
Received 25 Oct., 2018; Revised 18 Apr., 2019; Accepted 19 May, 2019

DOI: xxx/xxxx

ARTICLE TYPE

AnMDD-based method for building context-aware applications
with high reusability

Nearchos Paspallis*

1School of Sciences, UCLan Cyprus, Larnaca,
Cyprus

Correspondence
*Nearchos Paspallis, 12-14 University Avenue,
Pyla, CY-7080, Cyprus. Email:
npaspallis@uclan.ac.uk

Present Address
12-14 University Avenue, Pyla, CY-7080,
Cyprus

Abstract
Adding context-awareness capabilities to modern mobile and pervasive computing applications

is becoming a mainstream activity in the software engineering community. In this respect, many

context models and middleware architectures have been proposed with the aim to provide the

developers with tools and abstractions that make it easier to produce context-aware applica-

tions. However, current solutions suffer from relatively low reusability and lack ease-of-use. In

this paper, we propose a two-layer approach based on model-driven development: at the higher

layer we introduce the design of reusable context plug-ins which can be used tomonitor low-level

context data and to infer higher-level information about the users, their computing infrastructure

and their interaction. At the lower layer, the plug-ins themselves are synthesized using more ele-

mentary, reusable components. We argue that this development approach provides significant

advantages to the developers, as it enables them to design, implement, re-use and maintain the

code-base of context-aware apps more efficiently. To evaluate this approach, we demonstrate it

in the context of a two-part case-study and assess it both qualitatively and quantitatively.

KEYWORDS:
Context-awareness; MDD; Reusability; CBSE; Middleware; Plug-in; Code generation

1 INTRODUCTION

Context-awareness is one of the most sought-after features for modern mobile and pervasive computing applications. Understanding and using
context allows applications to identify and predict intention thus allowing for better and richer human-computer interaction.

Researchers have proposed various solutions to ease the task of designing and implementing applications that are context-aware and self-
adaptive. At their core many such approaches build on reusable code, ranging from the early works of Dey 1 to more recent, plug-in based
architectures such as those described in 2,3,4,5. These frameworks are designed to allow the applications which are using them to inquire and access
arbitrary context data types. In this respect, the context-awareness and context-inferring parts are separated from the functional logic of the appli-
cations by means of reusable context plug-ins (i.e., individually deployable units which provide mechanisms for collecting and processing context
data, and inferring higher-level context information). At the same time, many context models and middleware architectures were proposed and
documented in the literature 6,7. Software reuse is at the core of many of those approaches. At a higher level, reuse covers all software engineering
phases and “can be supported by different types of methods, including ad hoc, opportunistic, adaptive, systematic, black-box, whitebox, etc.” 8.

A common drawback in these approaches is that the developers are required to invest a significant amount of time to develop customized
componentswhich are used for collecting, processing, inferring, storing, querying and accessing context data.Moreover, the developed components
are then harder to reuse and more prone to errors, preventing cost-effective development. We argue that an approach which uses component-
based development in combination with a component repository can greatly facilitate the development of such context-aware applications, making
the development of highly capable and robust context-aware applications more affordable.



2 Nearchos Paspallis

In this paper we propose aModel-Driven Development (MDD) approach to facilitate easy and automated development of reusable context plug-
ins, and as a result to enable context-awareness features in the developed applications. The proposed approach includes the specification and
implementation of context plug-ins via finer, reusable components, assembled using an MDD tool-chain. This approach is validated in the context
of a case study application, qualitatively evaluated against related work and quantitatively assessed in terms of development time and resulting
complexity.

The main contributions of this paper can be summarized as follows:

• Specification of a comprehensive,Model Driven Development-based approach for building reusable context plug-ins.

• A methodology which enables the formation of context plug-ins out of finer, reusable components.

• The definition, implementation and analysis of two extensive case study scenarios, demonstrating and evaluating the development
methodology.

The rest of this paper is organized as follows. Section 2 provides an overview of the underlying context architecture, with emphasis on its model,
context query language and pluggable architecture. The Model-Driven Development approach is presented in Section 3 and validated in the scope
of a case-study example in Section 4. The evaluation and comparison with related work are covered in Section 5. Finally, Section 6 provides the
conclusions of this work and points to our plans for future work.

2 REFERENCE ARCHITECTURE

The study of software architectures 9 and software architecture patterns 10 has allowed software developers to conceive, design, implement and
maintain highly complex software systems. The academic rigour of pioneers working in the wider area of software architectures is even credited as
a main enabler of the mobile app revolution we are experiencing today, evident by the widespread success of the Android platform 11.

Often, software architectures are complemented with tools which facilitate their design and implementation, such as those defined in theModel
Driven Development approach. An excellent introduction to MDD is provided by Mellor et al. 12 who argue that “Model-driven development is simply
the notion that we can construct a model of a system that we can then transform into the real thing”. In programming, many layers of models exist,
whereas for example the abstract sketch on a piece of paper, or in our mind, is at higher level than a few lines of code, which is itself at a higher level
of abstraction compared to the assembly language used on the virtual machine or CPU. In the context of this paper—andmost software engineering
papers—models relate primarily to higher-level drawings, typically expressed with UML, aiming to provide a platform-independent abstraction of a
software system.

Model-Driven Development (MDD) has been proposed as a mechanism for easing the effort of developing software artifacts by means of
a model-first approach 13. Naturally, MDD-based approaches can be combined with component-based software development 14, where specific
model artifacts correspond to concrete components. This raises both the level of abstraction from the developer’s perspective, but also it maximizes
software reuse in terms of easily incorporating ready-made components.

While the underlying ideas of this approach apply to general component-based architectures, in this paper we use an existing reference architec-
ture to allow for a concrete demonstration of how these ideas are applied and evaluated. We argue that the proposed MDD approach is applicable
to general component-based systems, such as OSGi which is widely used in embedded systems, and the Android platform which is the most widely
used mobile framework.

The reference architecture is based on the MUSIC platform 15,16 which is itself a research-driven implementation of a modular, component-
based architecture for building context-aware applications. The latter provides middleware, a software development methodology and tools for
the design and implementation of self-adaptive, context-aware applications. As part of this comprehensive solution, a Context System is responsible
for collecting and managing context data, as well as for providing the middleware—and the applications that are deployed on it—with access to
relevant context data.

The context system itself builds on a pluggable architecture, similar to those proposed in pioneering works in context-awareness, such as the
Context Toolkit 1, the Context Fabric 17 and the Java Context Awareness Framework (JCAF) 18. In this type of architecture, individual tasks such as
collecting certain context data types (e.g. battery level) or inferring higher level context from raw data (e.g. user activity) are mapped to individual
plug-in components. As these components can be developed independently, and activated or deactivated separately, this architecture benefits
both in terms of code portability 5 as well as in terms of better resource utilization 19.

In the following subsections we describe the Context Model and the Context Query Language used throughout this approach. Furthermore, we
describe the structure of a typical context plug-in and briefly discuss the architecture of the system. These provide the foundation for the proposed
MDD methodology and tool-chain.



Nearchos Paspallis 3

FIGURE 1 An example of the Context Ontology 20.

2.1 The Context Model
The adopted context model is simple but, also, highly extensible. It is based on XML and makes use of ontologies that are described in OWL.
The context information is represented in terms of context elements, which provide information of a certain type, called context scope, and which
describe a certain context entity. The former describes a specific domain (of an entity), such as “position”, “civil address”, “environment”, “user
proximity”, etc. The latter refers to concrete entities in theworld such as for example a “user”, a “room”, a “device”, etc. In our contextmodelConcepts,
as a generalization of Scopes and Entities, are associated with one or more Representations describing the structure of the context data in terms of
Parameters (attributes of the context data and associated meta-data along with admitted types and values), Structures of Parameters, and Arrays of
(structures of) Parameters. In order to establish a common understanding about the semantics of the different concepts in a heterogeneous pervasive
environment, the Context Scopes, the types of Context Entities and the different Representations, they are all described using an ontology. An
example illustrating the basic concepts and the main structure of the ontology is shown in Figure 1 (based on the example illustrated in 20).

Like in the Aspect-Scale-Context (ASC) model by Strang et al 21, the ontology also includes so-called Inter Representation Operations (IROs), facili-
tating the automatic conversion of measure units, as well as more complex conversions between completely different representations. For example
a “position” expressed in geocoordinates is converted to an “address” expressed in terms of street, city and country. In another example, a date is
converted from a single-line representation to one which splits it to day, month and year (also illustrated in Figure 1). For this purpose, the ontology
provides the grounding to a certain method in a library or to a certain service providing the appropriate functionality. In the same way, we allow
the definition of Aggregation Functions in the ontology, in order to enable the aggregation of (sets of) context elements to a certain value or to
derive more elaborate information. Additionally, the ontology is also used to describe relationships between entities, e.g. a child has a father and
a mother, or a room belongs to a building. This allows the description and processing of semantically complex queries in a compact manner, as an
ontology reasoner can be used to automatically resolve the relationships.

Ontology reasoning is an intensive process and thus it is not desirable, and often not even feasible, to perform onmobile devices at run-time. For
this reason, this ontology allows characterizing context entities and context scopes simply via predefined types. The type implicitly corresponds
to a certain context scope and to a default representation of the context information.

2.2 The Context Query Language
While the proposed context system provides a comprehensive framework for context modelling, context management and context reasoning, it
also includes an associated Context Query Language (CQL). Here, we give only a brief overview of this CQL and its relevant features, to the extent
that is relevant to the MDD approach described in this paper. A thorough description of the query language is provided by Reichle et al. 22 and by
Fra et al. 23.



4 Nearchos Paspallis

Just as the context model itself, the corresponding CQL is XML-based and makes heavy use of ontologies. It allows querying information
that characterizes one or several context entities and corresponds to a certain scope in a specified representation. In order to provide elaborate
accessing and filtering methods, the CQL allows the specification of constraints on parameters and meta-data attributes, ranging from simple
constraints to complex conditions. For instance, the latter incorporate complex aggregation functions and semantic relationships that are resolved
by an ontology reasoner. CQL explicitly addresses heterogeneous representations of context information, supports the specification of complex
filtering mechanisms and allows the incorporation of an extensible set of aggregation functions.

One of the main advantages of CQL is its strong weaving with ontologies. Using references to the ontology, semantic reasoning on context
information is supported and heterogeneity is explicitly addressed. While existing context query languages support only a subset of all the features
mentioned above, CQL stands out by supporting all of them. This is also supported by the evaluation presented in 24, which identified the CML 25 and
the RDF-based MoGATU 26 as the two most sophisticated systems. However both of them lack either support for heterogeneous representations
and incorporation of ontologies, or the provisioning of elaborate aggregation and filtering mechanisms.

TheCQL also facilitates the request for context information in a specific representation and the incorporation of Inter-RepresentationOperations
(IROs). The underlying query processing system automatically performs the necessary conversions between different representations. In Section
4.1.3 we briefly explain how the mediation task is supported by the MDD tool-chain via automatically generated converters.

Finally, an additional mechanism is provided for rudimentary queries that do not require any filtering of information, based on a basic Context
Query Factory that generates the corresponding XML request automatically by simply providing the requested entity, scope and representation.

2.3 The Pluggable Architecture
This paper builds on a modular, pluggable architecture. This allows for multiple context providers and context consumers to be dynamically bound
to a central component, e.g. by realizing a publish-subscribe like pattern. The component responsible for this (Context Manager) routes the context
information to the clients and also maintains a cache of recent values for further processing or retrieval. In this architecture, the context providers
are materialized as context plug-inswhich can be dynamically installed, deployed and activated automatically by the underlying middleware. On the
other hand, context clients refer to the deployed, context-aware applications and the middleware modules which are responsible for the adaptation
reasoning.

In 5 it was shown that this specific architecture has significant advantages as it enables the design of context-aware applications in a way in which
their context-aware properties are specified independently of their functional logic. This separation of concerns eases both the development and
maintenance efforts of the developers. Furthermore, the resulting context plug-ins are, to a large extend, reusable across devices and applications.
More specifically, lower-level sensor plug-ins can be reused across similar devices of the same architecture, while higher-level sensors can be reused
across multiple applications. Finally, a common underlying ontology, as described in 20, facilitates the reusability of the plug-ins also at a semantic
level.

Concerning the runtime advantages of this approach, an evident benefit is the fact that when multiple applications require the same context
types, then only one instance of the corresponding context plug-in needs to be activated (as opposed to applications that embed their separate
copies of context logic). Another advantage is also the fact that depending on the actual context needs of the deployed applications, only the
minimum set of required plug-ins is activated at any moment, which results to better resource utilization, an important asset for mobile, battery-
powered devices.

The context plug-ins are self-contained components which export an interface to advertise their required and provided context types. Fur-
thermore, each plug-in is associated to a set of (optional) metadata, used to describe properties such as their ID, manufacturer name, resource
consumption, accuracy of measurements, etc. When registered with the Context Manager, the latter records their required and provided context
types to a local map data structure. In parallel, deployed applications advertise their context needs, either explicitly via appropriate methods, or
implicitly by parsing their utility functions. As not all the deployed applications are active all the time, the Context Manager dynamically eval-
uates the context needs of the running applications and activates (or deactivates) the appropriate context plug-ins accordingly. Naturally, this
approach results to better resource utilization as it was experimentally shown in 19. A more detailed example of context plug-ins and their use in
the middleware is shown in the case study example in Section 4.

3 MODEL DRIVEN DEVELOPMENT OF CONTEXT PLUG-INS

In model-driven development, newly defined domain specific modelling languages or extensions to existing languages are generally used to define
models of the desired system at an abstract and platform-independent level. The defined Platform-Independent Models (PIMs) are automatically
transformed to Platform-Specific Models (PSMs) and to platform-specific source code in one or more steps. For this purpose, a tool-chain is typically



Nearchos Paspallis 5

incorporated into the corresponding development framework. Application developers are not confronted with implementation details and thus
they can concentrate on the high-level view of the software to be developed. In this way, many conceptual and implementation errors can be
avoided upfront.

The main approach involves the developer identifying the required functionality, coming up with an architecture (or several alternatives for it)
and then picking the right components to model it. While in many cases the components might pre-exist, in some cases specialized components
might be needed which are not available. In this case the developers have the option to build them based on the open specifications presented in
this section. This is particularly relevant with Operators which are typically quite specialized (see Subsection 3.2).

Our intention is to exploit the benefits of MDD for the creation of context plug-ins, as they were introduced in Section 2. Starting from a purely
conceptual model that introduces the main concepts and their relationships, we present a new UML Profile that can be utilized for the modelling
of context plug-ins. Afterwards we describe the tool-chain and we briefly explain how the transformation is realized.

3.1 Conceptual Model
The conceptual model is illustrated in Figure 2, which shows its constituent entities and their relationships. The main entities in this conceptual
view are the Context Plug-ins, the Operators, the Data Management Containers (DMCs) and the Connectors.

A Context Plug-in represents the architectural element that is physically deployed on the contextmiddleware. Externally it ismainly characterized
by its provided and required context types. In order to interact with the context system, to express the required and the provided information and
to have basic data structures for storing and caching context information, it defines an arbitrary number of Input DMCs and one Output DMC.
In addition, it defines its trigger type, which can be time-triggered (OnTime) for continuous input, or event-based (OnChange) for discrete input.
The trigger value concretizes the trigger type through an appropriate parameterization, i.e., it provides a certain trigger interval or concretizes the
event that causes the triggering.

In the same way as in 27, a DMC typically represents a common data structure, like a simple variable, array, ring-buffer or queue. The DMCs are
used for caching information but without major functionality. A DMC is characterized through its type (e.g., variable, array, etc.) its size (i.e., number
of elements to be cached) and the time-to-live (TTL) for their contents. Additionally, DMCs comprise a “representation” attribute. This attribute
refers to a certain semantic representation concept of the Ontology and thus defines the data-type of the stored elements. Input DMC and Output
DMC are specializations of DMC, that are incorporated by a Context Plug-in to interact with the context system and to define its required and
provided context information. An Output DMC characterizes the provided information by specifying the corresponding entity, the scope of the
provided information and its representation (inherited from DMC). An Input DMC specifies the required context information and provides two
further specializations: A SimpleInputDMC which is used to characterize the required information simply through the corresponding entity, the
scope and the desired representation of the information. However, as our context system provides elaborate context access through the CQL (see
previous section) we also allow expressing the required context information through an associated query. For this purpose, we have introduced
the ComplexInputDMC. As a Context Query allows refining the requested information by specifying conditions on values and also on meta-data
(as for example a timestamp) this also facilitates to deal with aspects like data freshness.

Operators are conceptual entities that provide a specific functionality and perform a specific calculation on the data cached in one or several
DMCs. The results are stored in a DMC again. We distinguish between Generic Operators and User Defined Operators. Generic Operators are
predefined (i.e., pre-implemented) operators that can be reused in many different applications and contexts. Usually they are provided as part of a
library. A generic operator is associated with a number of configuration parameters that allows fine-tuning of its behaviour. Examples for generic
operators are provided in Section 3.2. In contrast to generic operators, User Defined Operators define more specific functionalities that are usually
useful only within a particular context plug-in. The corresponding function body can be specified in pseudo code, in special placeholders which are
included in the automatically generated source code as comments.

While operators are the main computational entities and are used to define the internal functionality of a context plug-in, connectors are the
main information channels, used to connect the corresponding DMCs to the operators. In this respect the connectors define the data-flow within
a plug-in. Furthermore, connectors are also used to perform mediation tasks from the data stored in one DMC to the data required in another one,
i.e. extracting particular scopes or dimensions from a data structure and/or performing Inter Representation Operations (i.e., transformations). The
required mediation is specified through an associated string.

With regard to the data flow, it is assumed that the operators, in conjunction with the connectors, form a Directed Acyclic Graph (DAG). This
allows us to model the operators and the connectors as a form of filter chain. This chain is eventually translated into a single ‘compute’ method
that deals with all the computation and mediation tasks, without having to cope with loops or other ambiguous effects that can only be hardly
grasped at a purely conceptual layer. Further details on the use of connectors, operators, as well as on the overall conceptual model, are illustrated
in Section 4 via an example.



6 Nearchos Paspallis

FIGURE 2 Conceptual Model of Context Plug-ins.

3.2 Operators
At the core of context processing are specialized operators. Even though in this section we describe a few examples of generic operators, our
approach is architected as an open platform which enables developers to specify and provide additional, reusable operators as per their needs.
However, in order to provide a better understanding of how generic operators are formed and the functionality they might provide, we describe
three specific examples:

Value Predictor operator
The first operator we examine is the Value Predictor. The basic functionality of this operator is to cache numerical values distributed over the time
axis, and try to predict their value trend for the immediate future. The rationale for having such an operator is to try and predict trends in resources
that might affect the operation of an application. For instance, by monitoring the signal strength of a wireless network, it is possible to predict
events where the declining strength could hint to an upcoming network disconnection (e.g. walking away from an access point).

Based on the nature of the input data, specialized operators can be used to implement any of the following mathematical techniques: Linear
extrapolation, Polynomial extrapolation, and French-curve extrapolation. The first is useful when the input data are described by a linear relation
(i.e., lie on the same, straight line, such as the case of the remaining battery level in a mobile device). In our implementation, we have prototyped
operators using the linear and the polynomial techniques.

Kalman Filter operator
A Kalman Filter 28 provides an efficient method to estimate the state of stochastic systems and can be considered as a special case of Recursive
Bayesian Filtering. It is able to deal with noisy, missing and partly redundant measurements and minimizes the expected mean squared error. Kalman
filters are often used to estimate the position and velocity of objects and thus provide the basis for many tracking systems.

For example, in the realm of context-aware systems Kalman Filters are often used for estimating the position of users from inaccurate readings
of GPS sensors. In their more general form, they allow incorporating measurements from different sensors with varying accuracy.



Nearchos Paspallis 7

We have developed a prototype of a Kalman Filter Operator which implements a linear Kalman Filter. For this purpose, it uses meta-data that
express the covariance of the provided measurement dimensions. The operator is configurable to allow for estimating the state of static objects
and of dynamic objects assuming a constant state change over time.

Image Comparator operator
With the purpose of allowing motion detection using a webcam, we provide an operator which compares two images and provides a delta, i.e., a
(numerical) value indicating their difference. A trivial implementation of such an operator is quite straight-forward: the images are compared pixel-
to-pixel, and for each of the three vectors (in the case of Red-Green-Blue, or RGB, encoding), we sum their difference. By dividing the delta sum
by a fixed value (corresponding to the maximum delta possible), we are able to measure the difference of the images as a percentage.

Using an implementation of this operator, a Motion Detector reasoner plug-in was constructed using a queue to accumulate the two most
recently captured images to be compared, and the Image comparator operator. The latter compares the two images and generates an event encoding
their computed difference. This operator can be further customized by allowing a threshold property (i.e., generating an event only if the delta is
above—or below—the specified threshold).

Pattern Matching operator
Patterns describe many natural phenomena, making it possible to automatically learn about them and then classify selected instances using math-
ematical or other models. This has given rise to many applications, from optical character recognition to stock marker prediction. These are generally
classified asMachine Learning.

The Pattern Matching operator assumes that a training set already exists and then is used to facilitate automatic pattern matching. For instance,
the training set could consist of a string (i.e. sequence of symbols as illustrated in Table 2) and the query could consist of a partial string (e.g. a
sequence of the first few symbols). By using a pattern matching algorithm such as the one proposed by Karp et al. 29, it is possible for this operator
to compute the nearest match as well as the accuracy of the matching (e.g. as a percentage).

3.3 UML Profile
The conceptual model presented in Section 3.1 defines the main conceptual entities to be covered by appropriate modelling elements. However,
before we proceed with their definition, we first elaborate on the selection of an appropriate modelling language. The main consideration is the
choice between General Purpose Modelling Languages (such as for example UML or XML) and Domain Specific Languages (DSL). As UML already
provides modelling support for defining the internals of components as parts that are connected through ports in composite structure diagrams
(which is quite aligned to our objectives) we have chosen to reuse these concepts to the greatest extent possible, and to tailor the semantics of
UML to our approach by defining a UML Profile. Thus, the main task is to map the conceptual entities to UML modelling elements and to define
appropriate stereotypes along with tagged values.

Figure 3 shows the UML Profile corresponding to the conceptual model described in Section 3.1. For all themain conceptual entities, appropriate
stereotypes are defined and their attributes are included as tagged values. In order to avoid repetition, in these paragraphs we just highlight the
extension of UML meta-classes, to provide a clear understanding of how the conceptual entities are reflected by UML modelling elements. The
stereotype mContextPlugin extends UML Class. This qualifies it to be used in a composite structure diagram for the definition of its internal
mechanisms. Actually it would be sufficient if themeta-class UML Encapsulated Classifier would be extended, but this meta-class is not available for
extension in many UMLmodelling tools. In the sameway, the stereotype mContextOperator extends UML Class as well. Here too, UML Part would
be sufficient for use in UML Composite Structures diagrams. The stereotype mConfigurationParameter extends the metaclass UML Attribute.
This allows the modelling of the configuration parameters as attributes of the Operator class. For User Defined Operators we have introduced the
stereotype mPseudoCode which extends UML Note. Thus, the pseudo code for an operator can be provided by simply associating a note to the
operator class. As DMCs serve as a kind of interaction points between the operators, we model them as ports. Consequently, a DMC extends the
UML Port. However, as we would like to provide a convenient method for modelling the tagged values, the stereotype also extends UML Class. For
the connector we just use the standard UML connector. The attribute requiredMediation is reflected through the stereotype mContextMediation
which extends UML Note. This allows the association of the required mediation to the connectors as notes.



8 Nearchos Paspallis

FIGURE 3 UML Profile for modelling Context Plug-ins.

3.4 Tool-Chain and Transformation
Themain constituents of our tool-chain are the UMLmodelling tool Enterprise Architect from Sparx Systems1, andMOFScript2. Enterprise Architect
supports OMG UML 2.x, but is not fully compliant to the Ecore interpretation of UML2, which is required as the input format for MOFScript. Thus,
we have developed an XSLT Stylesheet that is able to convert Enterprise Architect exports to models compliant to Ecore UML2. Developing the
MOFScript transformation script is mostly straight-forward (for more details see Section 4.1.3). However, a major challenge arises when, in addition
to the UML models, we also have to incorporate information captured in ontologies, and represented in OWL, into the transformation process.
For example, for the mediation tasks performed by connectors, it is necessary to have information about the internal structure of the context
information and its available IROs. For this purpose, we use the Ecore meta-model for OWL 1.13, which enables MOFScript to process OWL
ontologies. However, a prerequisite is that an appropriate OWL modelling tool supporting this standard is used. Here, we use the OWL modelling
tool that serves as a standard implementation for the Ecore meta-model mentioned above. In the future, we plan to provide an appropriate XSLT
Stylesheet that performs the transformation from, for example, Protégé exports to the Ecore OWL format. Both the base classes of the conceptual
model and the transformation scripts are publicly available via Github4.

1http://www.sparxsystems.com/products/ea
2https://marketplace.eclipse.org/content/mofscript-model-transformation-tool
3http://webont.org/owl/1.1/metamodel.html
4https://github.com/nearchos/music-mdd

http://www.sparxsystems.com/products/ea
https://marketplace.eclipse.org/content/mofscript-model-transformation-tool
http://webont.org/owl/1.1/metamodel.html
https://github.com/nearchos/music-mdd


Nearchos Paspallis 9

4 CASE STUDY-BASED EVALUATION

To illustrate the use of the MDD methodology and tool-chain we develop a research-based case study covering two scenarios. These concern a
media player app that automatically pauses or resumes playback based on context, and another one that adjusts its media buffer size based on
the user location. As the main contribution of this approach relates to the generation of context plug-ins, we focus the description on the context
sensing and context reasoning aspects of the application rather than on the actual self-adaptive behavior of it. This is in line with the proposed
design, which focuses on building plug-ins for context data collection and context inferring, leaving the final steps of acting on the context to the
app developers.

The Context-aware Media Player (CaMP) has the following context-aware features:

• it detects when a user is present in her office and pauses (or resumes) the media playback accordingly and,

• it monitors the user movement inside a building and adjusts the streaming buffering strategy according to the prediction of network
connectivity.

The former enables the media player to act intelligently and pause media playback when the user would not be able to listen to media, similarly
to the scenario described in 30. The latter optimizes online media playback on the move, by monitoring the user movement, and adjusting the
streaming buffer size when the network quality changes—e.g. when the user is about to walk in aWiFi blind spot—similar to the scenario described
in 31.

In the following, we split the discussion in two subsections, covering each of the main functionalities of CaMP listed above. Note that while
these functionalities are operating in parallel, they are disjoint and thus they can be defined and developed independently, possibly on different
devices. For the sake of demonstrating this variation, we assume that the former functionality is validated on a stationary computer (e.g. desktop),
while the latter on a typical mobile device (e.g. a smart-phone).

4.1 Scenario 1: Starting and stopping media playback.
The main components for enabling the start/stop functionality are the main logic (i.e., the control) component and the media player component.
For the purpose of implementing this functionality, we also define four context plug-ins: the User in the room detector, the Motion Detector, the
Bluetooth device discovery and the Bluetooth device presence plug-ins. These plug-ins and their dependencies are shown in Figure 4.

The User in the room plug-in is responsible for detecting whether the user is present in the room where the computer running the CaMP
application is. In order to compute this information with reasonable accuracy, this plug-in uses input from two additional plug-ins, each one of
which provides more elementary context information: The first, a Motion Detector plug-in, reports whenever significant movement is observed in
the room by comparing consecutive images periodically captured by a webcam in the user’s office. The second one, a Bluetooth device discovery
plug-in, reports whenever a specific Bluetooth device (for example the Bluetooth-equipped smart-phone carried by the user) approaches her office
(the other Bluetooth adapter is assumed to be attached to her desk computer).

While the Bluetooth device discovery plug-in indicates whether the user is near her office or not, it fails to detect whether the user is actually
inside the office or just nearby (e.g., in an adjacent room as Bluetooth range typically extends to 5-10 meters). For this reason, the system utilizes
theMotion Detector plug-in to check if there is also some activity (i.e., movement) in the office. Assuming that the user is the only occupant in the
office, the User in the room detector plug-in can sense with high accuracy whenever the user enters or exits her office.

Finally, the Bluetooth device discovery plug-in utilizes the context information provided by another plug-in: the Bluetooth device presence plug-in.
Instead of directly accessing theBluetooth hardware, theBluetooth device presence plug-in is deployed,which provides real-time context information
of the detected Bluetooth devices (i.e., those that are within communication range). By registering for changes to the list of available Bluetooth
devices, the Bluetooth device discovery plug-in can detect when a specific device (i.e., the user’s smart-phone which is identified by its name or by
its Bluetooth Address) becomes available or unavailable.

As soon as the user enters her office, the webcam detects motion and generates an appropriate event. At the same time, the Bluetooth adaptor
on her computer detects the presence of the user by discovering her Bluetooth smart-phone. The combination of these events drives theUser in the
room detector plug-in to infer that the user is at her desk. This event is eventually communicated to the media player which then resumes playback.

4.1.1 Manual, programmatic implementation of the Plug-ins.
In order to highlight the benefits of the MDD approach, we first introduce the main implementation aspects of the pluggable architecture with
regard to the context plug-ins and hint at the steps which are required from a developer if a context plug-in were to be implemented manually.

In the reference architecture, plug-ins are defined as OSGi bundles which implement the IContextPlugin interface 15,16. This is exported as a
declarative OSGi service 32, and is automatically discovered and bound by the context manager when deployed.



10 Nearchos Paspallis

FIGURE 4 The plug-ins and their dependencies, used for automatically starting and stopping media playback.

The plug-ins’ architecture defines methods for their activation and deactivation (which is dynamically invoked by the context manager using the
Inversion of Control pattern). Furthermore, the reference architecture dictates that the plug-ins advertise their required and their provided context
types 5. For this purpose, each context plug-in is associated to an instance of the IPluginMetadata interface, which defines simple methods for
accessing this metadata.

In the example of theMotionDetector plug-in (see Figure 5), themain component is implemented as an extension of the AbstractContextPlugin
class, which itself implements the IContextPlugin interface. The compute method implements the main logic of the plug-in, and it is invoked by
a thread which is triggered by the activate and deactivate methods (automatically called by the middleware as needed). When a context change
is sensed, an event is constructed and delegated to the middleware using the fireContextChangedEvent method. Finally, the plug-in class is
associated to an instantiation of the IPluginMetadata interface, which in this case simply states no required context types and a single provided
one (i.e.MOTION DETECTED).

The typical process for creating the Motion Detector plug-in involves the engineer using the editor of his choice, and defining the two required
classes by extending or implementing the middleware-defined abstract classes and interfaces. In more detail, a developer is confronted with the
following tasks:

• Define the class that provides the meta-data of the context plug-in in terms of required and provided context types,

• Instantiation and parameterization of all the required data-structures (i.e., DMCs) and specialized methods (i.e., Operators),

• Establish the link to the context system through the fireContextChange and contextChanged methods, which are responsible to provide
the results to the context system and to populate the DMCs accordingly,

• Implement the main logic of the plug-in (i.e., the compute method),



Nearchos Paspallis 11

FIGURE 5 The basic architecture of theMotion Detector plug-in.

FIGURE 6 UML Class Diagram for theMotion Detector plug-in.

• Deal with the mediation required for the communication of the context information between the inputs and the outputs of the data
structures (i.e., DMCs).

Although this particular functionality of the case study is not too complex itself, and even though abstract classes are provided to relieve the
developers from recurring implementation tasks, this process can become a tedious and often difficult task when the desired functionality implies
multiple data-structures and complex wiring code. Furthermore, once the code is compiled, the developer still needs to package the plug-in in an
appropriate JAR file (assuming an OSGi-based architecture).

4.1.2 Implementing the MotionDetector Plug-in Using MDD.
In this subsection we describe how the Motion Detector is modelled using the newly introduced UML Profile. This is viewed in comparison to the
manual implementation of a context plug-in, as it was presented in the previous subsection.

First, the Context Plug-in itself and its associated Input DMCs and Output DMC are modelled. This is done in a UML Class Diagram as shown
for the Motion-detector plug-in in Figure 6. The Motion Detector plug-in is modelled through a class with the stereotype mContextPlugin. The
plug-in is parameterized by defining the trigger type: a change event in the Input DMC or, more precisely, if a new element is inserted into the Input
DMC. In general, the Motion Detector Plug-in is associated with one SimpleInputDMC called InputPl and one OutputDMC named OutputPl. Both
DMCs are modelled as classes with the corresponding stereotypes. The InputPl DMC is parameterized with just a simple variable that specifies
unlimited time-to-live for its elements (i.e., the stored element will never be automatically invalidated). Additionally, we specify that InputPl requests
context information characterizing the entity UserOffice. The scope of information is ImageFromWebcam and the requested representation is



12 Nearchos Paspallis

FIGURE 7 UML Class Diagram for the Image Comparing operator.

FIGURE 8 UML Composite Structure Diagram for Motion-detector Plug-in.

ImageFromWebcamDefaultRep. On the other hand, the OutputPl DMC is configured to specify that the information provided by the Context Plug-
in to the Context Middleware also characterizes the entity UserOffice. Its scope is defined as MotionDetected and is represented according to the
MotionDetectedDefaultRep.

Once the Context Plug-in is defined as described above, the developers need to model the Operators they would like to use within the Context
Plug-in. This is also done with a UML Class Diagram. In the case of the Motion Detector plug-in just one operator is required, namely the generic
ImageComparingOperator. Figure 7 shows the corresponding UML Class Diagram including its definition and parameterization.

The model for the operator is very similar to the model of the Context Plug-in itself. Therefore, here we only discuss their differences. In contrast
to the Context Plug-in, an Operator cannot be triggered independently and, thus, the ImageComparingOperator does not specify the attributes
triggerType and triggerValue. Instead, as a generic operator, the ImageComparingOperator provides the package location of the corresponding class
to be instantiated. Another difference compared to Context Plug-ins is that an operator only works on generic DMCs that do not directly interact
with the Context System. Hence, the DMCs only specify the representation (i.e., the data type) of the contained elements.

It is worth noting that as the ImageComparingOperator works on two consecutive images, the Input DMC is used to cache just two images. In
this regard, this DMC is defined as a Queue of size 2 and its elements are invalidated (and removed) after 1000ms.



Nearchos Paspallis 13

After the Context Plug-in and the operator have been specified, the next step is to model the data-flow between the plug-in and the operator.
This is done by connecting the defined DMCs and by specifying the necessary mediation tasks. For this purpose, a UML Composite Structure
Diagram is used, as shown in Figure 8.

In this diagram, the previously defined ImageComparingOperator is modelled as a nested classifier (represented as UML Class) of the
MotionDetectorPlug-in class and the corresponding DMCs are connected through directed UML Connectors. In addition to the pure data flow,
UML Notes associated to the connectors specify the needed mediation tasks. The note associated to the Input-to-Input Connectormeans that from
the Context Element stored in the Input DMC of the MotionDetectorPlugin, the scope ImageBuffer in the representation BufferedImage has to be
extracted and inserted into the Input DMC of the ImageComparingOperator in the same BufferedImage representation. Similarly, the mediation task
is specified for the Output-to-Output connector.

4.1.3 Transformation to Java code.
The final step of the MDD process is the generation of the source code. First, the UML model (see previous section) is exported to XMI and then
converted to the XMI/UML2 representation expected as input by MOFScript. Next, the developer imports the resulting model into an Eclipse
project. From there, the MOFScript with the provided transformation script is executed which results to the generation of the actual source code.
Besides the source code, the transformation process also creates a directory structure which includes the Bundle manifest for the plug-in, along
with its OSGI service declaration. Optionally, a build description is also provided which can be used directly by a build tool (such as Ant, Maven,
etc.) to automatically generate the JAR-based bundle.

The transformation script which produces the plug-in’s source code can logically be divided into two cycles: First, it reads all the elements
available in the model and it stores them in appropriate containers, like lists, hashtables, etc. This is done to ease the subsequent code generation
task.

Although the development of the transformation script was “straightforward”, two problems had required significant elaboration: First, the
correct transformation of the DAG for the generation of the compute-method of the context plug-in and second the automatic generation of source
code to support the mediation between connected DMCs.

The first problem was solved by implementing a small recursive algorithm within the transformation script (thus avoiding any pre-processing
step). Thereby the main challenge was to implement this algorithm with the limited language support of MOFScript. The algorithm starts with the
InputDMCs of the context plug-in and searches for all connectors with one of these DMCs as a starting point and generates the source-code for
them. Afterwards, the algorithm checks all operators, whose InputDMCs are now connected by the generated connectors, if there exists other
connectors with one of these operator’s InputDMCs as their target. If such a connector exists, the source code for it is generated. Then, it is possible
to include the “compute” method of the connected operators. The algorithm then proceeds recursively with the OutputDMCs of the operators as
the starting point. The algorithm stops, when it arrives at an OutputDMC of the context plug-in.

Concerning the second problem, a complete solution was not available at this point. In Section 3.4 it was mentioned that an ontology corre-
sponding to the Ecore OWL format can be parsed by MOFScript. However, incorporating the concepts and relationships defined in the ontology
into the automatic generation of mediation-methods has not been completed yet. Nevertheless, the current version of the transformation tool
allows the generation of skeletons for every mediation-method, which is marked with additional “TODO” mark-ups and comments to indicate the
points where the corresponding code has to be manually included.

Media players typically buffer a few seconds of the running audio or video clip to compensate for uncertainty in the streaming channel (e.g.
when data is fetched from a locally attached device such as a DVD drive or from the Internet). The trade-off in this case is that buffering more data
would require a larger portion of the available memory, leaving less space for the remaining apps. On the other hand, buffering less data means
taking a higher risk to have an interruption to the media playback when there is a network disruption.

4.2 Scenario 2: Adjusting media player’s buffering strategy
An adaptive buffering strategy aims to optimize the perceived Quality of Experience (QoE) by adjusting the buffer size based on the network
conditions. Many approaches focus on predicting exclusively based on the network properties (e.g. the adaptive media predictor discussed in 33).
In this scenario we envision a more elaborate mechanism to forecast network disconnection by predicting the user movement. To enable such
functionality, it is assumed that a table exists with the expected network conditions at individual Points of Interest (POIs) (for instance separate
rooms, entry points in buildings, etc. as depicted in Figure 9 and Table 1).

However, this still cannot predict the network conditions unless we also know where the user is heading. For this purpose, we propose a simple,
machine learning-inspired approach where individual user motion patterns are recorded and then used to estimate the most likely path of the user.
An example is illustrated in Figure 9: the user leaves their office (I) on the first floor, walks to the stairs (J, F, H) and then on the ground floor crosses
the corridor (G, P, S) to get to a classroom (T).



14 Nearchos Paspallis

POI WiFi strength (dB) Connection quality Notes
F -67 Very poor Edge of stairwell (first floor)
G -59 Poor Edge of stairwell (ground floor)
H −∞ Disconnected Stairwell (no signal)
I -43 Very good Office (frequent use)
J -51 Good Transition point
M -64 Poor Transition area
N -53 Good Admin office (frequent use)
R −∞ Disconnected Stairwell (no signal)
S -66 Very poor Edge of stairwell
T -47 Very good Lab (frequent use)

TABLE 1 Points of Interest (POIs) with connection details and annotations (cf. 31)

FIGURE 9 Illustration of the plug-ins and their dependencies, used for adjusting the streaming buffer size.

By using a time-stamped collection of the most likely motion patterns (e.g. as shown in Table 2) along with a prerecorded table of the expected
network conditions at each POI, it is possible to make a prediction of the user position and subsequently the network connectivity. In its simplest
form, network connectivity can be assumed to be proportional to the WiFi signal strength (e.g. as shown in Table 1).

In this scenario, prediction is facilitated by the fact that humans are creatures of habit, with predictable daily routines. For example, assume the
data in this table cover a specific day of the week (e.g. Tuesday). When a user changes his status at around 9:00 that day from ’sitting’ to ’walking’
and then exits his office (I) and walks to the corridor (reaching POIs J and then F), then it can be predicted that he is on motion path (ii). This implies



Nearchos Paspallis 15

FIGURE 10 UML Class Diagram forMotion Predictor plug-in.

that the WiFi network is shortly going to be disturbed, i.e. when walking down the stairs (H). This event can subsequently trigger an adjustment to
media player’s buffering size. The exact algorithm used for prediction of Motion Path can vary from more elaborate, such as neural-network based
AI approaches 34, to more “straightforward” algorithms such as pattern matching. In the following paragraphs, we build a plug-in that utilizes the
pattern matching algorithm proposed by Karp et al. 29, and which was further described in the context of a similar scenario in 31.

Figure 9 depicts a stack of 5 plug-ins, working in tandem to predict when the WiFi network might be disconnected. At the lowest level, the
AccessibleWiFi MACs plug-in monitors the visible access points and triggers an event when there is a change (i.e. when a new access point becomes
visible or an existing one disappears). These events are fed to the Indoor Positioning plug-in which uses a fingerprinting algorithm 35 to identify the
most likely position of the user inside the building. Right above this, is aMotion Predictor plug-in which receives input from both the Activity Detector
and the Indoor Positioning plug-ins. The former is used to trigger the plug-in into processing the (likely new) position of the user. Most modern
mobile systems, such as Android, have built-in support for user activity tracking, so the Activity Detector plug-in could be realized as a wrapper
around existing algorithms 36,37. The latter provides the most recent position of the user. To fulfill the prediction task, the plug-in accumulates the
trace of user position over time, so it can infer their Motion path and thus their likely future position. Lastly, generated events feed to the WiFi
Connection Predictor plug-in which itself uses this information to make a prediction of the network quality, in this case by performing a simple
look-up at the WiFi signal strength at the corresponding POI (Table 1).

Id Time Motion path Notes
i 08:00 B C A D F J I Arriving at the building
ii 09:00 I J F H G P S T Going to a timetabled class
iii 12:00 T S R Q M J I Returning at the office
iv 13:00 I J M Q R S V X Going for lunch
v 13:30 X V S R Q M J I Returning at the office
vi 14:30 I J M Q UW Going to the library
vii 14:45 W U QM J I Returning at the office
viii 17:00 I J F D A C B Leaving the building

TABLE 2 Fabricated model illustrating user’s most common motion patterns in the building (cf. 31)

Undoubtedly, this scenario and especially the functionality of the Indoor Positioning and Motion Predictor plug-ins depend on a training phase
which would allow them to build up the necessary database required for their operation (i.e. a list of WiFi access points and their WiFi strength
visible at each POI for the former plug-in, and a list describing the Motion path of the user over time for the latter). For simplicity, we assume that
such mechanisms are in place providing the training needed to realize this scenario, but for simplicity we do not describe them in detail.



16 Nearchos Paspallis

FIGURE 11 UML Class Diagram for Pattern Matching Operator.

4.2.1 Implementing the Motion Predictor Plug-in Using MDD.
To further demonstrate the MDD approach, we describe the process that was followed to implement the Motion Predictor plug-in which utilizes
input from the Indoor Positioning and the Activity Detector plug-ins (cf. Figure 9).

Similar to the first case study, the Context Plug-in itself and its associated Input DMCs and Output DMC are modelled with a UML Class
Diagram as shown in Figure 10. Unlike the first case study though, this plug-in features input from two sources, and thus defines two Input DMCs.
The Motion Predictor plug-in itself is modelled through a class with the stereotype mContextPlugin. The plug-in is parameterized by defining the
trigger type: a change event in the UserActivityInputPl DMC or, more precisely, if a new element is inserted into this Input DMC. In general, the
Motion Predictor Plug-in is associated with two SimpleInputDMCs called IndoorPositionInputPl and UserActivityInputPl, and one OutputDMC named
PredictedPoiOutputPl. All DMCs are modelled as classes with the corresponding stereotypes. The UML Class Diagram for the Motion Predictor
plug-in is depicted in Figure 10.

The model for the operator is similar to the model of the Context Plug-in itself. Therefore, here we only hint at their differences. As mentioned,
in contrast to the Context Plug-in an Operator cannot be triggered independently and, thus, the PatternMatchingOperator does not specify the
attributes triggerType and triggerValue. Instead, as a generic operator, the PatternMatchingOperator provides the package location of the corre-
sponding class to be instantiated. As the PatternMatchingOperator works on several consecutive inputs (i.e. timestamped user positions), the
InputIndoorPositionPl DMC is used to cache a sequence of events. In this regard, this DMC is defined as a Queue of unlimited size and its elements
are invalidated (and removed) after 5 minutes (i.e. 300000ms), as it is assumed that distances inside the building are short (cf. Figure 11).

After the Context Plug-in and the operator have been specified, the next step is to model the data-flow between the plug-in and the operator.
As before, this is done by connecting the defined DMCs and by specifying the necessary mediation tasks. For this purpose, a UML Composite
Structure Diagram is used, as shown in Figure 12. In this diagram, the previously defined PatternMatchingOperator is modelled as a nested classifier
(represented as UML Class) of the MotionPredictorPlugin class and the corresponding DMCs are connected through directed UML Connectors.
In addition to the pure data flow, UML Notes associated to the connectors specify the neededmediation tasks, i.e. processes aimed at transforming
data to a compatible format or measure (e.g. from Fahrenheit to Celsius). In this scenario, mediation tasks are “straightforward” as data passes from
the Plug-in to the Operator with the same representation.

The transformation to Java in this scenario is similar to the process described in Section 4.1.3.

4.3 Lessons from the Case Studies
Our experience showed that the MDD approach has some important advantages compared to the manual approach. Similar to general MDD
approaches, the developers benefit from the ability to implement their software at a higher level, dealing primarily with abstract data-structures and
operators. For the development of context plug-ins, this means that developers do not have to go into the source code to understand the interfaces
to the context system and other details that are required for the manual implementation. Furthermore, it should be noted that this approach was
developed as part of a more general development methodology that aims at creating context-aware, self-adaptive applications. This results in a
highly coupled solution, where the developers are provided with a wide range of development tools which are similar in use and thus contribute
to a smoother learning curve. Furthermore, the developers can streamline the development process by allowing the modelling and transformation
of the applications to take place in parallel with the development of relevant context plug-ins. Finally, a significant advantage is that the proposed



Nearchos Paspallis 17

FIGURE 12 UML Composite Structure Diagram forMotion Predictor plug-in.

solution facilitates high re-usability of code, in terms of the main data-structures (such as the Data Management Containers) as well as in terms of
specialized operators (such as the Image Comparator and the Pattern Matching operators).

In order to maximize reusability of the underlying artifacts—especially Operators—the developers should aim at balancing the need for reusabil-
ity with that for specialization. For example, when developing a Motion Predictor operator, similar to the one described in Section 4.2, one could
be tempted to aim for a general-purpose Operator which would work for instance similar to how Deep Learning 38 automatically infers data rep-
resentations. On the other hand, another developer could aim for a highly specialized component which would work only in this particular case.
Similar to standard component-oriented programming 14, finding the right balance is a difficult and at the same time an important task, as it allows
to develop artifacts which are compact, meaningful and of course reusable.

5 EVALUATION

The main contribution of the proposed approach is that it offers the ability to develop advanced context plug-ins—and consequently complex
context-aware applications—in a systematic and automated way, while at the same time maximizing the opportunity for reuse. The value of this
approach is evaluated both qualitatively and quantitatively, as well as via a comparison with related work and a discussion of its limitations.

5.1 Qualitative Evaluation
To qualitatively assess the proposed approach we examine it across three dimensions: expressiveness, reusability, and productivity.



18 Nearchos Paspallis

• Expressiveness is often measured by enumerating the number of possible scenarios or applications that can be developed using the afore-
mentioned model 39. In our approach, we argue that the proposed scenarios are very flexible and can be utilized to develop practically any
conceivable application. This of course is partly due to the fact that the underlying model and the supporting framework are extensible,
allowing for the specification and integration of third party components. Most notably, the developers can specify their own, custom-
tailored operators which can be used to process the data in arbitrary ways. For instance, theOperators described in Section 3.2 cover a wide
range of applications, from simple prediction, to image comparison, and signal smoothing. Naturally, this flexibility has the disadvantage of
high cost of development, which is nevertheless counter-balanced by the re-usable nature of the constituent components, most notably
the Operators.

• Reusability is one of the strongest aspects of this approach. Because the MDD-based approach is built around reusable components, such
as the DMCs and the Operators, developers can take full advantage of the features of component-oriented programming and minimize
development time, testing time, and their associated costs. For example, in case study 2, we proposed a sophisticatedOperatorwhich infers
the user’s movement pattern using string matching. In a similar manner, we could have created other prediction plug-ins such as battery
level prediction, reusing to a great extend off-the-shelf Operators. The main disadvantage is that for the re-usability to be widely useful, a
critical mass of tested, third-party operators must first be developed and made publicly available.

• Productivity is typically measured in terms of development time. A well known—and elaborate—approach for cost estimation was proposed
by Boehm et al. 40 who argued that their COCOMO II approach “[. . . ] provides a thorough [. . . ]model to address modern software processes and
construction techniques along with representative examples of applying the models to key software decision situations”. In some cases, a more
“straightforward” approach is followed, where it is assumed that development time—and hence productivity—is proportional to the number
of lines-of-code 41.

Last, and relevant to all three dimensions discussed above, component-orientation is another strong asset of the proposed approach. Proposed in
the 90’s 14, Component Oriented Programming is considered a proved technique for building modern software-based systems. For instance, Bagheri
et al. 11 argue that Android owes its success to many software architectural principles developed over the previous decade, including component
orientation–which is at the core of the proposed methodology.

5.2 Quantitative Evaluation
The quantitative evaluation spans two approaches: First, we performed an experiment involving a small number of students, who compared the
development of a plug-in using traditional programming versus using the proposed MDD approach. Second, we undertook the task of developing
a context plug-in using both methods and then analyzed and compared the resulting code.

5.2.1 Measuring Development Productivity
Similar to other works that evaluated software development approaches (e.g. Cassou et al. 39), we applied a limited experiment in the context of a
software engineering class at a university context. A small group of students (12) were initially asked to develop a number of context plug-ins using
their existing programming skills. Then, a subset of them (4) were trained to use the MDD methodology and tool-chain and then they were asked
to develop similar context plug-ins, this time using the provided MDD tool-chain. The participants then answered a short questionnaire where
they were asked to compare the two approaches. The result showed that the MDD-based approach, despite its steeper learning curve, enabled
them to complete the task faster and, furthermore, that the process could become even faster once they were further accustomed to using these
tools. The complete format of the questionnaires and the student answers are openly available at 42. The obvious limitation of this approach is the
relatively small number of participants, and the fact that the academic context is often not an accurate reflection of real world software development
conditions.

5.2.2 Measuring Code Complexity and Performance
To further assess the effectiveness of the MDD tool-chain, we developed a context plug-in (specifically the Motion Detector plug-in discussed in
Section 4.1) using both the proposed MDD-based approach, as well as traditional, manual development. We then compared the complexity and
performance of the plug-ins to assess whether any of the two had an advantage over the other.

First, we used the models presented in Section 4.1.2 to generate the source code for the MotionDetectorPlugin which utilizes the ImageCom-
paringOperator. Subsequently, we manually developed an equivalent plug-in (named PlainMotionDetectorPlugin) and tested both of them using a
harness, under simulation conditions. Specifically, a simulated context sensor acts as the Webcam, firing events containing images from a prede-
fined set. These are fed to the two plug-ins via the harness, which process them to identify the difference in the images and raise an event when



Nearchos Paspallis 19

the difference exceeds a threshold. For simplicity, the plain plug-in reuses code from theMotionPredictorPlugin. Specifically, it uses the exact same
implementation of the IPluginMetadata class (there is no need to manually develop it as it consists purely of boilerplate code defining the required
and provided context types). It also reuses the function in the ImageComparingOperator which produces a numerical value comparing two images
denoting their difference.

Plug-in Lines-of-Code Cyclomatic complexity Memory use
Source code only contextChanged() method Average in Bytes

Generated via MDD 108 4 1,362,054
Manually developed 74 6 1,360,620

TABLE 3 Comparison of automatically generated and manually developedMotion Detector plug-in

To compare the two plug-ins we used the more traditional metrics of lines-of-code and cyclomatic complexity 43. For the former, we used IntelliJ
IDEA’s Statistics plug-in5 and for the latter we used the CyVis tool6. We also performed an analysis of the memory use of the two implementations
using the VisualVM tool7.

The comparison showed that the MDD-generated code is larger in terms of lines-of-code. However, it should be noted that in this example the
manually-created plug-in calls code directly from the ImageComparingOperator—had the corresponding code been copied-pasted, the lines of code
of the plug-in would had increased from 74 to 132, i.e. to more than the MDD-generated plug-in. In terms of cyclomatic complexity, the MDD-
generated code is actually fairing better, which is partly explained by the fact that a lot of the processing—e.g. handling and managing the flow
of context events—happens in the DMCs in the case of the MDD-generated code, while the manually generated plug-in must handle the event
flow explicitly. Finally, the memory usage is comparable. In reality, the plug-ins themselves use very small amounts of memory, but in this case the
profiler included the memory used to queue the image buffers which makes the plug-ins appear as more memory demanding than would otherwise
be the case. The code of the simulation harness and the plug-ins is available on Github8.

5.3 Related Work
From its early days when Context-Awareness was first introduced by Schilit 44 and later defined by Dey 45, it was clear that it would play an
increasingly important role in mobile and pervasive computing applications. Since then, dozens of approaches have been proposed to collect,
manage and infer context information. Some of these approaches are briefly described in 46 which also proposes a best-of-breed approach for
building context-aware applications. An extensive survey of context modeling and reasoning techniques was conducted by Bettini et al. 6. Similarly,
Hong et al. reviewed and classified a large set of context-aware systems 7. While many of these approaches were reportedly based on pluggable
architectures, very few were designed to utilize MDD. One such approach was proposed by Ceri et al. 47, which however is constrained to Web
applications.

At the same time, various forms of Generative Programming 48 have been explored, such as MDD and aspect-oriented programming, aiming pri-
marily at improving the programmers’ productivity and enabling code reuse. MDDwas introduced with its proponents arguing that it “distinguishes
between conceptual models (where analysts work) and the code that implements the system (which can be generated with as much automation as possible
from the conceptual model)” 49. Naturally, this is the primary benefit we are also claiming for the proposed plug-in based method presented in this
paper.

In a position paper, Carton et al. 50 argued that combining aspect-oriented software development (AOSD) with model-driven development
(MDD) has good potential (i.e. in terms of comprehensibility, maintainability and manageability metrics 51, which themselves have been found to be
affecting software reusability 52). We argue that the proposed approach also benefits from these as it features both an aspect-oriented approach
(by means of the pluggable architecture 5) and a model-driven development approach.

In another MDD approach 53, the authors propose an MDD-based approach for Quality of Context (QoC). While this approach has many simi-
larities to our proposed one (especially in terms of modeling context information), at the same time it has some significant differences: it is largely

5https://plugins.jetbrains.com/plugin/4509-statistic
6https://sourceforge.net/projects/cyvis
7https://visualvm.github.io
8https://github.com/nearchos/music-mdd

https://plugins.jetbrains.com/plugin/4509-statistic
https://sourceforge.net/projects/cyvis
https://visualvm.github.io
https://github.com/nearchos/music-mdd


20 Nearchos Paspallis

based on a custom DSL rather than general-purpose UML, and it primarily aims at enabling QoC rather than general-purpose context-plugins (i.e.
sensors/reasoners).

A similar, model-driven approach for developing context-aware applications was presented by Ayed et al. 54. In that approach, the authors
provided a detailed description of the steps required to generate the code of context-aware applications. These steps covered all the production
phases. The authors conclude that the use of MDD in the development of context-aware applications allows platform independent development
which “hides the complexity and the heterogeneity of the context-aware and adaptive mechanisms”. Unlike our approach, this aims to enable the
design of complete context-aware applications, and thus it puts emphasis on the variability aspects of the context-aware applications. In contrast,
our approach focuses on the specification of the actual context plug-ins (i.e. context gathering and processing components) and their internal
mechanisms which are used to collect and manipulate the context information. We argue that this degree of specialization provides a significant
advantage as it allows the developers to maximize the portion of the functionality specified in the PIM and as a result minimize the amount of code
required in the individual PSMs.

Also aiming directly at model-based plug-in development, Naujokat et al. 55 propose amethod to enable a graphical modeling framework–namely
jABC–to capture plug-in development in a domain-specific setting. The main contribution of this work is that “the intended plug-in functionality can
itself be modeled conveniently in terms of graphical workflows, which then can be translated fully automatically to running code”. While our approach
builds on standard UML modeling tools such as Enterprise Architect and the more traditional transformation tool-chain MOFScript 56, the work by
Naujokat et al. is based on their custom-tailored modeling framework jABC 57 and Genesys transformation tool 58,59.

In 60, Wagelaar and Jonckers use Model Driven Architecture (MDA) based approaches to design and deploy software applications targeting
autonomous robots. MDA is used to produce a PIM of the software and then using a Platform Model (PM) they generate the required PSM. Similar
to our approach, the use of a separate PM allowed the developers to reuse model transformations over several platforms.

In relevant approach described in 61, Geihs et al. use knowledge that is contained in ontologies to automate model transformations used in
the model driven development of adaptive services and applications. For this purpose, the PIM of the service as well as the target platform are
semantically annotated. This allows a generic transformation tool which incorporates simple ontology reasoner to target a number of platforms
without adjusting the transformation itself. In contrast, our approach uses the principles of MDD and ontologies to build context-aware plug-ins,
not necessarily targeting different platforms, but for increasing the productivity by reducing the amount of code required and by allowing to deal
with the development at a higher level.

Finally, the authors of DiaSpec 39 propose a design language and a tool suite covering the development life-cycle of a pervasive computing
application. Similar to ours, this approach is heavily based on a tool-set, but the focus is wider and covers the complete development cycle of a
pervasive computing application. Our approach shares additional similarities in the form of aiming for expressiveness, re-usability and productivity.
Unlike DiaSpec however, our approach is much more focused and specializes on the design and implementation of context plug-ins, which are
individual components that alone are rarely sufficient to realize a full application.

5.4 Limitations
Model-driven development has been a point of strong debate since its inception. An interesting discussion of the main arguments put forth and
against MDD is provided by Mellor et al. 12. Most criticism builds on the argument that MDD is more of a hindrance rather than help, as it adds
extra tasks to the developer without an immediately observable benefit. On the other hand, proponents of MDD argue that “[MDD] enables reuse
at the domain level, increases quality as models are successively improved, reduces costs by using an automated process, and increases software solutions’
longevity. In this way, models become assets instead of expenses–quite the business proposition!”

Naturally, some of the limitations shared by virtually all MDD-based approaches are also observed in this proposal. For instance, a common
criticism is that MDD carries a steep learning curve, it makes developers feel that they don’t have control 62, and also that it is in contrast with the
Agile-based approaches used widely in software development today 63. As others have argued though, MDD is not without merit 13 and even not
necessarily incompatible with Agile methods 64.

The case studies used for evaluation are based on existing demo applications, something that demonstrates the use of plug-ins for developing
context-aware apps with separation of concerns 30. While the case study scenarios are rather specific, they do demonstrate what state-of-the-
art context-aware apps can achieve and showcase how the combination of simple plug-ins can form a more complex app, with relative ease.
Another reason why the case study was chosen to be simple was so that it could be quickly demonstrated to students during training. This
was important for the student-based evaluation which was carried out to evaluate the MDD based approach versus a “straightforward” (non
MDD-based) approach—and described in Section 5.2.

Finally, it is argued that the proposed approach is confined by the rather narrow scope of the underlying middleware architecture, which while it
is based on Java/OSGi and thus is highly portable, it is not very likely to be used in many modern apps. Nevertheless, we argue that the principle of
the MDD methodology and tool-chain used in this approach is strong and solid. Also, we envision to port both the middleware and the tool-chain



Nearchos Paspallis 21

to support at least one of the modern mobile platforms. Android is the natural candidate in this case, not only because it is Java-based and thus
should be smoother to port to, but also because it is generally a more open platform 65.

6 CONCLUSIONS

This paper presented a Model Driven Development-based approach for the creation of context plug-ins. At the core of this approach lies a method
for creating complex context plug-ins, realizing sophisticated functionality, out of smaller, reusable artifacts via an MDD-based tool-chain. We
showcased the approach in the context of two elaborate, research-based case-studies, demonstrating how complex functionality–such as auto-
matically identifying when a user would become available for the media player to resume, or anticipating and reacting to WiFi disconnection–can
be realized in a methodological and reusable manner. Furthermore, we evaluated the proposed tool-chain both qualitatively–via related work–and
quantitatively–via a small student-based experiment and by analyzing and comparing plug-ins developed manually versus via MDD. This showed
that this approach has significant advantages, primarily related to the code reuse which is at the center of the methodology.

In the future, we will extend and improve this methodology by implementing additional operators and DMCs and, also, will enhance the support
for IROs. Additionally, we will evaluate the approach in the context of additional elements such as operators, and additional applications, including
“standalone” context-aware applications. Finally, we will extend out tool-chain with support for additional Platform Specific Models to extensively
and fully support Android as a target platform.

References

1. Dey Anind K., Abowd Gregory D., Salber Daniel. A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware
applications. Human-Computer Interaction. 2001;16(2):97–166.

2. BrunetteWaylon, Sodt Rita, Chaudhri Rohit, et al. OpenData Kit Sensors: A Sensor Integration Framework for Android at the Application-level.
In: MobiSys ’12:351–364ACM; 2012; New York, NY, USA.

3. Carlson Darren, Schrader Andreas. AWide-area Context-awareness Approach for Android. In: iiWAS ’11:383–386ACM; 2011; New York, NY,
USA.

4. Kim Hoon-Kyu, Kim Choung-Seok, Kim Kyung-Chang. A Context-Aware Framework for Mobile Computing Environment. In: LNEE:325-
330Springer Singapore; 2015; Singapore.

5. Paspallis Nearchos, Papadopoulos George A.. A pluggable middleware architecture for developing context-aware mobile applications. Personal
and Ubiquitous Computing Journal. 2013;:1-18.

6. Bettini Claudio, Brdiczka Oliver, Henricksen Karen, et al. A survey of context modelling and reasoning techniques. Pervasive and Mobile
Computing. 2010;6(2):161 - 180. Context Modelling, Reasoning and Management.

7. Hong Jong, Suh Eui, Kim Sung-Jin. Context-aware systems: A literature review and classification. Expert Systems with Applications.
2009;36(4):8509 - 8522.

8. Sommerville Ian. Software engineering. Pearson; 10th ed.2010.

9. Taylor Richard N., Medvidovic Nenad, Dashofy Eric M.. Software Architecture: Foundations, Theory, and Practice. Wiley; 1st ed.2009.

10. Richards Mark. Software Architecture Patterns. 1005 Gravenstein Highway North, Sebastopol, CA 95472, United States: O’Reilly Media;
1st ed.2015.

11. Bagheri Hamid, Garcia Joshua, Sadeghi Alireza, Malek Sam, Medvidovic Nenad. Software architectural principles in contemporary mobile
software: from conception to practice. Journal of Systems and Software. 2016;119:31 - 44.

12. Mellor Stephen J., Clark Anthony N., Futagami Takao. Model-driven development. IEEE Software. 2003;20(5):14-18.

13. Selic Bran. The pragmatics of model-driven development. IEEE Software. 2003;20(5):19-25.

14. Szyperski Clemens. Component software: beyond object-oriented programming. Addison-Wesley Professional; 1997.



22 Nearchos Paspallis

15. Floch Jacqueline, Fra Cristina, Fricke Rolf, et al. PlayingMUSIC - building context-aware and self-adaptivemobile applications. Software: Practice
and Experience Journal. 2013;43(3):359-388.

16. Hallsteinsen Svein, Geihs Kurt, Paspallis Nearchos, et al. A Development Framework and Methodology for Self-Adapting Applications in
Ubiquitous Computing Environments. Journal of Systems and Software. 2012;85(12):2840 – 2859.

17. Hong Jason I.. The Context Fabric: an infrastructure for context-aware computing. In: :554–555ACM; 2002; Minneapolis, Minnesota, USA.

18. Bardram Jakob E.. The Java Context Awareness Framework (JCAF) – a Service Infrastructure and Programming Framework for Context-aware
Applications. In: PERVASIVE’05:98–115Springer-Verlag; 2005; Berlin, Heidelberg.

19. Paspallis Nearchos, Rouvoy Romain, Barone Paolo, Papadopoulos George A., Eliassen Frank, Mamelli Alessandro. A pluggable and recon-
figurable architecture for a context-aware enabling middleware system. In: LNCS, vol. 5331: :553–570Springer Verlag; 2008; Monterrey,
Mexico.

20. Reichle Roland, Wagner Michael, Khan Mohammad, et al. A Comprehensive Context Modeling Framework for Pervasive Computing Systems.
In: LNCS, vol. 5053: :281–295Springer Verlag; 2008; Oslo, Norway.

21. Strang Thomas, Linnhoff-Popien Claudia, Frank Korbinian. CoOL: A Context Ontology Language to Enable Contextual Interoperability. In:
LNCS, vol. 2893: :236–247Springer Verlag; 2003; Paris, France.

22. Reichle Roland, Wagner Michael, Khan Mohammad Ullah, et al. A Context Query Language for Pervasive Computing Environments. In: :434–
440IEEE Computer Society; 2008; Hong Kong.

23. Fra Cristina, Valla Massimo, Paspallis Nearchos. High Level Context Query Processing: An Experience Report. In: :421-426IEEE Digital Library;
2011; Seattle, WA, USA.

24. Haghighi Pari Delir, Zaslavsky Arkady, Krishnaswamy Shonali. An Evaluation of Query Languages for Context-Aware Computing. In: :455–462;
2006.

25. Mcfadden Ted, Henricksen Karen, Indulska Jadwiga. Automating context-aware application development. In: :90–95; 2004; Nottingham,
England, UK.

26. Perich Filip, Joshi Anupam, Yesha Yelena, Finin Tim. Collaborative joins in a pervasive computing environment. The VLDB Journal.
2005;14(2):182–196.

27. Baer Philipp A., Reichle Roland. Communication and Collaboration in Heterogeneous Teams of Soccer Robots. In: Vienna, Austria: I-Tech
Education and Publishing 2007 (pp. 1–28).

28. Kalman Rudolph Emil. A New Approach to Linear Filtering and Prediction Problems. Transactions of the ASME – Journal of Basic Engineering.
1960;82(Series D):35-45.

29. Karp Richard M., Miller Raymond E., Rosenberg Arnold L.. Rapid Identification of Repeated Patterns in Strings, Trees and Arrays. In: STOC
’72:125–136ACM; 1972; New York, NY, USA.

30. Paspallis Nearchos, Achilleos Achilleas, Kakousis Konstantinos, Papadopoulos George A.. Context-aware media player (CaMP): Developing
context-aware applications with separation of concerns. In: :1684-1689; 2010.

31. Paspallis Nearchos, Alshaal Salah Eddin. Improving QoE via Context Prediction: A Case Study of Using WiFi Radiomaps to Predict Network
Disconnection. In: ICPE ’17 Companion:31–34ACM; 2017; New York, NY, USA.

32. Cervantes Humberto, Hall Richard S.. Autonomous adaptation to dynamic availability using a service-oriented component model. In: :614–
623IEEE Computer Society; 2004; Edinburg, Scotland, UK.

33. DeLeon Phillip, Sreenan Cormac J.. An adaptive predictor for media playout buffering. In: :3097-3100 vol.6; 1999.

34. Russell Stuart J., Norvig Peter. Artificial Intelligence: A Modern Approach. Pearson Education; 3rd ed.2009.

35. Varshavsky Alexander, Patel Shwetak. Location in Ubiquitous Computing. In: Krumm John, ed.Ubiquitous Computing Fundamentals, Boca Raton,
FL, USA: CRC Press 2009 (pp. 285-320).



Nearchos Paspallis 23

36. Kwapisz Jennifer R., Weiss Gary M., Moore Samuel A.. Activity Recognition Using Cell Phone Accelerometers. SIGKDD Explor. Newsl..
2011;12(2):74–82.

37. Lara Oscar D., Labrador Miguel A.. A Survey on Human Activity Recognition using Wearable Sensors. IEEE Communications Surveys Tutorials.
2013;15(3):1192-1209.

38. LeCun Yann, Bengio Yoshua, Hinton Geoffrey. Deep Learning. Nature. 2015;521(7553):436-444.

39. Cassou Damien, Bruneau Julien, Consel Charles, Balland Emilie. Toward a Tool-Based Development Methodology for Pervasive Computing
Applications. Transactions on Software Engineering. 2012;38(6):1445-1463.

40. Boehm BarryW., Abts Chris, Brown A.Winsor, et al. Software Cost Estimation with Cocomo II with Cdrom. Upper Saddle River, NJ, USA: Prentice
Hall PTR; 1st ed.2000.

41. Kieburtz Richard B., McKinney Laura, Bell Jeffrey M., et al. A Software Engineering Experiment in Software Component Generation. In: ICSE
’96:542–552IEEE Computer Society; 1996; Washington, DC, USA.

42. Paspallis Nearchos. Summary of the classroom-based survey: questions and answers http://nearchos.github.io/mdd_survey.htmlLast accessed:
25 Oct 2018; .

43. McCabe Thomas J.. A Complexity Measure. IEEE Transactions on Software Engineering. 1976;SE-2(4):308–320.

44. Schilit Bill N., Adams Norman I., Want Roy. Context-aware computing applications. In: :85–90IEEE Computer Society; 1994; Santa Cruz, CA.

45. Dey Anind K.. Understanding and Using Context. Personal Ubiquitous Computing. 2001;5(1):4–7.

46. Ferreira Denzil, Kostakos Vassilis, Dey Anind K.. AWARE: mobile context instrumentation framework. Frontiers in ICT. 2015;2(6).

47. Ceri Stefano, Daniel Florian, Facca Federico M., Matera Maristella. Model-driven Engineering of Active Context-awareness.World Wide Web.
2007;10(4):387–413.

48. Krysztof Czarnecki Ulrich Eisenecker. Generative Programming: Methods, Tools, and Applications. New York, NY, USA: Addison-Wesley
Professional; 1st ed.2000.

49. Panach Jose Ignacio, Juristo Natalia, Valverde Francisco, Pastor . A framework to identify primitives that represent usability within Model-
Driven Development methods. Information and Software Technology. 2015;58:338 - 354.

50. Carton Andrew, Clarke Siobhan, Senart Aline, Cahill Vinny. Aspect-Oriented Model-Driven Development for Mobile Context-Aware Comput-
ing. In: SEPCASE ’07:5-8IEEE Computer Society; 2007; Washington, DC, USA.

51. Munnelly Jennifer, Fritsch Serena, Clarke Siobhan. An Aspect-Oriented Approach to the Modularisation of Context. In: :114-124; 2007.

52. Bombonatti Denise, Goulão Miguel, Moreira Ana. Synergies and tradeoffs in software reuse - a systematic mapping study. Software: Practice
and Experience. 2016;:943–957.

53. Hoyos José R., García-Molina Jesús, Botía Juan A., Preuveneers Davy. A model-driven approach for quality of context in pervasive systems.
Computers & Electrical Engineering. 2016;55(Supplement C):39–58.

54. Ayed Dhouha, Delanote Didier, Berbers Yolande. MDD approach for the development of context-aware applications. In: LNCS, vol. 4635:
:15–28Springer Verlag; 2007; Roskilde University, Denmark.

55. Naujokat Stefan, Neubauer Johannes, Lamprecht Anna-Lena, Steffen Bernhard, JÃűrges Sven, Margaria Tiziana. Simplicity-first model-based
plug-in development. Software: Practice and Experience. 2014;44(3):277–297.

56. Oldevik Jon, Neple Tor, Grønmo Roy, Aagedal Jan, Berre Arne-J.. Toward Standardised Model to Text Transformations. In: Hartman Alan,
Kreische David, eds.Model Driven Architecture – Foundations and Applications, :239–253Springer Berlin Heidelberg; 2005; Berlin, Heidelberg.

57. Naujokat Stefan, Lamprecht Anna-Lena, Steffen Bernhard, Jörges Sven, Margaria Tiziana. Simplicity principles for plug-in development: The
jABC approach. In: :7–12; 2012.

http://nearchos.github.io/mdd_survey.html


24 Nearchos Paspallis

58. Jörges Sven. Construction and Evolution of Code Generators. Berlin Heidelberg: Springer-Verlag; 1st ed.2013.

59. Jörges Sven, Margaria Tiziana, Steffen Bernhard. Genesys: service-oriented construction of property conform code generators. Innovations in
Systems and Software Engineering. 2008;4(4):361–384.

60. Wagelaar Dennis, Jonckers Viviane. Explicit Platform Models for MDA. In: LNCS, vol. 3713: :367–381Springer Verlag; 2005; Genova, Italy.

61. Geihs Kurt, Baer Philipp, Reichle Roland, Wollenhaupt Jens. Ontology-based automatic model transformations. In: :387–391IEEE Computer
Society; 2008; Cape Town, South Africa.

62. Martínez Yulkeidi, Cachero Cristina, Meliá Santiago. MDD vs. traditional software development: A practitioner’s subjective perspective.
Information and Software Technology. 2013;55(2):189 - 200. Special Section: Component-Based Software Engineering (CBSE), 2011.

63. Martin Robert Cecil. Agile Software Development: Principles, Patterns, and Practices. Upper Saddle River, NJ, USA: Prentice Hall PTR; 2003.

64. Ambler S. W.. Agile model driven development is good enough. IEEE Software. 2003;20(5):71-73.

65. Anvaari Mohsen, Jansen Slinger. Evaluating Architectural Openness in Mobile Software Platforms. In: ECSA ’10:85–92ACM; 2010; New York,
NY, USA.

How to cite this article: This is the pre-peer reviewed version of Paspallis N. (2018), An MDD-based approach for building context-aware
applications with high reusability, to appear in the J. Software: Evolution and Process.


	An MDD-based method for building context-aware applications with high reusability
	Abstract
	Introduction
	Reference architecture
	The Context Model
	The Context Query Language
	The Pluggable Architecture

	Model Driven Development of context plug-ins
	Conceptual Model
	Operators
	UML Profile
	Tool-Chain and Transformation

	Case Study-based Evaluation
	Scenario 1: Starting and stopping media playback.
	Manual, programmatic implementation of the Plug-ins.
	Implementing the MotionDetector Plug-in Using MDD.
	Transformation to Java code.

	Scenario 2: Adjusting media player's buffering strategy
	Implementing the Motion Predictor Plug-in Using MDD.

	Lessons from the Case Studies

	Evaluation
	Qualitative Evaluation
	Quantitative Evaluation
	Measuring Development Productivity
	Measuring Code Complexity and Performance

	Related Work
	Limitations

	Conclusions
	References


