceedings of the 2010 ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement, ACM: New York, NY, USA, 2010; 11:1-11:10,
DOI:10.1145/1852786.1852801.

Munson JC, Kohshgoftaar TM. Measurement of data structure complexity. Journal of Systems and Sofiware 1993;
20(3):217-225. DOI:10.1016/0164-1212(93)90065-6.

Chambers JM, William S Cleveland BK, Tukey PA. Comparing data distributions. Graphical Methods for Data
Analysis. chap. 2, Chapman and Hall: New York, 1983.

Breusch T, Pagan A. A simple test for heteroscedasticity and random coefficient variation. Econometrica Sep 1979;
47(5):1287-1294.

Curtis B, Sheppard SB, Milliman P. Third time charm: stronger prediction of programmer performance by software
complexity metrics. Proceedings of the 4th International Conference on Software Engineering, ICSE *79, IEEE
Press: Piscataway, NJ, USA, 1979; 356-360.

Woodward MR, Hennell MA, Hedley D. A measure of control flow complexity in program text. [EEE Transactions
on Software Engineering Jan 1979; 5(1):45-50. DOI:10.1109/TSE.1979.226497.

Lind RK, Vairavan K. An experimental investigation of software metrics and their relationship to software
development effort. IEEE Transactions on Sofiware Engineering May 1989; 15(5):649-653. DOI:10.1109/32.24715.
Lewis J, Henry S. A methodology for integrating maintainability using software metrics. Software Maintenance,
1989., Proceedings., Conference on, 1989; 32-39, DOI:10.1109/ICSM.1989.65191.

Gorla N, Benander A, Benander BA. Debugging effort estimation using software metrics. I[EEE Transactions on
Sofiware Engineering 1990; 16(2):223-231.

O’Neal MB. An empirical study of three common software complexity measures. Proceedings of the 1993
ACM/SIGAPP Symposium on Applied Computing: States of the Art and Practice, SAC ’93, ACM: New York,
NY, USA, 1993; 203-207, DOI:10.1145/162754.162867.

Kemerer CF, Slaughter SA. Determinants of software maintenance profiles: an empirical investigation. Journal of
Software Maintenance Jul 1997; 9(4):235-251.

Paige M. A metric for software test planning. Conference Proceedings of COMPSAC 1980; 80:499-504.

Sunohara T, Takano A, Uehara K, Ohkawa T. Program complexity measure for software development management.
Proceedings of the 5th International Conference on Sofiware Engineering, ICSE ’81, IEEE Press: Piscataway, NJ,
USA, 1981; 100-106.

Li H, Cheung W. An empirical study of software metrics. IEEE Transactions on Software Engineering June 1987;
SE-13(6):697-708. DOI:10.1109/TSE.1987.233475.

Copyright © 2015 John Wiley & Sons, Ltd. J. Sofiw. Evol. and Proc. 2016; 28:589-618

DOLI: 10.1002/smr

618 DAVY LANDMAN ETAL.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

82.

83.

84.

85.

Kitchenham B, Pickard L. Towards a constructive quality model. part 2: Statistical techniques for modelling software
quality in the esprit request project. Software Engineering Journal July 1987; 2(4):114-126. DOI:10.1049/
sej.1987.0015.

Gill GK, Kemerer CF. Cyclomatic complexity density and software maintenance productivity. /[EEE Transactions on
Software Engineering Dec 1991; 17(12):1284—1288. DOI:10.1109/32.106988.

Graves T, Karr A, Marron J, Siy H. Predicting fault incidence using software change history. Software Engineering,
IEEE Transactions on Jul 2000; 26(7):653—-661. DOI:10.1109/32.859533.

Succi G, Benedicenti L, Vernazza T. Analysis of the effects of software reuse on customer satisfaction in an RPG
environment. /EEE Transactions on Software Engineering May 2001; 27(5):473-479. DOI:10.1109/32.922717.

El Emam K, Benlarbi S, Goel N, Rai SN. The confounding effect of class size on the validity of object-oriented
metrics. [EEE Transactions on Software Engineering 2001; 27(7):630-650.

Martin C, Pasquier J, Yanez C, Tornes A. Software development effort estimation using fuzzy logic: a case study.
Sixth Mexican International Conference on Computer Science, 2005., ENC 2005, 2005; 113-120. DOI:10.1109/
ENC.2005.47.

Schneidewind N. Software reliability engineering process. Innovations in Systems and Software Engineering 2006;
2(3-4):179-190. DOI:10.1007/s11334-006-0007-7.

Bianco M, Kaneider D, Sillitti A, Succi G. Fault-proneness estimation and java migration: a preliminary case study.
Proceedings of the Software Services Semantic Technologies Conference (S3T 2009), 2009; 124-131.

Ma YT, He KQ, Li B, Liu J, Zhou XY. A hybrid set of complexity metrics for large-scale object-oriented software
systems. Journal of Computer Science and Technology 2010; 25(6):1184-1201. DOI:10.1007/s11390-010-9398-x.

Tashtoush Y, Al-Maolegi M, Arkok B. The correlation among software complexity metrics with case study. Interna-
tional Journal of Advanced Computer Research 2014; 4(2):414-419.

Manning WG. The logged dependent variable, heteroscedasticity, and the retransformation problem. Journal of
Health Economics 1998; 17(3):283-295. DOI:10.1016/S0167-6296(98)00025-3.

Feng C, Wang H, Lu N, Tu XM. Log transformation: application and interpretation in biomedical research. Statistics
in Medicine 2013; 32(2):230-239. DOI:10.1002/sim.5486.

Perry DE, Porter AA, Votta LG. Empirical studies of software engineering: a roadmap. Proceedings of the Confer-
ence on The Future of Software Engineering, ICSE 00, ACM: New York, NY, USA, 2000; 345-355. DOI:10.1145/
336512.336586.

Coleman R, Johnson MA. A study of Scala repositories on GitHub. International Journal of Advanced Computer
Science and Applications 2014; 5(7):141-148.

van den Berg KG. Software measurement and functional programming. PhD Thesis, University of Twente,
Enschede, the Netherlands, Enschede June 1995.

Moores TT. Applying complexity measures to rule-based prolog programs. Journal of Systems and Sofiware 1998;
44(1):45-52. DOI:10.1016/S0164-1212(98)10042-0.

Rahman F, Posnett D, Herraiz I, Devanbu P. Sample size vs. bias in defect prediction. Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2013, ACM: New York, NY, USA, 2013;
147-157. DOI:10.1145/2491411.2491418.

Saltelli A, Tarantola S, Campolongo F. Sensitivity analysis as an ingredient of modeling. Statistical Science 2000;
15(4):377-395.

Shull FJ, Carver JC, Vegas S, Juristo N. The role of replications in empirical software engineering. Empirical
Sofiware Engineering 2008; 13(2):211-218. DOI:10.1007/s10664-008-9060-1.

Khomh F, Adams B, Dhaliwal T, Zou Y. Understanding the impact of rapid releases on software quality. Empirical
Software Engineering 2014; 20(2):336-373. DOI:10.1007/s10664-014-9308-x.

Ray B, Posnett D, Filkov V, Devanbu P. A large scale study of programming languages and code quality in Github.
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Sofiware Engineering, ACM:

New York, NY, USA, 2014; 155-165, DOI:10.1145/2635868.2635922.

Siegmund J, Siegmund N, Appel S. Views on internal and external validity in empirical software engineering. 37th
International Conference on Sofiware Engineering, ACM, 2015.

Copyright © 2015 John Wiley & Sons, Ltd. J. Sofiw. Evol. and Proc. 2016; 28:589-618

DOI: 10.1002/smr

