
Received: 1 February 2016 Revised: 21 November 2016 Accepted: 23 November 2016

DOI: 10.1002/smr.1841

S P E C I A L I S S U E P A P E R

Mining unit test cases to synthesize API usage examples

Mohammad Ghafari1 Konstantin Rubinov2 Mohammad Mehdi Pourhashem K.2

1Software Composition Group, University of

Bern, Switzerland
2DeepSE Group, Politecnico di Milano, Italy

Correspondence

Mohammad Ghafari, Software Composition

Group at University of Bern, Switzerland.

Email: ghafari@inf.unibe.ch

Funding information

Swiss National Science Foundation,

Grant/Award Number: 200020-162352

Abstract

Software developers study and reuse existing source code to understand how to properly use

application programming interfaces (APIs). However, manually finding sufficient and adequate

code examples for a given API is a difficult and a time-consuming activity. Existing approaches

to find or generate examples assume availability of a reasonable set of client code that uses the

API. This assumption does not hold for newly released API libraries, non-widely used APIs, nor

private ones.

In this work we reuse the important information that is naturally present in test code to circum-

vent the lack of usage examples for an API when other sources of client code are not available.

We propose an approach for automatically identifying the most representative API uses within

each unit test case. We then develop an approach to synthesize API usage examples by extracting

relevant statements representing the usage of such APIs. We compare the output of a proto-

type implementation of our approach to both human-written examples and to a state-of-the-art

approach. The obtained results are encouraging; the examples automatically generated with

our approach are superior to the state-of-the-art approach and highly similar to the manually

constructed examples.

KEYWORDS

API usage examples, code mining, traceability, unit test cases

1 INTRODUCTION

Software reuse is a practice of using existing software, or software

knowledge, to construct new software. Reusing existing software can

decrease development effort while increasing the quality of produc-

tion, if mature previously tested assets are used. Developers cope with

the complexity of modern software systems and speed up the develop-

ment process by increasingly relying on the functionalities provided by

off-the-shelf components and frameworks. However, an effective inte-

gration of external third-party libraries requires an extensive knowl-

edge of the application programming interfaces (APIs) and a detailed

understanding of the required interaction protocols. Unfortunately,

acquiring these competences is difficult and time-consuming. More-

over, real-world software libraries and frameworks may be underspec-

ified or poorly documented. In addition, if documentation exists, it may

include erroneous or out-of-date content.1 Hence, software develop-

ers resort to studying code examples to learn APIs, and pragmatically

reuse parts of a code corpus that exercise these APIs to reduce the

development effort.2

Given these premises, code examples play a crucial role in mod-

ern software development complementing the existing documentation

and facilitating the learning curve for developers. However, generating

meaningful code examples for a given API and finding the relevant ones

is a difficult and time-consuming activity. Robillard et al. show that,

in practice, insufficient or inadequate examples represent the great-

est obstacle to effectively learn an API.2 This aspect becomes even

more relevant during software maintenance where maintainers usually

have to deal with multiple different APIs that they may have exercised

neither recently nor frequently.

In response to the increasing need of meaningful code examples,

research has been focusing on techniques to automatically extract

or generate them to assist developers.3,4 To find or generate the

examples, existing approaches typically rely on external sources such

as the source code of existing local or remote projects.5–7 More

recently, good coverage of API usage examples in Q&A websites

motivated researchers to use these crowd sources as well, for both

documentation8 and recommendation purposes.9,10 Regardless of

whether developers explore these resources manually or use a rec-

ommender system, there are still several problems that hamper the

applicability of existing approaches in practice.11 Among them, untrust-

worthiness, low quality, and inaccessibility of appropriate code exam-

ples are the most important ones. Also, maintaining these resources is

challenging partly because they are not explicitly linked to the APIs, and

changes in the APIs are not reflected in the resources.1 Furthermore,

J Softw Evol Proc. 2017;29:e1841. wileyonlinelibrary.com/journal/smr Copyright © 2017 John Wiley & Sons, Ltd. 1 of 19
https://doi.org/10.1002/smr.1841

Special Issue on Source Code Analysis and Manipulation (SCAM 2015)
Journal of Software: Evolution and Process

https://doi.org/10.1002/smr.1841


2 of 19 GHAFARI ET AL

although existing approaches excel at locating examples of frequent

APIs, they all suffer from the “cold-start” problem, i.e., examples can

only be extracted when a reasonable sample of client systems that use

the API exist.12 However, this is a big assumption. These approaches fall

short at proposing examples when client program is not available (e.g.,

in case of private APIs) or clients themselves do not exist yet (e.g., for

newly released API libraries, or nonwidely used ones).

Agile development is founded on a seamless integration between

continuous code changes and unit testing. Unit test cases are small

fragments of code in charge of testing a unit of work in the system

by checking a single assumption about the behavior of that unit of

work. Once developers have written the test cases, they are executed

every time the production code changes to support regression test-

ing. This process requires unit test cases to be always up-to-date and

makes them an important source of system documentation, especially

for guiding software maintenance tasks. Unit test cases usually cover

at least the critical functionalities provided by an API. Studying unit

test cases of an API conveys significant information on (1) how to cor-

rectly instantiate classes, (2) how to construct arguments for method

calls, and (3) the expected system state after the invocations of meth-

ods. Furthermore, unit test cases are not only helpful for API users but

also advantageous to API developers. In software development, not all

the APIs are designed to be exposed to end users: some private APIs are

intended to help the API developers during development process. Such

APIs are internal, and therefore, there is no usage example for them in

external resources. Also, they often lack usage documentation because

of constraints in the development schedule. Hence, unit test cases of

private APIs could be a good resource of such API uses. The amount of

code that exists in test suites is limited in size, and at the same time, it is

highly relevant with respect to the tested API. Unit test cases are usu-

ally executable, simple, and concise snippets that are conceived to run

in isolation.

In the light of these considerations, test cases seem to be a signifi-

cant source of API uses in the absence of client systems.11,13 However,

our experiments with state-of-the-art tools on several open-source

libraries showed that even if test cases are part of the repository of

these tools, they cannot be directly used to provide effective results. In

fact, the different structure of test code with respect to general code

suggests adoption of a dedicated mining approach to obtain examples

from test cases.

This paper presents an approach for automatically extracting API

usage examples from test cases written in JUnit. The proposed

approach intends to complement approaches that extract API usage

examples from source code of client systems and is intended to be

used when these client systems are not (yet) available and the only

source of such examples is the test code. The approach is general;

we detail each step of the approach with some reference examples

taken from different systems. The approach consists of 2 phases: in

the first phase it identifies traceability links between test methods and

focal methods under test (F-MUTs). Our previous work has shown that

focal methods represent the core of a test scenario inside a unit test

case, and each test case represents more useful information about the

F-MUTs rather than other (non-focal) methods.14 In the second phase

we bring our work one step further, extend it by developing a rele-

vant use case—synthesizing API usage examples from test code—and

practically show that the F-MUT information is advantageous to

accomplish this task.

The approach traces object state changes verified in the oracle part

of a test case to identify F-MUTs. To construct examples, the approach

examines the type of dependency relation between F-MUTs to deter-

mine if each of them should contribute to a different example. We

adapted a graph-based object usage model that superimposes control

dependency graph and data dependency graph to illustrate how each

focal method interacts with other code elements within a test. The

model takes into account the test semantics and the role of different

methods within a test case. The approach uses this model to identify

necessary statements for representing the usage of each F-MUT within

a test. The proposed approach has been implemented in a prototype,

and both phases of the approach have been experimentally evaluated

on different open-source systems. We have compared the examples

generated with our approach to both human-written examples and

examples generated by UsETeC—a state-of-the-art tool of Zhu et al.4

The results show that our approach is superior to the state-of-the-art

approach and generates examples that are highly similar to the manu-

ally constructed examples.

In summary, this work makes the following contributions:

• a formal representation of an approach to recover test-to-code

traceability links on the method level precision by identifying the

most representative APIs (focal methods) in unit test cases;

• an approach to automatically synthesize meaningful usage examples

of the focal methods from unit test cases;

• a prototype implementation of the example synthesis approach in

Java, and the evaluation of its effectiveness on 4 different real-world

software systems.

The remainder of this paper is organized as follows. Section 2

presents our automated approach to identifying F-MUTs, and Section 3

synthesizes meaningful API uses w.r.t. each focal method within a unit

test case. Section 4 evaluates the prototype implementation of the

proposed approach on real-life software systems and discusses the

results. Section 5 overviews related work, and Section 6 concludes

the paper.

2 IDENTIFYING TRACEABILITY LINKS
BETWEEN SOURCE AND TEST CODE

To enable automated extraction of relevant API usage information from

test code, we must first establish the relationship between the source

and test code to be analyzed. Previous research has mostly focused on

deriving this relationship only between test cases and classes under

test.15 Although the knowledge of the class under test (CUT) is useful

for test case comprehension and analysis, CUT information is insuffi-

cient to analyze test cases with a method-level precision. Our previ-

ous research has shown that a unit test case represents more useful

usage information of the focal method rather than other (non-focal)

methods within that test case, which led to the development of a solu-

tion for their automatic identification.14 In the rest of this section we

introduce the most relevant concepts and background in identifying

F-MUTs.



GHAFARI ET AL 3 of 19

FIGURE 1 Unit test case for the Model class

FIGURE 2 Unit test case for the ArrayTable class

2.1 Test case structure

The core ideas behind our approach are formed from a few observa-

tions of a large number of real-life open-source projects. We observed

test cases of different types and granularity use method invocations

as the atoms to construct test cases from the work of Pezze et al.16

Our analysis indicates that test cases invoke on average 6 methods. We

have manually investigated the role of each method within test cases

with more than 1 method invocation. The result shows most of these

methods are ancillary to few that are intended to be the actual (or

focal) methods under test. Focal methods represent the core of a test

scenario inside a test case, and therefore, each test case represents

more useful information about the F-MUT rather than other (non-focal)

methods. Consequently, identifying F-MUTs is a preparatory step for

synthesizing useful API usage examples from test code.

Consider an example unit test case from PureMVC* in Figure 1.

In the example, IModel is the CUT. Three methods in the test case

belong to the CUT IModel any of which can be the method under

test. However, the real intent in this test case is to check the remove-

Proxy() method. An expert engineer can identify this with the aid

of comments, test method names, and assertions. Without this knowl-

edge or additional analysis, one might mistakenly conclude that the

goal of the test is to checkregisterProxy()orretrieveProxy()

methods. Although method registerProxy() might be viewed as

a relevant method to the test case, its role is ancillary; it brings the

modelobject to an appropriate state in which it is possible to invoke the

removeProxy()method. TheretrieveProxy() invocation is used

to inspect the state of the CUT while it is the methodremoveProxy()

that causes a side effect on the current object and is the focal method

under test.

*http://puremvc.org

Unit test cases are commonly structured in 3 logical parts: setup, exe-

cution, and oracle. The setup part instantiates the CUT and includes all

dependencies on other objects that the unit under test will use. This

part contains initial method invocations that bring the object under test

into a state required for testing. The execution part stimulates the object

under test via a method invocation, i.e., the focal method in the test

case. This action is then checked with a series of inspector methods

and assert statements in the oracle part that query the side effects

of the focal invocation to determine whether the expected outcome is

obtained.

In the context of object-oriented systems, unit test cases often test

a single method.17 Nevertheless, occasionally, test cases aggregate and

test several methods in a test scenario. In this case a complete test sce-

nario comprises several sub-scenarios, where a sub-scenario contains a

set of non-assert statements (setup and execution) followed by inspec-

tor and assert statements. That is, each sub-scenario may have a

different focal method, and therefore, a test case can have more than 1

focal method.

A focal method belongs to the execution part of a test case, and

method invocations used in the oracle part often only inspect the side

effect of the F-MUT. Despite the clear logical differentiation of test

parts, each having its own purpose, in practice the parts are hardly

discernible either manually or automatically. This hinders identifying

F-MUTs without expert knowledge of the system. It is difficult to estab-

lish whether a method invocation belongs to the setup or the execution

parts of a test. Even the oracle part associated with assert state-

ments may contain method invocations that may be confused with the

execution part of the test case.

In practice, data flow analysis is required to distinguish among differ-

ent types of method invocations in test cases. We need to distinguish

F-MUTs from inspector methods serving the oracle part. For example,

http://puremvc.org


4 of 19 GHAFARI ET AL

FIGURE 3 The main steps of the proposed approach for identifying focal methods under test (F-MUTs)

the test case in Figure 2 belongs to the ArrayTableTest class in

Guava library.† There are 6 method invocations within this test case. The

first invocation create() belongs to the setup part of the test case.

This invocation is a helper method that initializes thetable object and

puts this object in an appropriate state for testing. The invocation at

line 4, table.eraseAll() is the F-MUT and belongs to the execu-

tion part of the test case. In fact, the method eraseAll() causes a

state change of the table object, whose effects are later inspected

using 4 other invocations, namely, table.size(), table.get(),

table.containsRow(), and table.containsValue(). Invoca-

tions at lines 5 to 8 are inspector methods and contribute to the oracle

part of the test by inspecting the state of the object under test affected

by the focal method eraseAll(), while preserving values of the class

fields.

2.2 Identifying focal methods under test

Having observed that identification of F-MUTs is not trivial and

requires custom analysis, we have developed an approach on the basis

of a novel heuristic to support the developer in the identification of

the F-MUTs in a unit test case.14 By investigating a large number

of open-source programs, we observed that dependencies between

F-MUTs, the CUT and assertions manifest themselves through object

state changes verified in the oracle part of a test case. This observation

forms the underlying intuition behind our approach. Furthermore, our

empirical observations led to the following heuristic:

The last method invocation entailing an object state

change whose effect is inspected in the oracle part of a

test case is a focal method under test (F-MUT).

Our approach leverages data flow analysis to capture essential infor-

mation in test cases and source code. It is general and applies to

object-oriented systems. In this work we instantiate the approach for

projects in Java and test cases in JUNIT format, the de-facto standard

for unit testing Java applications.‡ Our static analysis works on the

† http://code.google.com/p/guava-libraries
‡ http://junit.org

abstract syntax tree representation of the source code. The steps of the

approach and the input/output for each step are shown in Figure 3. In

the following we provide an overview of these steps, but the interested

reader may consult our previous work for a thorough discussion.14

To explain our heuristic approach, we introduce a simple set-theoretic

model in Table 1 that captures the key elements of the system. We

also present the formal definitions of the essential notions used in the

approach in Table 2.

The approach takes as input a Java project and extracts test cases

from the code being tested. It then analyzes test cases to establish the

scope of the analysis, i.e., which system classes are involved in test-

ing. It analyzes the identified classes of the system C (source code)

to extract system dependencies and construct a system call graph

CallGraph ⊆ 2M×M that represents the calling relationship between the

methods of all the classes involved in testing (Constructing call graph

in Figure 3).

A CallGraph is a directed graph whose nodes are methods in M, and

each node mi is connected to mj, iff mi invokes mj. CallChain:M →2M is a

function that returns all the methods invoked directly/indirectly by the

given method. In fact, CallChain of a given method is the set of methods

reachable from that method in the CallGraph.

CallChain(m1)={m2|(m1,m2)∈CallGraph or∃m′ s.t. m′ ∈CallChain(m1),

(m′,m2) ∈ CallGraph}

The approach applies inter-procedural forward reachability analysis to

detect mutator and inspector methods within the classes of interest. An

inspector is a side-effect free method that returns information about

the state of an object, whereas a method causing object state change

is a mutator method. To determine whether a method is mutator or

inspector, our approach analyzes the object fields in which a method

accesses in its method body and also keeps track of changes to method

parameters (tracing field access information in Figure 3).

We suppose an action is the most fine-grained operation on an object

including its instantiation, invocation, or field access. Accordingly,

Action represents the set of all actions in the system. MActions:M →2Action

is a function that returns the set of actions within the body of a given

method, and MActions
∗ ∶ M → 2Action is a function that beside such actions

(MActions) also returns all the actions in the body of all other methods

http://code.google.com/p/guava-libraries
http://junit.org


GHAFARI ET AL 5 of 19

TABLE 1 The core model of the system

Formal Element Description

C The set of all the classes.

M The set of all the methods.

V The set of all the variables.

Action The set of all actions in the system.

Assertion The set of all the assertion statements.

Acc = {r,w} The set of read/write access types on variables.

Act ⊆ Action × V × Acc The set of actions’ activities on the variables.

CM:C→2M Receives a class and returns a set of methods that belong to
the given class.

CV:C→2V Receives a class and returns a set of variables that belong to
the given class.

MV:M →2V Receives a method and returns its arguments.

MActions:M →2Action Receives a method and returns its actions.

MActions
*:M →2Action Receives a method and returns its actions as well as the

actions belonging to its CallChain.

TABLE 2 The formal notions

Notion Definition

CallGraph A directed graph whose nodes are methods in M and each node mi is connected to
mj , iff mi invokes mj .

CallChain A function that returns all the methods invoked directly or indirectly by a
given method. CallChain (m1) = {m2|(m1,m2) ∈ CallGraph or ∃m′ s.t. m′ ∈
CallChain(m1), (m′,m2) ∈ CallGraph}

Mut The set of mutators that comprises pairs of a method and a mutated variable, (m,v).
Mut = {(m, v)|∃ai ∈ MActions

∗(m), c ∈ C s.t. m ∈ CM(c), v ∈ (CV (c) ∪ MV (m)),
(ai ,v,w) ∈ Act}

Ins The set of inspectors that comprises pairs of a method and an inspected variable,
(m,v). Ins = {(m, v)|∃ai ∈ MActions

∗(m), c ∈ C s.t. m ∈ CM(c), v ∈ (CV (c) ∪
MV (m)), (ai ,v,w) ∈ Act and (m,v) ∉ Mut}

TM A test method is a set of sub-scenarios (ss), each of which is a sequence
of actions followed by a sequence of assertion statements. TM =
{ai … antj … tm|{ai, … , an} ⊆ Action and{tj, … , tm} ⊆ Assertion, n ⩾ i, m ⩾j and
i, j > 0}

FMss Focal Method of a sub-scenario is the last mutator having side effect on the actual
asserted expression. FMss(ss)= {m1|∃v∈V,ai ∈ Action, tk s.t. m1 is invovled in ai and
v is asserted in tk, (m1, v) ∈ Mut and∄j > i s.t. m2 ∈ Method,m2 is involved in aj ∈
Action and (m2,v) ∈ Mut}

FMtm A function that returns the focal methods of a given test method. FMtm(tm) =
∪n

i=1
FMss(ssi)

reachable from the given method. This function, called method chain

actions, is defined as follows:

MActions
∗(m) = {a|a ∈ MActions(m) or ∃m′ s.t. a ∈ MActions(m′) and

m′ ∈ CallChain(m)}

Action a is a member of the returned set of MActions
∗(m), iff a belongs

either to m or to one of the methods in its CallChain.

Mut ⊆ M × V is the set of mutators that comprises pairs of a method

and a mutated variable, (m,v). Method m is a mutator of variable v, iff

there exists an action in the method chain actions of m, such that it has

a write access on v, which is either a parameter of m or a member of m’s

class.

Mut = {(m, v)|∃ai ∈ MActions
∗(m), c ∈ C s.t. m ∈ CM(c),

v ∈ (CV(c) ∪ MV(m)), (ai, v,w) ∈ Act}

Where CM and CV are the sets of methods and variables of the given

class, respectively; and MV is the set of arguments of the given method.

Ins ⊆ M × V is the set of inspectors that comprises pairs of a method

and an inspected variable, (m, v). Method m is an inspector of variable

v, iff there exists an action in the method chain actions of m, such that

it has only read access on v that is either a parameter of m or a member

of m’s class.

Ins = {(m, v)|∃ai ∈ MActions
∗(m), c ∈ C s.t. m ∈ CM(c),

v ∈ (CV(c) ∪ MV(m)), (ai, v,w) ∈ Act and

(m, v) ∉ Mut}

Afterwards, the approach follows the test naming convention in JUnit

3 and annotations in JUnit 4 to distinguish test methods TM from

helper ones (identifying test methods in Figure 3). It partitions each test

method into sub-scenarios (ss), each of which is a sequence of actions

followed by a sequence of assertion statements (slicing to sub-scenarios

in Figure 3).



6 of 19 GHAFARI ET AL

TM = {ai … antj … tm|{ai, … , an} ⊆ Action and{tj, … , tm} ⊆ Assertion,

n ⩾ i,m ⩾ j and i, j > 0}

We consider all the common overloaded variants of the assert state-

ments in JUnit format. If an asserted expression is a single variable, we

find the method invocation from which the variable is assigned in that

unit test case. If the declaring class of this variable does not originate

in the project source code, we mark it as a helper§ (identifying expres-

sion(s) under assertion in Figure 3). The F-MUTs affect the state of the

classes of the system under test, and assertions may check these state

changes indirectly by accessing helper variables, rather than directly by

accessing the classes of the system under test. In this case, we search,

within a test method, for an expression from which the helper class is

instantiated. The search continues recursively until we find an invoca-

tion or a field access on a class of the system under test that instantiates

the helper. We register this invocation as the actual asserted expression

(finding relevant (asserted) system expression in Figure 3).

Having a set of actual asserted expressions for each sub-scenario ss,

and the knowledge of mutator and inspector methods that our anal-

ysis discovered from the system source code, the approach reports a

focal method FMss: TM →2M that is a last mutator having a side effect on

the actual asserted expression in that sub-scenario (identifying F-MUT

in Figure 3).

FMss(ss) = {m1|∃v ∈ V, ai ∈ Action,

tk s.t. m1 is invovled in ai and v is asserted in tk,

(m1, v) ∈ Mut and ∄j > i s.t. m2 ∈ Method,

m2 is involved in aj ∈ Action and

(m2, v) ∈ Mut}

Finally, FMtm: 2TM →2M is a function that returns the focal methods of

the given TM, that is, essentially,

FMtm(tm) = ∪n
i=1FMss(ssi), where tm = {ss1, ss2 … , ssn}

The approach suffers from several limitations inherent to static analy-

sis approaches that are generally unsound. For instance, the call graph

construction bears limitations of the approach on type resolution for

interface calls and polymorphic method calls. Moreover, we apply a sim-

plified intra-procedural alias analysis to identify references to a class

field from a local variable. That is, when tracing field access information,

possible state manipulations may escape when a method parameter

references a class field. We have thoroughly discussed these limitations

in our dedicated work to F-MUT identification and have shown the sig-

nificant effectiveness of the approach to identify F-MUTs for real-world

software systems, despite the identified limitations.14

3 SYNTHESIZING API USES

In the first phase of the approach (Section 2) we identified F-MUTs that

are the most representative uses of an API within a unit test case. This

§ Commonly these instances belong to classes external to the system, e.g., libraries, mock
objects and stubs.

section presents the second phase of the approach that automatically

synthesizes a set of examples representing the usage of such APIs.

Not all sequences of API calls in test code represent mean-

ingful usage examples. In fact, a test case can have more than

1 focal method, and each focal method may focus on a different

aspect of the unit under test that represents a separate API use.

Figure 4 shows a real test case from the PureMVC project. The

scenario in the test case is as follows. First, a controller object

is created. Then, controller’s registerCommand is called to

register a particular ICommand class, ControllerTestCommand,

as the handler for a particular INotification, named hasCom-

mandTest. Next, the result of controller.hasCommand is checked

through a JUnit method Assert.assertTrue to determine if the

command is successfully registered for the specified notification.

In the second sub-scenario, invocation of the focal method con-

troller.removeCommand removes the previously registered com-

mand checked with the Assert.assertFalse JUnit method. The

sequence of API uses registerCommand and then immediately

removeCommand only serves a testing purpose; it is not a usage sce-

nario that solves a practical programming problem. More specifically,

each of these focal methods represents a separate example.

Figure 5 shows another unit test case from the PureMVC project

comprising 2 sub-scenarios for exercising registerCommand and

executeCommandmethods. The first sub-scenario is similar to the one

explained for the unit test case in Figure 4. In the second sub-scenario,

a helper object named vo is created and used as an optional body in

the creation of the note object in line 7. Afterwards, invocation of the

executeCommand on the controller object executes the ICom-

mand previously registered as the handler for the given notification at

line 3. This call is expected to change the value of theresult attribute

in the vo object. This is determined at the last line. In contrast to the

previous test case where each focal method represented a separate API

usage example, the focal methods in the current test are relevant and

together represent a useful example.

Therefore, the temporal sequence of API uses (focal methods) in

test code is not always similar to the intended API uses as they appear

in client code. Determining whether a sequence of 2 focal methods

should be separated or not is not possible without realizing the relation

between these methods. Moreover, to ease developer’s understanding,

usage examples should be concise and free from extraneous state-

ments. That is, the mined examples must be processed before being

presented to the user, to eliminate statements that are not necessary,

like of those only belonging to the oracle part, e.g., inspector methods

and assertion statements. In the rest of this paper we use the term

meaningful example in referring to a code snippet that represents such

an API use.

Finally, extracting meaningful examples from a given test may not

be possible with traditional slicing proposals.18 These techniques fall

short of precisely identifying statements related to a particular focal

method, as focal methods are typically involved with the same pro-

gram entities. For instance, focal methods are usually invoked on the

same object, i.e., the unit under test. Moreover, different F-MUTs within

a unit test may use the same setup part. Due to this intrinsic shared

data among focal methods in a unit test case, existing slicing techniques

may intermingle different uses together, rather than constructing



GHAFARI ET AL 7 of 19

FIGURE 4 Two sub-scenarios with separate API uses in 1 unit test case

FIGURE 5 Two sub-scenarios with relevant API uses in 1 unit test case

FIGURE 6 Unit test case for the BasePartial class

a slice, which focuses attention on the API of interest (excluding the

code irrelevant to the F-MUT execution). For instance, consider the

unit test case from JodaTime¶ project in Figure 6. Three focal meth-

ods, each of which represents a different API use, comprise the test

scenario in this unit test case, where the 3 API uses are highlighted

with rectangles in the code. Suppose we are interested to extract the

statements relevant to the method mock.set at line 11. If we con-

struct a backward slice on the mock at this line, the slice will contain all

statements affecting this object too (lines 2-11). Indeed, since themock

object is shared in different sub-scenarios, the slice becomes larger

than expected rather than only focusing on the statements affecting on

the mock.setmethod.

3.1 Identifying meaningful sequence of API uses

Unit test cases generally exercise sequences of method calls that cre-

ate and mutate objects. They check the return value and the state of

the object on which the method was invoked to determine if F-MUTs

¶http://www.joda.org/joda-time

behave as expected. According to our observations, a dependency rela-

tion exists in 2 different granularity levels between the statements

within sub-scenarios in a test case.

As indicated by the rectangles in the code, the second sub-scenario

at line 8 uses the File object reportFile constructed in the first

sub-scenario at line 3. Thus, a successful construction of the URL object

in the second sub-scenario depends on the File object in the first sce-

nario. Consequently, an example corresponding to the F-MUT in sec-

ond sub-scenario, i.e., URL.openStream(), should comprise relevant

statements from the first sub-scenario too.

Nevertheless, when F-MUTs operate on the same object (e.g., see

Figure 6), often a dependency relation with a finer granularity than

the object level exists among API methods. Indeed, in unit testing,

methods that access (read or write) the same object are usually tested

together,19,20 although these methods may not necessarily be logically

dependent or used together. That is, the sequence of such methods in a

‖http://ant.apache.org

Figure 7 illustrates a real unit test case from the Ant‖ project.

http://www.joda.org/joda-time
http://ant.apache.org


8 of 19 GHAFARI ET AL

FIGURE 7 Two explicitly data-dependent sub-scenarios in a unit test case

test may not be practical when used in the client code and thus hardly

represents a meaningful usage example. Accordingly, we examine the

type of dependency relation between the methods not only at object

level on which they operate but also transitively at the level of object

attributes to investigate whether a sequence of 2 F-MUTs (in short,

sequence) is meaningful. Sequences can be of 3 kinds:

1. Read-Read. When 2 methods m1 and m2 both only read the same

field f, each method can be executed separately without requiring

another one. These methods are usually tested together as they

need the same setup part.

2. Write-Read. If method m1 writes field f and method m2 reads the

value written to field f by m1, the execution of m2 depends on the

value produced by m1.

3. Write-Write. When 2 methods m1 and m2 both write the same field

f, and there is no Write-Read relation in between, they are indepen-

dent and can be executed separately as one execution overwrites

the other. Such sequences are very common in unit testing. For

instance, many test scenarios involve testing the same method with

different inputs.

The only sequence representing a meaningful usage scenario is

Write-Read. Otherwise, each scenario can execute separately and rep-

resents a usage example.

3.2 Computing relevant statements to an API

The F-MUTs within a test are syntactically dependent on one another

and extracting the statements relevant to a focal method can be chal-

lenging. To realize how each focal method interacts with other code

elements within a test, we adapt a graph-based object usage model

that is more compact and specialized for object usage representa-

tion than program dependence graph and control flow graph.21 We

model the usage of each object including its instantiation, invocation,

or field access—collectively called actions. The execution flow, data,

and control dependencies among all of such actions form the entire

unit test model.

In our model, multiple object usages in a test scenario can be repre-

sented with a directed acyclic graph. For instance, Figure 8 illustrates

multiple objects participating in the unit test case in Figure 5. Nodes are

labeledC.m, in whichC is the class name of the object andm is the name

of a method, constructor, or a field. The directed edges between actions

represent the usage order, control or data dependency among them.

We use different edge types to distinguish between the edges (see the

FIGURE 8 The representation of different object usages in the unit
test case shown in Figure 5

legend in Figure 8). A directed edge from an action node i to an action

node j represents the temporal order of actions w.r.t. the execution flow

and indicates that in the test scenario, i is used before j, and j is used

after i, respectively.

Action aj is control dependent on action ai (control dependency

CD between ai and aj evaluates to true) iff the execution result

of ai determines whether aj will execute or not. Control flow CF:

Action × Action→{true, false} between ai and aj is the sufficient condi-

tion (ai.cj) for the former action to be followed by the latter action in

a program execution: ∀ai ∈ Action if Succ(ai) = {aj,… , an}, then CF(ai,

aj) = ai.cj,… ,CF(ai, an) = ai.cn, and (∨n
l=j

ai.cl) = true. In other words, (1)

CF(ai, aj) = false if aj is not a successor of ai , (2) CF(ai, aj) = true if aj

is the sole successor of ai, and (3) if ai has more than one successor

(there is a branch), then the disjunction of all CF from ai to its succes-

sors is true. For example, assume if flag is true, a1 is followed by a2,

otherwise, it is followed by a3. In such a branch, CF(a1, a2) = a1.c2 = flag,



GHAFARI ET AL 9 of 19

CF(a1, a3) = a1.c3 = ¬flag, and the disjunction of the 2 control flows is

true so that one path will be chosen during the execution.

Algorithm 1 presents the control dependency computation on the

basis of the conditions ai.Reachability on which each action ai is reach-

able from the root action aroot in the control flow graph. The algorithm

initializes the WorkList with the successors of the root (line 3). For

each ai in the WorkList that is not yet processed (line 4), ai.Reachability

expresses that ai is reachable, i.e., at least one of its predecessors ap

is both reachable, and there is a control flow from ap to ai. Once the

algorithm computes the reachability conditions for an action (line 5),

it performs the same computation for that action’s successors; such

computations continue until no unprocessed actions are left.

In practice, we model control dependencies w.r.t. control statements

such as if or while statements. We use control nodes to represent

how actions are used within a control statement. To conform to the

use of edges for representing temporal orders, we place control nodes

at the branching node, where the program chooses an execution path,

instead of placing them at the starting points of the corresponding

statements. For example, the control node labeled CONTROL(IF) in

Figure 8 represents the if statement in the test code in Figure 5,

and the edge from the node IController.hasCommand to CON-

TROL(IF) indicates that the execution of hasCommand occurs before

the branching point of the if control statement. All actions inside the

body of a control structure are control dependent on the control pred-

icate. The directed edge from the node IController.hasCommand

to Assert.fail indicates a control dependency between these 2

actions in the test.

Action j is data dependent on action i, if i assigns to a memory loca-

tion that j will read in some program path. In this work, we identify 2

kinds of data dependencies.

1. Intra-procedural. The object instance on which a par-

ticular method is invoked is data dependent on the

object creation statement. For instance, there is a data

dependency between Controller.getInstance and ICon-

troller.registerCommand as the latter involves the

object controller produced by the former action. More-

over, when an action is used as an argument in another

action, e.g., ControllerTestCommand() and ICon-

troller.registerCommand, the latter action is data dependent

on the former.

2. Inter-procedural. In contrast to the previous data dependency,

which we could spot by looking at each individual test in isola-

tion, there may also be an inter-procedural dependency between

2 method calls that is not explicit from within a test. More specifi-

cally, to enable slicing test code w.r.t. a focal method, the precision

we consider during dependency analysis should not be limited to

an object level but we also trace transitive access on the object in

different attributes to determine if 2 API methods are dependent.

The dashed-edge between IController.registerCommand

and IController.executeCommand in Figure 8 indicates such

a data dependency between these 2 F-MUTs.

In general, data relation DR: Action × Action × V→{RR, RW, WR, WW,

null} between ai and aj, where i < j can be of 4 kinds:

DR(ai, aj, v) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

RR if {(ai, v, r), (aj, v, r)} ⊆ Act
RW if {(ai, v, r), (aj, v,w)} ⊆ Act
WR if {(ai, v,w), (aj, v, r)} ⊆ Act
WW if {(ai, v,w), (aj, v,w)} ⊆ Act
null if there is no shared variable.

Accordingly, data dependency DD:Action × Action→{true, false} of

actions ai and aj, where i < j, is true if the former action defines (write)

a variable that is used (read) by the latter action without any other

intermediate definitions:

DD(ai, aj) = (∃v ∈ V s.t. DR(ai, aj, v)

= WR and ∄k > i s.t. DR(ak, aj, v) = WR)

Synthesizing a meaningful example is not possible unless each action

participating in an example is accompanied by all other actions on which

that action is control/data dependent during its execution. We intro-

duce CDSet: Action→2Action, a function that returns the set of actions on

which a given action is control dependent, and DDSet: Action→2Action a

function that returns the set of actions on which a given action is data

dependent.

Algorithm 2 synthesizes usage examples of the most representative

APIs within a given test method TM. For each focal method f it com-

putes the actions on which the method is dependent for its execution

and stores them in the Result set. It does the same for all the actions

included in the set whose dependencies have not yet been checked

(Result∖Processed). This process continues till the example set Result is

self-contained, i.e., none of the actions in this set have dependency on

actions outside the list. Finally, it returns a set API-U, which comprises

pairs of a focal method, and a complete usage example of that method

synthesized from the tm.



10 of 19 GHAFARI ET AL

3.3 Prototype implementation

We implemented the proposed approach to synthesize API uses

in an Eclipse plugin. Figure 9 presents the plugin’s work flow and

input/output for each step. Given a Java project, the plugin distin-

guishes test code from source code and excludes test cases that may

not represent correct API usages. In practice, some tests may be in

charge of checking a negative behavior like an exceptional condition.

We assume that if a method checks a negative behavior, develop-

ers indicate that in JUnit using the expected parameter in @Test

annotation, or they explicitly call a JUnit fail method right after an

exceptional call in the test case. To discern the role of different meth-

ods within a test case, we adapt a graph-based object usage model,

Groum, that provides necessary control and (intra-procedural) data

relations between the statements within a test case.21 We enrich

this partial object usage model with field access information that

is computed using the previously developed technique described in

Section 2. For each method m, a set MOD(m) of class fields that may

be modified by m is computed, and a set USE(m) of class fields that

may be used by this method. In both cases, the effects of methods

transitively called by m are taken into account. We find internally

dependent methods on the basis of the common state, i.e., the fields

they read or write. We construct a complete model for each unit

test by connecting such methods together. Given an F-MUT f in a

test method and a complete object usage model for that test, a slice

for f constructs an example of that F-MUT use. Particularly, we real-

ized the slice computation by implementing Algorithm 2 that for each

F-MUT in a test, traverses the model starting from the node corre-

sponding to the F-MUT of interest and includes in the program slice

every node that can reach the F-MUT using data and/or control edges in

the model.

3.4 A complete working example

In this section, we present the detailed operation of our approach

through a working example. Figure 10 shows a simple unit test case

for the Email class in Commons-Email, an API built on top of the

Java Mail API for sending an email. The test case sets some fields of

an email message and the outgoing mail server and checks whether a

header folding works correctly. Figure 11 illustrates 2 examples con-

structed from this unit test case. We present the results of different

phases, summarized in 4 steps, when the approach is applied to this unit

test case.

FIGURE 9 The example synthesis work flow

FIGURE 10 A unit test case with dependent sub-scenarios from Commons-Email project



GHAFARI ET AL 11 of 19

FIGURE 11 Synthesized examples from the unit test case in Figure 10

Step 1. Identifying the analysis scope. In the first step we identify

system classes that are involved in testing. Each system class is

analyzed to realize if the class uses any other classes in the system.

A call graph is built to represent the calling relationships between

the methods of all classes transitively involved in the test.

The approach finds the Email class as the only system class in the

unit test case. Other classes such asStringandMimeMessageare

external classes whose methods have an auxiliary role in the test.

Step 2. Identifying mutator and inspector methods. This step tracks

the flow of data involving the class fields starting from leaf meth-

ods in the call graph and moving toward caller methods used in the

test case. It recursively maps field access sets from the callees to the

callers in the call graph and categorizes the methods used in the test

case into mutators or inspectors according to whether they cause

an object’s state to change or not, respectively.

Accordingly, setHostName, setSmtpPort, setFrom, setTo,

setSubject, addHeader, and buildMimeMessage methods

are classified as mutators and getHeaders, and getMimeMes-

sagemethods are classified as inspectors.

Step 3. Identifying F-MUTs. In each sub-scenario, we identify F-MUT as

the last mutator whose effect is inspected in its following assertion

expressions.

The approach correctly identifies email.addHeader as F-MUT

in the first sub-scenario. This method modifies the headers field

in the Email class, and email.getHeaders, which is asserted

in the first sub-scenario, also reads the same field. Identifying the

F-MUT in the second sub-scenario is more interesting. The asserted

expression is an array that is initialized by invoking getHeader

method on an object of type MimeMessage. This class is not a

system class and therefore cannot be a CUT. In fact, this exter-

nal object is assigned the result of getMimeMessage call on an

object of type Email, which belongs to the system. Thus, what

has been asserted in the second sub-scenario is obtained from the

Email.getMimeMessage, which inspects the message field of

the Email class and is the actual asserted expression. The last

mutator modifying this field is buildMimeMessage, which is the

F-MUT.

Step 4. Synthesizing examples. Our approach relies on data and

control dependencies among all expressions in a test to deter-

mine which statements are actually necessary to execute each

F-MUT.

The approach correctly identifies the declaration of the header-

Value at line 7 as the only statement in the unit test case on which

the focal method email.addHeader at line 8 is data dependent.

Nonetheless, identifying statements concerning the execution of

the second focal method, email.buildMimeMessage at line 12

requires an analysis that is finer than the granularity of objects.

The approach leverages the field access information, collected in

the second step, to perceive the data relationship among the meth-

ods. The approach precisely finds that the execution of the build-

MimeMessage depends on all of its preceding mutator methods.

Finally, an example is constructed on the basis of a set of expres-

sion statements on which a given F-MUT is transitively control/data

dependent, although in this particular case only the data depen-

dency information is sufficient to construct the example. Figure 11

shows the resulting API usage examples synthesized from the unit

test case.

4 EVALUATION

To evaluate this work, we have selected 4 open-source Java projects

as the context of our study. Table 3 presents the key characteristics of

the subject programs. These are mature programs from different appli-

cation domains with at least 1 major release. The subject programs

are equipped with substantial test suites with test cases in JUnit for-

mat. To evaluate our approach we formulated the following research

questions:

RQ1: How effective is the proposed approach to identify the relation-

ships between unit tests and source code in the form of F-MUTs?

RQ2: How well can the proposed approach be used to generate mean-

ingful examples from unit test cases?

In the following, we first replicate, on a new machine, an empiri-

cal study that we performed in our previous research to assess our

approach in identifying F-MUTs (RQ1).14 We then evaluate whether our

TABLE 3 Key characteristics of the subject programs in this study

Source code characteristics

Subject Programs Version KLoC Test Methods

Commons Email 1.3.3 8.78 130

JGAP 3.4.4 73.96 1390

PureMVC 1.0.8 19.46 43

XStream 1.4.4 54.93 968



12 of 19 GHAFARI ET AL

example synthesis approach can benefit from the F-MUT information

to effectively synthesize meaningful API uses from unit test cases auto-

matically; we compare, on the basis of 3 different metrics, the out-

put of our research prototype with both human-written examples and

a state-of-the-art approach (RQ2). The experiments have been con-

ducted on an Intel 2.8 Core i7 CPU machine with 16 GB of RAM and

Mac OS X 10.11 operating system.

4.1 Identifying F-MUTs

Design. To select test cases for the analysis we first generated a raw

dataset by randomly sampling 100 test cases from each of the sub-

ject systems. For the PureMVC project, which has fewer test cases, we

included all its 43 test cases in the dataset. Then, we filtered out test

cases that do not satisfy applicability criteria. In particular, we excluded

test cases that form an inheritance class hierarchy, do not use standard

JUnit assertions, and contain assertion statements in private methods,

helper classes, and inherited methods. Most test cases (above 87%)

conform to the applicability criteria and test case structure supported

by our prototype implementation. Following the preselection and fil-

tering we obtained a dataset of 300 test cases. These test cases form a

manually inspected reference dataset (ref-dataset1) that we use as

an oracle in this study.

For each test case, we have detected F-MUTs manually after thor-

ough analysis of the system specification, javadocs, API usage manuals,

and code comments that gave us the knowledge about each system

under test. To improve the understanding of concepts between our-

selves, we met to identify sub-scenarios and F-MUTs within each test

case in 5% of this set. As we assured ourselves that we agreed on

how to extract expected information, we (the first 2 authors of the

paper) inspected the remaining test cases independently, while pro-

viding a short rationale for why each focal method is selected. This

rationale is used for internal validation purposes. For all the stud-

ied test cases, we exchanged our results to detect potential con-

flicts. After we agreed on the expected results, we finalized them in

the ref-dataset1 .

To evaluate the effectiveness of the approach, we applied our pro-

totype to all the subject programs and the selected test cases in the

ref-dataset1 . We compared the results of the prototype with the

manually identified F-MUTs.

Results. The first part of this study involves assessing the effec-

tiveness of the proposed approach to identify F-MUTs; we calculate

the precision and recall of our approach with respect to the results

in our reference dataset. Precision is the fraction of correctly identi-

fied F-MUTs versus all results returned by our prototype. Recall is the

proportion of the results in the ref-dataset1 identified by the pro-

totype. To take both into account, we assess the overall effectiveness of

our approach using the harmonic-mean (F𝛽 = 1) of precision and recall.

Table 4 summarizes the results, which confirm our previous findings.

Our approach automatically identifies F-MUTs, in a minute in total,

and achieves a high precision and a good recall. The harmonic-mean

over the 4 subject programs is also promising (66%–87%), which indi-

cates that we can establish the traceability links between unit tests and

source code in the form of F-MUTs in an automated manner with a high

effectiveness (RQ1). The interested reader may consult our previous

TABLE 4 Quantitative report on the accuracy of the proposed
approach on the subject programs

Experimental results

Subject Programs Precision Recall H-mean

Commons Email 0.94 0.69 0.79

JGAP 0.85 0.73 0.78

PureMVC 0.97 0.79 0.87

XStream 0.90 0.53 0.66

work for a detailed discussion on corner cases, as well as some cases

where the approach is more advantageous.14

4.2 Synthesizing API uses

Design. For synthesizing API uses we target the same open-source

projects that we have used to evaluate identifying F-MUTs (see Table 3).

These projects have an established code base and are equipped with

documentation. Importantly, we acquired a good knowledge of their

APIs during the earlier study and we conducted to assess our approach

for identifying F-MUTs.

For evaluating the API use synthesis from test cases, we generated

a raw dataset comprising 140 test cases, by randomly sampling 35 dif-

ferent test cases from each of the subject systems. We left out simple

test cases that only exercise inspector methods within single assertion

statements.

To build a reference dataset of API usage examples to be used

as an oracle in this study, we recruited 5 Java programmers. All of

the programmers had a minimum of 4 years of general program-

ming experience, and on average 2 years expertise in software devel-

opment with Java programming language. We assigned each par-

ticipant a random selection of test methods from the raw dataset.

We asked the participants to inspect each test method manually

and extract from a test any number of meaningful usage exam-

ples that it may represent. Each test method was inspected at least

by 2 participants; when the participants extracted different usage

scenarios from a unit test case, they had to discuss and converge

on a set of agreed usage examples. The final results establish the

ref-dataset2 , which consists of 159 human-written examples of

API uses.

FIGURE 12 Comparison of the characterization of examples
generated by our tool and UsETeC with respect to manually built usage
examples



GHAFARI ET AL 13 of 19

To investigate how well the proposed approach and our prototype

implementation that can be used to generate meaningful examples

from unit test cases (RQ2), we applied our research prototype and a

state-of-the-art tool (UsETeC4) to all the subject programs and the

selected test cases and compared the outputs to manually built exam-

ples in the ref-dataset2 .

We evaluate the effectiveness of our approach in comparison with

UsETeC, which extracts representative APIs uses from test code.4

The UsETeC compares the text similarity between a test method

name and invoked APIs within the test to find representative APIs.

It then uses a slicing technique on the basis of 4 predefined code

patterns to extract some code snippets representing usage of these

APIs. The code snippets are then clustered to exclude redundant

examples.

Results. Figure 12 presents the evaluation results and compares

the generated examples with the human-written examples in the

ref-dataset2 . The comparison criteria are fitness, completeness, and

conciseness, which we define accordingly.

Fitness: Each test case uses several APIs, including those

under test, and others that are used as helpers for initializa-

tion or to specify test oracles. We have identified that tested

APIs are the most representative ones within a test and conse-

quently a test illustrates more meaningful usage of these APIs

(focal use) rather than other non-focal ones. We thus define

Fitness as the proportion of examples correctly mapped to the

focal uses.

The examples produced by our tool are linked to APIs on the basis

of F-MUTs; 71% of these examples correspond to the focal uses that

are manually picked by a human. In the case of UsETeC, it constructs

such links correctly in 56% of cases. The UsETeC relies on name match-

ing to identify focal uses in each test method, which is a brittle tech-

nique that only applies to test cases that strictly follow the naming

convention.22–24 In particular, this strategy falls short if the test name

does not contain the name of the unit under test or does not entail a

known type.

We illustrate the noted shortcoming of UsETeC on the test case

in Figure 13. This test case belongs to the commons email library

and demonstrates how to construct an MIME style email message to

send. It sets various email fields and invokes buildMimeMessage

on the email object to actually build the MimeMessage. To examine

whether the message is built successfully the unit test invokes get-

MimeMessage at line 10 to get the internal MimeMessage of the

email object and assigns it to a new MimeMessage object. Invocation

of saveChanges on this object updates the appropriate header fields

of the message to be consistent with the message content. Finally, the

test invokes the getContentType to retrieve the header field of this

message and evaluates via an assertion statement if this is equal to the

expected value.

Among several API uses in this unit test case, buildMimeMes-

sage is the focal use. In fact, msg.getContentType(), the asserted

expression in the unit test case invokes the msg object, which belongs

to MimeMessage class, a standard Java library. The test initializes this

helper object at line 10 by assigning the email.getMimeMessage()

method to this object. This invocation is an inspector method that

returns the field Email.message. Therefore, this method invocation

is the actual asserted expression involving the class of the system under

test. The method email.buildMimeMessage() is the last mutator,

which modifies the Email.message field accessed in the assertion

statement. This method is the F-MUT and also the focal use in this unit

test case. Nonetheless, the approach on the basis of name matching

cannot identify this focal use correctly using the test name “testDe-

faultCharsetAppliesToTextContent,” as the test name does not entail a

known API.

In 71% of cases our approach picks correct focal uses. To further

investigate the reasons for missing 29% of correct APIs, we manually

inspected test cases corresponding to the missing APIs. We realized

that most of these exceptions are due to implementation problems that

are reported in Section 2.2, but not the limitations of the approach.

Indeed, we could detect focal uses in most of test cases correctly by

applying the approach of identifying F-MUTs to each test case manually.

Consider a test case in Figure 14. An external call iter.remove()

at line 8 affects the oracle part of this test case. An invocation of

map.put() at line 4 is the last mutator, but the test case focuses on

deletion of an item through iteration. In fact, the iter object at line 5

holds a reference to the entries in XmlMap. That is, the invocation of

remove() method on the iter object at line 8 also removes an item

fromXmlMap. Our prototype does not consider such an implicit depen-

dency between test code and external classes and negatively reports

XmlMap.put() as the focal use in this test case.

FIGURE 13 Unit test case for the Email class



14 of 19 GHAFARI ET AL

FIGURE 14 A test method with side effect from an external object

Completeness. Usage examples should be self-contained and

include all statements that are necessary for exercising focal

uses. Indeed, an example is complete if it includes the appropri-

ate API and all parameters used in the API are well explained

(i.e., they are syntactically correct and there is no missing

statement) in the code example. We define completeness as the

proportion of examples that are complete.

Our tool is able to generate about 75% of complete examples, while

UsETeC is able to generate 67% of complete examples. The reason

that none of the tools is as good as a human at constructing complete

examples is due to some dependencies in test methods. For instance, a

common practice to decrease code duplication and maintenance costs

in testing is to encapsulate the setup part of a test in a helper method

that can be called by a group of test methods that need the same test

preparation.

In human-written examples, test dependencies are often consoli-

dated into examples. Our tool detects such dependencies, but does

not put related code directly into synthesized examples. This is mainly

why 25% of examples that our tool generates are marked as incom-

plete and do not compile. The UsETeC produces even more incomplete

examples (33%). This tool suffers from not only the same limitation for

test dependencies but also the slicing heuristic, which it applies to test

code, which is based on predefined code patterns that in 8% of cases,

which was not able to identify all relevant statements to a focal use.

We speculate that the slight improvement by our tool is mainly because

of the more precise implementation of intra-procedural analysis in our

extension of Groum.21

Conciseness. To improve readability and enhance developer

understanding, usage examples should be concise and free

from superfluous statements. In particular, an example is con-

cise if it is complete and does not have more statements than

its corresponding human-written example. We define Concise-

ness as the proportion of complete examples that are concise.

Automatically generated examples are less concise than

human-written examples. Apart from statements that are substituted

for test dependencies in human-written examples, the conciseness

of the results is 91% for our tool and 73% for the UsETeC tool

(both applied to the complete examples). Human-written examples are

more concise mainly because of some code transformation applied dur-

ing example construction. For instance, the unit test case in Figure 15

checks whether it can properly assign a URL to an EmailAttach-

ment object. The code snippet in Figure 16 illustrates a human-written

example corresponding to this test case. It correctly summarizes the

intended focal use and also removes unnecessary for statements to

demonstrate this usage.

Differently, the slice computation we apply to test code merely

removes part of a test that can be found to have no effect on the seman-

tics of interests without any code transformation. Unfortunately, not

all examples constructed in this way are sufficiently clear. For example,

consider a simple unit test case from the JGap project in Figure 17,

and an example corresponding to the third sub-scenario that our tool

generates for this unit test case, shown in Figure 18. During slice com-

putation the variable declaration statement in the first sub-scenario is

found to be relevant because the chrom object is further used in the

third sub-scenario. However, the object definition at line 11 kills the for-

mer definition at line 2. That is, the object initialization at the first line

of the example is useless and only obscures the focal use. A code trans-

formation that consolidates these statements would make the example

far clearer.

In 18% of cases UsETeC generates longer examples than our tool.

For instance, Figure 19 shows an excerpt of a unit test case from

Commons-Email that we need for our quick discussion. Intuitively,

email.addHeader is the focal use in this unit test case, and an

example to represent this API use should only include the header-

Value declaration statement.

However, UsETeC applied to this unit test case generates a com-

pletely different example. Indeed, the focal use addHeader in this test

relies on 2 variables,email andheaderValue. The UsETeC slices test

code on the basis of email, the shared variable among the focal use

and other statements, and includes in the same slice all other preceding

invocations on this variable that are absolutely irrelevant to illustrate

the correct use of addHeader.

The UsETeC does not eliminate statements that may be irrelevant in

an example, e.g., external APIs, and inspector methods. It is confined to

the intra-procedural relations and roughly assumes 2 statements are

dependent and should participate in an example if they involve the same

object(s), which is not true in general, as discussed in Section 3. We

attribute our 18% improvement to more precise test analysis, i.e., real-

izing inter-procedural data relations (13%) and control dependencies

(5%) among statements.



GHAFARI ET AL 15 of 19

FIGURE 15 A simple unit test case

FIGURE 16 A human-written example corresponding to the unit test case in Figure 15

FIGURE 17 Unit test case for the Chromosome class

FIGURE 18 An example representing the use of the Chromosome class in the third sub-scenario in Figure 17

4.3 Threats to validity

We note several limitations and threats to validity of the assessment

of our approach. We mitigated the risks to the external validity and

the generalization of the results by selecting real-world systems from

different application domains with manually generated test cases. The

study involved a randomly selected sample of test cases from the dif-

ferent systems.

Threats to internal validity might arise from the process used in

our empirical study. We used statistical methods to evaluate the result

of the experiments where results could have been affected by a ran-

domness in the test case selection. The accuracy of the results used

to evaluate our approach affect the results achieved. We did not have

access to the original program developers to indicate the focal meth-

ods in each test case. For this reason, we familiarized ourselves with

the project documentation and details of the source and test code and



16 of 19 GHAFARI ET AL

FIGURE 19 The first sub-scenario of the unit test case shown in Figure 10

cross-checked the results. We acknowledge that the approach vali-

dated against manual analysis that has been performed by 2 of the

authors is a threat to validity because of potential bias.

Furthermore, to mitigate the construct validity risks and avoid

mono-method bias in our experiments, we use 3 complementary

metrics (fitness, completeness, and conciseness) for generalizing the

quality and meaningfulness of the generated API usage examples.

Nonetheless, studying these metrics may not reflect all the properties

of the generated usage examples.

Our approach shares inherent limitations with other static analy-

sis techniques that are generally not sound. According to our findings

in this study, many of the false negatives are due to implementa-

tion problems reported in Section 2.2, but not the limitations of the

approach. Nevertheless, static analysis is preferable for analyzing large

code bases. It reduces the cost of the application of our approach when

it comes to minimizing the time to setup execution environments, work-

ing machines, etc, required to run the programs for dynamic analyses.

Using better points-to analysis for type resolution and more precise

call graph construction, for instance, using Spark25 could improve the

approach.

Although the aim of this research is to provide developers with API

usage examples mined from unit test cases when other sources of client

code is inaccessible, we did not evaluate the effectiveness of extract-

ing usage examples from test cases in comparison with those extracted

from other sources, such as client systems. This would be important to

decide the best source of usage examples when different sources are

available. We leave this experiment to future work.

5 RELATED WORK

This section overviews the related work concerning the 2 necessary

phases of the approach, i.e., to test code traceability link recovery and

example extraction.

5.1 Linking test code and source code

The practical automated realization of test-to-code traceability has

received little attention. Van Rompaey and Demeyer compare several

traceability resolution strategies to link test cases and the units under

test.23 For example, in the naming convention strategy, they match pro-

duction code and test code by removing the string “test” from the name

of the test case. This strategy falls short if the test name does not con-

tain the name of the unit under test or does not entail a known type.

In another strategy, they analyze call behavior before assertion state-

ments and presume that a test case calls a method on the unit under test

right before the assertion statement. They exploit the static call graph

to identify the last class called before an assert statement. This strat-

egy fails when, right before the assert statement, there is a call to a class

other than the tested class.24

A strategy on the basis of lexical analysis builds on an assumption

that developers use similar vocabulary to write the source code of a test

case and the corresponding unit under test. Latent semantic indexing,

an information retrieval technique, is used to calculate this similarity.

However, their study shows that a significant amount of vocabulary in

a test case does not repeat in the unit under test. Finally, a version log

mining strategy builds on an assumption that test cases and their cor-

responding unit under test coevolve together throughout time. This

strategy bears a risk to wrongly identify production code that changes

frequently as the unit under test.

Qusef et al. propose to use data flow analysis to circumvent the

limitations of these strategies.24 They apply reachability analysis and

exploit data dependence to identify a set of classes that affect the result

of the last assertion statement in each unit test. This analysis, however,

does not consider inter-procedural flow, inheritance, and aliasing. The

SCOTCH is an improvement over this work—a technique on the basis of

dynamic slicing to restore test case traceability links.26 The set of iden-

tified classes by dynamic slicing is an overestimate of the set of classes

actually tested in a test case. In fact, a slice will contain all the helper

classes used in a test case as well. In a recent work, the same authors

use another filtering strategy on the basis of name similarity to enhance

the accuracy of their earlier approach.27 These approaches rely on a

“stop-class list" to hold the names of the classes to be considered as

helper class in the analysis; however, these classes have to be manually

identified prior to the analysis.

While these works realize test to source code traceability links on

the class level, Gälli et al. provide initial evidence that a single method

is most often the unit under test in object-oriented programs.17 Nev-

ertheless, there is a scant work on automatically identifying methods

under test. Marschall exploits the naming convention of a test method

to establish the relation between tests and methods under test.22 This

requires developers to strictly follow the naming conventions, which

is not regular in practice.24 Additionally, a test case may have differ-

ent sub-scenarios and multiple methods under test, accordingly. But

the test name may not entail the information about all these methods.



GHAFARI ET AL 17 of 19

To improve this approach, Marschall also suggests a method as a tested

method, if it creates an argument for an assertion statement. This pro-

duces many false positives as it reports all the inspector methods whose

results are asserted in a test case. Ying et al. propose a call graph fil-

tering approach to detect methods that are probably irrelevant during

program investigation.28 According to their findings, methods closer

to the leaf of a call graph, as well as those with a small number of

callees are unlikely to contribute to the understanding of the applica-

tion logic. They use this approach to eliminate irrelevant methods from

the set of methods that can be invoked, transitively, from a JUnit test

case. This heuristic highlights the setup parts of a test and misses to

detect a tested method, which is called right before an assertion. In

addition, it fails to retrieve relevant invocations in a test with multiple

sub-scenarios. In a recent work, Ghafari et al. propose an approach to

automatically establish the relationship between the source and test

code on the method level.14 They use classic analysis techniques to dis-

sect the structure of unit test cases and realize the role of each method

within a unit test. As a result, they precisely detect the focal meth-

ods that represent the core of a test scenario inside a unit test case.

This precursor work, indeed, has inspired and enabled the presented

approach in this paper.

5.2 Example extraction

Extensive research has been performed to mine API usages from a

local repository. Mandelin et al. observe that usually a programmer

knows what type of object she needs, but does not know how to write

the code to get the object.29 To enable code reuse, they develop tech-

niques for synthesizing code fragments automatically given a simple

query that describes that desired code of input and output types. Zhong

et al. propose one of the first approaches that mine common API usage

patterns for suggesting relevant code snippets to aid developers.3

Lack of code examples in API documentation motivates Kim et al.

to propose a code example recommendation system that augments

the standard API documentation with the code examples organized

locally.30 Buse et al. present a technique to automatically synthesize

human-readable API usage examples from a given software corpus to

enrich documentation.5 This approach is the first to leverage type infor-

mation and statement ordering; and generated examples are free from

superfluous context and contain only the program statements needed

to show typical use of a target data type. Likewise, Montandon et al.

instrument API documentation in JavaDoc format with concrete usage

examples.12 Wang et al. propose a technique to improve the quality

of usage patterns.31 This work proposes a 2-step clustering algorithm

to produce succinct and high-covering examples. While the mentioned

approaches usually generate small examples, which are helpful in the

initial stage of API learning, Moritz et al. propose a visualization-based

approach for finding more detailed API usage examples that are helpful

in later stages.32 Galenson et al. propose an approach for code synthe-

sis given only partial specifications of desired results.33 In contrast to

most of the approaches that rely on static information, this approach

is dynamic and also allows users to incrementally give more informa-

tion to refine the candidate code fragments. Nguyen et al. propose an

API recommendation approach premised on statistical learning from

low-level code changes and the context of such changes.34 It suggests

a desirable API call in the top 5 positions in 77% of the time, which is a

significant improvement over state-of-the-art approaches.

The huge amount of open-source code that is available online has

motivated researchers to focus on realizing internet-scale code search

to enable developers to reap the benefits of these billions of lines of

source code. However, ranking high-quality code examples at the top

of the result set is challenging. Chatterjee et al. provide a code search

technique that locates a small set of relevant code snippets to per-

form a desired task specified with a free-form query.35 To improve

search results, this technique relies on the API documentation to anno-

tate undocumented code with the plain English meaning of each API.

Although this approach provides better results than existing code

search engines, its time complexity is high at runtime, which decreases

its usability for real applications with a large-scale corpus. To address

this issue, Keivanloo et al. propose an approach to answer a free-form

query within hundreds of milliseconds on a corpus covering millions

of code snippets.6 This approach enables working code examples to

be spotted in a time complexity similar to internet-scale code search

engines. Existing code search engines use ranking algorithms that only

compute the relevancy between the query and the results. Conse-

quently, they may produce some results that all share the same char-

acteristics, e.g., the code snippets originate from the same project with

the same implementation. Hence, other different results with lower rel-

evance scores on the basis of the query are hidden, even though they

may actually be closer to what a programmer is looking for. Martie et al.

propose 4 ranking algorithms that take into account relevance, diver-

sity, and conciseness in ranking code search results.36 Two of these

algorithms, which leverage the social and technical information of the

code results, produce top 10 results that are much preferable to use by

the programmers.

Recent research also relies on communities where developers post

questions and receive answers regarding their programming issues to

extract useful development hints. These crowd sources often become

an alternative for official API documentation where such documen-

tation is either sparse or unavailable. De Souza et al. present an

approach that leverages the Stack Overflow knowledge (questions and

answers) to recommend information that is useful for developers.37

They present this information in a web browser and rank the results

on the basis of the textual similarity between the query and the pairs

of questions and answers, as well as the quality of the pairs. However,

this approach comes with a number of problems. Every time developers

need to look for information, they interrupt their work flow and switch

from the IDE to a web browser to perform and refine searches. Besides,

query formulation is not easy to accomplish manually. Developers may

not know what to search for and how to formulate their needs in a query

appropriately. Ponzanelli et al. propose an approach to retrieve perti-

nent Stack Overflow discussions to the code context in the IDE.9 For

each retrieved discussion, they calculate textual and structural similar-

ity of the code context and the discussion, as well as the rate of that

discussion on Stack Overflow to rank possible solutions.

While all the aforementioned approaches rely on the client code,

Ghafari et al. propose the idea of extracting the API usage examples

from unit test cases.11 Zhu et al. present the UsETeC tool to extract such

examples from test code.4 However, to find representative APIs within



18 of 19 GHAFARI ET AL

a test case they rely on a test method naming convention that has been

proven to be inapplicable for this purpose.23,24 Conversely, we identify

F-MUTs that represent the actual intents of a unit test case.14 In addi-

tion, UsETeC applies a heuristic code slicing technique that is restricted

to predefined code patterns without realizing the exact relationship

among code elements and their roles within a test, whereas we perform

a more precise test analysis to perceive the role of different API calls

within a test and synthesize examples that are highly similar to human

generated ones.

6 CONCLUSION

Developers cope with the complexity of modern software systems

and strive to speed up the development process by increasingly rely-

ing on the functionalities provided by off-the-shelf components and

frameworks. However, understanding how to properly use APIs of large

libraries is non-trivial and requires extensive developer learning and

effort. With the rise of the open-source movement, an increasing quan-

tity of source code is becoming available in public, and software devel-

opers are resorting to study and reuse existing source code to allevi-

ate the aforementioned problems. However, manually finding sufficient

and adequate code examples for a given API that is not necessarily

designed in a reusable fashion is a difficult and time-consuming activity.

In this paper we proposed an approach that only depends on unit test

cases of an API to generate usage examples. We implemented the pro-

posed approach in a research prototype that applies to object-oriented

software and unit test cases in JUnit format. The approach requires

API source code and its unit test cases and uses classic static anal-

ysis techniques to extract the information required to build the API

usage examples. While being superior to the state-of-the-art, the pro-

posed approach provides API usage examples that are highly similar to

human-written examples and are particularly helpful to both the API

developers and the API clients in the absence of client code.

ACKNOWLEDGMENTS

We appreciate the valuable contribution of Prof. Carlo Ghezzi, the first

author’s advisor during his PhD studies at Politecnico di Milano. We

also gratefully acknowledge the financial support of the Swiss National

Science Foundation for the project “Agile Software Analysis” (SNSF

project No. 200020-162352, January 1, 2016-December 30, 2018).

REFERENCES

1. Dagenais B, Robillard MP. Recovering traceability links between an API
and its learning resources. Proceedings of the 34th International Confer-
ence on Software Engineering, ICSE ’12, Zurich; 2012:47–57.

2. Robillard MP, Deline R. A field study of API learning obstacles. Empirical
Software Eng. 2011;16(6):703–732.

3. Zhong H, Xie T, Zhang L, Pei J, Mei H. Mapo: mining and recommend-
ing API usage patterns. Proceedings of the 23rd European Conference on
ECOOP 2009 — Object-Oriented Programming, Genoa; 2009:318–343.

4. Zhu Z, Zou Y, Xie B, Jin Y, Lin Z, Zhang L. Mining API usage examples
from test code. 2014 IEEE International Conference on Software Mainte-
nance and Evolution (ICSME), Victoria; 2014:301–310.

5. Buse RPL, Weimer W. Synthesizing API usage examples. Proceedings
of the 34th International Conference on Software Engineering, ICSE ’12,
Zurich; 2012:782–792.

6. Keivanloo I, Rilling J, Zou Y. Spotting working code examples. Proceed-
ings of the 36th International Conference on Software Engineering, ICSE
2014, Hyderabad; 2014:664–675.

7. Nguyen AT, Nguyen TT, Nguyen HA, Tamrawi A, Nguyen HV, Al-Kofahi
J, Nguyen TN. Graph-based pattern-oriented, context-sensitive source
code completion. Proceedings of the 34th International Conference on
Software Engineering, ICSE ’12, Zurich; 2012:69–79.

8. Subramanian S, Inozemtseva L, Holmes R. Live API documentation. Pro-
ceedings of the 36th International Conference on Software Engineering,
ICSE 2014, Hyderabad; 2014:643–652.

9. Ponzanelli L, Bavota G, Di Penta M, Oliveto R, Lanza M. Prompter.
Empirical Software Eng. 2016;21(5):2190–2231.

10. Amintabar V, Heydarnoori A, Ghafari M. Exceptiontracer: a solution
recommender for exceptions in an integrated development environ-
ment. 23th IEEE International Conference on Program Comprehension,
ICPC 2015, Florence; 2015:299–302.

11. Ghafari M, Ghezzi C, Mocci A, Tamburrelli G. Mining unit tests for code
recommendation. Proceedings of the 22nd International Conference on
Program Comprehension, ICPC 2014, Hyderabad; 2014:142–145.

12. Montandon J, Borges H, Felix D, Valente M. Documenting APIs
with examples: lessons learned with the APIMiner platform. 2013
20th Working Conference on Reverse Engineering (WCRE), Koblenz;
2013:401–408.

13. Nasehi S, Maurer F. Unit tests as API usage examples. Software
Maintenance (ICSM), 2010 IEEE International Conference on, Timisoara;
2010:1–10.

14. Ghafari M, Ghezzi C, Rubinov K. Automatically identifying focal meth-
ods under test in unit test cases. Proceedings of the 15th IEEE Inter-
national Working Conference on Source Code Analysis and Manipulation,
SCAM ’15, Bremen; 2015:61–70.

15. Parizi R, Lee SP, Dabbagh M. Achievements and challenges in
state-of-the-art software traceability between test and code artifacts.
IEEE Trans Reliab. 2014;63:913–926.

16. Pezze M, Rubinov K, Wuttke J. Generating effective integration
test cases from unit ones. 2013 IEEE Sixth International Conference
on Software Testing, Verification and Validation (ICST), Luxembourg;
2013:11–20.

17. Gälli M, Lanza M, Nierstrasz O. Towards a taxonomy of unit tests.
Proceedings of the 13th International European Smalltalk Conference,
Brussels, Belgium; 2005:1–10.

18. Tip F. A survey of program slicing techniques. J Program Languages.
1995;3:121–189.

19. Zhang S, Saff D, Bu Y, Ernst MD. Combined static and dynamic auto-
mated test generation. Proceedings of the 2011 International Symposium
on Software Testing and Analysis, ISSTA ’11, Toronto; 2011:353–363.

20. Denaro G, Margara A, Pezzè M, Vivanti M. Dynamic data flow testing
of object oriented systems. Proceedings of the 37th International Confer-
ence on Software Engineering, ICSE 2015, Florence; 2015:947–958.

21. Nguyen TT, Nguyen H, Pham NH, Al-Kofahi JM, Nguyen TN.
Graph-based mining of multiple object usage patterns. Proceedings of
the the 7th Joint Meeting of the European Software Engineering Confer-
ence and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, ESEC/FSE ’09, Amsterdam; 2009:383–392.

22. Marschall P. Detecting the methods under test in java. University of
bern; 2005.

23. Rompaey BV, Demeyer S. Establishing traceability links between unit
test cases and units under test. Eur Conf Software Maintenance Reeng.
2009;25(2):209–218.

24. Qusef A, Oliveto R, DeLucia A. Recovering traceability links between
unit tests and classes under test: an improved method. Proceedings
of the 26th IEEE International Conference on Software Maintenance,
Timisoara, Romania; 2010:1–10.



GHAFARI ET AL 19 of 19

25. Lhoták O, Hendren L. Scaling java points-to analysis using spark. Pro-
ceedings of the 12th International Conference on Compiler Construction,
CC’03, Warsaw; 2003:153–169.

26. Qusef A, Bavota G, Oliveto R, DeLucia A, Binkley D. Scotch: improving
test-to-code traceability using slicing and conceptual coupling. Pro-
ceedings of the 27th IEEE International Conference on Software Mainte-
nance, Williamsburg; 2011:63–72.

27. Qusef A, Bavota G, Oliveto R, De Lucia A, Binkley D. Recovering
test-to-code traceability using slicing and textual analysis. J Syst Soft-
ware. 2014;88:147–168.

28. Ying ATT, Tarr PL. Filtering out methods you wish you hadn’t navi-
gated. Proceedings of the 2007 OOPSLA Workshop on Eclipse Technology
Exchange, eclipse ’07, Montreal; 2007:11–15.

29. Mandelin D, Xu L, Bodík R, Kimelman D. Jungloid mining: helping to
navigate the API jungle. Proceedings of the 2005 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI ’05,
Chicago; 2005:48–61.

30. Kim J, Lee S, Hwang S-W, Kim S. Enriching documents with
examples: a corpus mining approach. ACM Trans Inf Syst. January
2013;31(1):1:1–1:27.

31. Wang J, Dang Y, Zhang H, Chen K, Xie T, Zhang D. Mining succinct and
high-coverage API usage patterns from source code. 2013 10th IEEE
Working Conference on Mining Software Repositories (MSR), San Francisco;
2013:319–328.

32. Moritz E, Linares-Vasquez M, Poshyvanyk D, Grechanik M, McMillan
C, Gethers M. ExPort: detecting and visualizing API usages in large
source code repositories. 2013 IEEE/ACM 28th International Conference
on Automated Software Engineering (ASE), Palo Alto; 2013:646–651.

33. Galenson J, Reames P, Bodik R, Hartmann B, Sen K. Codehint: dynamic
and interactive synthesis of code snippets. Proceedings of the 36th Inter-
national Conference on Software Engineering, ICSE 2014, Hyderabad;
2014:653–663.

34. Nguyen AT, Hilton M, Codoban M, Nguyen HA, Mast L, Rademacher E,
Nguyen TN, Dig D. API code recommendation using statistical learn-
ing from fine-grained changes. Proceedings of the 2016 24th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering,
FSE 2016. New York, NY, USA: ACM; 2016:511–522.

35. Chatterjee S, Juvekar S, Sen K. Sniff: a search engine for java using
free-form queries. Proceedings of the 12th International Conference on
Fundamental Approaches to Software Engineering: Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2009,
FASE ’09. York: Springer-Verlag; 2009:385–400.

36. Martie L, van der Hoek A. Sameness: an experiment in code search. Pro-
ceedings of the 12th Working Conference on Mining Software Repositories,
MSR ’15, Florence, Italy; 2015:76–87.

37. de Souza LBL, Campos EC, Maia MA. Ranking crowd knowledge to
assist software development. Proceedings of the 22nd International Con-
ference on Program Comprehension, ICPC 2014. New York, NY, USA:
ACM; 2014:72–82.

How to cite this article: Ghafari M, Rubinov K, Pourhashem

K, MM. Mining unit test cases to synthesize API

usage examples, J Softw Evol Proc. 2017;29:e1841.

https://doi.org/10.1002/smr.1841

https://doi.org/10.1002/smr.1841
Mo00on
Rectangle


	Mining unit test cases to synthesize API usage examples
	Abstract
	Introduction
	Identifying traceability links between source andxmltex	?> test code
	Test case structure
	Identifying focal methods under test

	Synthesizing API uses
	Identifying meaningful sequence ofxmltex	?> API uses
	Computing relevant statements toxmltex	?> an API
	Prototype implementation
	A complete working example

	Evaluation
	Identifying F-MUTs
	Synthesizing API uses
	Threats toxmltex	?> validity

	Related work
	Linking test code andxmltex	?> source code
	Example extraction

	Conclusion
	References


