
IDENTIFICAÇÃO DE CLASSES EM SISTEMAS

LEGADOS JAVASCRIPT

LEONARDO HUMBERTO GUIMARÃES SILVA

IDENTIFICAÇÃO DE CLASSES EM SISTEMAS

LEGADOS JAVASCRIPT

Tese apresentada ao Programa de Pós-
-Graduação em Ciência da Computação do
Instituto de Ciências Exatas da Universi-
dade Federal de Minas Gerais como requi-
sito parcial para a obtenção do grau de
Doutor em Ciência da Computação.

Orientador: Marco Túlio de Oliveira Valente
Coorientador: Alexandre Bergel

Belo Horizonte

Setembro de 2017

LEONARDO HUMBERTO GUIMARÃES SILVA

IDENTIFYING CLASSES IN LEGACY

JAVASCRIPT CODE

Thesis presented to the Graduate Program
in Computer Science of the Federal Univer-
sity of Minas Gerais in partial fulfillment of
the requirements for the degree of Doctor
in Computer Science.

Advisor: Marco Túlio de Oliveira Valente
Co-Advisor: Alexandre Bergel

Belo Horizonte

September 2017

© 2017, Leonardo Humberto Guimarães Silva.
 Todos os direitos reservados

Ficha catalográfica elaborada pela Biblioteca do ICEx - UFMG

 Silva, Leonardo Humberto Guimarães.

S586i Identifying classes in legacy javaScript code. / Leonardo

 Humberto Guimarães Silva. – Belo Horizonte, 2017.

 xxxiii, 171 f.: il.; 29 cm.

 Tese (doutorado) – Universidade Federal de Minas

 Gerais – Departamento de Ciência da Computação.

 Orientador: Marco Túlio de Oliveira Valente

 Coorientador: Alexandre Bergel

 1. Computação - Teses. 2. JavaScript (Linguagem de

 programação de computador). 3. Engenharia reversa. 4.

 Compreensão de programas. 5. Reengenharia. I.

 Orientador. II. Coorientador III. Título.

CDU 519.6*32(043)

Acknowledgments

I would like to express my gratitude to everyone who walked with me through the path
way on this PhD thesis. This work would have been impossible without their support,
encouragement, and guidance. I thank God for having all these people in my life.

A special thanks for my mother Helenita, my wife Cristiane, and my daughter
Isadora, who gave me the emotional support I needed.

I would like to thank my advisor Prof. Marco Túlio de Oliveira Valente and my
co-advisor Prof. Alexandre Bergel for the lessons, attention, availability, and patience.

I thank Prof. Nicolas Anquetil for giving me the opportunity to work under his
supervision in France.

I thank the members of the ASERG research group for their friendship and tech-
nical collaboration.

I thank the Department of Computer Science at UFMG for their constant sup-
port.

Finally, I thank the remaining members of my thesis committee: Prof. Paulo
Borba, Prof. Eduardo Figueiredo, Prof. Marcelo Maia, and Prof. Mariza Bigonha, for
participating in my defense and for their insightful comments.

ix

“The greatest danger for most of us is not that our aim is too high and we miss it, but
that it is too low and we reach it.”

(Michelangelo)

xi

Resumo

JavaScript é a linguagem de programação mais popular para a Web. Embora a lin-
guagem seja baseada em protótipos, desenvolvedores JavaScript muitas vezes emulam
classes para diminuir a crescente complexidade de suas aplicações. Identificar estru-
turas semelhantes a classes pode auxiliar estes desenvolvedores nas seguintes atividades:
(i) compreensão de programas; (ii) migração de código para a nova sintaxe de classes
introduzida na versão 6 de ECMAScript (ES6); e (iii) implementação de ferramentas
de apoio, incluindo IDEs com visões baseadas em classes e ferramentas de engenharia
reversa. Nesta tese, nós definimos, implementamos e avaliamos um conjunto de heurís-
ticas para identificar estruturas que emulam classes, e suas dependências, em sistemas
JavaScript legados, isto é, implementados em versões anteriores a ES6. Desenvolvemos
um amplo estudo, utilizando um dataset de 918 aplicações JavaScript, disponíveis no
GitHub, para entender como a emulação de classes é empregada. Encontramos evidên-
cias de que estruturas emulando classes estão presentes em quase 70% dos sistemas
estudados. Realizamos um estudo com 60 desenvolvedores para avaliar nossa estraté-
gia e ferramenta. Os resultados indicam que nossa ferramenta é capaz de identificar
classes emuladas em sistemas legados JavaScript. Avaliamos também como o uso de
um verificador estático pode inferir tipos que correspondem a referências para classes.
Realizamos um estudo com duas aplicações legadas para avaliar a precisão na identifi-
cação de dependências entre classes. Conseguimos atingir precisão de 100% em ambos
os sistemas, e o recall varia de 80% a 86% para dependências em geral e de 85% a
96% para associações. Além disso, apresentamos um conjunto de regras para migrar
estruturas que emulam classes para usar a nova sintaxe introduzida em ES6. Em nosso
estudo, detalhamos casos que permitem migração automática (as partes boas), casos
que exigem intervenção manual e ad-hoc (as partes ruins) e casos que não podem ser
migrados devido a limitações de ES6 (as partes feias). Finalmente, apresentamos razões
que podem levar desenvolvedores a adiar ou rejeitar a adoção de classes ES6, com base
no feedback recebido após a submissão de pull-requests sugerindo a migração.

Palavras-chave: JavaScript; Compreensão de programas; Engenharia reversa.

xiii

Abstract

JavaScript is the most popular programming language for the Web. Although the
language is prototype-based, developers often emulate class-based abstractions in
JavaScript to master the increasing complexity of their applications. Identifying struc-
tures similar to classes in JavaScript code can support these developers in the following
activities: (i) program comprehension; (ii) migration to the new JavaScript syntax that
supports classes, introduced by ECMAScript 6 (ES6); and (iii) implementation of sup-
porting tools, including IDEs with class-based views and reverse engineering tools. In
this thesis, we define, implement, and evaluate a set of heuristics to identify class-like
structures, and their dependencies, in legacy JavaScript code, i.e., code implemented
in versions prior to ES6. We report on a large and in-depth study to understand how
class emulation is employed, using a dataset of 918 JavaScript applications available
on GitHub. We found evidence that structures emulating classes are present in almost
70% of the studied systems. We perform a field study with 60 developers to evaluate
the accuracy of our strategy and tool. The results indicate that our tool is able to iden-
tify class-like structures in legacy JavaScript systems. We also demonstrate how to use
a static type-checker to infer types that correspond to class references. We perform a
study with two open-source applications aiming to measure the accuracy of the pro-
posed approach to identify class-to-class dependencies. We achieve precision of 100%
in both systems, and the values of recall ranges from 80% to 86% for dependencies in
general and from 85% to 96% for associations. Moreover, we present a set of rules to
migrate class-like structures to use the new ES6 class syntax. In our study, we detail
cases that are straightforward to migrate (the good parts), cases that require manual
and ad-hoc migration (the bad parts), and cases that cannot be migrated due to lim-
itations and restrictions of ES6 (the ugly parts). Finally, we present a set of reasons
that can lead developers to postpone or reject the adoption of ES6 classes, based on
the feedback received after submitting pull requests suggesting the migration.

Keywords: JavaScript; Program comprehension; Reverse engineering.

xv

List of Figures

1.1 GitHub repositories, per language, with more than 1,000 stars
(http://gittrends.io) . 2

3.1 Syntax to detect class emulation in a subset of JavaScript language 28
3.2 JSClassFinder’s architecture . 29
3.3 Example of distribution map for system jade, generated by JSClassFinder 30
3.4 Dataset size distributions (log scales) . 35
3.5 Class diagram for algorithms.js, generated by JSClassFinder 39
3.6 Distribution of valid answers per group . 40
3.7 Metric distributions. Results in (a) and (c) are reported only for systems

with at least one class. 41
3.8 Class Density (CD) groups . 42
3.9 Subclass Density (SCD) distribution . 43
3.10 Inheritance in system progressbar.js 44
3.11 Size metrics vs Class Density (CD) . 44
3.12 Quantile functions . 46
3.13 Data-Oriented Class Ratio (DOCR) distribution 46
3.14 Overall results for precision, recall, and F-score 52

4.1 Class diagrams for a simplified enrollment system 56
4.2 Examples of associations (from class Z to class X) 57
4.3 Examples of dependencies of type “uses” 57
4.4 Overview of the evaluated approach . 58
4.5 Example of Flow’s output file . 59
4.6 Example of constructor functions Z and X bundled together in a same file . 63

5.1 Migration rules (pi is a formal parameter list and Bi is a block of statements) 74
5.2 Migration Tool . 86
5.3 Migration of constructor function with comments in algorithms.js . . . 87

xvii

5.4 Constructor declaration and constructor call in different modules 88

xviii

List of Tables

2.1 Class-based languages vs JavaScript . 13

3.1 JavaScript systems (ordered by the CD column, see description in accompa-
nying text). SCD can only be computed for systems with 2 or more classes.
DOCR can only be computed for systems with at least one class. 38

3.2 Top-10 systems with highest CD values . 42
3.3 Correlation between CD and size metrics 45
3.4 Precision, Recall, and F-Score results . 47
3.5 Intention to use ES6 classes . 53

4.1 Characteristics of the analyzed systems . 60
4.2 Precision and Recall results . 64
4.3 Classification of false negatives . 69

5.1 JavaScript systems whose classes where migrated to ES6, ordered by the
number of classes. 76

5.2 Churned metric measures . 78
5.3 Part of the CSV file exported by JSClassFinder for class TextStyle in

pixi.js. 86
5.4 Created Pull Requests. 90

xix

Contents

Acknowledgments ix

Resumo xiii

Abstract xv

List of Figures xvii

List of Tables xix

1 Introduction 1
1.1 Context . 1
1.2 JavaScript in a Nutshell . 2
1.3 Motivation and Problem . 4
1.4 Objectives and Contributions . 5
1.5 Publications . 7
1.6 Thesis Outline . 8

2 Background 9
2.1 JavaScript Overview . 9

2.1.1 Class Emulation and Prototypes 10
2.1.2 ECMAScript 6 Classes . 13
2.1.3 Script Languages on Top of JavaScript 14

2.2 Dynamic Evaluation . 15
2.3 Class Identification and Refactoring Support 16
2.4 Code Smells and JavaScript Patterns 17
2.5 Dynamic and Static Analysis . 19

2.5.1 Static Analysis for JavaScript 19
2.5.2 Dynamic Analysis for JavaScript 20

xxi

2.6 Type Inference for JavaScript . 22
2.7 Final Remarks . 24

3 Proposed Approach 27

3.1 Detecting Classes in Legacy JavaScript 27
3.1.1 Strategy to Detect Classes . 27
3.1.2 Tool Support . 29
3.1.3 Limitations . 30

3.2 Evaluation Design . 33
3.2.1 Research Questions . 33
3.2.2 Dataset . 34
3.2.3 Metrics . 34
3.2.4 Field Study Design . 37

3.3 Results . 41
3.3.1 Do developers emulate classes in legacy JavaScript applications? 41
3.3.2 Do developers emulate subclasses in legacy JavaScript applica-

tions? . 43
3.3.3 Is there a relation between the size of a JavaScript application

and the number of class-like structures? 43
3.3.4 What is the shape of the classes emulated in legacy JavaScript

code? . 45
3.3.5 How accurate is our strategy to detect classes? 47
3.3.6 Do developers intend to use the new support for classes that

comes with ECMAScript 6 ? . 52
3.4 Threats to Validity . 53
3.5 Final Remarks . 54

4 Identifying Class Dependencies 55

4.1 Motivation . 55
4.2 Using Flow to Infer Dependencies . 57
4.3 Study Design . 60

4.3.1 Dataset and Oracle . 60
4.3.2 Research Questions . 62

4.4 Results . 63
4.4.1 What is the accuracy of Flow in detecting class-to-class depen-

dencies? . 63

xxii

4.4.2 Can we improve the accuracy of Flow by expanding require

statements? . 64
4.5 Explaining the Recall Results in RQ #2 65
4.6 Discussion and Lessons Learned . 69
4.7 Threats to Validity . 70
4.8 Final Remarks . 70

5 Refactoring JavaScript Classes 73
5.1 Study Design . 73

5.1.1 Migration Rules . 74
5.1.2 Dataset . 75

5.2 Migration Results . 76
5.2.1 The Good Parts . 77
5.2.2 The Bad Parts . 77
5.2.3 The Ugly Parts . 82

5.3 Threats to Validity . 85
5.4 Tool Support . 85

5.4.1 Design and Implementation . 85
5.4.2 Evaluation . 86

5.5 Feedback from Developers . 89
5.6 Final Remarks . 91

6 Conclusion 93
6.1 Summary . 93
6.2 Contributions . 95
6.3 Future Work . 96

Bibliography 99

xxiii

Chapter 1

Introduction

In this chapter, we start by presenting the context of this thesis (Section 1.1) followed
by a brief introduction about class emulation in JavaScript (Section 1.2). Next, we state
our problem and motivation (Section 1.3). We discuss our objectives, contributions,
and an overview of a technique proposed for identifying classes in legacy JavaScript
applications in Section 1.4. Then, we present the publications derived from this thesis
(Section 1.5). Finally, we present the thesis outline (Section 1.6).

1.1 Context

JavaScript is the most popular programming language for the Web. The language was
initially designed in the mid-1990s to extend Web pages with small executable code.
Since then, its popularity and relevance have only grown [Nederlof et al., 2014, Kienle,
2010]. For example, Richards et al. [2010] report that the language is used by 97 out
of the web’s 100 most popular sites. JavaScript is also the most popular language on
GitHub, including newly created repositories. Figure 1.1 shows the number of GitHub
repositories, per language, with more than 1,000 stars, as of May 2017. In this bar
plot, we can see that JavaScript has almost three times the number of repositories
than the second language, which is Java. To mention another example, among the
top-2,500 most popular systems on GitHub, according to their number of stars, 34.2%
are implemented in JavaScript [Borges et al., 2016]. Concomitantly with its increasing
popularity, the size and complexity of JavaScript software is in steady growth. The
language is now used to implement mail clients, office applications, and IDEs, which
can easily reach hundreds of thousands of lines of code.1

1http://sohommajumder.wordpress.com/2013/06/05/gmail-has-biggest-collection-of-javascript-
code-lines-in-the-world

1

2 Chapter 1. Introduction

Figure 1.1: GitHub repositories, per language, with more than 1,000 stars
(http://gittrends.io)

One of the most interesting developments gaining popularity in the JavaScript
space is Node.js. This framework is a complete server-side JavaScript environment for
developing high-performance and concurrent programs. Node.js has become one of the
main elements of the “JavaScript everywhere” paradigm [Pereira, 2016], allowing web
application development to unify around a single programming language, rather than
relying on another language for writing the server-side of an application.

As a result of JavaScript’s increasing popularity, there is a growing demand for
solutions that assist programmers in their daily tasks, such as techniques for program
comprehension and maintenance [Madsen et al., 2015, Nguyen et al., 2014], smells
detection and localization [Fard and Mesbah, 2013, Artzi et al., 2012], refactoring
[Gama et al., 2012, Feldthaus et al., 2011a,b], and preventing security attacks [Guha
et al., 2009, Vogt et al., 2007, Yu et al., 2007].

1.2 JavaScript in a Nutshell

JavaScript is an imperative and object-based language centered on prototypes, rather
than a class-based language [Guha et al., 2010, Crockford, 2008]. However, developers
can emulate class-based abstractions, i.e., data structures including attributes, meth-
ods, class constructors, and inheritance, using the prototype-based object system of the
language, which is part of JavaScript since its first version [Flanagan, 2011]. Functions

1.2. JavaScript in a Nutshell 3

and prototypes can be used in JavaScript to support the implementation of structures
including both data and code and that are further used as a template for the creation
of objects. In this thesis, we use the term classes to refer to such structures, since they
have a similar purpose as the native classes of mainstream object-oriented languages.

Listing 1.1 shows part of the code used to implement a Linked List in the system
algorithms.js.2 This code is implemented according to version 5 of ECMAScript
(ES5), which is a scripting-language specification that defines the syntax of JavaScript
language [ECMA-International]. We can notice a function that emulates the class
constructor (lines 2-8), the initialization of attributes (lines 4-6), and functions used to
implement the list operations (lines 10-13), linked to the prototype property. In fact,
this example shows one possible implementation for a class in JavaScript; there are
other variations, e.g., using anonymous/non-anonymous functions, defining properties
inside/outside the constructor function, with/without using the prototype.

1 // function -> class
2 function LinkedList () {
3 // properties -> attributes
4 this._length = 0;
5 this.head = null;
6 this.tail = null;
7 ...
8 }
9 // functions -> methods

10 LinkedList.prototype.isEmpty = function () { ... };
11 LinkedList.prototype.add = function (n, index) { ... };
12 LinkedList.prototype.del = function (index) { ... };
13 LinkedList.prototype.forEach = function (fn) { ... };

Listing 1.1: Example of class emulated in algorithms.js

Probably motivated by the widespread use of class emulations in JavaScript, the
newer standard version of the language, named ECMAScript 6 (ES6), includes syntac-
tical support for classes [ECMA-International, 2015]. In this new language version, it is
possible to implement classes using a syntax very similar to the one provided by class-
based object-oriented languages, such as Java and C++. Listing 1.2 shows the same
example of Listing 1.1, but using the new syntax for classes. We can see the keywords
class (line 1) and constructor (line 2), and the organization of attributes (lines 4-6)
and methods (lines 10-13) in the body of class LinkedList. However, a recent study
shows that JavaScript developers are not fully aware of the changes introduced in ES6,
and very few are using the new class syntax [Hafiz et al., 2016].

2https://github.com/felipernb/algorithms.js

4 Chapter 1. Introduction

1 class LinkedList {
2 constructor () {
3 // attributes
4 this._length = 0;
5 this.head = null;
6 this.tail = null;
7 ...
8 }
9 // methods

10 isEmpty () { ... }
11 add (n, index) { ... }
12 del (index) { ... }
13 forEach (fn) { ... }
14 }

Listing 1.2: Example of class using the new syntax provided by ES6

Therefore, we currently have a large codebase of legacy JavaScript source code,
i.e., applications that do not use the syntactic support for classes that comes with ES6.
To mention an example, GitHub has currently over three million active repositories
whose main language is JavaScript.3

In this thesis, we employ the term legacy to refer to JavaScript applications im-
plemented in versions prior to ECMAScript 6.

1.3 Motivation and Problem

In this section, we highlight two challenges related to comprehension and maintenance
of legacy JavaScript applications: (i) recognition of class-like structures; and (ii) de-
tection of class-to-class dependencies in JavaScript.

Recognition of class-like structures in legacy JavaScript

Developers of mainstream object-oriented languages have the support of established
reengineering techniques and design patterns to implement and maintain classes [De-
meyer et al., 2009, Booch et al., 2004, Fowler, 2003]. On the other hand, JavaScript
developers cannot yet benefit from such techniques to reduce the complexity of the
class-like structures in their systems. Undoubtedly, maintaining a program without
support for recognizing its building blocks (modules, namespaces, classes, and reusable
patterns) is a challenging task.

3http://githut.info/

1.4. Objectives and Contributions 5

Indeed, in an empirical study presented in Chapter 3, we found evidence that
structures emulating classes are present in almost 70% of the systems in a dataset of
918 legacy JavaScript systems [Silva et al., 2017]. We highlight that identifying classes
in legacy JavaScript code is important for two major reasons. Firstly, it can support
developers to migrate their code to ES6. Secondly, it opens the possibility to implement
a variety of analysis tools for legacy JavaScript code, including IDEs with class-based
views, bad smells detection tools, reverse engineering tools, and techniques to detect
violations and deviations in class-based architectures.

Detection of class-to-class dependencies in JavaScript

Besides the identification of class-like structures, another challenge consists in detect-
ing the dependencies between such structures. These dependencies form the basis to
provide, for example, class diagrams for JavaScript applications. Accurately identi-
fying dependencies between software components is essential in software maintenance
tasks [Sangal et al., 2005a, Laval et al., 2009]. In a statically typed language (e.g.,
Java), dependencies are expressed in the type of a program structure (e.g., method
definitions, variables, class references). Dependencies are therefore explicitly declared
in the source code, in most cases. However, dynamically-typed languages, including
JavaScript, do not offer type information which significantly raises the difficulty to
extract dependencies.

In order to identify class-to-class dependencies in legacy JavaScript code, we can
rely on type inference algorithms, which are usually based on static code analysis.
Indeed, some type inferencer tools have been proposed for JavaScript [Hackett and
Guo, 2012, Anderson et al., 2005]. Oddly, no attempt has been made to evaluate the
accuracy of such tools to retrieve dependencies in legacy JavaScript programs, as far
as we know.

1.4 Objectives and Contributions

JavaScript developers frequently emulate classes to master the complexity of their
legacy systems, although the language is not class-based (at least, until recently). In
order to address the lack of proper tools and solutions to support these developers to
maintain their systems, this thesis has two major objectives:

1. to propose, implement, and evaluate a set of heuristics to identify class-based
structures, and their dependencies, in legacy JavaScript code; and

6 Chapter 1. Introduction

2. to propose, implement, and evaluate a set of rules to migrate class-like structures
from ES5 to ES6.

The contributions achieved with this thesis can be summarized as follows:

• A set of heuristics to identify classes in legacy JavaScript code. We pro-
pose, implement, and evaluate a set of heuristics to identify class-based structures
in legacy JavaScript code. Using these heuristics, which are specified in Chapter
3, we also provide a thorough study on the usage of classes in a dataset of 918
JavaScript systems available on GitHub. This study aims to answer the following
research questions: (RQ #1) “Do developers emulate classes in legacy JavaScript
applications?”, (RQ #2) “Do developers emulate subclasses in legacy JavaScript
applications?”, (RQ #3) “Is there a relation between the size of a JavaScript ap-
plication and the number of class-like structures?”, (RQ #4) “What is the number
of attributes and methods of the classes emulated in legacy JavaScript code?”.
We also report a field study with 60 JavaScript developers to validate our findings
and heuristics to detect classes.

• An open-source supporting tool, called JSClassFinder [Silva et al., 2015a],
that practitioners can use to detect and inspect classes in legacy JavaScript
code.

• An evaluation of a static type inferencer tool to detect class-to-class
dependencies in legacy JavaScript. In Chapter 4, we show how to use Flow4,
a static type-checker for JavaScript, to infer types that correspond to class refer-
ences. We perform a study with two open-source applications aiming to answer
the following research questions: (RQ #1) “What is the accuracy of Flow in de-
tecting class-to-class dependencies?”, (RQ #2) “Can we improve the accuracy of
Flow by expanding require statements?”.

• A set of rules to migrate class-like structures from ES5 to ES6. We
investigate the feasibility of rejuvenating legacy JavaScript code and, therefore, to
increase the chances of code reuse in the language. Specifically, in Chapter 5, we
propose a set of migration rules based on the way that classes are emulated in ES5.
We also describe an experiment on migrating eight real-world JavaScript systems
to the native syntax for classes provided by ES6. We first use JSClassFinder to
identify class like structures in the selected systems. Then we apply the proposed
rules to convert these classes to use the new syntax. In our study, we document:

4https://flow.org/

https://flow.org/

1.5. Publications 7

(a) cases that are straightforward to migrate (the good parts); (b) cases that
require manual and ad-hoc migration (the bad parts); and (c) cases that cannot
be migrated due to limitations and restrictions of ES6 (the ugly parts).

• An open-source supporting tool, called JSClassRefactor5, that can be
used to migrate legacy code to the new syntax for classes that comes
with ES6. This tool allows to refactor legacy code according to the proposed
migration rules and to warn developers about the cases that require manual
intervention.

• We document a set of reasons that can lead developers to postpone/re-
ject the adoption of ES6 classes. We collect the perceptions of the developers
of eight JavaScript systems about migrating their code to the new syntax for
classes.

1.5 Publications

Part of the work contained in this thesis is derived from the following publications,
presented in chronological order:

• Leonardo Humberto Silva, Marco Tulio Valente, Alexandre Bergel, Nicolas An-
quetil, Anne Etien. Identifying Classes in Legacy JavaScript Code. Journal of
Software: Evolution and Process, 2017, pages 1-37. (Chapter 3)

• Leonardo Humberto Silva, Marco Tulio Valente, Alexandre Bergel. Refactoring
Legacy JavaScript Code to Use Classes: The Good, The Bad and The Ugly. In
16th International Conference on Software Reuse (ICSR), 2017, pages 155–171.
(Chapter 5)

• Leonardo Humberto Silva, Marco Tulio Valente, Alexandre Bergel. Statically
Identifying Class Dependencies In Legacy JavaScript Systems: First Results. In
24th International Conference on Software Analysis, Evolution and Reengineering
(SANER), Early Research Track, 2017, pages 427–431. (Chapter 4)

• Leonardo Humberto Silva, Miguel Ramos, Marco Tulio Valente, Nicolas Anquetil,
Alexandre Bergel. Does Javascript Software Embrace Classes? In 22nd IEEE
International Conference on Software Analysis, Evolution, and Reengineering
(SANER), 2015, pp. 73–82. (Chapter 3)

5https://github.com/leonardo-silva/JSClassRefactor

https://github.com/leonardo-silva/JSClassRefactor

8 Chapter 1. Introduction

• Leonardo Humberto Silva, Daniel Felix, Marco Tulio Valente, Alexandre Bergel,
Nicolas Anquetil, Anne Etien. JSClassFinder: A Tool to Detect Class-like Struc-
tures in JavaScript. In 6th Brazilian Conference on Software: Theory and Prac-
tice (CBSoft Tools Track), 2015, pp. 113–120. (Chapter 3 - Section 3.1.2)

1.6 Thesis Outline

This thesis is structured in the following chapters:

• Chapter 2 describes background information on JavaScript and other scripting
languages, dynamic analysis, class identification, refactoring support, code smells,
and JavaScript patterns. We also discuss work on type inference for JavaScript.

• Chapter 3 proposes a set of heuristics to analyze class-like structures in JavaScript
systems. We provide a thorough study on the usage of classes in a dataset of 918
JavaScript systems available on GitHub. We also report a field study with 60
JavaScript developers to validate our findings and heuristics to detect classes.

• Chapter 4 describes an evaluation on the usage of Flow, a JavaScript type-checker,
to identify class-to-class dependencies in legacy applications.

• Chapter 5 investigates the challenges related to the migration of class-like struc-
tures from ES5 to the new syntax for classes provided by ES6. We propose a set
of rules to perform the migration of legacy code. We document the limitations of
these rules, i.e., a set of cases where manual adjusts are required to migrate the
code. We also document the limitations of the new syntax for classes provided
by ES6, i.e., the cases where it is not possible to migrate the code. Finally, we
present a set of reasons that can lead developers to postpone/reject the adoption
of ES6 classes.

• Chapter 6 concludes this thesis and outlines future work ideas.

Chapter 2

Background

In this chapter, we present background information related to this PhD thesis. First,
we present central concepts about the JavaScript language (Section 2.1) highlighting
the emulation of classes in JavaScript legacy code (Section 2.1.1). We discuss studies
related to dynamic evaluation (Section 2.2), class identification and refactoring support
(Section 2.3), code smells and JavaScript patterns (Section 2.4), and dynamic and static
analysis for JavaScript systems (Section 2.5), which are related to our work. Moreover,
we present a brief review on type inference for JavaScript (Section 2.6), topic that has
a central role in Chapter 4. Finally, we conclude this chapter with general remarks on
the discussed topics (Section 2.7).

2.1 JavaScript Overview

JavaScript is part of the triad of technologies used by most web developers: HTML
to specify the content of web pages, CSS to specify the presentation, and JavaScript
to specify the behavior of such pages. The language was originally created in 1995,
by Brendan Eich, and first released with Netscape 2, early in 1996. Several months
later, Netscape submitted JavaScript to ECMA International, a European standards
organization, which resulted in the first edition of the ECMAScript standard. The
standard received a significant update as ECMAScript edition 3 in 1999. The fourth
edition was abandoned, due to political differences concerning language complexity.
Many parts of the fourth edition formed the basis for ECMAScript edition 5, published
in December of 2009, and for the 6th edition, published in June of 2015 [ECMA-
International, 2015].

JavaScript is a loosely-typed dynamic programming language where everything is
an object. Each object contains a set of properties that represent data (other objects)

9

10 Chapter 2. Background

and operations (function objects). These properties are always public. JavaScript is
prototype-based with first-class functions, making it a multi-paradigm language, sup-
porting object-oriented, imperative, and functional programming styles. The language
has a class-free object system in which objects inherit properties directly from other
objects [Stefanov, 2010]. In other words, JavaScript does not have native support for
classes.

JavaScript typically relies on a runtime environment (e.g., a Web browser) to
provide objects and methods by which scripts can interact with, providing behavior
to HTML pages. This is the most commonly used mechanism to provide dynamic
interaction in web applications, as well as asynchronous interactions with the server
[Powell, 2008]. Client-side JavaScript code can usually be embedded within HTML
documents in four different ways:

• Inline, between a pair of < script > and < /script > tags;

• From an external file specified by the src attribute of a < script > tag;

• In an HTML event handler attribute, such as onclick or onmouseover;

• In a URL that uses the special javascript protocol.

The subsections that follow explain in more details the different styles for class
emulation in JavaScript (Section 2.1.1), the new syntax from class emulation that
comes with ECMAScript 6 (Section 2.1.2), and scripting languages that work on top
of JavaScript (Section 2.1.3) .

2.1.1 Class Emulation and Prototypes

This section describes different mechanisms to emulate classes in legacy JavaScript
code. To identify these mechanisms we conducted an informal survey on documents
available on the web, including tutorials1, blogs2, and StackOverflow discussions3. We
surveyed a catalogue of five encapsulation styles for JavaScript proposed by Gama
et al. [2012] and JavaScript books targeting language practitioners [Crockford, 2008,
Flanagan, 2011]. We also surveyed the developer of a real JavaScript project to tune
our tool and strategy. The application select24 was used for this purpose.

1https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_
Object-Oriented_JavaScript

2http://javascript.crockford.com/prototypal.html
3http://stackoverflow.com/questions/387707/whats-the-best-way-to-define-a-class-

in-javascript
4https://select2.github.io/

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_ Object-Oriented_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_ Object-Oriented_JavaScript
http://javascript.crockford.com/prototypal.html
http://stackoverflow.com/questions/387707/whats-the-best-way-to-define-a-class-
in-javascript
https://select2.github.io/

2.1. JavaScript Overview 11

Basically, an object in JavaScript is a set of name-value pairs. Methods and
variables are called properties and their values can be any objects, including immediate
values (e.g., numbers, boolean) and functions. To implement classes in JavaScript,
i.e., data structures that resemble the class concept of mainstream object-oriented
languages, the most common strategy is to use functions. Particularly, any function
can be used as template for the creation of objects. When a function is used as a class
constructor, its this is bound to the new object being constructed. Variables linked to
this are used to define properties that emulate attributes and methods. If a property
is an inner function, then it represents a method, otherwise, it is an attribute. The
commands new and Object.create() are used to instantiate classes.

To illustrate the definition of classes in JavaScript, we use a simple Circle class.
Listing 2.1 presents the function that defines this class (lines 1-8), which includes two
attributes (radius and color) and two methods (getArea and setColor). Functions
used to define methods can be implemented directly inside the body of the class con-
structor, like method getArea (lines 4-6), or outside, like method setColor (lines
9-11). An instance of the class Circle is created with the command new (line 13).

1 function Circle (radius , color) { // function -> class
2 this.radius = radius; // property -> attribute
3 this.color = color; // property -> attribute
4 this.getArea = function () { // function -> method
5 return (3.14 * this.radius * this.radius);
6 }
7 this.setColor= setColor; // function -> method
8 }
9 function setColor(c) { // function

10 this.color = c; // property -> attribute
11 }
12 // Circle instance -> object
13 var myCircle = new Circle (10, 0x0000FF);

Listing 2.1: Class declaration and object instantiation

In prototype-based languages, objects inherit their properties and methods from
their prototypes. New objects are produced by copying and modifying prototypes,
rather than by instantiating classes. Therefore, a prototype can be seen as a standard
model instance [Borning, 1986]. In JavaScript, each object has an implicit prototype
property that refers to another object (all objects in JavaScript initially descend from
a base class called Object). To evaluate an expression like obj.p, in JavaScript,
the runtime starts searching for property p in obj, then in obj.prototype, then in
obj.prototype.prototype, and so on until it finds the desired property or fails in its
search. When an object is created using new C, for example, its prototype is set to

12 Chapter 2. Background

the prototype of the function C, which by default is defined as pointing to Object.
Therefore, a chain of prototype links usually ends at Object.

By manipulating the prototype property of a function, we can define a method
whose implementation is shared by all object instances of that function. It is also
possible to define attributes shared by all objects of a given class, akin to static at-
tributes in class-based languages. In Listing 2.2, Circle includes a pi static attribute
and a getCircumference method. It is worth noting that getCircumference is not a
method attached to the class (as a static method in Java). It has for example access
to the variable this, whose value is not determined using lexical scoping rules, but
instead using the caller object.

1 // prototype property -> static attribute
2 Circle.prototype.pi = 3.14;
3 // function -> method
4 Circle.prototype.getCircumference= function () {
5 return (2 * this.pi * this.radius);
6 }

Listing 2.2: Using prototype to define methods and static attributes

Prototypes can also be used to build inheritance hierarchies [Ungar and Smith,
1987, Borning, 1986]. In JavaScript, we can consider that a class C2 is a subclass of C1 if
C2’s prototype refers to C1’s prototype or to an instance of C1. For example, Listing 2.3
shows a class Circle2D that extends Circle with its position in a Cartesian plane.

1 function Circle2D (x, y) { // class Circle2D
2 this.x = x;
3 this.y = y;
4 }
5 // Circle2D is a subclass of Circle
6 Circle2D.prototype = new Circle (10, 0x0000FF);
7 // Circle2D extends Circle with new methods
8 Circle2D.prototype.getX = function () {
9 return (this.x);

10 }
11 Circle2D.prototype.getY = function () {
12 return (this.y);
13 }

Listing 2.3: Implementing subclasses

Alternatively, the subclass may refer directly to the prototype of the superclass,
which is possible using the Object.create()method. This method creates a new object
with the specified prototype object, as illustrated by the following code:

1 Circle2D.prototype = Object.create(Circle.prototype)

2.1. JavaScript Overview 13

Table 2.1 summarizes the mechanisms presented in this section to map class-based
object-oriented abstractions to JavaScript abstractions.

Table 2.1: Class-based languages vs JavaScript

Class-based languages JavaScript

Class Function
Attribute Property
Method Inner function
Static attribute Prototype property
Inheritance Prototype chaining

2.1.2 ECMAScript 6 Classes

ECMAScript 6 (ES6), released in 2015, includes, among other features, a syntactical
support to classes.5 For example, ES6 supports the following class definition:

1 class Circle {
2 constructor (radius) {
3 this.radius = radius;
4 }
5 getArea () {
6 return (3.14 * this.radius * this.radius);
7 }
8 }

However, this support to classes does not impact the semantics of the language,
which remains prototype-based. For example, the previous class is equivalent to the
following code:

1 function Circle (radius) {
2 this.radius = radius;
3 }
4 Circle.prototype.getArea = function () {
5 return (3.14 * this.radius * this.radius);
6 }

As we can see in the prior example, the new syntax for classes does not bring
any new features to the language, it represents a “sugar” over the existing standard. In
other words, we can accomplish the same results emulating classes using ECMAScript

5https://developer.mozilla.org/en/docs/Web/JavaScript/New_in_JavaScript/
ECMAScript_6_support_in_Mozilla

https://developer.mozilla.org/en/docs/Web/JavaScript/New_in_JavaScript/ECMAScript_6_support_in_Mozilla
https://developer.mozilla.org/en/docs/Web/JavaScript/New_in_JavaScript/ECMAScript_6_support_in_Mozilla

14 Chapter 2. Background

version 5. However, it is possible that exposing classes according to the ES6 standard
may encourage developers that have background in other class-based languages, such
as Java and Smalltalk, to implement JavaScript systems.

2.1.3 Script Languages on Top of JavaScript

CoffeeScript is a language that compiles one-to-one into JavaScript code and aims to
expose the “good parts of JavaScript” by only simplifying the language’s syntax [Bates,
2012, MacCaw, 2012]. The creators of CoffeeScript state that it is better to write code
in CoffeScript than writing pure JavaScript simply because there is less code to write.
Listing 2.4 shows examples of snippets of code in CoffeScript compiled to JavaScript
output. The last snippet presented is related to the emulation of classes.

1 # Assignment: | var number , opposite , square , Animal;
2 number = 12 | number = 12;
3 opposite = true | opposite = true;
4 |
5 # Conditions: | if (opposite) {
6 number = -12 if opposite | number = -12;
7 | }
8 # Functions: |
9 square = (x) -> x * x | square = function(x) {

10 | return x * x;
11 # Classes: | };
12 class Animal |
13 constructor: (name) -> | Animal = (function () {
14 @name = name | function Animal(name) {
15 | this.name = name;
16 | }
17 | return Animal;
18 | })();

Listing 2.4: CoffeeScript on the left compiled to JavaScript on the right

TypeScript6 is another language that compiles to plain JavaScript. While ev-
ery JavaScript program is a TypeScript program, TypeScript offers a module system,
classes, interfaces and a gradual type system. The support for classes is aligned with
proposals currently standardized for ECMAScript 6. Listing 2.5 shows an example of
a class Point implemented in TypeScript (lines 1-11) and its instantiation (line 12).
In this example, the attributes x and y are typed.

6www.typescriptlang.org/

www.typescriptlang.org/

2.2. Dynamic Evaluation 15

1 class Point {
2 x: number;
3 y: number;
4 constructor(x: number , y: number) {
5 this.x = x;
6 this.y = y;
7 }
8 getDist () {
9 return Math.sqrt(this.x * this.x + this.y * this.y);

10 }
11 }
12 var p = new Point (3,4);

Listing 2.5: Class emulation using TypeScript syntax

2.2 Dynamic Evaluation

In order to dynamically evaluate JavaScript code, the language provides the eval

function to turn text into executable code at runtime [Flanagan, 2011, Crockford,
2008]. It parses a string argument as source code and immediately executes it. When
invoked, eval executes with the privileges of the caller and returns the result of the
last evaluated expression, or propagates any thrown exception. The eval function may
be invoked directly, with the evaluated code having access to the variables lexically in
scope, or indirectly, through an alias, with the evaluated code executing in the global
scope. The use of eval has been discouraged7, mainly because: (i) one may explore
it to execute malicious code; (ii) it is generally slower than the alternatives because it
cannot be previously optimized. Its use also makes more difficult any approach that
uses static analysis because the code it executes is only known at runtime.

Richards et al. [2010] investigated a broad range of JavaScript dynamic features,
not restricted to the use of eval. The goal was to characterize JavaScript program
behavior by analyzing execution traces recorded from a corpus of real-world programs.
To obtain those traces they instrumented and interacted with 103 web sites. The
execution traces were then analyzed to produce behavioral data about the programs.
In addition to web sites, they also analyzed three benchmark suites. They relied on
traditional program metrics as well as metrics that are more indicative of the degree
of dynamism exhibited by JavaScript programs. The authors concluded that libraries
often change the prototype links dynamically, but such changes are restricted to built-

7https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_
Objects/eval

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval

16 Chapter 2. Background

in types, like Object and Array, and changes in user-created types are more rare. The
authors also reported that most JavaScript programs do not delete attributes from
objects dynamically.

The authors also conducted a large-scale study on the use of eval in JavaScript
based on a corpus of more than 10,000 popular web sites [Richards et al., 2011]. The
goal was to quantify the use of eval in web applications. For all web page executions,
they obtained behavioral data with the aid of an instrumented JavaScript interpreter.
In addition to page-load program executions, they used a random testing approach to
automatically generate user input events to explore the state space of web applications.
They also interacted manually with approximately 100 web sites to generate meaningful
interactions. The authors concluded that eval is popular and not necessarily harmful,
although its use can be replaced with equivalent and safer code or language extensions
in most usage scenarios. Moreover, it is usually considered a good practice to use eval
when loading scripts or data asynchronously.

2.3 Class Identification and Refactoring Support

Gama et al. [2012] proposed an automated approach to refactor JavaScript code to
a single object-oriented style. After surveying JavaScript books, web tutorials and a
set of 40 JavaScript applications (sizes ranging from 800 to 85,000 lines of code), the
authors identified five styles for implementing methods in JavaScript: inside/outside
constructor functions; using anonymous/non-anonymous functions; and using proto-
types. The authors also reported examples of applications that use built-in functions
and extensions to provide customized styles for class emulation. They claim that mix-
ing styles in the same code may hinder program comprehension and make maintenance
more difficult. Based on that, they proposed to modify the source code of a given
application transforming all occurrences of the five styles they identified in one single
style, the one using prototypes.8 Their transformation process can be divided in two
main steps:

1. Search for classes and tag them with the current implementation style. To distin-
guish classes from simple functions, the authors check if there is an object that
is instantiated from that class using the keyword new.

2. Look for instances of each implementation style markup and transform the meth-
ods to prototype style.

8An example of the style for class implementation using prototypes can be seen in Listing 2.3

2.4. Code Smells and JavaScript Patterns 17

Although the authors identify different styles for method implementation, their
approach does not address the problem of identifying classes in legacy JavaScript code.
Instead, their purpose is to standardize a single programming style (i.e., a normal form)
for defining methods.

Feldthaus et al. [2011a,b] describe a methodology for implementing automated
refactorings on a nearly complete subset of the JavaScript language (ECMAScript 5).
The authors specified and implemented three refactorings: rename property, extract
module, and encapsulate property. Rename property is similar to the refactoring rename
field for typed languages. The main difference is that while fields in Java, for example,
are statically declared within class definitions, properties in JavaScript are associated
with dynamically created objects and are themselves dynamically created after first
write. Besides, JavaScript has the ability to dynamically delete properties, change the
prototype hierarchy, or reference a property by specifying its name as a dynamically
computed string. The goal of the refactoring extract module is to use anonymous
functions to make global functions become local. These anonymous functions will then
return object literals with properties through which the previous global functions can be
invoked. This allows the use of global variables representing modules that encapsulate
a group of related functions. Finally, the encapsulate property refactoring can be used
to encapsulate state by making a field private and redirecting access to that field via
introduced getter and setter methods. It targets constructor functions that emulate
classes in JavaScript. To determine if a function is used as a constructor, they look for
functions that initialize an object when invoked, like those that are invoked with the
commands new or Object.create().

2.4 Code Smells and JavaScript Patterns

A code smell is an indication that usually corresponds to a deeper problem in a sys-
tem. The term was first coined by Kent Beck and Martin Fowler in their book about
refactoring [Fowler and Beck, 1999].

Fard and Mesbah [2013] proposed a set of 13 JavaScript code smells, including
seven generic smells (e.g., long functions and dead code) and six smells specific to
JavaScript (e.g., creating closures in loops and accessing this in closures). They de-
scribed a tool, called JSNose, for detecting code smells based on a combination of static
and dynamic analysis. They also investigated 11 web applications to find out which
smells are more prevalent. At a high level, their approach intercepts the JavaScript code
of a given web application by setting up a proxy between the server and the browser,

18 Chapter 2. Background

and parses the source code (.js and HTML files) into an Abstract Syntax Tree (AST).
They analyze the AST by visiting all program entities, objects, properties, functions,
and code blocks, and store their structure and relations. They extract patterns from the
AST such as names of objects and functions, and infer JavaScript objects, their types,
and properties by querying the browser at runtime. Finally, based on the static and
dynamic data collected, they calculate the necessary metrics for code smells detection.
Among the smells detected by their tool, lazy object, long method/function, closure
smells, coupling between JavaScript, HTML, and CSS, and excessive global variables,
are the most prevalent ones. Further, they report a strong positive correlation between
the types of smells and lines of code, number of functions, number of JavaScript files,
and cyclomatic complexity. However, among the proposed patterns for code smells,
only Refused Bequest is directly related to class-emulation in JavaScript. In fact, this
smell was originally proposed to class-based languages [Fowler and Beck, 1999, Lanza
and Marinescu, 2006], to refer to subclasses that use only some of the methods and
properties inherited from their parents.

Nguyen et al. [2014] presented an approach to mine JavaScript usage patterns in
web applications where JavaScript usages involve unnamed data objects whose types
are not statically revealed. Usage patterns are particularly useful for documentation,
code smell and anomaly detection, defect and vulnerability detection, source code
search and code completion features. The authors introduced JSModel, a graph rep-
resentation for JavaScript code, and JSMiner, a tool that mines inter-procedural and
data-oriented JavaScript usage patterns. Their experiments also showed JSModel’s
usefulness in detecting buggy patterns and documenting JS APIs.

Nicolay et al. [2015] presented an abstract machine for a core JavaScript-like
language that tracks write side-effects in JavaScript functions to detect their purity.
Anything a function does, besides producing a value, is called a side-effect. A function
is considered pure only if it does not generate observable side-effects. The authors
point out that purity aids program understanding, specification, testing, debugging,
and maintenance. The proposed abstract machine generates appropriate write effects
caused by writing to variables and object properties. Starting from an initial evalu-
ation state, all possible successor states are explored resulting in a flow graph. They
implemented a purity analysis for a subset of JavaScript, and experimented with it on
common JavaScript benchmarks.

2.5. Dynamic and Static Analysis 19

2.5 Dynamic and Static Analysis

Dynamic analysis contrasts static analysis approaches, where a program’s text (source
code) is examined to derive properties that hold for all executions. One advantage of
static analysis is that it is not necessary to execute a program to analyze it. Without
program execution, it is not necessary to set a specific environment, initialize software
parameters, install external dependencies, nor exercise different test cases in order to
have a coverage of as many features as possible. On the other hand, dynamic analysis
has the potential to discover dependencies between program entities widely separated
in the execution path, which can be tricky to find statically. Considering JavaScript,
for example, some characteristics make static analysis challenging: (i) the dynamic
nature of the language; (ii) the absence of types; (iii) the existence of functions such
as eval and delete, that can change program’s structure and behavior dynamically.

Despite the differences, dynamic and static techniques can complement each other
in order to improve completeness and precision of software analysis. If the results of
dynamic and static analyses disagree, usually there are two possibilities: (i) the dy-
namic analysis is wrong because it did not cover a sufficient number of execution paths;
(ii) the static analysis is wrong because it analyzed unfeasible paths (paths that can
never be reached during execution). Dynamic analysis, by definition, considers fewer
execution paths than static analysis [Ball, 1999]. There are different approaches that
combine dynamic and static analyses to master their specific problems. As examples,
we can mention Odgaard [2014] for type inference, Fard and Mesbah [2013] for code
smells detection, and Alimadadi et al. [2015] to capture event-based interactions. The
next subsections present in more details static and dynamic approaches to analyze
JavaScript programs.

2.5.1 Static Analysis for JavaScript

Feldthaus et al. [2013] presented a flow analysis specifically designed to compute ap-
proximate call graphs for JavaScript programs. The authors proposed two variants of
a field-based flow analysis for JavaScript that only tracks function objects and ignores
dynamic property reads and writes. The first variant is a standard optimistic analysis
that starts out with an empty call graph, which is gradually extended as new flows
are discovered. The second is a pessimistic analysis that does not reason about inter-
procedural flow and ignore call targets that may depend on such flow, except in cases
where the callee can be determined purely locally. The authors argument that these
design decisions improve scalability and do not hamper precision. They implemented

20 Chapter 2. Background

both techniques and performed an empirical evaluation on ten large web applications
to show the feasibility of using their analyses in an IDE for JavaScript.

Gallaba et al. [2015] performed an empirical study to characterize JavaScript
callback usage across a corpus of 138 JavaScript programs. They found that, on aver-
age, every 10th function definition takes a callback argument, and that over 43% of all
callback-accepting function callsites are anonymous. Furthermore, the majority of call-
backs are nested, more than half of all callbacks are asynchronous, and asynchronous
callbacks, on average, appear more frequently in client-side code than server-side.

Ocariza et al. [2015] proposed an approach to detect inconsistencies in web appli-
cations that use MVC frameworks. Such frameworks are meant to simplify JavaScript
development creating abstractions for DOM method calls. This is accomplished by giv-
ing programmers the ability to define model objects, which are then directly embedded
in the HTML code. The frameworks thus eliminate the need for web programmers
to explicitly set up DOM interactions in JavaScript. However, MVC frameworks are
susceptible to inconsistencies between the identifiers and types of variables and func-
tions used throughout the application. To tackle this problem, the authors suggested
the use of static analysis to look for identifiers in the three main components (model,
view, and controller) and then compare the collected identifiers to the inferred type
information to determine any inconsistencies.

2.5.2 Dynamic Analysis for JavaScript

Zaidman et al. [2013] presented a tool, called FireDetective, to record execution traces
of the JavaScript code that is executed in the browser (client) and also in the server.
The level of detail used is the call level: the tool records the names of all functions
and methods that were called, and in what order they were called, allowing the recon-
struction of a call tree representation of each trace. The tool also records information
about abstractions that are specific to the Ajax/web-domain, such as Ajax requests,
DOM events, and time-outs. JavaScript function calls and Java calls (server-side) are
recorded using Firefox’ debugger interface and the Java VM tool interface, respectively.
This has the advantage that no code needs to be instrumented, and that the approach
also works for JavaScript code dynamically generated. The authors also carried out a
field study with two Ajax developers that gave additional insight about how they use
FireDetective for understanding complex web applications.

Alimadadi et al. [2014] presented a tool, called Clematis, for supporting soft-
ware comprehension in web applications. This tool captures a detailed trace of a
web application’s behaviour during a particular user session through a combination

2.5. Dynamic and Static Analysis 21

of automated JavaScript code instrumentation and transformation. Afterwards, their
approach transforms the trace into an abstract behavioural model, including relations
within and between involved components. This model is then transformed into an in-
teractive visualization, representing episodes of triggered causal and temporal events,
related JavaScript code executions, and their impact on the dynamic DOM state. The
model is then presented to the developers as an interactive visualization that depicts the
creation and flow of triggered events, the corresponding executed JavaScript functions,
and the mutated DOM nodes, within each episode.

Alimadadi et al. [2015] conducted an exploratory study to investigate the role
of JavaScript’s DOM-related event-based and dynamic features in code change prop-
agation. For this study, they selected ten web applications that make extensive use
of JavaScript on the client-side. For each DOM access that occurred during the ex-
ecution, they collected the accessed entity, the JavaScript function that accesses the
DOM, and the access type. Each application was manually exercised in different sce-
narios and the results showed that, on average, 42% of the accessed DOM elements are
part of an impact path between two functions. An impact path of an entity (P(e)) is a
directed acyclic path starting from entity e, where the nodes on the path are entities
in the system and the edges are the directed impact relations that connect those enti-
ties. Moreover, about 14% of the executed event handlers are invoked through event
propagation mechanisms. Giving the importance of DOM elements in transferring the
impact of changes, the authors proposed a technique, called Tochal, that builds a hybrid
system dependency graph by inferring and combing static and dynamic call graphs.
Their technique ranks the detected impact set based on the relative importance of the
entities in this hybrid graph.

Andreasen et al. [2017] provided a survey of dynamic analysis and test generation
techniques for JavaScript. They summarized and compared existing approaches in a
structured way, in order to provide an overview of this field. They concluded that
the current state of the art successfully addresses the most common software goals,
i.e., correctness, reliability, security, privacy, and performance. However, they pointed
some important research challenges that still need to be addressed. These include
better support for code refactoring and program repair, analyses targeted at emerging
execution platforms and usage scenarios for JavaScript, and the combination of test
generation and dynamic analysis. They also suggested the development of analysis
tools that are easily usable by regular developers.

22 Chapter 2. Background

2.6 Type Inference for JavaScript

A type can be considered a collection of program entities that share some common
properties. An important advantage of type information is that types may be checked
by the programming language interpreter or compiler. In general, we refer to the pro-
cess of reasoning about unknown types as type inference. A type inference mechanism
analyzes a program to infer the types of some or all of its expressions. Commonly,
a type checker verifies if all the types are properly defined and used according to the
semantics of the programming language. Statically typed languages, such as Java and
C++, do type checking at compile-time, demanding the developers to explicitly write
the types in the source code. Dynamically typed programming languages, such as
JavaScript and Lisp, can only check types at runtime, leaving the source code cleaner
and more flexible, without explicit type information. This “cleanliness” may please
the developers but it also makes programming tasks more error-prone. Some bugs
that could have been prevented at compile-time are just revealed during program’s
execution [Palsberg and Schwartzbach, 1991].

Flow9 is a static type checker for JavaScript designed by Facebook. Flow employs
a control-flow analysis that compilers typically perform to extract semantic information
from code, and then uses this information for type inference. When Flow detects any
incompatibilities during type checking it reports the errors found to the developer.
Listing 2.6 is one example of code in which Flow can detect incompatible types involving
a mathematical expression (line 3) and the type passed as argument of the function call
(line 5). The comment in line 1, with the tag @flow, is manually included to inform
the type checker that this file must be verified. It allows developers to check their
JavaScript files gradually if wanted, instead of the whole system at once. Listing 2.7
shows the result of applying Flow to the code in Listing 2.6. As we can see, Flow
indicates a type error in line 3 (a string is used as an operand in a multiplication).

1 /* @flow */
2 function foo(x) { // this function expects a number as argument
3 return x * 10;
4 }
5 foo(’Hello , Flow!’);

Listing 2.6: Example of incompatible types detected by Flow

9http://flowtype.org/

http://flowtype.org/

2.6. Type Inference for JavaScript 23

1 foo.js:5
2 5: foo(’Hello , Flow!’);
3 ^^^^^^^^^^^^^^^^^^^ function call
4 3: return x * 10;
5 ^ string. This type is incompatible with
6 3: return x * 10;
7 ^^^^^^ number

Listing 2.7: Warning messages from Flow for the code in Listing 2.6

Developers can use type annotations to better document their systems and also
to help Flow during type checking, although this is not usually necessary. Flow only
requires annotations at the boundaries of modules, i.e., when a function declaration
and its respective call are in separated modules (files). Type annotations are generally
prefixed by “:”, and they can be placed on function parameters, function return types
and variable declarations. Listing 2.8 is an example of function with annotations in the
source code. They explicitly indicate that function size expects a string and returns
a number. In order to execute the code, Flow provides a feature to convert it back to
pure JavaScript.

1 /* @flow */
2 function size(input: string): number {
3 return input.length;
4 }

Listing 2.8: Example of function with type annotations

Anderson et al. [2005] developed a formalism for a subset of the JavaScript lan-
guage, called JS_0, that includes dynamic addition/modification of fields and methods,
and the creation of objects using the operator new. They demonstrate how type infer-
ence for JS_0 can be expressed as a finite system of constraints between type variables.
Type variables are used to represent the type of an expression. Constraints represent
the expected relationships between types in the program. If the combined constraints
have a solution, it can be used to translate a JS_0 program into an equivalent typed
version of the language. This involves annotating the JS_0 program with type decla-
rations.

Odgaard [2014] proposed a JavaScript type inference and annotation system
mechanism. His approach uses dynamic analysis based on test cases to automatically
generate type annotations for JavaScript programs. The process uses a combination
of static and dynamic code instrumentation, and requires two inputs: (i) an AST with
the assignment of unique identifiers to each global variable declaration, function dec-
laration, function expression, and object instantiation; (ii) the original source code

24 Chapter 2. Background

instrumented by inserting function calls that write tracing information to a log file
during execution. A scope map object is generated to map the identifiers assigned to
information about the AST nodes with data extracted from execution traces. Types
are inferred and the annotations are generated according to these information. The
used type annotations follow the specifications of JSDoc10, which is a markup lan-
guage used to document JavaScript source code (similar to the JavaDoc format used
for documenting Java code).

Milojković and Nierstrasz [2016] proposed two heuristics to statically infer types of
variables in dynamically typed languages. While the aim of the existing type inference
algorithms is to narrow down the list of classes that represent possible types bound to a
variable at runtime, the authors proposed to order the list of possible types of a variable
according to how frequently those classes occur in the source code. They hypothesize
that class usage frequency serves as a reliable proxy for the likelihood that a variable
belongs to that class at runtime. In order to determine the classes more frequently
used throughout the source code, the authors implemented and evaluated two possible
heuristics: (i) name occurrence heuristic; and (ii) class instantiation heuristic. The
first heuristic is based on the calculation of the occurrences of class names throughout
the source code. The second focus on the places in source code where a class name is
used to instantiate a new object. Their heuristics produced results comparable with
the existing type inference algorithms.

2.7 Final Remarks

In this chapter, we provided background information to better understand the state of
the art related to this PhD thesis. Firstly, we presented an overview of the JavaScript
language (Section 2.1), the concepts related to the different styles for class emulation
in JavaScript (Subsection 2.1.1), the new syntax for class emulation that comes with
ECMAScript 6 (Subsection 2.1.2), and a brief introduction on scripting languages that
work on top of JavaScript (Subsection 2.1.3).

In Section 2.2, we showed that the behavior of a program can be modified dy-
namically, especially using the eval operator.

In Section 2.3 we presented existing techniques for code transformation (refac-
toring) in JavaScript. Some of these techniques rely on the identification of class-like
structures to implement the proposed refactorings.

10http://usejsdoc.org/

http://usejsdoc.org/

2.7. Final Remarks 25

In Section 2.4, we investigated approaches that aim to detect code smells, source
code patterns and anti-patterns in JavaScript systems. We recognized one smell (Re-
fused Bequest) related to the emulation of classes in JavaScript.

In Section 2.5, we showed related work that rely on program analysis for
JavaScript. We also presented some pros and cons of dynamic analysis in compari-
son with static analysis.

Finally, in Section 2.6, we discussed type inference techniques for JavaScript
systems. Since we analyze the use of class-like structures in legacy JavaScript systems,
we feel these are important concepts to discuss in this chapter.

Chapter 3

Proposed Approach

In this chapter, we shed light on the use of class-like structures in legacy JavaScript
systems. We formalize our strategy to detect classes in Section 3.1. We describe the
design of the studies performed to evaluate our strategy in Section 3.2, and then we
present the results in Section 3.3. Threats to validity are exposed in Section 3.4. We
conclude this chapter by summarizing our findings in Section 3.5.

3.1 Detecting Classes in Legacy JavaScript

In this section, we describe our strategy to statically detect classes in legacy JavaScript
source code (Subsection 3.1.1). Subsection 3.1.2 describes the tool we implemented for
this purpose. We also report limitations of this strategy, mainly due to the dynamic
nature of JavaScript (Subsection 3.1.3).

3.1.1 Strategy to Detect Classes

We define our heuristics for a subset of JavaScript which includes the key elements of
the language related to class emulation. The use of a language subset for studying a
particular aspect of JavaScript is also adopted by other works. For example, Anderson
et al. [2005] rely on a language subset when proposing a type inference algorithm for
JavaScript. The subset of JavaScript we describe in the following grammar (Figure
3.1) assumes that a program is composed of functions and prototype declarations. The
expressions of interest are the ones that create objects and add properties to functions
via this or prototype. For the sake of clarity, we removed from our subset the
JavaScript features that are not related to class emulation, such as variable declarations
and assignments, function invocations, return statements, etc.

27

28 Chapter 3. Proposed Approach

Program ::= (FuncDecl | ProtoAssign)∗
FunDecl ::= function Identifier() { (Exp | ProtoAssign)∗}
Exp ::= new Identifier(); |

Object.create(Identifier.prototype); |
this.Identifier = Exp; |
this.Identifier = function { Exp }

ProtoAssign ::= Identifier.prototype.Identifier = Exp; |
Identifier.prototype.Identifier = function { Exp } |
Identifier.prototype = new Identifier(); |
Identifier.prototype = Object.create(Identifier.prototype);

Figure 3.1: Syntax to detect class emulation in a subset of JavaScript language

Definition #1: A class is a tuple (C,A,M), where C is the class name, A =

{a1, a2, . . . , ap} are the attributes defined by the class, and M = {m1,m2, . . . ,mq}
are the methods. Moreover, a class (C,A,M), defined in a JavaScript program P ,
must respect the following conditions:

• P must have a function with name C.

• For each attribute a ∈ A, the class constructor or one of its methods must include
an assignment this.a = Exp or P must include an assignment C.prototype.a =

Exp.

• For each method m ∈ M, function C must include an assign-
ment this.m = function {Exp} or P must include an assignment
C.prototype.m = function {Exp}.

However, when functions matching Definition #1 are implemented in the same
lexical scope, as functions Circle and setColor in Listing 2.1, we must distinguish
those that are class constructors from those that are methods. To achieve that, we do
not consider as a class constructor a function that: (i) has no inner functions bound
to this, (ii) does not participate in inheritance relationships defined using prototypes,
and (iii) is never instantiated with neither new nor Object.create. In Listing 2.1,
function setColor does not have inner functions bound to this nor inheritance
relationships and it is never instantiated. Therefore, it is not considered a constructor
function, but a method.

3.1. Detecting Classes in Legacy JavaScript 29

Definition #2: Assuming that (C1,A1,M1) and (C2,A2,M2) are classes in a program
P , we define that C2 is a subclass of C1 if one of the following conditions holds:

• P includes an assignment C2.prototype = new C1().

• P includes an assignment C2.prototype = Object.create(C1.prototype).

In the examples of Section 2.1.1, Circle2D is a subclass of Circle.

3.1.2 Tool Support

We implemented a tool, called JSClassFinder [Silva et al., 2015a], for identifying
classes in legacy JavaScript programs. As illustrated in Figure 3.2, this tool works in
two steps. In the first step, Esprima1—a widely used JavaScript Parser—is used to
generate a full abstract syntax tree (AST), in JSON2 format. In the second step, the
“Class Detector” module is responsible for identifying classes in the JavaScript AST
and producing an object-oriented model of the source code.

Figure 3.2: JSClassFinder’s architecture

The models generated by JSClassFinder are integrated with Moose3, which
is a platform for software and data analysis [Nierstrasz et al., 2005]. This platform
provides visualizations to interact with the tool and to “navigate” the application’s
model. All information about classes, methods, attributes, and inheritance relation-
ships is available. Users can interact with a Moose model to access all visualization
features and metric values. This model also allows the use of drill-down and drill-up
operations when an entity is selected. The visualization options include UML class
diagrams [Jacobson et al., 1999], distribution maps [Ducasse et al., 2006], and tree
views.

It is possible for a user to customize the diagrams and to choose which elements
to expose. For example, Figure 3.3 shows a distribution map for the system jade4,
which is a template engine for Node.js. In this visualization, classes are represented
by external rectangles, the small internal squares are methods, and the links between

1http://esprima.org
2http://www.json.org/
3http://www.moosetechnology.org/
4http://jade-lang.com/

http://esprima.org
http://www.json.org/
http://www.moosetechnology.org/
http://jade-lang.com/

30 Chapter 3. Proposed Approach

classes represent inheritance relationships. It is also possible to show a similar diagram
where the external squares are JavaScript files and the internal squares are classes.

Figure 3.3: Example of distribution map for system jade, generated by JSClassFinder

JSClassFinder also collects the following metrics: Number of Attributes
(NOA), Number of Methods (NOM), Depth of Inheritance Tree (DIT), and Number
of Children (NOC) [Chidamber and Kemerer, 1994].

JSClassFinder is implemented in Pharo5, which is a complete Smalltalk envi-
ronment for developing and executing object-oriented code. Pharo also offers strong
live programming features such as immediate object manipulation, live update, and
hot recompilation. Moreover, we chose to implement our tool using Pharo because of
the possibility to integrate it with the Moose platform.

3.1.3 Limitations

We acknowledge that there is not a single strategy to emulate classes in JavaScript. For
example, it is possible to create “singleton” objects directly, without using any class-
like constructions, as in Listing 3.1. Even though, we do not consider such objects as
classes. Instead, we chose to follow the definition presented in Booch et al. [2004], in
which the authors state that classes and objects are tightly interwoven, but there are
important differences between them (“a class is a set of objects that share a common
structure, common behavior, and common semantics”, “a single object is simply an
instance of a class”, page 93).

5http://pharo.org/

http://pharo.org/

3.1. Detecting Classes in Legacy JavaScript 31

1 var myCircle = {
2 radius: 10,
3 pi: 3.14,
4 getArea: function () { ... }
5 }

Listing 3.1: Example of “singleton” object

In addition, there are various JavaScript frameworks, like Prototype6 and
ClazzJS7, that support their own style for implementing class-like abstractions. For
this reason, we do not struggle to cover the whole spectrum of alternatives to implement
classes. Instead, we consider only the strategy closest to the syntax and semantics of
class-based languages and that ES6 code can be directly translated to (as discussed in
Subsection 2.1.2).

Moreover, there are object-oriented abstractions that are more difficult to emulate
in JavaScript, like abstract classes and interfaces. Encapsulation is another concept
that does not have a straightforward mapping to JavaScript. A common workaround
to simulate private members in JavaScript is by using local variables and closures. As
shown in Listing 3.2, an inner function f2 in JavaScript has access to the variables of its
outer function f1, even after f1 returns. Therefore, local variables declared in f1 can
be considered as private, because they can only be accessed by the “private function”
f2. However, we decided not to classify f2 as a private method, mainly because it
cannot be accessed from the object this, nor can it be directly called from the public
methods associated to the prototype of f1.

1 function f1 () { // outer function
2 var x; // local variable
3 function f2 () { // inner function
4 // can access "x"
5 // cannot be called outside "f1"
6 }
7 }

Listing 3.2: Using closures to implement “private” inner functions

In JavaScript, it is possible to remove properties from objects dynamically, e.g., by
calling delete myCircle.radius. Therefore, at runtime, an object can have less at-
tributes than the ones initially defined. It is also possible to modify the prototype chains
dynamically, which would mean modifying the “inheritance” links. Finally, the behav-
ior of a program can also be dynamically modified using the eval operator [Richards

6http://prototypejs.org
7https://github.com/alexpods/ClazzJS

http://prototypejs.org
https://github.com/alexpods/ClazzJS

32 Chapter 3. Proposed Approach

et al., 2011, Meawad et al., 2012]. However, we do not consider the impact of eval’s in
the strategy described in Subsection 3.1.1. For example, we do not account for classes
entirely or partially created by means of eval.

Still due to the dynamic nature of JavaScript, if a class has a property that
receives the return of a function call, this property is classified as an attribute, even if
this call returns another function. Listing 3.3 shows one example of this case, in which
the property this.x (line 6) is classified as an attribute, instead of a method, because
the language is loosely typed and we do not evaluate the results of function calls.

1 function getF () {
2 // getF() returns another function
3 return function () {...};
4 }
5 function f1 () { // class constructor
6 this.x = getF(); // property x
7 ...
8 }

Listing 3.3: Property that receives a function as the return of a function call

Finally, we do not evaluate code structures involved in indirect calls. For example,
Listing 3.4 shows the use of a JavaScript function, called setParentClass (lines 6-8),
to set a parent for class Circle, establishing an inheritance relationship. Line 10 shows
a call to this function passing Figure as argument, to be the superclass of Circle. In
this case, we cannot detect the inheritance between the two classes because the code
in line 7, that creates the link, uses the parameter superclass instead of a direct
reference to the constructor function Figure. If we replaced the code in line 10 by
Circle.prototype = new Figure(); then we would be able to detect this inheritance
relationship.

1 // class constructors
2 function Figure () { ... }
3 function Circle () { ... }
4 // method to set a parent class
5 Circle.setParentClass =
6 function (superclass) {
7 Circle.prototype = new superclass ();
8 }
9 // establishing the link between Figure and Circle

10 Circle.setParentClass(Figure);

Listing 3.4: Inheritance relationship not detect due to indirect function call

3.2. Evaluation Design 33

In Section 3.3.5, we report a validation of our heuristics with the developers of
60 legacy JavaScript systems. As a result of this validation, we discuss the impact of
some of the aforementioned limitations.

3.2 Evaluation Design

In this section, we describe the methodology we use to evaluate and to validate the
strategy proposed to detect classes in legacy JavaScript code. We first present the
questions that motivate our research (Subsection 3.2.1). Next, we describe the process
we follow to select JavaScript repositories on GitHub and to carry out the necessary
clean up of the downloaded code (Subsection 3.2.2). The metrics we use in our evalu-
ation are described in Subsection 3.2.3. Finally, we report the design of a field study
with JavaScript developers in Subsection 3.2.4.

3.2.1 Research Questions

Our goal is to evaluate the strategy we propose to detect class-like abstractions in legacy
JavaScript software. To achieve this goal, we pose the following research questions:

• RQ #1: Do developers emulate classes in legacy JavaScript applications?

• RQ #2: Do developers emulate subclasses in legacy JavaScript applications?

• RQ #3: Is there a relation between the size of a JavaScript application and the
number of class-like structures?

• RQ #4: What is the shape of the classes emulated in legacy JavaScript code?

• RQ #5: How accurate is our strategy to detect classes?

• RQ #6: Do developers intend to use the new support for classes that comes with
ECMAScript 6?

With RQ #1, we check if the emulation of classes is a common practice in legacy
JavaScript applications. RQ #2 checks the usage of prototype-based inheritance. With
RQ #3, we verify if the number of JavaScript classes in a system, as detected by
JSClassFinder, is related to its size, measured in lines of code. With RQ #4, we
analyze the shape of JavaScript classes regarding the relation between the number
of attributes and the number of methods. With RQ #5, we evaluate the accuracy

34 Chapter 3. Proposed Approach

of the proposed approach to identify class-like structures. With RQ #6, we verify if
developers intend to use the concrete syntax to define classes provided by ES6.

Although RQs #3 and #4 are not directly related to the identification of classes,
we decided to investigate the shape of the analyzed classes to better understand their
use in JavaScript legacy systems.

3.2.2 Dataset

Our dataset includes the last version of the top 1,000 JavaScript projects on GitHub,
according to the number of stars. This selection was performed in July, 2015. After
cloning the repositories, we used an external library called Linguist8 to clean up the
source code files. Linguist is used by GitHub to ignore binary, third-party, and automat-
ically generated files when computing statistics on the programming languages used by
a repository. After running Linguist, we also performed a custom-made script to remove
tests, examples, documentation, and configuration files. More specifically, this script
removes the following files: gulpfile.js, gruntfile.js, package.js, ∗thirdparty.js,
∗_test.js, ∗_tests.js, test.js, tests.js, license.js; and the following folders:
test, tests, examples, example, build, dist, spec, demos, demo, minify, release,
releases, docs, bin, test-∗, and testing.

After this clean up process, 82 systems were not exploitable because they did
not contain any significant contributions, i.e., they remained with no source code files.
Therefore, the final dataset was composed of 918 systems. Figure 3.4 shows violin
plots9 with the distribution of number of files, number of functions, and lines of code
(LOC) in logarithm scale (base 10). The width of the “violin plot” correlates with
the number of systems for a given value. The largest system (gaia) has 375,615 LOC
and 1,650 files with .js extension. The smallest system (jswiki) has 8 LOC and a
single file. The average size is 8,778 LOC (standard deviation 21,801 LOC) and 41 files
(standard deviation 163 files). The median is 2,170 LOC and 10 files.

3.2.3 Metrics

In the following we describe the metrics we use to answer the first four research ques-
tions proposed in Subsection 3.2.1.

8https://github.com/github/linguist
9A violin plot is used to visualize the distribution of the data and its probability density. The

thick black bar in the center represents the interquartile range, the thin black line extended from it
represents the confidence intervals, and the white dot is the median.

https://github.com/github/linguist

3.2. Evaluation Design 35

0
1

2
3

4

Systems

lo
g(

 #
Fi

le
s

)

(a) # Files

0
1

2
3

4

Systems

lo
g(

 #
Fu

nc
tio

ns
)

(b) # Functions

1
2

3
4

5

Systems

lo
g(

 L
O

C
)

(c) LOC

Figure 3.4: Dataset size distributions (log scales)

3.2.3.1 Class Density (CD)

To measure the amount of source code related to the emulation of classes we propose
a metric called Class Density (CD), which is defined as:

CD =
function methods+# classes

functions

This metric is the ratio of functions in a program that are related to the imple-
mentation of classes, i.e., that are methods or that are classes themselves. It ranges
between 0 (system with no functions related to classes) to 1 (a fully class-oriented
system, where all functions are used to support classes). The denominator includes
all functions in a JavaScript program. We use the number of functions to implement
methods (function methods) instead of the number of methods because, in JavaScript,
it is possible to share the same function to implement multiple methods. Listing 3.5
shows an example found in the system slick, where a function body is shared by
two methods. In this example, the Slick class provides two methods (getCurrent
and slickCurrentSlide) that perform the same action when called. Therefore, the
number of methods is equal to two, but the number of function methods is one.

1 Slick.prototype.getCurrent =
2 Slick.prototype.slickCurrentSlide = function () {
3 var _ = this;
4 return _.currentSlide;
5 };

Listing 3.5: Methods sharing the same body in system slick

36 Chapter 3. Proposed Approach

We used CD to classify the systems in four main groups:

• Class-free: systems that do not use classes at all (CD = 0).

• Class-aware: systems that use classes, but marginally (0 < CD ≤ 0.25).

• Class-friendly: systems with an important usage of classes (0.25 < CD ≤ 0.75)

• Class-oriented: systems where most structures are classes (CD > 0.75).

3.2.3.2 Subclass Density (SCD)

To evaluate the usage of inheritance, we propose a metric called Subclass Density
(SCD), defined as:

SCD =
| {C ∈ Classes | DIT (C) ≥ 2 } |

| Classes | − 1

where Classes is the set of all classes in a given system and DIT is the Depth of
Inheritance Tree. Classes with DIT = 1 only inherit from the common base class
(Object). SCD ranges from 0 (system that does not make use of inheritance) to 1
(system where all classes inherit from another class, except the class that is the root
of the class hierarchy). SCD is only defined for systems that have at least two classes.

3.2.3.3 Data-Oriented Class Ratio (DOCR)

In a preliminary analysis, we noticed many classes having more attributes than meth-
ods. This contrasts to the common shape of classes in class-based languages, when
classes usually have more methods than attributes [Terra et al., 2013]. To better un-
derstand the members of JavaScript classes, we propose a metric called Data-Oriented
Class Ratio (DOCR), defined as follows:

DOCR =
| {C ∈ Classes | NOA(C) > NOM(C) } |

| Classes |

where Classes is the set of all classes in a system. DOCR ranges from 0 (system where
all classes have more methods than attributes or both measures are equal) to 1 (system
where all classes are data-oriented classes, i.e., their number of attributes is greater
than the number of methods). DOCR is only defined for systems that have at least
one class.

3.2. Evaluation Design 37

3.2.4 Field Study Design

To validate our strategy for detecting classes, we perform a field study with the devel-
opers of 60 JavaScript applications, including 50 systems from our previous conference
paper [Silva et al., 2015b], and 10 new systems. These systems have at least 1,000 stars
on GitHub, 150 commits, and are not forks of other projects. After checking out each
system, we cleaned up the source code to remove unnecessary files, as we did for the
dataset described in Subsection 3.2.2.

The systems considered in the field study are presented in Table 3.1, including
their version, a brief description, size (in lines of code), number of files, and number
of functions. The selection includes well-known and widely used JavaScript systems,
from different domains, covering frameworks (e.g., angular.js and jasmine), editors
(e.g., brackets), browser plug-ins (e.g., pdf.js), games (e.g., 2048 and clumsy-
bird), etc. The largest system (ace) has 140,023 LOC and 594 files with .js extension.
The smallest system (masonry) has 208 LOC and a single file. The average size is
12,870 LOC (standard deviation 25,961 LOC) and 56 files (standard deviation 101
files). The median size is 3,363 LOC and 13 files.

This field study was conducted between March and June, 2015, during a sandwich
Ph.D internship at INRIA Research Centre Lille Nord-Europe, under the supervision
of professor Nicolas Anquetil. For each system, we performed the following steps:

1. We downloaded the latest version on GitHub and cleaned up the source code;

2. We executed the parser (Esprima) to generate the AST;

3. We executed JSClassFinder to identify class-like structures and to build a class
diagram;

4. We used the information available on GitHub to identify the main developers
of each system in the dataset. For systems supported by a team of developers,
the developer selected was the one with the highest number of commits in the
previous three months. We then sent an email to the application’s main developer
with the class diagram attached and asked him to validate the detected classes.
Figure 3.5 shows the class diagram sent to the developer of algorithms.js.
This diagram includes 14 classes representing common data structures, such as
Stack, LinkedList, Graph, HashTable, etc.

5. We analyzed and categorized the developer’s responses.

38 Chapter 3. Proposed Approach

Table 3.1: JavaScript systems (ordered by the CD column, see description in accom-
panying text). SCD can only be computed for systems with 2 or more classes. DOCR
can only be computed for systems with at least one class.

System Version LOC #Files #Func #Class #Meth #Attr CD SCD DOCR

masonry 3.2.3 208 1 10 0 0 0 0.00 - -
randomColor 0.2.0 373 1 16 0 0 0 0.00 - -
respond 1.4.2 460 3 15 0 0 0 0.00 - -
resume - 460 1 19 0 0 0 0.00 - -
clumsy-bird - 672 7 36 0 0 0 0.00 - -
impress.js 0.5.3 769 1 24 0 0 0 0.00 - -
jquery-pjax 1.9.3 913 1 33 0 0 0 0.00 - -
async 1.1.0 1,114 1 100 0 0 0 0.00 - -
modernizr 2.8.3 1,382 1 69 0 0 0 0.00 - -
deck.js 1.1.0 1,473 6 51 0 0 0 0.00 - -
zepto.js 1.1.6 2,497 17 233 0 0 0 0.00 - -
photoSwipe 4.0.7 4,401 9 185 0 0 0 0.00 - -
semantic-UI 1.12.3 18,369 23 1,191 0 0 0 0.00 - -
jQueryFileUp 9.9.3 4,011 14 179 1 1 3 0.01 - 1.00
leaflet 0.7.3 8,711 75 677 4 0 7 0.01 0.00 1.00
backbone 1.1.2 1,681 2 115 1 1 0 0.02 - 0.00
chart.js 1.0.2 3,463 6 189 2 2 5 0.02 0.00 0.50
turn.js 4.0.0 6,916 5 267 3 3 6 0.02 0.00 1.00
react 0.13.2 16,654 143 608 7 8 17 0.02 0.00 0.57
meteor 1.1.0.2 41,195 72 1,378 15 12 14 0.02 0.21 0.20
underscore 1.8.2 1,531 1 123 1 5 1 0.03 - 0.00
jasmine 2.2.1 7,749 62 892 3 8 11 0.03 0.00 0.67
paper.js 0.9.22 26,039 65 1,071 30 10 115 0.04 0.00 0.90
typeahead.js 0.10.5 2,576 19 233 11 1 72 0.05 0.00 1.00
d3 3.5.5 13,079 268 1,259 19 45 41 0.05 0.22 0.58
wysihtml5 0.3.0 5,913 69 343 2 17 8 0.06 0.00 0.00
sails 0.11.0 12,724 101 425 8 23 40 0.07 0.00 0.25
ionic 1.0.0.4 19,322 103 492 8 26 21 0.07 0.29 0.50
jquery 2.1.4 7,736 79 330 6 25 31 0.09 0.00 0.50
ghost 0.6.2 15,290 142 659 15 47 44 0.09 0.00 0.27
timelineJS 2.35.6 18,371 93 896 12 69 11 0.09 0.00 0.08
express 4.12.3 3,590 11 131 3 12 14 0.11 0.00 0.67
reveal.js 3.0.0 5,811 16 242 5 22 18 0.11 0.00 0.40
video.js 4.12.5 9,823 46 586 6 63 17 0.11 0.00 0.50
three.js 0.0.71 39,449 202 1,266 99 48 544 0.12 0.00 0.92
numbers.js - 2,965 10 132 2 16 4 0.14 0.00 0.00
polymer 0.5.5 11,849 1 763 22 103 68 0.16 0.00 0.41
grunt 0.4.5 1,932 11 103 1 16 8 0.17 - 0.00
skrollr 0.6.29 1,772 1 58 1 12 0 0.22 - 0.00
ace 1.1.9 140,023 594 4,337 291 673 785 0.22 0.01 0.46
mousetrap 1.5.3 1,281 5 46 1 10 0 0.24 - 0.00
hammer.js 2.0.4 2,348 19 124 6 33 25 0.31 0.00 0.33
brackets 1.3.0 130,770 392 4,298 173 1,239 750 0.33 0.09 0.31
angular.js 1.4.0.1 49,220 191 981 61 276 171 0.34 0.03 0.21
intro.js 1.0.0 1,255 1 42 1 14 2 0.36 - 0.00
algorithms 0.8.1 3,263 58 165 14 59 32 0.44 0.23 0.21
pdf.js 1.1.1 57,359 88 2,277 181 895 795 0.47 0.11 0.44
bower 1.4.1 8,464 60 304 15 143 97 0.51 0.00 0.40
mustache.js 2.0.0 594 1 33 3 15 7 0.55 0.00 0.33
less.js 2.3.1 12,045 99 707 64 327 278 0.55 0.21 0.34
gulp 3.8.11 99 3 5 1 2 6 0.60 - 1.00
fastclick 1.0.6 841 1 23 1 16 10 0.74 - 0.00
pixiJS 3.0.2 21,024 113 703 87 453 546 0.76 0.33 0.46
isomer 0.2.4 770 7 47 7 31 27 0.81 0.00 0.57
2048 - 873 10 76 7 62 29 0.91 0.00 0.14
slick 1.5.2 2,300 1 81 1 86 0 0.93 - 0.00
floraJS 3.1.1 2,942 20 86 18 62 315 0.93 0.00 0.94
parallax 2.1.3 1,007 3 57 2 56 75 0.95 0.00 1.00
jade 1.9.2 11,427 27 169 19 142 73 0.95 0.83 0.26
socket.io 1.3.5 1,297 4 57 4 58 46 1.00 0.00 0.00

3.2. Evaluation Design 39

Figure 3.5: Class diagram for algorithms.js, generated by JSClassFinder

In the mails to the developers, we asked two questions:

• Do you agree that the classes in the attached class diagram are correct?

• Do you intend to use the new support for classes that comes with ES6? Why?

The developers had to answer the questions and point out their reasons. The first
question aims to evaluate the accuracy of our approach to detect class-like structures
(RQ #5). The second question aims to measure the interest in a concrete syntax to
implement classes in JavaScript (RQ #6). In the cases where, after one month, an
answer was not received, a gentle reminder was sent. For the systems where we did
not find any classes, we also sent emails requesting the developers to confirm that they
really do not emulate classes in their systems.

We sent 60 emails and received 33 answers, which represents a response ratio of
55%. Out of the 33 answers, 29 were obtained after a first round, and the other four
after sending a gentle reminder.

We had three answers that could not be properly classified in our study. The
first came from a developer who said he agreed with our findings but he was not
totally sure. In the second case, the developer sent a web link which contains the
API documentation of his application, and he recommended us to validate the classes
ourselves. In the last case, the developer just stated that we should never use classes.
Therefore, after discarding these cases, we have 30 valid answers.

Figure 3.6 shows the distribution of the valid answers per group of systems ac-
cording to the class density (CD values). The distribution indicates that our field

40 Chapter 3. Proposed Approach

study includes systems in all four main groups: class-free (4 answers), class-aware (15
answers), class-friendly (7 answers) and class-oriented (4 answers).

4

15

7

4

0

5

10

15

Class-free Class-aware Class-friendly Class-oriented

#S
ys
te
m
s

Figure 3.6: Distribution of valid answers per group

Finally, we use developers’ answers to measure precision, recall, and F-score for
the classes, methods, and attributes identified by our tool. These measures are calcu-
lated as follows:

Precision (P) =
TP

TP + FP

Recall (R) =
TP

TP + FN

F-score (F1) = 2× P × R

P + R

where TP represents the true positives, FP the false positives, and FN the false nega-
tives. For classes, TP is the number of class-like structures correctly identified by our
tool, FP is the number of class-like structures erroneously identified, and FN is the
number of existing class-like structures that are not identified. F-score is the harmonic
mean of precision and recall. For methods and attributes, the measures are defined in
a similar way, but searching for method-like and attribute-like structures, respectively.

3.3. Results 41

3.3 Results

In this section, we present the answers to the six proposed research questions.

3.3.1 Do developers emulate classes in legacy JavaScript

applications?

We found classes in 623 out of 918 systems (68%). The system with the largest num-
ber of classes is gaia (1,001 classes), followed by nodeinspector (330 classes), and
babylon.js (294 classes). MathJax is the largest system (122,683 LOC) in which
we could not identify any class. Figure 3.7(a) shows the distribution of the number
of classes for the systems that have at least one class. The first quartile is two (lower
bound of the black box within the “violin”) with 135 systems having only one class.
The median is 5 and the third quartile is 15 (upper bound of the black box). Listing 3.6
shows an example of a class Color, detected in the system three.js. We omit part of
the code for the sake of readability.

0
1

2
3

4
5

6
7

Systems

lo
g(

 N
O

C
)

(a) # Classes (log scale)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Systems

C
D

(b) CD (All Systems)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Systems (CD > 0)

C
D

(c) CD

Figure 3.7: Metric distributions. Results in (a) and (c) are reported only for systems
with at least one class.

1 THREE.Color = function (color) { // Constructor
2 ...
3 return this.set(color)
4 };
5 THREE.Color.prototype = {
6 r: 1, g: 1, b: 1, // Attributes
7 // Methods
8 set: function (value) { ... },
9 setRGB: function (r, g, b) { ... },

10 ...
11 }

Listing 3.6: Example of class in three.js

42 Chapter 3. Proposed Approach

Figure 3.7(b) shows the distribution of the CD values. We found that 295 systems
have CD equal to zero. In other words, 32% of the systems do not use classes at all or
are using an abstraction other than the one we are looking for. The median is 0.08 and
the third quartile is 0.41. We also found seven fully class-oriented systems (CD=1).
Table 3.2 shows the ten systems with the highest values of CD.

Table 3.2: Top-10 systems with highest CD values

System CD #Class LOC

skeuocard 1.00 8 1,685
rainyday.js 1.00 5 1,005
side-comments 1.00 3 523
zoom.js 1.00 2 229
steady.js 1.00 1 215
tmi 1.00 1 203
layzr.js 1.00 1 164
socket.io 0.97 4 1,350
clndr 0.97 1 1,197
slap 0.97 11 938

Figure 3.7(c) shows the CD distribution when we only consider the systems with
CD greater than zero. The first quartile is 0.08, the median is 0.26, and the third
quartile is 0.52. In other words, the emulation of classes represents on the median 26%
of the functions, for the systems that include at least one class.

Figure 3.8 shows the number of systems in each of the four proposed groups
(class-free, class-aware, class-friendly, and class-oriented systems) according to the
CD values. The largest group is the class-aware (34%), in which systems use classes
but they correspond to less than 25% of the implemented functions. Class-oriented
is the smallest group, including systems that use more than 75% of their functions to
emulate classes.

32%
34%

27%

7%

0

100

200

300

Class-free Class-aware Class-friendly Class-oriented

#S
ys
te
m
s

Figure 3.8: Class Density (CD) groups

3.3. Results 43

Summary: We found classes in 623 out of 918 systems (68%). Therefore, 32%
of the systems are class-free. Moreover, class-aware and class-friendly systems
correspond to 34% and 27% of the systems; 7% are class-oriented systems.

3.3.2 Do developers emulate subclasses in legacy JavaScript

applications?

As shown in Figure 3.9, the use of prototype-based inheritance is rare in JavaScript
systems. First, we counted 499 systems (54%) having two or more classes, i.e., systems
where it is possible to detect the use of inheritance. However, in 429 of such systems
(86%), we did not find any subclasses (SCD = 0). The system with the highest use
of inheritance is progressbar.js (SCD = 0.8). Figure 3.10 shows the class diagram
for this system. As can be seen, the Shape class has four subclasses : Circle, Line,
SemiCircle, and Square.

0.
0

0.
2

0.
4

0.
6

0.
8

Systems

S
C
D

Figure 3.9: Subclass Density (SCD) distribution

Summary: We found subclasses in only 70 out of 918 systems (8%).

3.3.3 Is there a relation between the size of a JavaScript

application and the number of class-like structures?

Figure 3.11 shows scatterplots with size metrics on the x-axis in a logarithmic scale
and CD on the y-axis. We also computed the Spearman’s rank correlation coefficient
between CD and the following size metrics: KLOC, number of files, and number of

44 Chapter 3. Proposed Approach

Figure 3.10: Inheritance in system progressbar.js

functions. The results are presented in Table 3.3. We found a weak correlation for
KLOC (ρ=0.250), number of files (ρ=0.178), and for number of functions (ρ=0.289).
For example, there are systems with similar sizes having both low and high class
densities. Aloha-Editor is an example of a system with a considerable size (69
KLOC) and low class density (CD = 0.05). By contrast, end-to-end is also a large
system (67 KLOC) but with a high class density (CD = 0.78).

0.01 0.10 1.00 10.00 100.00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

KLOC

C
D

(a) KLOC vs CD

1 5 10 50 100 500 5000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Files

C
D

(b) # Files vs CD

1 10 100 1000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Functions

C
D

(c) # Func vs CD

Figure 3.11: Size metrics vs Class Density (CD)

3.3. Results 45

Table 3.3: Correlation between CD and size metrics

KLOC # Files # Func

Spearman 0.250 0.178 0.289
p-value 1.407e-14 6.216e-08 < 2.2e-16

We also used the Kruskal-Wallis test to check if the LOC distributions in all four
groups (class-free, class-aware, class-friendly, and class-oriented systems) are equal.
The test resulted in a p-value < 2.2e-16, leading us to reject the null hypothesis (the
groups have systems with equal size), at a 5% significance level. In fact, the me-
dian measures of each tested group are quite different (690; 5,667; 2,578; and 1,150;
respectively).

Summary: We found no correlation between the size of a JavaScript application
and the number of class-like structures.

3.3.4 What is the shape of the classes emulated in legacy

JavaScript code?

To verify the shape of JavaScript classes, regarding the number of methods and at-
tributes, we focus on systems that have the number of classes greater than or equal
to 15 (which represents the 3rd quartile of this distribution).10 Figure 3.12 shows
the quantile functions for the Number of Attributes (NOA) and Number of Methods
(NOM) in such systems. The x-axis represents the quantiles and the y-axis represents
the metric values for the classes in a given quantile. For example, suppose the value
of a quantile p (x-axis) is k (y-axis), for NOA. This means that p% of the classes in
this system have at most k attributes. As can be observed, the curves representing
the systems have a right-skewed (or heavy-tailed) behavior. In fact, this behavior is
common in source code metrics [Baxter et al., 2006, Louridas et al., 2008, Wheeldon
and Counsell, 2003].

Regarding NOA, the quantile functions reveal that the vast majority of the classes
have at most 28 attributes (90th percentile). Regarding NOM, the vast majority of the
classes have less than 61 methods (90th percentile). To compare NOA and NOM mea-
sures, Figure 3.13 shows the DOCR distribution using a violin plot. The median DOCR
value is 0.39, which is a high measure when compared to other languages. For example,
metric thresholds for Java suggest that classes should have at most 8 attributes and 16

10Using this criteria, we reduced the number of selected systems but we continued with a consid-
erable number of classes to analyze. We made this decision to improve the readability of the quantile
functions (Figure 3.12).

46 Chapter 3. Proposed Approach

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10
0

Quantiles

N
O
A

(a) NOA

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10
0

Quantiles

N
O
M

(b) NOM

Figure 3.12: Quantile functions

methods, [Oliveira et al., 2014]. By contrast, half of the JavaScript systems we studied
have more than 39% of their classes with more attributes than methods. We hypoth-
esize that it is due to JavaScript developers placing less importance on encapsulation.
For example, getters and setters are rare in JavaScript.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Systems

D
O
C
R

Figure 3.13: Data-Oriented Class Ratio (DOCR) distribution

Summary: The identified classes in JavaScript have usually less than 28 attributes
and 61 methods (90th percentile measures). It is also common to have data-oriented
classes, i.e., classes with more attributes than methods. In half of the systems, we
have at least 39% of such classes.

3.3. Results 47

3.3.5 How accurate is our strategy to detect classes?

As described in Subsection 3.2.4, we measure accuracy using precision, recall, and F-
score. Table 3.4 summarizes the results according to the developers’ answers. The
developers of 21 out of 30 systems (70%) fully agreed that the class diagrams correctly
model the classes of their systems. Therefore, precision, recall, and F-score for these
systems are equal to 100%. The following two comments are examples of answers we
received for such systems:

"Yes, everything looks like it actually is in the code base." (Developer of system less.js)

"I do in fact agree with your findings on classes/methods/attributes. In building num-
bers.js I did have OOP in mind." (Developer of system numbers.js)

Table 3.4: Precision, Recall, and F-Score results

Precision (%) Recall (%) F-Score (%)
Systems Classes Meth. Attr. Classes Meth. Attr. Classes Meth. Attr.

ace 93 100 100 100 100 100 96 100 100
algorithms.js 100 100 100 100 100 100 100 100 100
angular.js 92 100 87 100 93 100 96 96 93
bower 100 100 100 100 100 100 100 100 100
clumsy-bird 100 100 100 0 0 0 0 0 0
d3 100 100 100 83 48 79 91 65 88
express 100 100 100 60 36 56 75 53 72
intro.js 100 100 100 100 100 100 100 100 100
jade 100 100 100 100 100 100 100 100 100
jasmine 100 100 100 7 5 24 13 10 39
jquery 100 100 100 100 100 100 100 100 100
jqueryfileup 100 100 100 100 100 100 100 100 100
leaflet 100 100 100 9 0 4 17 0 8
less.js 100 100 100 100 100 100 100 100 100
masonry 100 100 100 100 100 100 100 100 100
modernizr 100 100 100 100 100 100 100 100 100
mousetrap 100 100 100 100 100 100 100 100 100
mustache.js 100 100 100 100 100 100 100 100 100
numbers.js 100 100 100 100 100 100 100 100 100
paper.js 100 100 100 100 3 59 100 6 74
pdf.js 100 100 100 100 100 100 100 100 100
pixijs 100 100 100 100 100 100 100 100 100
randomcolor 100 100 100 100 100 100 100 100 100
sails 100 100 100 100 100 100 100 100 100
skrollr 100 100 100 100 100 100 100 100 100
slick 100 100 100 100 100 100 100 100 100
socket.io 100 100 100 100 100 100 100 100 100
three.js 100 100 100 100 100 100 100 100 100
underscore 100 100 100 100 100 100 100 100 100
video.js 100 100 100 11 15 16 20 26 28

48 Chapter 3. Proposed Approach

3.3.5.1 Precision

We achieve a precision of 100% in 28 out of 30 systems for classes; in all 30 systems
for methods; and in 29 systems for attributes. In the following paragraphs we discuss
the false positives we detected for classes and attributes.

False positives for classes. The developers of systems ace and angular.js pointed
out that our strategy incorrectly identified some entities as classes. In both cases,
the false positives are due to a limitation regarding JavaScript scoping rules. List-
ing 3.7 shows an example for the system angular.js. In this example, we have a
MessageFormatParser class, with a method startStringAtMatch (lines 4-6). Since
there is also a function match in the global scope (line 1) our tool initially classifies
stringQuote as a method (line 5). However, due to the scoping rules of JavaScript,
this property is initialized with the formal parameter of startStringAtMatch, which is
also named match. Moreover, match always receives a non-function value and therefore
it should have been classified as an attribute. A similar issue happens in ace.

1 function match () {...};
2
3 MessageFormatParser.prototype.startStringAtMatch =
4 function startStringAtMatch(match) {
5 this.stringQuote = match;
6 ...
7 };

Listing 3.7: Example of method incorrectly identified as a class in angular.js

False positives for attributes. We have two situations in which methods are indeed
identified as attributes in the system angular.js. Listing 3.8 shows part of the
implementation for the class JQLite. Our strategy correctly classifies the property
ready (line 2) as a method, but it is not able to do the same with the property
splice (line 3). The function [].splice is not recognized as a function because its
implementation is not part of the source code of angular.js (it is a JavaScript native
function from Array object). Currently, our implementation does not recognize as
methods functions that are initialized with JavaScript built-in functions.

Listing 3.9 shows another example of a property that is not identified as a method
in angular.js, as we can see in the following comment:

"$get is marked as attribute a lot, it should always be a method." (Developer of system
angular.js)

3.3. Results 49

1 JQLite.prototype = {
2 ready: function(fn) {...},
3 splice: [].splice ,
4 ...
5 };

Listing 3.8: Example of missing method (line 3 - system angular.js)

In this case, the property $get receives an array that contains a function in its
second element. Although the developer considers that this property is a method, our
approach identifies it as an array and therefore classifies it as an attribute.

1 this.$get = [’$window ’, function (\ $window) {...}];

Listing 3.9: Example of an array that contains a function (system angular.js)

3.3.5.2 Recall

We achieve a recall of 100% in 24 out of 30 systems for classes; in 22 systems for
methods; and in 23 systems for attributes. In the following paragraphs we discuss the
false negatives we detected for classes, methods, and attributes.

False negatives for classes. Six developers pointed out at least one missing class
in their systems. In the case of the system clumsy-bird, the base class constructors
are not available in the GitHub repository. The application imports an external file,
which contains these base classes11. The import statement is placed directly in the
main HTML file. For this reason, we were not able to detect classes in this system.

As a second case, Express’ developer stated that our tool missed two classes, as
shown in the following answer excerpt:

"So I have taken a look at the UML diagram you attached to the email and they do
look mostly right. The main thing missing is there is also an Application class and a
Router class, to round out a total of five main classes. The three you have there do
look right, though." (Developer of system Express)

According to our strategy, Application and Router are not classes. Application
is implemented as a singleton object, and we do not identify such structures as classes,
as commented in Subsection 3.1.3. Router is not a class because its methods and
attributes are not directly bound to this nor prototype. Instead, the constructor

11http://cdn.jsdelivr.net/melonjs/2.0.2/melonJS.js

http://cdn.jsdelivr.net/melonjs/2.0.2/melonJS.js

50 Chapter 3. Proposed Approach

function uses __proto__ (an accessor property), as we can see in Listing 3.10 (line
5). In fact, __proto__ is a special name used by Mozilla’s JavaScript implementation
to expose the internal prototype of the object through which it is accessed. However,
the use of __proto__ has been discouraged12, mostly because it is not supported by
other browsers.

1 var proto = module.exports = function () {
2 function router () {
3 ...
4 }
5 router.__proto__ = proto;
6 router.params = {};
7 router.stack = [];
8 ...
9 };

10 proto.param = function param(name , fn) {...};
11 proto.handle = function () {...};
12 ...

Listing 3.10: Example of function router which is not detected as a class in system
express

In the four remaining systems (D3, jasmine, video.js, and Leaflet), the
causes for missing classes are related to the use of external frameworks and libraries
that provide their own style for implementing class-like abstractions. The following
comments are examples of answers in this category:

"The classes you found are only a small part of Leaflet classes. This is because Leaflet
uses its own class utility: https: // github. com/ Leaflet/ Leaflet/ blob/ master/
src/ core/ Class. js " (Developer of system Leaflet)

"From a pure Object Orientation point of view, I would probably call almost every file
inside ‘src/core‘ in the jasmine repo its own class (minus a few like ‘util.js‘ and ‘base.js‘
at least), which is more like 45 classes." (Developer of system jasmine)

False negatives for methods and attributes. In all six systems with missing
classes we also have, as consequence, missing methods and attributes. Besides these
cases, developers of other two systems pointed out missing methods. In the first case,
for system angular.js, our approach identified some methods as attributes, as dis-
cussed in the previous subsection (precision). In the second case, paper.js’s develop-
ers use a customized implementation that allows our approach to identify the classes,

12https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_
Objects/Object/proto

https://github.com/Leaflet/Leaflet/blob/master/src/core/Class.js
https://github.com/Leaflet/Leaflet/blob/master/src/core/Class.js
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/proto
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/proto

3.3. Results 51

but not the methods. Listing 3.11 illustrates this issue for the class Line. In this
case, the association between the constructor function Line (line 3) and the methods
getPoint(), getVector(), etc (lines 9-11) is built by using a project-specific function
called Base.extend (line 1). The usage of this function hides the methods and some
attributes from our tool.

1 var Line = Base.extend ({
2 _class: ’Line’,
3 initialize: function Line(arg0 , arg1 , ...) {
4 // Attributes
5 this._px = arg0;
6 this._py = arg1;
7 ...
8 },
9 getPoint: function () {...} ,

10 getVector: function () {...},
11 ...
12 }

Listing 3.11: Class implementation for system paper.js which uses a project-specific
function (Base.extend) to implement classes

Assessing the impact of the heuristics limitations. In Section 3.1.3, we listed
five limitations of the proposed heuristics: (1) use of “singleton” objects; (2) use of
JavaScript frameworks to implement class-like abstractions; (3) use of dynamic features
to alter class-like structures; (4) use of properties that receive the return of function
calls; (5) use of indirect calls. We mapped the false positives and negatives detected
in the RQ #5 to these limitations. We found that six out of eight identified causes of
false positives/negatives are not related to any limitation. In other words, they refer
to other limitations which were not previously listed. However, two false negatives
for class identification are related to previously known limitations (system Express

contains one instance of “singleton” object and systems D3, jasmine, video.js, and
Leaflet make use of JavaScript frameworks to implement class-like abstractions).

3.3.5.3 F-Score

Table 3.4 also reports the F-score results. The measures are equal to 100% in 22 out of
30 systems for classes, methods, and also for attributes. In the remaining systems, the
measures range from 0% (clumsy-bird) to 96% (ace and angular.js) for classes,
from 0% (clumsy-bird and leaflet) to 96% (angular.js) for methods, and from
0% (clumsy-bird) to 93% (angular.js) for attributes.

52 Chapter 3. Proposed Approach

The system clumsy-bird has F-score equal to zero because it uses base class
constructors that are not available in its source code repository, as discussed in Sub-
section 3.3.5.2.

3.3.5.4 Overall results

Figure 3.14 presents the results for precision, recall, and F-score considering the whole
population of classes, methods, and attributes, independently from system. The overall
measurements range from 97% (classes) to 100% (methods) for precision, from 70%
(methods) to 89% (attributes) for recall, and from 82% (methods) to 94% (attributes)
for F-score.

97%

86%
91%

100%

70%

82%

99%

89%
94%

0.00

0.25

0.50

0.75

1.00

Classes Methods Attributes

Metrics
Precision
Recall
F-score

Figure 3.14: Overall results for precision, recall, and F-score

3.3.6 Do developers intend to use the new support for classes

that comes with ECMAScript 6 ?

Table 3.5 summarizes the answers for this question. Nineteen developers (58%) an-
swered that they intend to use the new syntax. Two of them declared to have plans
to migrate their systems to the new syntax, while the others stated that they intend
to use it only when implementing new features and projects, as stated in the following
answer:

"I’m quite confident that ES6 will make for a more robust codebase. And I think the
most interesting point is that it can be applied progressively. We don’t have to make a
massive rewrite. Any new code we add can be ES6, and then we can slowly rewrite old
code to be ES6 as well." (Developer of system socket.io)

3.4. Threats to Validity 53

Table 3.5: Intention to use ES6 classes

Type of answer # %

Yes 19 58
No 12 36
Did not know 2 6

Twelve developers (36%) declared they do not intend to use ES6 syntax for classes,
because they have to keep compatibility with legacy code, as stated in the following
answer:

"For us right now it makes more sense to use CJS patterns and integrate with existing
module ecosystems. When the ES6 penetration and support is higher, maybe we will
switch." (Developer of system pixiJS)

Summary: 58% of JavaScript developers intend to use the ES6 syntax for classes,
but mostly for new features and projects.

3.4 Threats to Validity

This section presents threats to validity according to the guidelines proposed by Wohlin
et al. [2012]. These threats are organized in three categories, addressing internal,
external, and construct validity.

Internal Validity. In the field study, to address RQ #5, we recognize two internal
threats. First, we consider that the developers correctly evaluated all elements we
provided in the class diagrams of their systems. We acknowledge this activity is error-
prone, and that they may have missed some class elements, like methods and attributes.
However, we asked the main developers of each system, who are probably the most
qualified people to conduct such evaluation. The second internal threat is related to
the identification of false negatives for the analysis of recall. Since some developers did
not provide the names of all classes that represent false negatives in their systems, we
performed a manual verification in the related source code files in order to identify the
remaining structures.

External Validity. To address the first four research questions, we used a dataset of
918 JavaScript systems. For research questions RQ #5 and RQ #6, which involved
contacting developers, we used a dataset of 60 JavaScript systems. As a threat, our
datasets, both obtained from GitHub repository, might not represent the whole popula-
tion of JavaScript systems. Our selection excludes web applications that use JavaScript

54 Chapter 3. Proposed Approach

together with other languages. For example, we do not consider JavaScript code in-
serted between <script> and </script> tags, in HTML files. But, at least, we
selected a representative number of popular and well-known systems, of different sizes
and covering various domains.

Construct Validity. We use the library Linguist and a custom-made script, as de-
scribed in Subsection 3.2.2, to remove unnecessary files from our dataset. We assume
that this clean up process does not remove any source code files that could be used
to implement classes. It is also possible that some of the selected repositories do not
represent real systems, but other types of applications, e.g., tutorials and toy examples.

3.5 Final Remarks

This chapter provides a large-scale study on the usage of class-like structures in
JavaScript, a language that is used nowadays to implement complex single-page ap-
plications for the Web. We propose a strategy to statically detect class emulation in
legacy JavaScript code and the JSClassFinder tool, that supports this strategy. We
use JSClassFinder on a corpus of 918 popular JavaScript applications, with different
sizes and from multiple domains, in order to describe the usage of class-like structures
in legacy JavaScript systems. This study shows that: (i) JavaScript developers often
emulate classes in legacy code to tackle the complexity of their systems; (ii) there is
no significant relation between size and class usage; (iii) prototype-based inheritance
is not popular in JavaScript; (iv) it is common to have JavaScript classes with more
attributes than methods; (v) JavaScript developers that emulate classes tend to use the
ES6 new syntax, mostly for new features and projects. We also perform a field study
with JavaScript developers to evaluate the accuracy of our strategy and tool. Preci-
sion, recall and F-score measures indicate that our tool is able to identify the classes,
methods, and attributes in JavaScript systems. The overall results range from 97% to
100% for precision, from 70% to 89% for recall, and from 82% to 94% for F-score.

Chapter 4

Identifying Class Dependencies

In this chapter, we evaluate the use of Flow type inferencer to extract dependencies
between classes in legacy JavaScript code. Section 4.1 provides information about class
dependencies in JavaScript. Section 4.2 describes the methodology used in a study to
detect class-to-class dependencies in legacy JavaScript code. Section 4.3 describes
the research questions that guided this study, along with the dataset and the metrics
we used. We discuss answers to the proposed research questions in Section 4.4. We
explain and discuss Flow limitations in Section 4.5 and discuss lessons learned in Section
4.6. Threats to validity are exposed in Section 4.7. We conclude this chapter by
summarizing our findings in Section 4.8.

4.1 Motivation

Highly-coupled systems, in which modules have unnecessary dependencies, are hard
to maintain and evolve because these modules cannot be easily understood sepa-
rately [Parnas, 1978, Sangal et al., 2005b]. The same rationale applies to class-to-class
dependencies in object-oriented code. In some cases, an excessive number of class
dependencies may be considered an indicator of poor software design. In JavaScript,
the identification of such dependencies is specially challenging due to the lack of types
in the source code. These dependencies form the basis to provide, for example, class
diagrams for JavaScript applications.

In Chapter 3, we proposed a strategy to statically identify classes in legacy
JavaScript code. Figure 4.1 resumes how we intend to enrich this strategy with class-
to-class dependencies. The figure illustrates two class diagrams for a simplified version
of an enrollment system. The first diagram (a) contains information about classes,
methods, attributes, and inheritance relationships. The second diagram (b) comple-

55

56 Chapter 4. Identifying Class Dependencies

ments the first one with type information and dependencies between classes. The
current implementation of JSClassFinder provide the diagram (a). In this chapter,
we investigate the use of type inference to produce a diagram similar to diagram (b).

(a) Class diagram as currently identified
by JSClassFinder

(b) Class diagram with dependencies and types

Figure 4.1: Class diagrams for a simplified enrollment system

Based on the UML specification [Fowler, 2003], we consider two types of class-
to-class dependencies in JavaScript. Associations are particular cases of dependencies
in which a class contains one or more attributes that are bound to instances of other
classes. Figure 4.2 shows two examples of associations in JavaScript. In code (1), the
constructor function for class Z is implemented in lines 8-11. The attribute x, which is
part of class Z, receives an instance of class X (line 10), creating an association between
the two classes. In code (2), the constructor function Z has a parameter x (line 8),
which is assigned to the attribute this.x (line 9). In line 12, an instance of Z is created,
with the parameter x bound to a newly created object of type X. If we consider the
source code of the constructor functions, in code (1) we clearly notice the association
between the two classes. However, in code (2), we need a client code (line 12), with
the instantiation of classes Z and X, to establish the association.

4.2. Using Flow to Infer Dependencies 57

1 // class X
2 function X()
3 {
4 ...
5 }
6 ...
7 // class Z
8 function Z()
9 {

10 this.x = new X();
11 }

(1)

1 // class X
2 function X()
3 {
4 ...
5 }
6 ...
7 // class Z
8 function Z(x) {
9 this.x = x;

10 }
11 ...
12 var z = new Z(new X());

(2)

Figure 4.2: Examples of associations (from class Z to class X)

When a relationship between classes does not involve assignments of objects to
class attributes, we have a uses relationship, because one class just uses the other.
Figure 4.3 shows two examples of dependencies in which a class Z uses another class
X. In code (1), we can see a method foo (lines 1-6) of a class Z. This method creates
an instance of X and stores it in a local variable _x for later use (line 4). In code (2),
method foo receives an object as argument and uses it to invoke its method bar (line
4). The identification of the class dependency is more challenging in code (2) because
there is no direct reference to the “used” class in the source code of the method.

1 Z.prototype.foo =
2 function ()
3 {
4 var _x = new X();
5 ...
6 }

(1)

1 Z.prototype.foo =
2 function(x)
3 {
4 var _bar = x.bar();
5 ...
6 }

(2)

Figure 4.3: Examples of dependencies of type “uses”

In this chapter, the term dependency is used generically to denote associations
and dependencies of the type uses.

4.2 Using Flow to Infer Dependencies

In this section, we describe the usage of a static type checker (Facebook Flow) to
identify dependencies between structures that emulate classes in legacy JavaScript
code. Figure 4.4 presents an overview of this methodology. Given a JavaScript legacy
application, we perform the following steps.

58 Chapter 4. Identifying Class Dependencies

Figure 4.4: Overview of the evaluated approach

Step 1: Identify classes. In this first step, we identify the classes emulated in a legacy
JavaScript codebase using JSClassFinder, which works on the application’s abstract
syntax tree that is generated after pre-processing the source code. The tool then applies
a set of heuristics to identify classes, methods, attributes, and inheritance relationships,
as described in Chapter 3.

Step 2: Infer types. The decision to use Flow for type inference was taken basically
because it is a very active open source project, with more than 390 contributors, 4,800
commits, and almost 13K stars (data collected in August 2017).1 We execute Flow
passing the application’s source code and tests as input. In this case, the tests are
important to determine some of the types involved in class instantiations and method
calls, like in the association showed in code (2) of Figure 4.2. In that example, it is
not possible to establish the association between classes Z and X without the object
instantiation in line 12. Usually, these kind of object instantiation is only present
outside the respective class implementation, e.g., in a test code. By contrast, the class
identification (step 1) is based only on the source files, without the tests, to avoid false
positives for classes that are not part of application’s source code.

The output produced by Flow is a text file that contains the coordinates (line,
column) for every element of the source code (variable, function, object, etc), and their
respective types. Figure 4.5 shows the emulation of a simple class Point (code on the
left) and the correspondent Flow’s output (text on the right). We can see that there
is a function in line 1 of the output file, denoted by the arrow (“=>”), whose name is
located in line 4 of the file Point.js, between columns 10 and 14. This function has
two arguments (x and y) of type number and returns void. Every time the keyword
this is used, Flow infers the structure of the object that it represents as its type. For
example, the structure of the object this that appears in lines 5 and 6 of the legacy

1https://github.com/facebook/flow

https://github.com/facebook/flow

4.2. Using Flow to Infer Dependencies 59

code is {x : number, y : number} (see lines 4 and 7 of Flow’s output file). In this case,
the inferred object represents the attributes of Point. In other words, when a reference
to an emulated class is found, Flow infers the structure of the object that represents
the class as its type.

In JavaScript, the value of this depends on how a function is called, and it may
be different each time the function is called.2 For this reason, we do not have the
return type of function getX in line 11 of the output file. In this case, since getX is not
invoked in the source code, Flow does not infer neither its return type nor the type of
this.x, used inside getX (lines 11-15 of the output file). To overcome this problem, it
is important to pass the tests together with the source code as input for Flow, using
as many function invocations as possible. If we add a call to getX at the end of the
source code on the left, for example p.getX(), then Flow gives the following output:
getX : () => number, identifying that the function returns a number.

Point.js

1 /*
2 Constructor function
3 */
4 function Point (x, y) {
5 this.x = x;
6 this.y = y;
7 }
8
9 /*

10 Method getX()
11 */
12 Point.prototype.getX =
13 function () {
14 return this.x;
15 }
16
17 // Creating an instance
18 var p = new Point (2,3);

⇒

Flow’s output (text file with types)
1 Point.js:4:10 -14: (x:number , y:number)=>void
2 Point.js :4:17: number
3 Point.js :4:20: number
4 Point.js:5:2 -5: {x:number , y:number}
5 Point.js:5:2 -11: number
6 Point.js :5:11: number
7 Point.js:6:2 -5: {x:number , y:number}
8 Point.js:6:2 -11: number
9 Point.js :6:11: number

10 Point.js:12:1 -5: (x:number , y:number)=>void
11 Point.js:12:1 -15: {getX: () => }
12 Point.js :12:1 ,15:2: () =>
13 Point.js :13:2 ,15:2: () =>
14 Point.js :14:13 -16:
15 Point.js :14:13 -18:
16 Point.js :18:5: {x:number , y:number}
17 Point.js:18:9 -22: {x:number , y:number}
18 Point.js :18:13 -17: (x:number , y:number)=>void
19 Point.js :18:19: number
20 Point.js :18:21: number

Figure 4.5: Example of Flow’s output file

Step 3: Locate the dependencies. The classes detected by JSClassFinder (step 1)
and the types inferred by Flow (step 2) are used by a component we implemented for
this study, called Dependency Analyzer (see Figure 4.4). This component uses struc-
tural equivalence to identify associations and uses dependencies, since Flow infers the
structures of objects, including class instances, as their types. In structural equiva-
lence, two values have equivalent types if the types have isomorphic structures [Connor
et al., 1990].

2https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/this

60 Chapter 4. Identifying Class Dependencies

4.3 Study Design

In this section, we detail the design of a study proposed to evaluate the usage of Flow
to detect dependencies between classes in legacy JavaScript systems. First, we present
the dataset and the oracle that we use (Section 4.3.1). Then, we present the research
questions that guide this study (Section 4.3.2).

4.3.1 Dataset and Oracle

For our study, we need systems that emulate classes in legacy JavaScript in order to find
the dependencies between these classes. We also need an oracle of class dependencies
to measure the accuracy of the types inferred by Flow. For these reasons, we use
two TypeScript open-source projects to build this oracle and minimize possible bias.
TypeScript is an extension of JavaScript that offers classes, interfaces, and a gradual
type system [Nance, 2014]. Therefore, by parsing and extracting explicit types in
TypeScript programs, class-to-class dependencies can be found and added to an oracle.
Before performing our analyses, TypeScript code is transpiled3 to vanilla JavaScript.
The automatically generated code contains all constructor functions and methods,
along with their dependencies, implemented according to JavaScript ES5 syntax. The
strategy of using TypeScript projects to build an oracle is also adopted by Rostami
et al. [2016] in their work to detect constructor functions in JavaScript.

Table 4.1 presents the main characteristics of the two TypeScript projects in our
dataset, including version number, size (LOC), number of classes, number of depen-
dencies, and number of dependencies that are class associations. inversifyjs4 is a
lightweight inversion of control container for TypeScript and JavaScript applications.
satellizer5 is an end-to-end token-based authentication module for AngularJS with
built-in support to different service providers.

Table 4.1: Characteristics of the analyzed systems

System Version LOC # Classes # Class # Class
Dependencies Associations

inversifyjs 2.0.1 1,527 20 184 26
satellizer 0.15.5 990 11 46 20

3A transpiler is a source-to-source compiler. Transpilers are used, for example, to convert from
TypeScript to JavaScript, in order to guarantee compatibility with existing browsers and runtime
tools.

4https://github.com/inversify/InversifyJS
5https://github.com/sahat/satellizer

https://github.com/inversify/InversifyJS
https://github.com/sahat/satellizer

4.3. Study Design 61

As an example of a class in TypeScript, Listing 4.1 shows part of the implemen-
tation of class QueryString in inversifyjs. We can see explicit type annotations in
attributes (line 2), which are used to infer associations, and in parameters (lines 4 and
7), which are used to infer uses relations, when building the oracle of class dependencies
used in this chapter.
1 class QueryableString {
2 private str: string;
3
4 constructor(str:string) {
5 this.str = str;
6 }
7 public startsWith (searchString: string): boolean {
8 ...
9 }

10 }

Listing 4.1: Example of class in TypeScript

Listing 4.2 shows a second example that contains class associations in inversi-

fyjs. The import statements (lines 1-3) link the variables (Planner, Resolver, and
Lookup) to the respective classes, implemented in other files. Lines 5-19 contain the
implementation of class Kernel, whose attributes are defined in lines 6-9 and initialized
in the constructor function (lines 12-17). The attributes _planner, _resolver, and
_bindingDictionary receive new instances of the classes Planner, Resolver, and
Lookup, respectively (lines 14-16). Therefore, we count three class associations in this
example.
1 import Planner from "../ planning/planner";
2 import Resolver from "../ resolution/resolver";
3 import Lookup from "./ lookup";
4
5 class Kernel {
6 public guid: string;
7 private _planner: Planner;
8 private _resolver: Resolver;
9 private _bindingDictionary: Lookup <Binding <any >>;

10
11 // Initialize private properties
12 public constructor () {
13 this.guid = guid();
14 this._planner = new Planner ();
15 this._resolver = new Resolver ();
16 this._bindingDictionary = new Lookup <Binding <any >>();
17 }
18 ...
19 }

Listing 4.2: Example of class associations in TypeScript

62 Chapter 4. Identifying Class Dependencies

It is important to mention that the TypeScript code is only used to produce the
oracle of class dependencies (which was performed manually, by this thesis’ author, by
inspecting the source code of the two systems described in Table 4.1). In the study,
Flow is always executed on the legacy JavaScript code, produced by the TypeScript’s
transpiler.

4.3.2 Research Questions

RQ #1 - What is the accuracy of Flow in detecting class-to-class
dependencies?

Answering this first research question is important to assess how accurate and com-
plete are the class-to-class dependencies identified by Flow. The oracle with all class
dependencies allows the measurement of precision and recall.

RQ #2 - Can we improve the accuracy of Flow by expanding require

statements?

Both analyzed systems address module dependencies that comply with CommonJS6 stan-
dard, which is implemented by Node.js. In this module system, JavaScript files use
the built-in function require() to load modules, which can reference other JavaScript
files or entire folders. In this second research question, we intend to improve Flow’s
accuracy by eliminating the need of variables that make reference to class constructor
functions implemented in other modules, using instead the names of these functions
directly. We use the example in Figure 4.6 to illustrate this approach. In this figure,
we initially represent two class constructor functions, X and Z, implemented in files
fileX.js and fileZ.js, respectively. There is a dependency between them, as we can
see in the implementation of fileZ.js (lines 2 and 5). The require() invocation in
line 2 assigns the implementation of X to variable x_1. This variable is then used
to establish the association between X and Z (line 5). In order to eliminate the need
of the variable x_1 and, by consequence, the need of the require statement, in this
research question we propose to “expand” the source code of fileX.js, which is passed
as argument to require, in fileZ.js. As a result, the implementations of X and Z are
bundled together, as we can see in the final implementation of fileZ.js. Therefore,
after bundling together the files that depend on each other, dependencies can be es-
tablished by making direct reference to other class constructor functions, like in line 8
of the bundled file.

6http://www.commonjs.org/

http://www.commonjs.org/

4.4. Results 63

1 // fileX.js
2 function X()
3 {
4 ...
5 }

fileX.js ↘

1 // fileZ.js
2 var x_1 = require("fileX.js");
3
4 function Z() {
5 this.x = new x_1();
6 }

↙ fileZ.js

1 // fileX.js
2 function X() {
3 ...
4 }
5
6 // fileZ.js
7 function Z() {
8 this.x = new X();
9 }

fileZ.js (after expansion)

Figure 4.6: Example of constructor functions Z and X bundled together in a same file

To answer RQ #2, we expanded the source code of all require statements that
import the definitions of other class constructor functions, in both analyzed systems.
Then, we used the resulting files as input for Flow. The transformation proposed in
this research question is similar to the one performed by the C preprocessor when
handling #include directions. The main difference is the need to replace every use of
the variable with the require result by the imported class constructor.

4.4 Results

4.4.1 What is the accuracy of Flow in detecting class-to-class

dependencies?

In this first research question, after executing Flow, we could not identify any class-
to-class dependencies; therefore, we have (P)recision = (R)ecall = 0. After a manual
inspection and analysis, we found that this result is due to the use of variables that
denote constructor functions implemented in other files, like in the example shown in
Listing 4.3. In this case, we can see two import statements (lines 1-2) and the construc-
tor function of class BindingInWhenOnSyntax (lines 4-9) in inversifyjs. Since Flow
cannot determine the return type of function require (lines 1-2), the types of variables
binding_when_syntax_1 (lines 1 and 6) and binding_on_syntax_1 (lines 2 and

64 Chapter 4. Identifying Class Dependencies

7) are unknown. Both analyzed systems rely on variables to import class definitions
from other files. This observation motivated the investigation proposed in RQ #2.

1 var binding_when_syntax_1 = require("./ binding_when_syntax");
2 var binding_on_syntax_1 = require("./ binding_on_syntax");
3

4 function BindingInWhenOnSyntax (binding) {
5 this._binding = binding;
6 this._bindingWhenSyntax= new binding_when_syntax_1(this._binding);
7 this._bindingOnSyntax = new binding_on_syntax_1(this._binding);
8 ...
9 }

Listing 4.3: JavaScript code using variables denoting constructor functions in
inversifyjs

Summary: In the configuration assumed by RQ #1, Flow cannot identify the expected
class-to-class dependencies in the analyzed systems, having (P)recision = (R)ecall = 0.

4.4.2 Can we improve the accuracy of Flow by expanding

require statements?

In this second research question, we expand the source code of classes implemented
in other modules, bundling together the files that depend on each other, and replace
variable references by direct references to the respective class constructor functions.
Table 4.2 summarizes the results according to these transformations. In this case, we
start to have positive results. First, we have high precision values (100%) in both
analyzed systems. In the case of recall, we observe inversifyjs with 86% for all class
dependencies and 96% if we only consider class associations. In the case of satellizer,
recall is 80% for all dependencies and 85% for class associations. In essence, these
results suggest that the type inference mechanism is very conservative. Flow only
makes the decision about a type after finding strong evidences of its use.

Table 4.2: Precision and Recall results

System All Dependencies Associations

TP FP FN Precision Recall TP FP FN Precision Recall

inversifyjs 159 0 25 100% 86% 25 0 1 100% 96%
satellizer 37 0 9 100% 80% 17 0 3 100% 85%

4.5. Explaining the Recall Results in RQ #2 65

Summary: By eliminating and expanding the code of require statements preci-
sion improves to 100% in both systems. The values of recall range from 80% to
86% for all dependencies and from 85% to 96% for associations.

4.5 Explaining the Recall Results in RQ #2

We manually analyzed the source code to understand the cases in which the class-to-
class dependencies could not be identified by Flow when answering the second research
question. We categorized and quantified the false negatives, which are described next.

Use of Dependency Injection (DI). AngularJS7 is a JavaScript-based front-end web
application framework. One of its features is a built-in dependency injection (DI)
subsystem provided as a service [Lerner, 2013, Jain et al., 2015, Ramos et al., 2017].
With this mechanism, instead of creating a dependency directly, developers can request
this service using the directive $inject, and then AngularJS answers providing the
instance they need. Listing 4.4 shows part of the implementation of class Interceptor
in satellizer. The constructor function receives three parameters that represent
instances of other classes (line 2). There is also a factory method that calls this
constructor function (lines 6-9). However, Flow cannot establish the class-to-class
dependencies in this case because the factory method is not called directly in the
source code. Instead, developers use the DI mechanism setting the directive $inject

like is shown in Listing 4.5.

1 // Constructor function (class Interceptor)
2 function I n t e r c ep t o r (S a t e l l i z e rCon f i g , S a t e l l i z e r Sha r ed , S a t e l l i z e r S t o r a g e) {
3 . . .
4 }
5 // Factory method
6 I n t e r c ep t o r . Factory =
7 function (S a t e l l i z e rCon f i g , S a t e l l i z e r Sha r ed , S a t e l l i z e r S t o r a g e) {
8 return new I n t e r c ep t o r (S a t e l l i z e rCon f i g , S a t e l l i z e r Sha r ed ,

S a t e l l i z e r S t o r a g e) ;
9 } ;

Listing 4.4: Factory method for class Interceptor in satellizer

1 // Setting AngularJS directive for dependency injection
2 I n t e r c ep t o r . $inject = [’SatellizerConfig’ , ’SatellizerShared’ , ’

SatellizerStorage’] ;
3 I n t e r c ep t o r . Factory . $inject = [’SatellizerConfig’ , ’SatellizerShared’ , ’

SatellizerStorage’] ;

Listing 4.5: Setting dependency injection directives in satellizer
7https://angular.io/

https://angular.io/

66 Chapter 4. Identifying Class Dependencies

We found nine dependencies that could not be identified by Flow due to the use of
dependency injection in satellizer, including three associations and six dependencies
of type “uses”.

Absence of method invocation. Some methods are never called in any part of the source
code nor tests due to incomplete test coverage or because they represent dead code.
Like pointed out in Section 4.2, Flow may miss types for methods that are not called.
Listing 4.6 shows the implementation of method removeByModuleId from class Lookup,
in inversifyjs. Checking the oracle we can see that the parameter moduleId (line 1)
is of type string, and that this (line 2) is an instance of Lookup. However, in the
legacy code, we cannot determine these types because the method removeByModuleId

is never called in the existing codebase. Moreover, in JavaScript, the value of this is
determined by how a function is called, and it may be different each time the function
is called. Therefore, Flow does not infer the types of moduleId (line 1) and this (line
2). By consequence, the types of _dictionary (line 2), keyValuePair (line 2), and
binding (line 4) are also unknown.

1 Lookup.prototype.removeByModuleId = function (moduleId) {
2 this._dictionary.forEach(function (keyValuePair) {
3 keyValuePair.value =
4 keyValuePair.value.filter(function (binding) {
5 return binding.moduleId !== moduleId;
6 });
7 });
8 ...
9 };

Listing 4.6: Example of method that is not used in inversifyjs

We found eight dependencies of type “uses” in inversifyjs that could not be
identified by Flow because their enclosing methods are not invoked.

Use of the object arguments. JavaScript functions have a built-in object called
arguments. This object contains an array of the arguments used when the function
is invoked. This way, one can call a function passing arguments even when the func-
tion’s signature does not expect any arguments. As an example, Listing 4.7 shows the
implementation of method load from class Kernel, in inversifyjs. We can see by
the function’s signature (line 1) that the method expects no arguments. However, the
loop in lines 5-7 transfers all elements from arguments to the array named modules.
Therefore, method load can be called with arguments, like in the test code shown
in lines 11-14. In line 14, we can see the invocation of method load passing two pa-

4.5. Explaining the Recall Results in RQ #2 67

rameters of type KernelModule. As expected, Flow does not infer the content of the
object arguments (lines 5-6) and, therefore, cannot identify the dependency between
classes Kernel and KernelModule, which is present in this example. By contrast, in
the TypeScript version of method load, this dependency is explicit, as we can see in
Listing 4.8. The argument modules (line 3) is an array of type KernelModule. In this
line code, specifically, the ellipses (“...”) placed before the name of the argument is part
of TypeScript syntax, indicating that the number of elements in modules may vary.

1 Kernel.prototype.load = function () {
2 var _this = this;
3 var modules = [];
4

5 for (var _i = 0; _i < arguments.length; _i++) {
6 modules[_i - 0] = arguments[_i];
7 }
8 ...
9 };

10 // Test code
11 var warriors = new KernelModule (..);
12 var weapons = new KernelModule (..);
13 var kernel = new Kernel ();
14 kernel.load(warriors , weapons);

Listing 4.7: Example of method that uses the built-in object arguments

1 class Kernel {
2 ...
3 public load (... modules: KernelModule []): void {
4 ...
5 modules.forEach ((module) => {
6 let bindFunction = getBindFunction(module.guid);
7 module.registry(bindFunction);
8 });
9 }

10 ...
11 }

Listing 4.8: TypeScript version of method load from class Kernel

We found 12 dependencies of type “uses” in inversifyjs that are not identified
by Flow because the methods make use of the arguments object.

Attributes of type Array. Array is a JavaScript global object that is used in the
construction of arrays, i.e., list-like objects. Neither the length of a JavaScript array nor

68 Chapter 4. Identifying Class Dependencies

the types of its elements are statically pre-defined.8 As an example, Listing 4.9 shows
the constructor function of class Target in inversifyjs. This class has an attribute of
type Array (line 3), called metadata, which is initialized with a new instance of Array.
The conditional statements (lines 4-13) control when elements are added to the array
using the method push (line 12). In this case, when Flow applies the algorithm for
type inference, it indicates that the type of the attribute metadata is simply Array,
without specifying what kind of elements are added. Therefore, we cannot establish
the association between classes Target and Metadata. In the TypeScript code, this
dependency becomes explicit when the attribute of type Array is declared, as we can
see in line 3 of Listing 4.10.

1 function Target (type , name , serviceIdentifier , namedOrTagged) {
2 ...
3 this.metadata = new Array ();
4 var metadataItem = null;
5 if (typeof namedOrTagged === "string") {
6 metadataItem = new Metadata(NAMED_TAG , namedOrTagged);
7 }
8 else if (namedOrTagged instanceof Metadata) {
9 metadataItem = namedOrTagged;

10 }
11 if (metadataItem !== null) {
12 this.metadata.push(metadataItem);
13 }
14 }

Listing 4.9: Example of class constructor that has an attribute of type Array

1 class Target {
2 ...
3 public metadata: Array <Metadata >;
4 ...
5 }

Listing 4.10: TypeScript implementation of a class that has an attribute of type
Array < Metadata >

We found five cases in inversifyjs, including one association and four depen-
dencies of type “uses”, that could not be identified by Flow because the respective
attribute is an instance of Array.

Concluding our analysis of false negatives, Table 4.3 summarizes all the identified
causes along with the number of instances found in both analyzed systems.

8https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

4.6. Discussion and Lessons Learned 69

Table 4.3: Classification of false negatives

Causes of False Negatives All Dependencies Associations

inversifyjs satellizer inversifyjs satellizer

Use of Dependency Injection 0 9 0 3
Absence of method invocation 8 0 0 0
Use of the object arguments 12 0 0 0
Attributes of type Array 5 0 1 0

4.6 Discussion and Lessons Learned

We could not find any class-to-class dependencies when Flow is used in its default
configuration, as in RQ #1. The reason is that Flow cannot infer types for references
across modules. In both analyzed systems, these modules are imported by calling the
function require, which is part of CommonJS module specification. In these cases, the
imported modules are assigned to variables for further use, as showed when investigat-
ing the first research question. As a result, the types of these variables are unknown.
To overcome this problem, we decided to replace the variables that make reference
to constructor functions implemented in other modules by the names of the respec-
tive constructor functions. To achieve this, we expanded the source code imported by
the require statements, gathering the classes that depend on each other in the same
module (file). This last approach achieved the best results for precision and recall. Fi-
nally, we manually analyzed and categorized all false negatives identified in our study,
considering RQ #2.

Due to the dynamic nature of JavaScript, we hypothesize that it would be nec-
essary to combine static and dynamic analysis to tackle the identified causes of false
negatives, improving recall and providing more reliable information. However, it is
known that dynamic analysis brings a new set of challenges to software engineers, such
as code instrumentation and the need to set up and execute every program under anal-
ysis. Therefore, we conclude that the use of Flow to statically infer types and spot
class-to-class dependencies in JavaScript legacy code can achieve an accuracy sufficient
to support its usage by reverse engineering tools. However, we need to expand the
source code in the require statements and to eliminate variable references to classes
implemented in other files.

70 Chapter 4. Identifying Class Dependencies

4.7 Threats to Validity

This section presents threats to validity according to the guidelines proposed by Wohlin
et al. [2012]. These threats are organized in external, internal, and construct validity.

External Validity. We studied two open-source JavaScript/TypeScript systems. For
this reason, our results might not represent all possible cases of class dependencies
and associations. If other systems are considered, the effect of removing references to
classes implemented in other modules can vary. To allow the replication of our study,
the oracle along with the detected dependencies for both systems is available on-line.9

Other external validity is related to the fact that we only address module depen-
dencies that comply with CommonJS. We acknowledge that there are different strategies
to incorporate modules into JavaScript programs, e.g., global functions and AMD10,
which also support modules.

Internal Validity. We analyze JavaScript legacy code automatically generated by
the TypeScript’s transpiler. Perhaps the use of a typed language can favor simpler and
less dynamic applications. It is also possible that applications originally implemented
in JavaScript use different implementation strategies that we do not consider in our
analysis.

Construct Validity. To build the oracle, we manually inspect the TypeScript systems
looking for types representing classes. It is possible that we miss dependencies during
this inspection. However, the analyzed systems are not large, and, since the types
are explicit in the source code, we claim that the oracle contains all class-to-class
dependencies.

4.8 Final Remarks

In this chapter, we evaluate the usage of Flow, a static type-checker for JavaScript,
to infer class-to-class associations and dependencies of type uses in legacy JavaScript
code. We report a study on two open-source projects whose code is transpiled from
TypeScript to JavaScript. We could not find any class-to-class dependencies when Flow
is used in its default configuration, as in the first research question. After expanding
the source code in the require statements to eliminate variable references to class
constructor functions implemented in other modules, our results show that precision
reaches 100% in the two evaluated systems. Flow’s recall ranges from 80% to 86% for

9https://github.com/leonardo-silva/JSClassDependencies
10https://github.com/amdjs/amdjs-api/wiki/AMD

https://github.com/leonardo-silva/JSClassDependencies
https://github.com/amdjs/amdjs-api/wiki/AMD

4.8. Final Remarks 71

all dependencies and from 85% to 96% for associations. Finally, we manually analyzed
and categorized all false negatives identified in our study. These false negatives are due
to: (i) use of dependency injection (9 instances); (ii) absence of method invocation (8
instances); (iii) use of the object arguments (12 instances); and (iv) use of attributes
of type Array (5 instances). The overall results suggest that this approach can be used
to support the implementation of reverse engineering tools for JavaScript. However,
we envision that future solutions should also make use of dynamic analysis to cover all
possible dependencies in JavaScript code.

Chapter 5

Refactoring JavaScript Classes

In this chapter, we investigate the feasibility of rejuvenating legacy JavaScript classes
and, therefore, to increase the chances of code reuse in the language. First, we describe
a study on migrating a dataset of real-world JavaScript systems to adopt the new syntax
for classes provided by ES6 (Section 5.1). We present the set of rules followed to conduct
this migration (Section 5.1.1) and the dataset we use (Section 5.1.2). Then, we quantify
the amount of code (churned and deleted) that can be automatically migrated by the
proposed rules (Section 5.2.1) and we describe a set of cases where manual adjusts
are required to migrate the code (Section 5.2.2). We also describe the limitations of
the new syntax for classes provided by ES6, i.e., the cases where it is not possible to
migrate the code and, therefore, we should expose the prototype-based object system
to ES6 maintainers (Section 5.2.3). Threats to validity are presented in Section 5.3.
Based on the results of our study, we propose a tool to automatically refactor the
cases covered by the proposed set of rules and to warn developers about the cases that
cannot be automatically migrated (Section 5.4). In Section 5.5, we document a set of
reasons that can lead developers to postpone/reject the adoption of ES6 classes. These
reasons are based on the feedback received after submitting pull requests suggesting the
migration to the new syntax. Finally, we conclude this chapter with general remarks
on the refactoring of legacy JavaScript code to use ES6 classes (Section 5.6).

5.1 Study Design

In this section, we describe our study to migrate a set of legacy JavaScript systems
(implemented in ES5) to use the new syntax for classes proposed by ES6. First, we
present the rules followed to conduct this migration (Section 5.1.1). Then, we present
the set of selected systems in our dataset (Section 5.1.2).

73

74 Chapter 5. Refactoring JavaScript Classes

Rule #1: Class

ES5
function C(p0) {

B0;
this.m1 = function(p1) {

B1;
}
B2;

}
C.prototype.m2 = function(p2) {

B3;
}
C.m3 = function(p3) {

B4;
}

⇒

ES6
class C {

constructor(p0) {
B0; B2;

}
m1(p1) {

B1;
}
m2(p2) {

B3;
}
static m3(p3) {

B4;
}

}

Rule #2: Subclasses

ES5
class C {

B0;
}
C.prototype = new D();

⇒
ES6

class C extends D {
B0;

}

Rule #3: super() calls

ES5
class C extends D {

B0;
constructor(p0) {

B1; D.call(this , p1); B2;
}
B3;
m1(p2) {

B4;
D.m2.call(this , p3);
B5;

}
B6;

}

⇒

ES6
class C extends D {

B0;
constructor(p0) {

B1; super(p1); B2;
}
B3;
m1(p2) {

B4;
super.m2.(p3);
B5;

}
B6;

}

Figure 5.1: Migration rules (pi is a formal parameter list and Bi is a block of statements)

5.1.1 Migration Rules

Figure 5.1 presents three basic rules to migrate classes emulated in legacy JavaScript
code to use the ES6 syntax. Each rule defines a transformation that, when applied to
legacy JavaScript code (program on the left) produces a new code in ES6 (program on
the right). Starting with Rule #1, each rule should be applied multiple times, until a
fixed point is reached. After that, the migration proceeds by applying the next rule.
The process finishes after reaching the fixed point of the last rule.

5.1. Study Design 75

For each rule, the left side is the result of “desugaring” this program to the legacy
syntax. The right side of the rule is a template for an ES6 program using the new
syntax. Since there is no standard way to define classes in ES5, we consider three
different patterns of method implementation, including methods inside/outside class
constructors and using prototypes [Silva et al., 2015b, Gama et al., 2012]. Rule #1
defines the migration of a class C with three methods (m1, m2, and m3) to the new
class syntax (which relies on the keywords class and constructor). Method m1 is
implemented inside the body of the class constructor, m2 is bound to the prototype of
C, and m3 is also implemented outside the class constructor but it is not bound to the
prototype (static method).1 Rule #2, which is applied after migrating all constructor
functions and methods, generates subclasses in the new syntax (by introducing the
extends keyword). Finally, Rule #3 replaces calls to super class constructors and to
super class methods by making use of the super keyword.

There are no rules for migrating fields, because they are declared with the same
syntax both in ES5 and ES6 (see Chapter 2, Section 2.1.2). Moreover, fields are most
often declared in constructor functions or less frequently in methods. Therefore, when
we migrate these elements to ES6, the field declarations performed in their code are
also migrated.

5.1.2 Dataset

We select systems that emulate classes in legacy JavaScript code in order to migrate
them to the new syntax. In Chapter 3, we presented an empirical study on the use
of classes in legacy JavaScript systems. In this chapter, we select eight systems from
the dataset used in this previous study. The selected systems have at minimum one
and at maximum 100 classes, and 40 KLOC. For each system, this study includes the
checkout from GitHub, the setup of development environment, and the execution of
the existing tests before and after the migration.

Table 5.1 presents the selected systems, including a brief description, checkout
date, size (LOC), number of files, number of classes (NOC), number of methods (NOM),
and class density (CD). CD is the ratio of functions in a program that are related to the
emulation of classes (i.e., functions which act as methods or class constructors) [Silva
et al., 2015b]. JSClassFinder [Silva et al., 2015a] was used to identify the classes
emulated in legacy code and to compute the measures presented in Table 3.1. The selec-
tion includes well-known and widely used JavaScript systems, from different domains,

1For the sake of legibility, Rule #1 assumes a class with only one method in each idiom. The
generalization for multiple methods is straightforward.

76 Chapter 5. Refactoring JavaScript Classes

covering frameworks (socket.io and grunt), graphic libraries (isomer), visualiza-
tion engines (slick), data structures and algorithms (algorithms.js), and a motion
detector (parallax). The largest system (pixi.js) has 23,952 LOC, 83 classes, and
134 files with .js extension. The smallest system (fastclick) has 846 LOC, one class,
and a single file. The average size is 4,681 LOC (standard deviation 7,881 LOC), 15
classes (standard deviation 28 classes) and 29 files (standard deviation 48 files).

Table 5.1: JavaScript systems whose classes where migrated to ES6, ordered by the
number of classes.

System Description Checkout LOC Files Classes Methods Class
Date Density

fastclick Library to remove click delays 01-Sep-16 846 1 1 16 0.74
grunt JavaScript task runner 30-Aug-16 1,895 11 1 16 0.16
slick Carousel visualization engine 24-Aug-16 2,905 1 1 94 0.90
parallax Motion detector for devices 31-Aug-16 1,018 3 2 56 0.95
socket.io Realtime app framework 25-Aug-16 1,408 4 4 59 0.95
isomer Isometric graphics library 02-Sep-16 990 9 7 35 0.79
algorithms.js Data structures & algorithms 21-Aug-16 4,437 70 20 101 0.54
pixi.js Rendering engine 05-Sep-16 23,952 134 83 518 0.71

5.2 Migration Results

We follow the rules presented in Section 5.1 to migrate the systems in our dataset to
ES6. We classify the migrated code in three groups:

• The Good Parts. Cases that are straightforward to migrate, without the need
of further adjusts, by just following the migration rules defined in Section 5.1.1.
After this study, we used the lessons learned to develop a refactoring tool that
can handle the good cases automatically, as we discuss in Section 5.4.

• The Bad Parts. Cases that require manual and ad-hoc migration. Essentially,
these cases are associated with semantic conflicts between the structures used
to emulate classes in ES5 and the new constructs for implementing classes in
ES6. For example, function declarations in ES5 are hoisted (i.e., they can be
used before the point at which they are declared in the source code), whereas
ES6 class declarations are not.

• The Ugly Parts. Cases that cannot be migrated due to limitations and restric-
tions of ES6 (e.g., lack of support to static fields). For this reason, in such cases
we need to keep the legacy code unchanged, exposing the prototype mechanism
of ES5 in the migrated code, which in our view results in “ugly code”. As a
result, developers are not shielded from manipulating prototypes.

5.2. Migration Results 77

In the following sections, we detail the migration results according to the proposed
classification.

5.2.1 The Good Parts

As mentioned, the “good parts” are the ones handled by the rules presented in Sec-
tion 5.1.1. To measure the amount of source code converted by the proposed algorithm
we use the following churn metrics [Nagappan and Ball, 2005]: (a) Churned LOC is the
sum of the added and changed lines of code between the original and the migrated
versions, (b) Deleted LOC is the number of lines of code deleted between the original
and the migrated version, (c) Files churned is the number of source code files that
churned. We also use a set of relative churn measures as follows: Churned LOC / Total

LOC, Deleted LOC / Total LOC, Files churned / File count, and Churned LOC /
Deleted LOC. This last measure quantifies new development. Churned and deleted
LOC are computed by GitHub. Total LOC is computed on the migrated code.

Table 5.2 presents the measures for the proposed code churn metrics. pixi.js is
the system with the greatest number of classes and methods, 83 and 518 respectively.
It also has the greatest absolute churned and deleted LOC, 8,879 and 8,805 lines of
code, respectively. The smallest systems in terms of number of classes and methods
are fastclick and grunt. For this reason, they have the lowest values for absolute
churned measures. Regarding the relative churn metrics, parallax and socket.io

are the systems with the greatest values for class density, 0.95 each, and they have the
highest relative churned measures. parallax has relative churned equals 0.76 and
relative deleted equals 0.75. socket.io has relative churned equals 0.77 and relative
deleted equals 0.75. Finally, the values of Churned / Deleted are approximately equal
one in all systems, indicating that the impact in the size of the systems was minimum.
In fact, the proposed migration algorithm is responsible for many “move” operations to
place the functions (methods and class constructors) in the body of the newly created
class structures.

In summary, the relative measures to migrate to ES6 range from 0.16 to 0.77 for
churned code, from 0.15 to 0.75 for deleted code, and from 0.21 to 1.11 for churned
files. Essentially, these measures correlate with the class density of the legacy systems.

5.2.2 The Bad Parts

As detailed in the beginning of this section, the “bad parts” are cases not handled
by the proposed migration rules. To make the migration possible, these cases require

78 Chapter 5. Refactoring JavaScript Classes

Table 5.2: Churned metric measures

System Absolute Churn Measures Relative Churn Measures Churned /

Churned Deleted Files Churned Deleted Files Deleted

fastclick 635 630 1 0.75 0.74 1.00 1.01
grunt 296 291 1 0.16 0.15 0.09 1.02
slick 2,013 1,987 1 0.69 0.68 1.00 1.01
parallax 772 764 2 0.76 0.75 0.67 1.01
socket.io 1,090 1,053 4 0.77 0.75 1.00 1.04
isomer 701 678 10 0.71 0.68 1.11 1.03
algorithms.js 1,379 1,327 15 0.31 0.30 0.21 1.04
pixi.js 8,879 8,805 82 0.37 0.37 0.61 1.01

manual adjustments in the source code. We found four types of “bad cases” in our
study, which are described next.

Accessing this before super. To illustrate this case, Listing 5.1 shows the emulation
of class PriorityQueue which inherits from MinHeap, in algorithms.js. In this
example, lines 8-9 implement a call to the super class constructor using a function as
argument. This function makes direct references to this (line 9). However, in ES6,
these references yield an error because super calls must proceed any reference to this.
The rationale is to ensure that variables defined in a superclass are initialized before
initializing variables of the current class. Other languages, such as Java, have the same
policy regarding class constructors.

1 // Legacy code
2 function MinHeap(compareFn) {
3 this._comparator = compareFn;
4 ...
5 }
6
7 function PriorityQueue () {
8 MinHeap.call(this , function(a, b) {
9 return this.priority(a) < this.priority(b) ? -1 : 1;

10 });
11 ...
12 }
13
14 PriorityQueue.prototype = new MinHeap ();

Listing 5.1: Passing this as argument to super class constructor

Listing 5.2 presents the solution adopted to migrate the code in Listing 5.1. First,
we create a setter method to define the value of the _comparator property (lines 4-6).

5.2. Migration Results 79

Then, in the constructor of PriorityQueue we first call super() (line 11) and then we
call the created setter method (lines 12-15). In this way, we guarantee that super() is
used before this.

1 // Migrated code
2 class MinHeap {
3 ...
4 setComparator(compareFn) {
5 this._comparator = compareFn;
6 }
7 }
8
9 class PriorityQueue extends MinHeap {

10 constructor () {
11 super();
12 this.setComparator(
13 (function(a, b) {
14 return this.priority(a) < this.priority(b) ? -1 : 1;
15 }).bind(this));
16 ...
17 }
18 }

Listing 5.2: By creating a setter method (lines 4-6) we guarantee that super is called
before using this in the migrated code

We found three instances of classes accessing this before super in our study, two
instances in algorithms.js and one in pixi.js.

Calling class constructors without new. This pattern is also known as “factory method”
in the literature [Fowler and Beck, 1999]. To illustrate this second “bad case” faced
in the migration to ES6, Listing 5.3 shows part of a Server class implementation in
socket.io. In this example, the conditional statement (line 3) verifies if this is an
instance of Server, returning a new Server otherwise (line 4). This implementation
allows calling Server with or without creating an instance first, as illustrated in List-
ing 5.4. However, ES6 does not allow class invocations as the one presented in line 2
of Listing 5.4.

1 // Legacy code
2 function Server(srv , opts){
3 if (!(this instanceof Server))
4 return new Server(srv , opts);
5 ...
6 }

Listing 5.3: Constructor of class Server in system socket.io

80 Chapter 5. Refactoring JavaScript Classes

1 // Legacy code
2 var io = Server ();
3 // or
4 var io = new Server ();

Listing 5.4: Two class instantiation idioms in socket.io

Listing 5.5 shows the solution adopted in this case. We first renamed class Server
to _Server (line 2). Then we changed the function Server from the legacy code to
return an instance of this new type (line 10). This solution does not have any impact
in client systems, i.e., it is able to handle both class instantiation idioms presented in
Listing 5.4.

1 // Migrated code
2 class _Server{
3 constructor(srv , opts){
4 ...
5 }
6 }
7
8 function Server(srv , opts){
9 if (!(this instanceof _Server))

10 return new _Server(srv , opts);
11 }

Listing 5.5: Workaround to allow calling Server with or without new

In our study, we found one instance of class that allows calling its constructor
method without using new, in socket.io.

Hoisting. In programming languages, hoisting denotes the possibility of referencing a
variable anywhere in the code, even before its declaration. In ES5, legacy function
declarations are hoisted, whereas ES6 class declarations are not.2 As a result, in ES6
we first need to declare a class before making reference to it. As an example, Listing 5.6
shows the implementation of class Namespace in socket.io. Namespace is assigned to
module.exports (line 2) before its constructor is declared (line 3). Therefore, in the
migrated code we needed to change the order of these declarations.

Listing 5.7 shows another example of a hoisting problem, this time in
pixi.js. In this example, a global variable receives an instance of the class
DisplayObject (line 2) before the class definition. However, in this case the vari-
able _tempDisplayObjectParent is also used by the class DisplayObject (line 7).

2https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes

5.2. Migration Results 81

1 // Legacy code
2 module.exports = Namespace;
3 function Namespace {...} // constructor function

Listing 5.6: Function Namespace is referenced before its definition

Furthermore, pixi.js uses a lint-like static checker, called ESLint3, that prevents the
use of variables before their definitions. For this reason, we cannot just reorder the
statements to solve the problem, as in Listing 5.6.

1 // Legacy code
2 var _tempDisplayObjectParent = new DisplayObject ();
3
4 DisplayObject.prototype.getBounds = function (..)
5 {
6 ...
7 this.parent = _tempDisplayObjectParent;
8 }

Listing 5.7: Hoisting problem in pixi.js

Listing 5.8 shows the adopted solution in this case. First, we assigned null to
_tempDisplayObjectParent (line 2), but keeping its definition before the implemen-
tation of class DisplayObject (lines 4-6). Then we assign the original value, which
makes reference to DisplayObject, after the class declaration (line 7).

1 // Migrated code
2 var _tempDisplayObjectParent = null;
3
4 class DisplayObject {
5 ...
6 }
7 _tempDisplayObjectParent = new DisplayObject ();

Listing 5.8: Solution for hoisting problem in pixi.js

We found 88 instances of hoisting problems in our study, distributed over three
instances in algorithms.js, four instances in socket.io, one instance in grunt,
and 80 instances in pixi.js.

Alias for method names. Legacy JavaScript code can declare two or more methods
pointing to the same function. This usually happens when developers want to rename
a method without breaking the code of clients. The old name is kept for the sake of

3http://eslint.org/

http://eslint.org/

82 Chapter 5. Refactoring JavaScript Classes

compatibility. Listing 5.9 shows an example of alias in slick. In this case, slick

clients can use addSlide or slickAdd to perform the same task.

1 // Legacy code
2 Slick.prototype.addSlide =
3 Slick.prototype.slickAdd =
4 function(markup , index , addBefore) { ... };

Listing 5.9: Two prototype properties sharing the same function

Since we do not have a specific syntax to declare method alias in ES6, the solution
we adopted was to create two methods and to make one delegate the call to the other one
that implements the feature, as presented in Listing 5.10. In this example, addSlide
(lines 7-9) just delegates any calls to slickAdd (line 4).

1 // Migrated code
2 class Slick {
3 ...
4 slickAdd(markup , index , addBefore) { ... }
5
6 // Method alias
7 addSlide(markup , index , addBefore) {
8 return slickAdd(markup , index , addBefore);
9 }

10 }

Listing 5.10: Adopted solution for method alias in slick

We found 39 instances of method alias in our study, distributed over 25 instances
in slick (confined in one class), 8 instances in socket.io (spread over three classes),
and 6 instances in pixi.js (spread over six classes).

5.2.3 The Ugly Parts

The “ugly parts” are the ones that make use of features not supported by ES6. To
make the migration possible, these cases remain untouched in the legacy code.

Getters and setters only known at runtime (meta-programming). In the ES5 implemen-
tation supported by Mozilla, there are two prototype features, __defineGetter__
and __defineSetter__, that allow binding an object’s property to functions that
work as getters and setters, respectively.4 Listing 5.11 shows an example in socket.io.

4https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Working_with_
Objects#Defining_getters_and_setters

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Working_with_Objects#Defining_getters_and_setters
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Working_with_Objects#Defining_getters_and_setters

5.2. Migration Results 83

In this code, the first argument passed to __defineGetter__ (line 2) is the name of
the property and the second one (lines 3-5) is the function that will work as getter to
this property.

1 // Legacy code
2 Socket.prototype.__defineGetter__(’request ’,
3 function (){
4 return this.conn.request;
5 }
6);

Listing 5.11: Getter definition in socket.io using __defineGetter__

By contrast, ES6 provides specific syntax to implement getters and setters within
the body of the class structure. Listing 5.12 presents the ES6 version of the example
shown in Listing 5.11. Declarations of setters follow the same pattern.

1 // Migrated code
2 class Socket {
3 get request () {
4 return this.conn.request;
5 }
6 ...
7 }

Listing 5.12: Getter method in ES6

However, during the migration of a getter or setter, if the property’s name is not
known at compile time (e.g., if it is denoted by a variable), we cannot migrate it to
ES6. Listing 5.13 shows an example from socket.io. In this case, a new getter is
created for each string stored in an array called flags. Since the string values are only
known at runtime, this implementation was left unchanged in our migration.

1 // Legacy code
2 flags.forEach(function(flag){
3 Socket.prototype.__defineGetter__(flag ,
4 function (){
5 ...
6 });
7 });

Listing 5.13: Getter methods only known in execution time

We found five instances of getters and setters defined for properties only known
at runtime, all in socket.io.

84 Chapter 5. Refactoring JavaScript Classes

Static data properties. In ES5, usually developers use prototypes to implement static
properties, i.e., properties shared by all objects from a class. Listing 5.14 shows two
examples of static properties, ww and orientationStatus, that are bound to the pro-
totype of the class Parallax. By contrast, ES6 classes do not have specific syntax for
static properties. Because of that, we adopted an “ugly” solution leaving code defining
static properties unchanged in our migration.

1 // Prototype properties (legacy code)
2 Parallax.prototype.ww = null;
3 Parallax.prototype.orientationStatus = 0;

Listing 5.14: Static properties defined over the prototype in Parallax

We found 42 instances of static properties in our study, 28 in parallax and 14
in pixi.js.

Optional features. Among the meta-programming functionalities supported by ES5,
we found classes providing optional features by implementing them in separated mod-
ules [Apel and Kästner, 2009]. Listing 5.15 shows a feature in pixi.js that is imple-
mented in a module different than the one where the object’s constructor function is
defined. In this example, the class Container is defined in the module core, which is
imported by using the function require (line 2). Therefore, getChildByName (lines
4-5) is an optional feature that is only incorporated to the system’s core when the
module implemented in Listing 5.15 is used.

1 // Legacy code
2 var core = require(’../ core’);
3
4 core.Container.prototype.getChildByName =
5 function (name) { ... };

Listing 5.15: Method getChildByName is an optional feature in class Container

In our study, the mandatory features implemented in module core were properly
migrated, but core’s optional features remained in the legacy code. Moving these
features to core would make them mandatory in the system.

We found six instances of classes with optional features in our study, all in pixi.js.

5.3. Threats to Validity 85

5.3 Threats to Validity

This section presents threats to validity according to the guidelines proposed by Wohlin
et al. [2012]. These threats are organized in external, internal, and construct validity.

External Validity. We studied eight open-source JavaScript systems. For this reason,
our collection of “bad” and “ugly” cases might not represent all possible cases that
require manual intervention or that cannot be migrated to the new syntax of ES6. If
other systems are considered, this first catalogue of bad and ugly cases can increase.

Internal Validity. It is possible that we changed the semantics of the systems after
the migration to ES6. However, we tackled this threat with two procedures. First, all
systems in our dataset include a large number of tests. We assure that all the tests also
pass in the ES6 code. Second, we submitted our changes to the system’s developers
(Section 5.5). They have not appointed changes in behavior in our code.

Construct Validity. The classes emulated in the legacy code were detected by an
in-house tool, called JSClassFinder [Silva et al., 2015b,a]. Therefore, it is possible
that JSClassFinder wrongly identifies some structures as classes (false positives) or
that it misses some classes in the legacy code (false negatives). However, the developers
who analyzed our migrated code did not complain about such problems.

5.4 Tool Support

Based on the lessons learned in our study to migrate JavaScript legacy code to use
ES6 classes (Section 5.2), we propose a tool, named JSClassRefactor, to handle
the migration of the good cases and to report occurrences of bad and ugly cases. First,
we describe design and implementation details (Section 5.4.1) and then we present an
evaluation of the proposed tool (Section 5.4.2).

5.4.1 Design and Implementation

Figure 5.2 presents an overview of the proposed migration tool. Given a legacy
JavaScript application, we first use JSClassFinder to identify the class-like struc-
tures in the source code. This information is exported to a text file in CSV format,
including, for each class: name, methods, parent class name, and LOC information
(“start” and “end” line numbers) on every function that is either a class constructor or
a method. The CSV file also contains information about bad and ugly cases, including
the number of constructor calls without using new, aliases for methods, dynamic and

86 Chapter 5. Refactoring JavaScript Classes

static data properties, optional features, and if there is any occurrence of this used
before super in the class. All this data serves as input for the module JSClassRefac-

tor, in a second step. This module is responsible for producing a new version of the
JavaScript application with the good cases migrated to the ES6 syntax for classes, and
a list of the identified bad and ugly cases.

Figure 5.2: Migration Tool

As an example of the class-like structures used by JSClassRefactor as input,
Table 5.3 presents part of the CSV file for class TextStyle in system pixi.js. The first
seven columns (from filePath to parent) contain structural information necessary to
migrate “the good parts” of an application. Start and end line numbers are used to
locate a function in a file. We could also use start and end column numbers, if necessary,
to be more precise. The column type indicates whether the function corresponds to a
class constructor or method. The column parent is empty in this example because class
TextStyle does not have a parent class in the application. The other columns (after
parent) are specific to identify bad and ugly cases. In this example, these columns
indicate that there is no call without new to the constructor function, that the methods
do not have aliases, and that the class has one static data property.

Table 5.3: Part of the CSV file exported by JSClassFinder for class TextStyle in
pixi.js.

filePath class function start end type parent calls aliases static
line line without data ...

new prop.

../text/TextStyle TextStyle TextStyle 40 44 constr. 0 1

../text/TextStyle TextStyle clone 83 91 method 0

../text/TextStyle TextStyle reset 96 99 method 0

5.4.2 Evaluation

We evaluated the JSClassRefactor tool using the same dataset of our study,
presented in Section 5.1.2. The goal was to migrate the good cases automatically

5.4. Tool Support 87

before
1 /**
2 * Binary Search Tree
3 */
4 function BST(compareFn) {
5 this.root = null;
6 this._size = 0;
7 /**
8 * @var Comparator
9 */

10 this._comparator = new
Comparator(compareFn);

11 ...
12 }

⇒

after
1 class BST {
2 constructor(compareFn) {
3 this.root = null;
4 this._size = 0;
5 /**
6 * @var Comparator
7 */
8 this._comparator = new

Comparator(compareFn);
9 ...

10 }
11 }

Figure 5.3: Migration of constructor function with comments in algorithms.js

and to show the tool’s accuracy on identifying the instances of bad and ugly cases.
We summarize the results as follows, for the good parts and for each bad and ugly case.

The good parts. We implemented the migration rules defined in Section 5.1.1 to handle
the good parts producing a new version of a given application, using the ES6 syntax
for classes. We could verify a single limitation regarding comments written outside a
function’s body in the source code. These comments could not be migrated together
with their respective functions. As an example, Figure 5.3 shows the migration of a
constructor function in system algorithms.js, with comments before (lines 1-3; left
side) and inside (lines 7-9; left side) the function body. In this case, the comments
inside the function are properly migrated to the new class structure (lines 5-7; right
side), but the tool is not able to link the comments that come before or after the
function declaration to the code to be migrated.

The bad parts. All instances pointed out in our study for “Accessing this before super”
and “Alias for method names” were also identified by the tool. We highlight that this
identification aims only to notify the user/developer, without performing any changes.
The results for the other bad cases are reported next.

Calling class constructors without new. These cases can only be identified by JSClass-

Refactor if the call is made in the same module where the class is defined. Figure
5.4 shows an example of constructor call without new that could not be identified in
socket.io. In this example, the constructor function for class Server (code on the
left) is implemented in the index.js file, while there is a call to this constructor func-
tion in another file (client.js; code on the right). JSClassRefactor is not able
to determine that the variable Server, in client.js, represents the class Server, in

88 Chapter 5. Refactoring JavaScript Classes

index.js
function Server () {

...
}

client.js
var Server = require(’../ index.js’);
...
var io = Server ();

Figure 5.4: Constructor declaration and constructor call in different modules

index.js. This is because the call to require (client.js) can return any object type.
Therefore, it is not trivial to infer this kind of return type.

Hoisting. In its current version, JSClassRefactor is not able to determine if there is
any reference to a class before its declaration (hoisting). This limitation exists because,
when analyzing the AST of a JavaScript application, JSClassFinder ignores values
assigned to global variables. For example, the assignment in the second line of Listing
5.17 is ignored during analysis, and, as we pointed out in Section 5.2.2, this kind of
assignment before the class definition breaks the hoisting condition.

1 // Legacy code
2 module.exports = SpriteMaskFilter;
3
4 function SpriteMaskFilter(sprite) {
5 ...
6 }

Listing 5.17: The value assigned to module.exports is ignored during the analysis of
the AST

The ugly parts. All instances pointed out in our study for “Getters and setters only
known at runtime (meta-programming)” and “Static data properties” were also iden-
tified by the tool. This identification, like happens with the bad cases, aims only to
notify the user/developer, without performing any transformation. The results for the
identification of “Optional features” are reported next.

Optional features. The proposed tool could identify one class with optional features,
out of six detected in the manual study. Listing 5.18 shows an example of optional
feature in pixi.js that could not be identified. In this case, a new method called
getGlobalPosition is added to a class (Container), which is implemented in another
module (core). The main problem with the identification of optional features is ex-
actly the fact that they are implemented in other modules than the one where the class
constructor is located. However, this case is slightly different from the one presented
in Figure 5.4 for calling class constructors without new. Here we can expect that the

5.5. Feedback from Developers 89

variable represents a class because a new method is added to it, differently from a sim-
ple function call in another module. Therefore, JSClassRefactor can look for the
specific class definition based on the left side of the assignment (line 4). Even though,
the optional feature in listing 5.18 could not be identified because JSClassFinder

could not link the class Container with the reference core.Container in line 4. Since
JavaScript allows composite names for functions, core.Container can make reference
to a function named core.Container or to a function named Container inside a mod-
ule core. JSClassFinder lacks support for this kind of class reference in modular
composite names.

1 // Import statement to use the module ’core’
2 var core = require(’../ core’);
3
4 core.Container.prototype.getGlobalPosition =
5 function (point) { ... };

Listing 5.18: Optional feature that could not be detected

Listing 5.19 shows an optional feature for the class DisplayObject, in pixi.js,
that could be identified by JSClassRefactor. The identification was possible due
to the declaration of the variable DisplayObject (line 2) that eliminates the use of
a composite name in the class reference (line 4). Even in this case, the identification
can be considered “fragile” because the name of the variable may not match the name
of the class (e.g., the variable could be named “Display” or “DisplayObj”)5, and this
would prevent the proposed tools from linking the variable to the correct class.

1 var core = require(’../ core’),
2 DisplayObject = core.DisplayObject;
3
4 DisplayObject.prototype._renderCachedWebGL =
5 function (renderer) { ... }

Listing 5.19: Optional feature detected by JSClassRefactor

5.5 Feedback from Developers

After migrating the code and handling the bad parts, we take to the JavaScript de-
velopers the discussion about accepting the new version of their systems in ES6. For

5In our experiments, we can see that developers usually declare this kind of variable using the
same name of the class, but this is not mandatory in JavaScript.

90 Chapter 5. Refactoring JavaScript Classes

every system, we create a pull request (PR) with the migrated code, suggesting the
adoption of ES6 classes. Table 5.4 details these pull requests presenting their ID on
GitHub, the number of comments they triggered, the opening date, and their status
on the date when the data was collected (October 12th, 2016).

Table 5.4: Created Pull Requests.

System ID # Comments Opening Status on
Date 12-Oct-16

fastclick #500 0 01-Sep-16 Open
grunt #1549 2 31-Aug-16 Closed
slick #2494 5 25-Aug-16 Open
parallax #159 1 01-Sep-16 Open
socket.io #2661 4 29-Aug-16 Open
isomer #87 3 05-Sep-16 Closed
algorithms.js #117 4 23-Aug-16 Open
pixi.js #2936 14 09-Sep-16 Merged

Five PRs (62%) are still open. The PR for fastclick has no comments. This
repository seems to be sparsely maintained, since its last commit dates from April, 2016.
The comments in the PRs for slick, socket.io, and parallax suggest that they
are still under evaluation by the developer’s team. In the case of algorithms.js, the
developer is in favor of ES6 classes, although he believes that it is necessary to transpile
the migrated code to ES5 for the sake of compatibility.6 However, he does not want the
project to depend on a transpiler, such as Babel7, as stated in the following comment:

“I really like classes and I’m happy with your change. Even though most modern
browsers support classes, it would be nice to transpile to ES5 to secure compatibil-
ity. And I’m not sure it would be good to add Babel as a dependency to this package.
So for now I think we should keep this PR on hold for a little while...” (Developer of
system algorithms.js)

We have two closed PRs whose changes were not merged. The developer of grunt

chose not to integrate the migrated code because the system has to keep compatibility
with older versions of node.js8 that do not support ES6 syntax, as stated in the
following comment:

“We currently support node 0.10 that does not support this syntax. Once we are able to
drop node 0.10 we might revisit this.” (Developer of system grunt)

6A transpiler is a source-to-source compiler. Transpilers are used, for example, to convert back
from ES6 to ES5, in order to guarantee compatibility with older browsers and runtime tools, like
node.js.

7https://babeljs.io/
8https://nodejs.org

https://babeljs.io/
https://nodejs.org

5.6. Final Remarks 91

In the case of isomer, the developers decided to keep their code according to
ES5, because they are not enthusiasts of the new class syntax in ES6:

“IMHO the class syntax is misleading, as JS “classes” are not actually classes. Using
prototypal patterns seems like a simpler way to do inheritance.” (Developer of system
isomer)

The PR for system pixi.js was the largest one, with 82 churned files, and all the
proposed changes were promptly accepted, as described in this comment:

“Awesome work! It is really great timing because we were planning on doing this very
soon anyways.”

The developers also mentioned the need to use a transpiler to keep compatibility
with other applications that do not support ES6 yet, and they chose to use Babel for
transpiling, as stated in the following comments:

“Include the babel-preset-es2015 module in the package.json devDependencies.”... “Un-
fortunately, heavier dev dependencies are the cost right now for creating more main-
tainable code that’s transpiled. Babel is pretty big and other tech like TypeScript, Cof-
feescript, Haxe, etc have tradeoffs too.” (Developer of system pixi.js)

Finally, the pixi.js developers also discussed the adoption of other ES6 features,
e.g., using arrow functions expressions and declaring variables with let and const, as
stated in the following comment:

“I think it makes more sense for us to make a new Dev branch and start working on
this conversion there (starting by merging this PR). I’d like to make additional passes
on this for const/let usage, fat arrows instead of binds, statics and other ES6 features.”
(Developer of system pixi.js)

5.6 Final Remarks

In this chapter, we report a study on migrating structures that emulate classes in legacy
JavaScript code to adopt the new syntax for classes introduced by ES6. We present
a set of migration rules based on the most frequent use of class emulations in ES5.
We then convert eight legacy JavaScript systems to use ES6 classes. In our study, we
detail cases that are straightforward to migrate (the good parts), cases that require
manual and ad-hoc migration (the bad parts), and cases that cannot be migrated due
to limitations and restrictions of ES6 (the ugly parts). This study indicates that the
migration rules are sound but incomplete, since most of the studied systems (75%)

92 Chapter 5. Refactoring JavaScript Classes

contain instances of bad and/or ugly cases. We also used the lessons learned during
this study to propose a tool that automatically handles the good parts and exposes the
bad and ugly parts. Finally, we collect the perceptions of JavaScript developers about
migrating their code to use the new syntax for classes.

Our findings suggest that (a) proposals to automatically translate from ES5 to
ES6 classes can be challenging and risky; (b) developers tend to move to ES6, but
compatibility issues are making them postpone their decisions; (c) developers opinions
diverge about the use of transpilers to keep compatibility with ES5; (d) there are
demands for new class-related features, which can be introduced in future JavaScript
versions, such as static fields, method deprecation, and partial classes (which can help
in the implementation of optional features). In fact, we also found a proposal to include
“class static fields” in ECMAScript.9

We collected evidences that developers plan to move to ES6 in the near future.
Developers from system pixi.js indeed accepted our PR; developers from six other
systems manifested interest in migrating their systems, but only postponed the decision
due to compatibility concerns. Only one developer showed a critical view about classes,
and manifested his preference for the original prototype mechanism. We conjecture
that these concerns tend to disappear in the near future, specially because tools in the
JavaScript ecosystem evolve very rapidly. Moreover, there are two other reasons that
help to explain the low acceptance rate of the PRs. First, it is known that PRs that
change large portions of the code base at a time have less changes of being understood
and evaluated [Tsay et al., 2014]. Second, it is natural that changes submitted by
someone outside the community take longer to be considered by project managers.

9https://github.com/tc39/proposal-class-public-fields

https://github.com/tc39/proposal-class-public-fields

Chapter 6

Conclusion

In this chapter, we present our closing points and arguments. We summarize the
outcome of this thesis (Section 6.1) and review our main contributions (Section 6.2).
Finally, we outline possible ideas for future work (Section 6.3).

6.1 Summary

JavaScript is the most popular programming language for Web applications. The lan-
guage is also gaining popularity in the server-side space since the release of Node.js.
Due to the increasing usage of JavaScript, there is a great demand to write JavaScript
code that is reliable and maintainable. Despite the effort in state-of-the-art research
regarding software comprehension and analysis of legacy JavaScript systems, there
is no solution that covers the identification of class-like structures that include at-
tributes, methods, inheritance relationships, and coupling information between these
entities. Moreover, most JavaScript applications can be considered as legacy code, i.e.,
applications implemented according to versions prior to ECMAScript 6 (ES6), with-
out syntactic support for classes. Considering this context, in this thesis, we define,
implement, and evaluate: (i) a set of heuristics to identify class-like structures, and
their dependencies, in legacy JavaScript code; (ii) a set of rules to migrate class-like
structures from ES5 to ES6.

After the study reported in Chapter 3, we concluded that JavaScript developers
often emulate classes in legacy code to tackle the complexity of their systems. We
proposed a strategy to statically detect class emulation in legacy JavaScript code and
the JSClassFinder tool, that supports this strategy. We used JSClassFinder on
a corpus of 918 popular JavaScript applications, with different sizes and from multiple
domains, in order to document the usage of class-like structures in legacy JavaScript

93

94 Chapter 6. Conclusion

systems. We also performed a field study with 60 JavaScript developers to evaluate
the accuracy of our strategy and tool. We summarize our findings in this chapter as
follows.

• There are essentially four types of JavaScript software regarding the usage of
classes: class-free (systems that do not make any usage of classes), class-aware
(systems that use classes marginally), class-friendly (systems that make relevant
usage of classes), and class-oriented (systems that have the vast majority of their
data structures implemented as classes). These categories represent, respectively,
32%, 34%, 27%, and 7% of the systems we studied. Precision, recall and F-score
measures indicated that JSClassFinder is able to identify the classes, methods,
and attributes in JavaScript systems. The overall results range from 97% to 100%
for precision, from 70% to 89% for recall, and from 82% to 94% for F-score.

• We found that there is no significant relation between size and class usage. There-
fore, we cannot conclude that the larger the system, the greater the usage of
classes, at least in proportional terms. For this reason, we hypothesize that the
background and experience of the systems’ developers have more impact on the
decision to design a system around classes, than its size.

• Prototype-based inheritance is not popular in JavaScript. We counted only 70
out of 918 systems (8%) using inheritance. We hypothesize that there are two
main reasons for this: (i) even in class-based languages there are strong po-
sitions against inheritance, and a common recommendation is to “favor object
composition over class inheritance” [Gamma et al., 1994, Stefanov, 2010]; (ii)
prototype-based inheritance is more complex than the usual implementation of
inheritance available in mainstream class-based object-oriented languages.

• Classes in JavaScript have usually less than 28 attributes and 61 methods (90th
percentile measures). It is also common to have data-oriented classes, i.e., classes
with more attributes than methods. In half of the studied systems, we had at
least 39% of such classes.

• 58% of JavaScript developers that answered our field study intended to use the
ES6 new syntax for classes, but usually only for new features and projects. We
acknowledge that ES6 specification has, besides the class support, other features
the demand some changes in the source code, (e.g., arrows, iterators, template
strings, and enhanced object literals). It is understandable that developers take
them all in consideration and plan carefully future refactorings to minimize effort.

6.2. Contributions 95

In Chapter 4, we evaluated an approach that uses type inference to identify class-
to-class dependencies and associations in legacy JavaScript code. We reported a study
on two open-source projects whose code is transpiled from TypeScript to JavaScript.
We could not find any class-to-class dependencies when Facebook’s Flow (the tool
considered in this chapter) is used in its default configuration. However, after pre-
processing the source code in the require statements to eliminate variable references
to class constructor functions implemented in other modules, our results showed that
precision reaches 100%, and recall ranges from 80% to 86% for all dependencies and
from 85% to 96% for associations, in the two evaluated systems. Finally, we manually
analyzed and categorized all false negatives identified in our study. The results suggest
that a tool like Facebook’s Flow can be used to support the implementation of reverse
engineering tools for JavaScript.

Finally, in Chapter 5, we reported a study on replacing structures that emulate
classes in legacy JavaScript code by native structures introduced by ES6, which can
contribute to foster software reuse. We presented a set of migration rules based on
the most frequent use of class emulations in ES5, and the JSClassRefactor tool,
that implements these rules. We converted eight legacy JavaScript systems to use
ES6 classes. In our study, we detailed cases that are straightforward to migrate (the
good parts), cases that require manual and ad-hoc migration (the bad parts), and
cases that cannot be migrated due to limitations and restrictions of ES6 (the ugly
parts). This study indicated that 75% of the studied systems contain instances of bad
and/or ugly cases. We also collected the perceptions of JavaScript developers about
migrating their code to use the new syntax for classes. Our findings suggest that: (a)
proposals to automatically translate from ES5 to ES6 classes can be challenging and
risky; (b) developers tend to move to ES6, but compatibility issues are making them
postpone these decisions; (c) developer opinions diverge about the use of transpilers to
keep compatibility with ES5; (d) there are demands for new class-related features in
JavaScript, such as static fields, method deprecation, and partial classes.

6.2 Contributions

We summarize our contributions as follows:

• We proposed, implemented, and evaluated a set of heuristics to identify
classes in JavaScript legacy code. We provided a thorough study on the
usage of classes in a dataset of 918 JavaScript systems available on GitHub.
This study showed that: (i) JavaScript developers often emulate classes in legacy

96 Chapter 6. Conclusion

code to tackle the complexity of their systems; (ii) there is no significant relation
between size and class usage; (iii) prototype-based inheritance is not popular in
JavaScript; (iv) it is common to have JavaScript classes with more attributes
than methods; (v) JavaScript developers that emulate classes tend to use the
ES6 new syntax, mostly for new features and projects.

• We developed an open-source supporting tool, called JSClassFinder [Silva
et al., 2015a], that practitioners can use to detect and inspect classes in
legacy JavaScript code.

• We performed an evaluation on the usage of Facebook’s Flow to infer
class-to-class dependencies in legacy JavaScript code. We performed a
study with two open-source applications whose source code is transpiled from
TypeScript to JavaScript. We showed that Flow can be used to support the
implementation of reverse engineering tools for JavaScript.

• We presented a set of rules to migrate class-like structures from ES5
to ES6. We described the proposed rules and their limitations, i.e., a set of
cases where manual adjusts are required to migrate the code. We also identified
some limitations of the new syntax for classes provided by ES6, i.e., the cases
where it is not possible to migrate the code and, therefore, we should expose the
prototype-based object system to ES6 maintainers.

• We implemented an open-source supporting tool, called JSClassRefac-

tor1, that can be used to migrate legacy code to use the new support for
classes that comes with ES6.

• We document a set of reasons that can lead developers to postpone or
reject the adoption of ES6 classes. These reasons are based on the feedback
received after submitting pull requests to JavaScript developers suggesting the
migration of their systems.

6.3 Future Work

Future work includes the extension of our heuristics for class identification in order to:
(a) measure other class properties, like coupling, cohesion, and complexity; (b) iden-
tify bad smells in JavaScript classes; (c) recommend best object-oriented programming

1https://github.com/leonardo-silva/JSClassRefactor

https://github.com/leonardo-silva/JSClassRefactor

6.3. Future Work 97

practices for JavaScript; (d) detect violations and deviations in the class-based archi-
tecture of JavaScript systems. It is also possible to extend JSClassFinder to support
the computation of metric thresholds for JavaScript class-like structures [Oliveira et al.,
2014]. These thresholds could be used, for example, to spot class-level anomalies, such
as god class, feature envy, refused bequest, and lazy class [Marinescu, 2004].

Regarding the identification of class-to-class dependencies, future work may in-
clude the investigation of systems whose native language is JavaScript. In Chapter 4, we
reported a study on two open-source projects whose code is transpiled from TypeScript
to legacy JavaScript. If other systems are considered, we can identify other instances
of missing dependencies (false negatives). Moreover, the performance of Flow when
analyzing systems that have been migrated to ES6 class syntax can also be evaluated.
It is also possible to investigate other approaches to improve recall by combining Flow
(or other static analysis tool) with dynamic analysis. We can instrument JavaScript
code to record execution traces using, for example, tools like Aran [Christophe et al.,
2015].

Regarding the refactoring of legacy applications to use the new syntax for classes
provided by ES6, future work may include the investigation of other instances of bad
and ugly cases migrating a larger set of JavaScript systems. It is also possible to ex-
tend our current refactoring tool implementation (JSClassRefactor) by improving
its interface and documentation. Finally, another possibility is to work on recommen-
dations to handle the bad cases, similar to the ones manually adopted in our study
(Chapter 5).

Bibliography

Saba Alimadadi, Sheldon Sequeira, Ali Mesbah, and Karthik Pattabiraman. Under-
standing JavaScript event-based interactions. In International Conference on Soft-
ware Engineering (ICSE), pages 367–377, 2014.

Saba Alimadadi, Ali Mesbah, and Karthik Pattabiraman. Hybrid DOM-Sensitive
Change Impact Analysis for JavaScript. In 29th European Conference on Object-
Oriented Programming (ECOOP 2015), volume 37, pages 321–345, 2015.

Christopher Anderson, Paola Giannini, and Sophia Drossopoulou. Towards type infer-
ence for JavaScript. In 19th European Conference on Object-Oriented Programming
(ECOOP), pages 428–452, 2005.

Esben Andreasen, Anders Møller, Liang Gong, Michael Pradel, Marija Selakovic,
Koushik Sen, and Cristian-Alexandru Staicu. A survey of dynamic analysis and
test generation for JavaScript. ACM Computing Surveys, 1:1–36, 2017. Accepted for
publication.

Sven Apel and Christian Kästner. An Overview of Feature-Oriented Software Devel-
opment. Journal of Object Technology, 8(5):49–84, 2009.

Shay Artzi, Julian Dolby, Frank Tip, and Marco Pistoia. Fault Localization for Dy-
namic Web Applications. IEEE Transactions on Software Engineering, 38(2):314–
335, 2012.

Thoms Ball. The concept of dynamic analysis. In 7th European Software Engineering
Conference Held Jointly with the 7th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ESEC/FSE-7, pages 216–234. Springer-Verlag,
1999.

Mark Bates. Programming in CoffeeScript. Addison-Wesley Professional, 1st edition,
2012.

99

100 BIBLIOGRAPHY

Gareth Baxter, Marcus Frean, James Noble, Mark Rickerby, Hayden Smith, Matt
Visser, Hayden Melton, and Ewan Tempero. Understanding the Shape of Java Soft-
ware. In 21st Conference on Object-oriented Programming Systems, Languages, and
Applications (OOPSLA), pages 397–412. ACM, 2006.

Grady Booch, Robert Maksimchuk, Michael Engle, Bobbi Young, Jim Conallen, and
Kelli Houston. Object-Oriented Analysis and Design with Applications (3rd Edition).
Addison Wesley Longman Publishing Co., Inc., 2004.

Hudson Borges, Andre Hora, and Marco Tulio Valente. Understanding the factors
that impact the popularity of GitHub repositories. In 32nd IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages 334–344, 2016.

A. H. Borning. Classes versus prototypes in object-oriented languages. In ACM Fall
Joint Computer Conference, pages 36–40. IEEE Computer Society Press, 1986.

S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design. IEEE
Transactions on Software Engineering, 20(6):476–493, 1994.

Laurent Christophe, Coen De Roover, and Wolfgang De Meuter. Poster: Dynamic
Analysis Using JavaScript Proxies. In 37th International Conference on Software
Engineering, ICSE, pages 813–814. IEEE Press, 2015.

Richard C. H. Connor, Alfred L. Brown, Quintin I. Cutts, Alan Dearle, Ronald Mor-
rison, and John Rosenberg. Type equivalence checking in persistent object systems.
In 4th International Workshop on Persistent Objects (POS), pages 154–167, 1990.

Douglas Crockford. JavaScript: The Good Parts. O’Reilly, 2008.

Serge Demeyer, StÃ c©phane Ducasse, and Oscar Nierstrasz. Object-Oriented Reengi-
neering Patterns. Square Bracket Associates, 2009. ISBN 978-3-9523341-2-6.

Stéphane Ducasse, Tudor Gîrba, and Adrian Kuhn. Distribution map. In 22nd IEEE
International Conference on Software Maintenance (ICSM), pages 203–212, 2006.

ECMA-International. European Association for Standardizing Information and Com-
munication Systems (ECMA). ECMA-262: ECMAScript Language Specification.
edition 5.1. URL https://www.ecma-international.org/ecma-262/5.1/.

ECMA-International. European Association for Standardizing Information and Com-
munication Systems (ECMA). ECMAScript Language Specification, 6th edition,
2015. URL http://www.ecma-international.org/publications/standards/

Ecma-402.htm.

https://www.ecma-international.org/ecma-262/5.1/
http://www.ecma-international.org/publications/standards/Ecma-402.htm
http://www.ecma-international.org/publications/standards/Ecma-402.htm

BIBLIOGRAPHY 101

A.M. Fard and A. Mesbah. JSNOSE: Detecting JavaScript code smells. In 13th Working
Conference on Source Code Analysis and Manipulation (SCAM), pages 116–125,
2013.

Asger Feldthaus, Todd D. Millstein, Anders Møller, Max Schäfer, and Frank Tip.
Refactoring towards the good parts of JavaScript. In 26th Conference on Object-
Oriented Programming (OOPSLA), Companion Proceedings, pages 189–190, 2011a.

Asger Feldthaus, Todd D. Millstein, Anders Møller, Max Schäfer, and Frank Tip.
Tool-supported refactoring for JavaScript. In 26th Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), pages 119–138,
2011b.

Asger Feldthaus, Max Schäfer, Manu Sridharan, Julian Dolby, and Frank Tip. Efficient
construction of approximate call graphs for javascript ide services. In 35th Inter-
national Conference on Software Engineering (ICSE), pages 752–761. IEEE Press,
2013.

David Flanagan. JavaScript: The Definitive Guide. O’Reilly, 2011.

Martin Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling Lan-
guage. Addison-Wesley Longman Publishing Co., Inc., 3 edition, 2003.

Martin Fowler and Kent Beck. Refactoring: improving the design of existing code.
Addison-Wesley, 1999.

Keheliya Gallaba, Ali Mesbah, and Ivan Beschastnikh. Don’t call us, we’ll call you:
Characterizing callbacks in JavaScript. In 9th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM), page 10 pages. IEEE
Computer Society, 2015.

W. Gama, M.H. Alalfi, J.R. Cordy, and T.R. Dean. Normalizing object-oriented class
styles in JavaScript. In 14th IEEE International Symposium on Web Systems Evo-
lution (WSE), pages 79–83, Sept 2012.

Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Professional, 1994.

Arjun Guha, Shriram Krishnamurthi, and Trevor Jim. Using static analysis for Ajax
intrusion detection. In 18th International Conference on World Wide Web (WWW),
pages 561–570, 2009.

102 BIBLIOGRAPHY

Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. The essence of JavaScript.
In 24th European Conference on Object-Oriented Programming (ECOOP), pages
126–150, 2010.

Brian Hackett and Shuyu Guo. Fast and precise hybrid type inference for JavaScript.
In 33rd ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), pages 239–250, 2012. ISBN 978-1-4503-1205-9. doi: 10.1145/
2254064.2254094.

Munawar Hafiz, Samir Hasan, Zachary King, and Allen Wirfs-Brock. Growing a
language: An empirical study on how (and why) developers use some recently-
introduced and/or recently-evolving javascript features. Journal of Systems and
Software, 121:191–208, 2016.

Ivar Jacobson, Grady Booch, and James Rumbaugh. The Unified Software Develop-
ment Process. Addison-Wesley Longman Publishing Co., Inc., 1999. ISBN 0-201-
57169-2.

Nilesh Jain, Priyanka Mangal, and Deepak Mehta. AngularJS: A modern MVC frame-
work in JavaScript. Journal of Global Research in Computer Science, 5:17–23, 2015.

Holger M. Kienle. It’s about time to take javascript (more) seriously. IEEE Software,
27(3):60–62, 2010.

Michele Lanza and Radu Marinescu. Object-oriented metrics in practice: using software
metrics to characterize, evaluate, and improve the design of object-oriented systems.
Springer, 2006.

Jannik Laval, Simon Denier, Stéphane Ducasse, and Alexandre Bergel. Identifying cycle
causes with enriched dependency structural matrix. In 16th Working Conference on
Reverse Engineering (WCRE), pages 113–122, 2009. ISBN 978-0-7695-3867-9. doi:
10.1109/WCRE.2009.11.

A. Lerner. Ng-Book - the Complete Book on Angularjs. Fullstack.io, 2013.

Panagiotis Louridas, Diomidis Spinellis, and Vasileios Vlachos. Power Laws in Software.
ACM Transactions on Software Engineering and Methodology, 18:1–26, 2008.

Alex MacCaw. The Little Book on CoffeeScript. O’Reilly Media, Inc., 2012.

Magnus Madsen, Frank Tip, and Ondřej Lhoták. Static analysis of event-driven node.js
javascript applications. In 30th Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA), pages 505–519. ACM, 2015.

BIBLIOGRAPHY 103

Radu Marinescu. Detection strategies: Metrics-based rules for detecting design flaws.
In 20th IEEE International Conference on Software Maintenance (ICSM), pages
350–359, 2004.

Fadi Meawad, Gregor Richards, Floréal Morandat, and Jan Vitek. Eval begone!: Semi-
automated removal of eval from JavaScript programs. In 27th Conference on Object
Oriented Programming Systems Languages and Applications (OOPSLA), pages 607–
620, 2012.

Nevena Milojković and Oscar Nierstrasz. Exploring cheap type inference heuristics in
dynamically typed languages. In ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software, Onward! 2016, pages
43–56, 2016. doi: 10.1145/2986012.2986017.

Nachiappan Nagappan and Thomas Ball. Use of relative code churn measures to predict
system defect density. In 27th International Conference on Software Engineering
(ICSE), pages 284–292. ACM, 2005. doi: 10.1145/1062455.1062514.

Christopher Nance. TypeScript Essentials. Packt Publishing, 2014. ISBN 1783985763,
9781783985760.

Alex Nederlof, Ali Mesbah, and Arie van Deursen. Software engineering for the web:
the state of the practice. In 36th International Conference on Software Engineering
(ICSE), pages 4–13, 2014.

Hung Viet Nguyen, Hoan Anh Nguyen, Anh Tuan Nguyen, and Tien N. Nguyen.
Mining interprocedural, data-oriented usage patterns in JavaScript web applications.
In 36th International Conference on Software Engineering (ICSE), pages 791–802,
2014.

Jens Nicolay, Carlos Noguera, Coen De Roover, and Wolfgang De Meuter. Detecting
function purity in JavaScript. In 15th IEEE International Working Conference on
Source Code Analysis and Manipulation (SCAM), 2015.

Oscar Nierstrasz, Stéphane Ducasse, and Tudor Gı̌rba. The story of moose: An ag-
ile reengineering environment. In 10th European Software Engineering Conference
Held Jointly with 13th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (ESEC/FSE-13), pages 1–10. ACM, 2005.

Frolin Ocariza, Karthik Pattabiraman, and Ali Mesbah. Detecting inconsistencies in
JavaScript MVC applications. In 37th International Conference on Software Engi-
neering (ICSE), pages 325–335. ACM, 2015.

104 BIBLIOGRAPHY

Morten Passow Odgaard. JavaScript Type Inference Using Dynamic Analysis. Master’s
thesis, Aarhus University, 2014.

Paloma Oliveira, Marco Tulio Valente, and Fernando Lima. Extracting relative thresh-
olds for source code metrics. In IEEE Conference on Software Maintenance, Reengi-
neering and Reverse Engineering (CSMR-WCRE), pages 254–263, 2014.

Jens Palsberg and Michael I. Schwartzbach. Object-oriented type inference. In 6th
Conference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA), pages 146–161, New York, NY, USA, 1991. ACM. doi: 10.1145/117954.
117965.

David L. Parnas. Designing software for ease of extension and contraction. In 3rd
International Conference on Software Engineering (ICSE), pages 264–277. IEEE
Press, 1978.

Caio Ribeiro Pereira. Introduction to Node.js, pages 1–3. Apress, 2016. ISBN 978-1-
4842-2442-7. doi: 10.1007/978-1-4842-2442-7_1.

Thomas Powell. Ajax: The Complete Reference. McGraw-Hill, Inc., 1 edition, 2008.

Miguel Ramos, Marco Tulio Valente, and Ricardo Terra. AngularJS performance: A
survey study. IEEE Software, 1(1):1–11, 2017.

Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. An analysis of the
dynamic behavior of JavaScript programs. In Conference on Programming Language
Design and Implementation (PLDI), pages 1–12, 2010.

Gregor Richards, Christian Hammer, Brian Burg, and Jan Vitek. The eval that men
do: A large-scale study of the use of eval in JavaScript applications. In 25th European
Conference on Object-oriented Programming (ECOOP), 2011.

Shahriar Rostami, Laleh Eshkevari, Davood Mazinanian, and Nikolaos Tsantalis. De-
tecting function constructors in JavaScript. In 32nd IEEE International Conference
on Software Maintenance and Evolution (ICSME ERA), pages 1–5, 2016.

Neeraj Sangal, Ev Jordan, Vineet Sinha, and Daniel Jackson. Using dependency models
to manage complex software architecture. In 20th Annual ACM SIGPLAN Confer-
ence on Object-oriented Programming, Systems, Languages, and Applications (OOP-
SLA), pages 167–176, 2005a. ISBN 1-59593-031-0. doi: 10.1145/1094811.1094824.

BIBLIOGRAPHY 105

Neeraj Sangal, Ev Jordan, Vineet Sinha, and Daniel Jackson. Using dependency models
to manage complex software architecture. In 20th Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), pages 167–176,
2005b.

Leonardo Humberto Silva, Daniel Hovadick, Marco Tulio Valente, Alexandre Bergel,
Nicolas Anquetil, and Anne Etien. JSClassFinder: A Tool to Detect Class-like
Structures in JavaScript. In 6th Brazilian Conference on Software: Theory and
Practice (CBSoft), Tools Demonstration Track, pages 113–120, 2015a.

Leonardo Humberto Silva, Miguel Ramos, Marco Tulio Valente, Alexandre Bergel, and
Nicolas Anquetil. Does JavaScript software embrace classes? In 22nd IEEE Inter-
national Conference on Software Analysis, Evolution, and Reengineering (SANER),
pages 73–82, 2015b.

Leonardo Humberto Silva, Marco Tulio Valente, Alexandre Bergel, Nicolas Anquetil,
and Anne Etien. Identifying classes in legacy JavaScript code. Journal of Software:
Evolution and Process, 1(1):1–37, 2017.

S. Stefanov. JavaScript Patterns. O’Reilly Media, 2010.

Ricardo Terra, Luis Fernando Miranda, Marco Tulio Valente, and Roberto S. Bigonha.
Qualitas.class Corpus: A compiled version of the Qualitas Corpus. Software Engi-
neering Notes, 38(5):1–4, 2013.

Jason Tsay, Laura Dabbish, and James Herbsleb. Influence of Social and Technical
Factors for Evaluating Contribution in GitHub. In 36th International Conference on
Software Engineering (ICSE), pages 356–366. ACM, 2014.

David Ungar and Randall B. Smith. SELF: The power of simplicity. In 2nd Conference
on Object-oriented Programming Systems, Languages and Applications (OOPSLA),
pages 227–242. ACM, 1987.

Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christopher Krügel,
and Giovanni Vigna. Cross site scripting prevention with dynamic data tainting and
static analysis. In Network and Distributed System Security Symposium (NDSS),
2007.

Richard Wheeldon and Steve Counsell. Power Law Distributions in Class Relationships.
In International Working Conference on Source Code Analysis and Manipulation,
pages 45–54, 2003.

106 BIBLIOGRAPHY

Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, and Björn Regnell.
Experimentation in Software Engineering. Springer, 2012. ISBN 978-3-642-29043-5.

Dachuan Yu, Ajay Chander, Nayeem Islam, and Igor Serikov. JavaScript instrumen-
tation for browser security. In 34th Symposium on Principles of Programming Lan-
guages (POPL), pages 237–249, 2007.

Andy Zaidman, Nick Matthijssen, Margaret-Anne D. Storey, and rie van Deursen. Un-
derstanding Ajax applications by connecting client and server-side execution traces.
Empirical Software Engineering, 18(2):181–218, 2013.

	Acknowledgments
	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 JavaScript in a Nutshell
	1.3 Motivation and Problem
	1.4 Objectives and Contributions
	1.5 Publications
	1.6 Thesis Outline

	2 Background
	2.1 JavaScript Overview
	2.1.1 Class Emulation and Prototypes
	2.1.2 ECMAScript 6 Classes
	2.1.3 Script Languages on Top of JavaScript

	2.2 Dynamic Evaluation
	2.3 Class Identification and Refactoring Support
	2.4 Code Smells and JavaScript Patterns
	2.5 Dynamic and Static Analysis
	2.5.1 Static Analysis for JavaScript
	2.5.2 Dynamic Analysis for JavaScript

	2.6 Type Inference for JavaScript
	2.7 Final Remarks

	3 Proposed Approach
	3.1 Detecting Classes in Legacy JavaScript
	3.1.1 Strategy to Detect Classes
	3.1.2 Tool Support
	3.1.3 Limitations

	3.2 Evaluation Design
	3.2.1 Research Questions
	3.2.2 Dataset
	3.2.3 Metrics
	3.2.4 Field Study Design

	3.3 Results
	3.3.1 Do developers emulate classes in legacy JavaScript applications?
	3.3.2 Do developers emulate subclasses in legacy JavaScript applications?
	3.3.3 Is there a relation between the size of a JavaScript application and the number of class-like structures?
	3.3.4 What is the shape of the classes emulated in legacy JavaScript code?
	3.3.5 How accurate is our strategy to detect classes?
	3.3.6 Do developers intend to use the new support for classes that comes with ECMAScript 6 ?

	3.4 Threats to Validity
	3.5 Final Remarks

	4 Identifying Class Dependencies
	4.1 Motivation
	4.2 Using Flow to Infer Dependencies
	4.3 Study Design
	4.3.1 Dataset and Oracle
	4.3.2 Research Questions

	4.4 Results
	4.4.1 What is the accuracy of Flow in detecting class-to-class dependencies?
	4.4.2 Can we improve the accuracy of Flow by expanding require statements?

	4.5 Explaining the Recall Results in RQ #2
	4.6 Discussion and Lessons Learned
	4.7 Threats to Validity
	4.8 Final Remarks

	5 Refactoring JavaScript Classes
	5.1 Study Design
	5.1.1 Migration Rules
	5.1.2 Dataset

	5.2 Migration Results
	5.2.1 The Good Parts
	5.2.2 The Bad Parts
	5.2.3 The Ugly Parts

	5.3 Threats to Validity
	5.4 Tool Support
	5.4.1 Design and Implementation
	5.4.2 Evaluation

	5.5 Feedback from Developers
	5.6 Final Remarks

	6 Conclusion
	6.1 Summary
	6.2 Contributions
	6.3 Future Work

	Bibliography

