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Many test coverage metrics have been proposed to mea-
sure theDeepNeural Network (DNN) testing effectiveness,
including structural coverage and non-structural coverage.
These test coveragemetrics are proposed based on the fun-
damental assumption: they are correlated with test effec-
tiveness. However, the fundamental assumption is still not
validated sufficiently and reasonably, which brings question
on the usefulness of DNN test coverage. This paper con-
ducted a revisiting study on the existing DNN test coverage
from the test effectiveness perspective, to effectively vali-
date the fundamental assumption. Here, we carefully con-
sidered the diversity of subjects, three test effectiveness
criteria, and both typical and state-of-the-art test coverage
metrics. Different from all the existing studies that deliver
negative conclusions on the usefulness of existing DNN
test coverage, we identified some positive conclusions on
their usefulness from the test effectiveness perspective. In
particular, we found the complementary relationship between
structural and non-structural coverage and identified the
practical usage scenarios and promising research directions
for these existing test coverage metrics.
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1 | INTRODUCTION
Deep neural networks (DNNs) have been widely studied in recent years and have achieved great success in many
domains, e.g., autonomous driving cars [1], face recognition [2], machine translation [3], medical diagnosis [4], and
code analysis [5, 6, 7, 8]. However, like traditional software systems, DNN also contains bugs [9, 10, 11]. DNN bugs
could lead to unexpected behaviors, even disasters in safety-critical domains. For example, an Uber autonomous
driving car killed a pedestrian in Tempe, Arizona in 2018 [12]. Therefore, it is very critical to ensure the DNN quality.

DNN testing is one of the most effective methods to ensure the DNN quality. As with traditional software test-
ing [13, 14, 15, 16, 17, 18, 19, 20], one important aspect in DNN testing is tomeasure test effectiveness. Indeed, many
DNN test coverage metrics have been proposed to achieve this goal in recent years, e.g., neuron coverage measuring
which DNN elements are covered during the testing process [9, 10] and surprise coverage measuring the difference
of DNN behaviors between test inputs and training data [21]. All these test coverage metrics are proposed based on
the same assumption: the proposed test coverage metric is correlated with test effectiveness.

However, this assumption is not sufficiently validated till now, which also brings question on the usefulness of
DNN test coverage. Although some experiments have been conducted when these test coverage metrics were pro-
posed, they ignored the influence of some reasonable factors such as test-set sizes. For example, in the existing
experiments [10, 21], they first generated the same number of adversarial test inputs as the number of original test
inputs (also called natural test inputs), and then compared the test coverage of natural test inputs and that of both
natural and adversarial test inputs. They found that the latter is larger than the former, and thus concluded that the
test coverage metrics are correlated with test effectiveness (measured by the generation of adversarial test inputs).
However, the experiments did not control for the number of test inputs when comparing test coverage, and thus the
increased coverage may be caused by the generation of adversarial test inputs or just increasing the number of test
inputs.

Further, we conducted a small experiment to investigate whether adding natural test inputs can also increase test
coverage by taking the model LeNet-5 based onMNIST and the test coverage KMNC (to be introduced in Section 2.1)
as an example. We first randomly selected 5,000 test inputs from MNIST as the original test set and regarded the
remaining 5,000 test inputs in MNIST as the newly added natural test inputs, and then generated 5,000 adversarial
test inputs via C&W [22] (to be introduced in Section 3.5), a widely-used adversarial input generation method. We
found that the KMNC values of the original test set, the original test set and added natural test inputs, and the
original test set and adversarial test inputs are 61.53%, 68.77%, and 65.87%, respectively. The results demonstrate
that adding natural test inputs can also increase test coverage, even the increment is larger than that achieved by the
same number of adversarial test inputs. Hence, it is still unclear whether these test coverage metrics are correlated
with test effectiveness by considering reasonable factors (e.g., controlling for the size of test sets).

Besides the experiments conducted in the work proposing the corresponding DNN test coverage metrics, an
empirical studywas also conducted to investigate the correlation betweenDNC [9] (the earliest DNN test coverage, to
be introduced in Section 2.1) and test effectiveness through usingDNC to guide test input generation [23]. They found
increasing DNC is not a meaningful objective for generating DNN test inputs. However, this study only investigated
the earliest DNN test coverage metric, which cannot validate the fundamental assumption sufficiently. Furthermore,
there is another study investigating the usefulness of DNN test coverage from the perspective of model retraining
quality (rather than the perspective of test effectiveness) [24], and they found DNN test coverage does not have
monotonic relations with model retraining quality. Moreover, all these experiments and studies are conducted based
on the subjects with limited diversity. To sum up, the fundamental assumption for DNN test coverage is still not
validated sufficiently and reasonably. That is, the usefulness of DNN test coverage is still unclear from the test effectiveness
perspective.
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To answer the open question, in this work we conducted an extensive study to revisit DNN test coverage from

the test effectiveness perspective. To sufficiently validate the fundamental assumption, we consider three test effec-
tiveness criteria in DNN testing. 1) Error-revealing capability. Same as traditional software testing, revealing errors
is also the most straightforward way of representing test effectiveness in DNN testing. Here, we used the ratio of
error-revealing test inputs in test sets to reflect the error-revealing capability of test sets, where error-revealing test
inputs refer to those making the DNN produce incorrect predictions. 2) Test diversity. In DNN testing, besides paying
attention to the overall accuracy of DNNs, it is also important to keep a watchful eye on each-class accuracy for clas-
sification DNNs. Here, we used the number of covered classes to represent test diversity, since it requires to ensure
the existence of test inputs for testing each class before measuring each-class accuracy. 3) Subsequently, we have the
third criterion, i.e., error-revealing capability per diversity unit, which is represented by the ratio of error-revealing
test inputs in test sets that cover only a small number of classes (i.e., we regard 10% of classes as a diversity unit in
our study) rather than all classes (i.e., saturated diversity). It can help reflect the diverse error-revealing capability in
DNN testing. In particular, to reasonably validate the fundamental assumption, we controlled the influence of the size
of test sets when investigating the correlation between DNN test coverage and the three test effectiveness criteria.

In particular, we conducted a comprehensive study on DNN test coverage. In our study, we carefully considered
the diversity of subjects (10 pairs of models and datasets in total), involving different tasks, domains, DNN types, and
model accuracy. Besides the widely-used subjects in the existing studies [9, 10, 21, 24, 23, 25], we also added five
subjects that have never been used to evaluate any of the studied test coverage metrics before. Besides, we not only
studied all the DNN test coverage metrics used in the existing studies (except TKNP [10] since it is not a ratio but
rather a number), but also added the state-of-the-art test coverage (i.e., IDC) [26].

Different from the existing studies [24, 23], which delivered negative conclusions on the usefulness of exist-
ing DNN test coverage, our conclusions are relatively positive in general because we identified the practical usage
scenarios for these existing DNN test coverage by investigating them from the test effectiveness perspective more
sufficiently and reasonably. Our study demonstrates that the studied structural coverage (i.e., DNC, TKNC, KMNC,
and IDC) is complementary with the studied non-structural coverage (i.e., LSC and DSC), and they have different us-
age scenarios. Specifically, the studied non-structural coverage (i.e., LSC and DSC [21]) has positive correlation with
error-revealing capability regardless of saturated diversity or one diversity unit, but has no obvious positive correla-
tion with test diversity. Hence, they can be used to guide the generation of error-revealing test inputs but it is hard
to guarantee the diversity of the generated test inputs guided by them. The studied structural coverage (i.e., DNC,
TKNC, KMNC, and IDC) does not have positive correlation with error-revealing capability under saturated diversity,
but has positive correlation under small test diversity. Hence, their usage scenario could be guiding the generation
of error-revealing test inputs by taking a small number of classes of test inputs (rather than the whole test set with
saturated diversity) as seed inputs1. Also, they are positively correlated with test diversity, and thus the guidance of
these structural metrics can also help improve the diversity of generated test inputs. More interesting findings and
implications/suggestions can be found in Sections 4 and 5.

To sum up, our work makes the following major contributions:
• We conducted a comprehensive study on DNN test coverage, which revisits the existing DNN test coverage

metrics from the test effectiveness perspective.
• We obtained some positive conclusions on the usefulness of existing DNN test coverage (which is different from

all the existing studies) and identified the practical usage scenarios and promising research directions for them.

1In existing DNN fuzzing and adversarial input generation methods, new test inputs are generated based on the given set of test inputs (also
called seed inputs).
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• We optimized and integrated all the implementations of collecting these test coverage metrics, and the coverage

collection efficiency has been largely improved after our optimization (e.g., 89.83%∼95.54% improvements on
LeNet-5 and MNIST). We have released our toolbox and all the experimental data on our project homepage [27].

2 | BACKGROUND

In DNN testing, many test coverage metrics have been proposed to measure test effectiveness [9, 10, 21]. In our
study, we not only studied all the test coverage metrics considered in the existing studies [24, 23] (except TKNP [10]
since it is not a ratio but rather a number) but also the recently-proposed test coverage (i.e., IDC [26]), in order to
conduct a more comprehensive revisiting study. According to whether considering structural elements are covered
during testing, we classify test coverage metrics into two categories: structural coverage and non-structural coverage.
Here, we introduce these studied test coverage metrics in our work, and the details about other coverage will be
presented in Section 8.

2.1 | Structural Coverage

Structural coverage considers which structural elements are covered during testing, mainly referring to various neuron
coverage. Here, we studied six typical structural coverage metrics. The earliest one was proposed by Pei et al. [9],
which is called DNC (DeepXplore’s Neuron Coverage). DNC divides the state of a neuron into activated and non-
activated, and measures the ratio of activated neurons in a DNN. If the output value of a neuron is larger than a
pre-defined threshold t after executing a test input, DNC regards the neuron as an activated neuron.

Ma et al. [10] further proposed a set of neuron coverage metrics at several granularity levels, including TKNC
(Top-K Neuron Coverage), KMNC (K-Multisection Neuron Coverage), NBC (Neuron Boundary Coverage), and SNAC
(Strong Neuron Activation Coverage). TKNC is a layer-level metric, which considers top-k neurons (ranked in the
descending order of their output values after executing a test input) in a layer to be covered. It measures the ratio of
neurons that have once been top-k neurons in the corresponding layer. KMNC is a more fine-grained metric, which
first obtains the range of its output values for each neuron from training data (denoted as [l owi ,hi ghi ] for the neuron
ni ) and then partitions the range into k sections. If the output value of a neuron falls into a section after executing
a test input, KMNC regards the section as a covered section. KMNC measures the ratio of covered sections of all
neurons in a DNN. The insight behind KMNC is that, different sections may represent different functional modules of
a DNN and more fine-grained neuron coverage can increase discrimination of different test inputs. NBC also obtains
the range of its output values for each neuron from training data like KMNC. The difference is that, NBC considers
whether the corner-case region, i.e., (−∞, l owi ) and (hi ghi , +∞), of a neuron is covered after executing a test input.
SNAC is similar to NBC, but the difference is that SNAC only considers whether the upper corner-case region, i.e.,
(hi ghi , +∞), is covered after executing a test input.

Recently, Gerasimou et al. [26] proposed a novel test coverage metric IDC (Importance-Driven Coverage) that has
never been investigated by the existing studies [24, 23]. Its key insight is that more important neurons have a stronger
causal relationship with other neurons and can explain which high-level features contribute more to decision-making,
and thus the importance of each neuron is measured by the widely-used relevance score [28]. Then, IDC partitions
the space of each neuron’s activity into a set of clusters via neuron-wise quantization, and measures the ratio of
combinations of important neurons clusters covered by a test set.
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2.2 | Non-Structural Coverage

Non-structural coverage does not consider whether structural elements of a DNN are covered during testing. The
most typical non-structural coverage is surprise coverage [21]. It regards the difference of DNN behaviors between
a test input and training data as surprise adequacy (SA) of the test input. Surprise coverage measures the range of
SA values that a set of test inputs cover. Specifically, Kim et al. [21] proposed two kinds of SA: Likelihood-based
Surprise Adequacy (LSA) and Distance-based Surprise Adequacy (DSA). LSA refers to the surprise of a test input with
respect to the estimated density of each activation value in a set of activation traces observed over the neurons of a
selected layer for training data via Kernel Density Estimation [29]. LSA only considers the training data whose label is
the same as the predicted class of the test input. DSA is defined using the Euclidean distance between the activation
trace observed over the neurons of a selected layer for a test input and a set of activation traces for training data.
DSA needs find the closest neighbor of the test input that shares the same class, denoted as xa , and also the closest
neighbor of xa in a different class.

According to LSA and DSA, the corresponding surprise coverage metrics are called LSC, and DSC respectively.
Specifically, given the upper and lower bounds of LSA/DSA denoted as U and L, LSC/DSC first divides [L,U] into n
sections and then measures the ratio of covered sections. If the LSA/DSA value of a test input falls into a section,
LSC/DSC regards the section as a covered section. In particular, a test input with a quite large SA value may be
irrelevant to the problem domain (e.g., an image of an apple is irrelevant to the testing of traffic sign classifiers), and
thus the parameter U can be used to filter out those irrelevant test inputs. Please note that DSC is not applicable to
regression models [21].
3 | STUDY DESIGN

Our study aims to revisit the existing DNN test coverage metrics from the test effectiveness perspective, thus an-
swering the open question: are these existing metrics correlated with test effectiveness. As presented in Section 1, we
consider three test effectiveness criteria (i.e., error-revealing capability , test diversity, and error-revealing capability
per diversity unit) in DNN testing to sufficiently validate the fundamental assumption. Specifically, we aim to answer
it by addressing the following research questions (RQs):

• RQ1: Are the studied test coverage metrics correlated with the error-revealing capability of test sets (measured
by the ratio of error-revealing test inputs in test sets)?

• RQ2: Are the studied test coverage metrics correlated with the test diversity of test sets (measured by the ratio
of covered classes in test sets)?

• RQ3: Are the studied test coverage metrics correlated with error-revealing capability per diversity unit?

Please note that for a classification model, we treat covering all classes in a test set as saturated diversity and covering
10% of classes as a diversity unit. That is, RQ3 aims to investigate the correlation between test coverage and the
error-revealing capability of test sets that covers 10% of classes. Actually, RQ1 investigates the correlation under
saturated diversity and RQ3 is inspired by the conclusions from RQ1 and RQ2.

3.1 | Datasets and DNNModels

In our study, we used 10 pairs of datasets and DNNmodels as subjects in total. Table 1 shows the basic information on
subjects, where Columns 4-10 represent the model size, the number of training instances, the number of original test
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TABLE 1 Datasets and DNN models
ID Dataset Model Size(KB) #Train #Test Acc(%) Task Domain Network Used

1 MNIST LeNet-5 1,300 60,000 10,000 98.72 classification image CNN ✓

2 Fashion-MNIST LeNet-5 1,279 60,000 10,000 91.07 classification image CNN ✗

3 CIFAR-10 AlexNet 9,830 50,000 10,000 76.64 classification image CNN ✗

4 CIFAR-10 ResNet-20 3,507 50,000 10,000 91.21 classification image CNN ✓

5 CIFAR-10 VGG-16 19,639 50,000 10,000 87.41 classification image CNN ✓

6 CIFAR-100 ResNet-32 10,615 50,000 10,000 70.52 classification image CNN ✗

7 Driving Dave-orig 8,306 101,396 5,614 90.33 regression image CNN ✓

8 Driving Dave-dropout 13,139 101,396 5,614 91.82 regression image CNN ✓

9 Speech-Commands DeepSpeech 6,734 51,776 6,471 94.53 classification speech RNN ✗

10 20-Newsgroups TextCNN 38,974 11,314 7,532 77.68 classification text CNN ✗

* We use 1 - MSE (Mean Square Error) as the accuracy of regression models. ✓ represents the subject has been used to evaluate at least one of the studied
test coverage metrics before. ✗ represents the subject has never been used to evaluate any of the studied test coverage metrics before.
inputs, the model accuracy, the model task, the domain of the model, and the network type, respectively. Specifically,
MNIST is a handwritten digit dataset [30], Fashion-MNIST is a MNIST-like dataset with greyscale images of Zalando’s
items [31]. CIFAR-10 and CIFAR-100 are 10-class and 100-class ubiquitous object datasets respectively [32], Driving
is an Udacity-provided autonomous driving dataset [33], and Speech-Commands is a sequential dataset containing a
set of one-second .wav audio files, each of which contains a single spoken English word [34]. 20-Newsgroups is a text
dataset containing about 20,000 newsgroup documents, which has been widely used in natural language processing
(NLP) tasks (e.g., text classification [35]).

To more comprehensively study these test coverage metrics, we carefully considered the diversity of subjects, in-
cluding 1) different tasks: normal classification, multi-label classification (DeepSpeech), and regression; 2) different
domains: image domains, speech domains, and text domains; 3) different DNN types: CNN and RNN; and 4) different
model accuracy: from 70.52% to 98.72%.

In our study, we not only selected five subjects that have been used to evaluate at least one of the studied test
coveragemetrics beforewithout any subjective bias, but also used five subjects that have never been used to evaluate
any of the studied test coverage metrics before, which is shown in the last column in Table 1.

3.2 | Implementations

Since the code for collecting DNC, LSC, DSC, and IDC is released by the existing work [9, 21, 26], we directly adapted
the code to collect them in our study. As for TKNC, KMNC,NBC, and SNAC,we communicatedwith the corresponding
authors and they shared the implementations with us. After carefully reviewing the implementations, we discussed
with some authors about potential problems in code, and further optimized the code for KMNC, TKNC, NBC, SNAC,
and IDC in order to improve their coverage collection efficiency. Table 2 shows the time spent on collecting these
coverage metrics when executing 10,000 test inputs of the subject (ID: 1) before and after our optimization. Column
Original presents the time spent using the original implementation without our optimization, while Column Optimized
presents the time spent using our optimized implementation. The last column shows the efficiency improvement of our
optimized implementation over the original one. We found that the coverage collection efficiency is largely improved,
i.e., 89.83%∼95.54% improvements. In particular, we checked that the coverage results are the same before and after
our optimization.
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TABLE 2 Coverage collection efficiency
comparison between before and after our
optimization for TKNC, KMNC, NBC, SNAC, and
IDC on the subject (ID: 1) (seconds)
Coverage Original Optimized ⇑rate(%)
TKNC 40.10 3.40 91.52%
KMNC 76.30 3.40 95.54%
NBC 59.10 3.40 94.25%
SNAC 57.20 3.30 94.23%
IDC 4,465.80 454.00 89.83%

To promote future research and practical usage, we have
developed a toolbox that integrates the implementations of
collecting the eight test coverage, each of which can be in-
voked by simply specifying the corresponding parameter value.
Our toolbox and all the experimental data have been released
on our project homepage [27]

For the parameters of these studied coverage metrics, we
set them following the existingwork [21, 9, 10, 26]. The t value
of DNC is set to 0.5, the k value of TKNC is set to 10, the k

value of KMNC is set to 1,000, and the n value of LSC and
DSC is set to 1,000. LSC and DSC also have some parameters

required to be specifically set for different subjects [21], i.e., the selected layer to calculate LSA/DSA, the upper bound
U and lower bound L of LSC/DSC. However, there is no guide provided to help set them for different subjects. Hence,
by communicating with the authors and referring to their implementation, for each subject we set the upper boundU
and the lower bound L of LSC/DSC to the largest and smallest LSA/DSA values of all the test inputs respectively. We
further investigated the influence of U on the performance of LSC/DSC in Section 4.1.2. Also, we set the selected
layer required by LSA/DSA to the last-hidden layer of a model according to the existing work [36, 37], since the work
has demonstrated that deeper layers tend to perform better in DNN testing.

We conducted our experiments on the Intel Xeon Silver 4214 machine with 128GB RAM, Ubuntu 18.04 LTS, and
eight GTX 2080 Ti GPUs. We used the Python interpreter with version 3.6.13 and utilized the Anaconda to manage
Python packages.

3.3 | Experimental Setup

In this section, we present the experimental setup to answer each RQ for each subject. Please note that we used all
the subjects in RQ1, while used all the normal classification models (ID: 1∼6) in both RQ2 and RQ3 since regression
models do not have the concept of “class” and the number of 10% of classes of test inputs in the subjects (ID: 9 and
ID: 10) is too small to support the setups of RQ2 and RQ3.

3.3.1 | RQ1’s Setup

RQ1 aims to investigate the correlation between test coverage and error-revealing capability (under saturated diver-
sity). We used the ratio of error-revealing test inputs in a test set to measure the error-revealing capability of the test
set. To answer RQ1, we constructed m test sets with various ratios of error-revealing test inputs. In particular, we
controlled for the size of test sets, i.e., creating the test sets with the same size n . In practice, each test set should
contain a number of passing test inputs (that make the DNN produce correct prediction) since passing test inputs are
common for a well-trained DNN. Hence, we ensure that the percentage of error-revealing test inputs in each test set
is less than or equal to α%. That is, when constructing a test set, we first randomly determined the percentage of
error-revealing test inputs r% from [0, α%] (i.e., 0≤r%≤α%) and randomly sampled r%*n error-revealing test inputs.
Then, we randomly sampled the remaining (1-r%)*n passing test inputs from the whole set of natural test inputs to
construct the test set. Here, we set m = 500, n = 800, α% = 70%. The whole set of test inputs refers to all the natural
test inputs provided by the original dataset and the generated adversarial test inputs. This is because the number of
natural error-revealing test inputs tends to be small in the original set of test inputs, we then generated adversarial
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test inputs as supplementary to increase the number of error-revealing test inputs. We will introduce the adversarial
test input generation methods used in our study in Section 3.5. Please note that we ensure that each test set for
classification models has saturated diversity.

Further, we collected the studied eight DNN test coverage for each test set, and then measured the correlation
between each test coverage and error-revealing capability (i.e., the ratio of error-revealing test inputs in test sets).
In our study, we adopted the widely-used Spearman correlation method [38], which is used to assess how well the
relationship between two variables can be described using amonotonic function. The sign of the Spearman correlation
coefficient (denoted as c) represents the positive or negative correlation between two variables, |c | represents the
correlation degree, and the p value reported by the Spearman correlationmethod representswhether the correlation is
statistically significant (at the level of 0.05). According to the existing work [13, 39], the correlation can be divided into
four categories: weak correlation (0< |c | ≤0.4), moderate correlation (0.4< |c | ≤0.7), strong correlation (0.7< |c | ≤0.9),
and extremely strong correlation (0.9< |c | ≤1).

For the parameters of m , n , and α (afftecting r), we have conducted experiments to investigate the influence
of these parameters by using MNIST-LeNet5 (ID:1) as the representative. Here, we used DNC and TKNC as the
representative of structural coverage and also studied the two non-structural coverage (LSC andDSC).We studied the
value ofm ranging from 100 to 1000with the interval of 100, the value of n ranging from 500 to 1000with the interval
of 100, and the value of α ranging from 0.5 to 0.9 with the interval of 0.1, respectively. The results are shown in the
Figure 1, where the x-axis represents the settings of the studied parameter while the y-axis represents the Spearman
correlation coefficient between test coverage and error-revealing capability. From the figure, we conclude that the
influence of the parameter m under the studied settings is very small, indicating the generality of our conclusions to
some degree.

3.4 | RQ2: Correlation between Test Coverage and Test Diversity

3.4.1 | RQ2’s Setup

RQ2 aims to investigate the correlation between test coverage and test diversity. We used the ratio of covered classes
(among all classes involved in the classification model) in a test set to measure the test diversity of the test set. To
answer RQ2, we constructed a number of test sets with various ratios of covered classes. In particular, we controlled
for both the size of test sets (denoted as n) and the ratio of error-revealing test inputs in test sets (denoted as r%).
As presented before, we treat covering 10% of classes in a test set as a diversity unit. Regarding the chosen 10%, we
set it based on the characteristics of our subjects. Since the subjects used in our study contain at least 10 classes for
classification models, “10%” is the smallest unified setting ensuring that the diversity unit for each subject can contain
at least one class. Moreover, “10%” can be a good trade-off between effectiveness (having statistical significance) and
efficiency (having the reasonable number of test sets for coverage collection) in our experiments.

We first evenly divided the whole set of test inputs into 10 groups according to the ascending order of the class
IDs. By taking CIFAR-100 (including 100 classes) as an example, we put all the natural test inputs with the class IDs
0 ∼ 9 and the generated adversarial test inputs based on these natural test inputs into the first group. Then, from the
first i (i ∈ {1, 2, . . . , 10}) groups, we constructedm test sets, each of which is formed by randomly sampling r%*n error-
revealing test inputs and (1-r%)*n passing test inputs. Correspondingly, the test diversity of each test set constructed
from the first i groups is i diversity units. Indeed, we ensure that each test set has the corresponding numbers of
diversity units. In RQ2, we set n = 800, r% = 50%, m = 100. Next, we collected the eight test coverage for each test
set, and then measured the Spearman correlation between each test coverage and test diversity.
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F IGURE 1 The influence of m , n and α on the correlation coefficient between test coverage and error-revealing
capability on the subject (ID: 1), respectively.

3.4.2 | RQ3’s Setup

By comprehensively considering RQ1 and RQ2, RQ3 subsequently investigates the correlation between test cover-
age and error-revealing capability per diversity unit. Actually, RQ1 considers all classes (i.e., saturated diversity) to
investigate the correlation. RQ3 repeats the experiment of RQ1 under one diversity unit. We constructed m test sets
(m = 100), and when constructing a test set, we sampled test inputs from one group of test inputs (defined in Sec-
tion 3.4.1) instead of the whole set of test inputs in RQ1. The remaining settings are the same as RQ1. To reduce the
bias from the selection of the target group, we repeated this experiment five times by randomly selecting five different
groups as the target groups for test set construction respectively. For each time, we collected the eight test coverage
for each test set, and then measured the correlation between each test coverage and error-revealing capability per
diversity unit via Spearman correlation.

Besides, we investigated the trend of the correlation between test coverage and error-revealing capability with
the test diversity increasing from one diversity unit to saturated diversity. We additionally considered i (i ∈ {2, . . . , 9})
diversity units by constructing test sets from the first i groups of test inputs respectively. That is, we repeated the
above one-diversity-unit (or saturated-diversity) experiment under i (i ∈ {2, . . . , 9}) diversity units respectively.
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3.5 | Adversarial Test Input Generation Methods

In our study, we adopted four advanced adversarial test input generation methods to generate adversarial test inputs
for general image datasets, i.e., MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100. They are FGSM (Fast Gradient Sign
Method) [40], C&W (Carlini&Wagner) [22], BIM (Basic Iterative Methods) [41], and JSMA (Jacobian-based Saliency
Map Attack) [42]. These methods have been widely used in the existing work [10, 21]. For the dataset Driving,
we used the two methods proposed by DeepXplore [9] (called Patch and Light in our work) to generate adversarial
test inputs following most of the existing work using this dataset [21, 36, 37]. For the datasets Speech-Commands
and 20-Newsgroups, all the above-mentioned methods cannot be applicable to them since they are not images, but
audios and texts respectively. Therefore, we adopted the widely-used CTCM (CTC loss basedMethod) [43] and PWWS
(Probability Weighted Word Saliency) [44] to generate adversarial test inputs for them, respectively.

4 | RESULTS AND ANALYSIS

We adopt the following representation paradigm for tables in this paper: The bold value represents that the p value is
smaller than 0.05, indicating the correlation has statistical significance. The value marked with represents mod-
erate positive correlation, represents strong positive correlation and represents extremely strong positive
correlation. The cell marked with “—” represents the coverage is not applicable to the corresponding model.
4.1 | RQ1: Correlation between Test Coverage and Error-revealing Capability

4.1.1 | Results on Structural Coverage

TABLE 3 RQ1: Spearman correlation between test
coverage and the ratio of error-revealing test inputs.
ID Adv. DNC NBC SNAC TKNC KMNC IDC LSC DSC

1
CW -0.05 -0.3 -0.37 0.11 -0.94 0.08 0.97 0.98
FGSM 0.22 0.51 0.3 0.2 -0.97 -0.53 0.97 0.98
BIM 0.09 -0.25 -0.34 0.09 -0.94 -0.03 0.97 0.98
JSMA 0.08 0.3 -0.32 0.2 -0.85 0.0 0.97 0.98

2
CW 0.08 -0.09 -0.14 -0.02 -0.82 0.32 0.97 0.95
FGSM 0.4 0.59 0.57 0.03 -0.21 -0.02 0.97 0.97
BIM 0.19 0.54 0.54 -0.0 -0.73 0.38 0.97 0.96
JSMA 0.09 0.01 -0.14 0.01 -0.71 0.39 0.98 0.96

3
CW 0.01 -0.34 -0.34 0.02 -0.96 -0.66 0.95 0.75
FGSM 0.25 0.8 0.79 0.08 -0.02 -0.37 0.94 0.92
BIM 0.08 0.59 0.59 0.05 -0.92 -0.5 0.94 0.85
JSMA -0.04 -0.3 -0.31 0.04 -0.98 -0.77 0.94 0.81

4
CW -0.03 -0.04 -0.05 0.0 -0.75 0.45 0.87 0.36
FGSM 0.12 0.59 0.62 0.44 -0.54 0.24 0.8 0.59
BIM -0.05 -0.06 -0.04 -0.04 -0.75 0.37 0.86 0.4
JSMA -0.11 -0.11 -0.07 -0.17 -0.87 0.27 0.84 0.32

5
CW -0.58 -0.22 -0.22 0.38 -0.95 -0.71 0.58 0.92
FGSM -0.63 0.47 0.47 0.32 -0.98 -0.77 0.18 0.95
BIM -0.64 0.42 0.42 0.33 -0.97 -0.77 0.24 0.94
JSMA -0.64 -0.27 -0.26 0.3 -0.97 -0.78 0.26 0.94

6
CW -0.16 -0.13 -0.11 -0.33 -0.51 -0.19 0.51 -0.49
FGSM 0.22 0.6 0.61 -0.13 0.15 -0.2 0.81 -0.26
BIM -0.11 -0.06 -0.04 -0.28 -0.49 -0.14 0.58 -0.5
JSMA -0.17 -0.15 -0.16 -0.5 -0.68 -0.05 0.54 -0.6

7 PATCH 0.65 0.77 0.77 0.7 0.81 0.71 0.49 —
LIGHT -0.76 0.86 0.86 -0.8 0.88 -0.4 0.87 —

8 PATCH 0.39 0.79 0.79 0.2 0.78 0.65 0.75 —
LIGHT 0.8 -0.65 -0.65 0.73 0.08 -0.13 0.89 —

9 CTCM -0.68 0.27 0.34 -0.91 -0.79 — 0.83 0.96
10 PWWS -0.15 -0.2 -0.23 -0.12 0.8 0.84 0.96 0.21

Table 3 shows the Spearman correlation results between
test coverage and error-revealing capability (under satu-
rated diversity). From Columns 3-8, in general, the six
structural coverage metrics have moderate to extremely
strong positive correlation with the error-revealing capa-
bility of test sets (i.e., the ratio of error-revealing test in-
puts in test sets) in few cases, but have weak positive cor-
relation, even no significant correlation and negative cor-
relation, in most cases. For example, TKNC has weak pos-
itive correlation in 26.67% cases, no significant correla-
tion in 36.67% cases, and negative correlation in 26.67%
cases, with the ratio of error-revealing test inputs, but
has moderate to extremely strong positive correlation in
only 10% cases.

This conclusion is similar to the one obtained in
the existing study on DNC (i.e., increasing DNC is not
a meaningful objective in DNN testing) [23]. That indi-
cates when controlling for the size and saturated diver-
sity of each test set, both passing test inputs and error-
revealing test inputs have the similar capability to in-
crease these structural coveragemetrics, and sometimes
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the coverage-increasing capability of the former is stronger than that of the latter.

Through further observation, the results on different structural coverage have some differences. Among the
cases with moderate to extremely strong positive correlation for ID:1∼6, 55% of them occur on NBC and SNACwhen
adopting FGSM to generate adversarial test inputs. The reason is that when generating adversarial test inputs, C&W,
BIM, and JSMA aim to minimize the difference between an original test input and an adversarial test input or perform
a tiny perturbation in a single step while FGSM does not consider them. Hence, FGSM is more likely to generate
the adversarial test inputs that have farther distance from the natural test inputs, further leading to irrelevant test
inputs (that are meaningless in DNN testing). Those more different, even irrelevant test inputs, are much easier to
cover corner-case regions of the output values for neurons, leading to stronger positive correlation for NBC and
SNAC. However, such positive correlation may be meaningless due to irrelevant test inputs. That also indicates in the
studies of DNN testing, it is not enough to only adopt FGSM to generate adversarial test inputs due to their different
characteristics. Besides, almost all the cases for KMNC have negative correlation. We carefully analyzed the reason
and found that with the ratio of error-revealing test inputs increasing, the sections closing to the boundary l owi and
hi ghi are covered more frequently, indicating that more test inputs focus on covering a small number of sections. This
leads to the decrement of the overall KMNC coverage.

In general, the correlation on regressionmodels is stronger than classificationmodels. This is because the accuracy
of regression models is measured based on MSE, which is more fine-grained, and thus is more sensitive to capture
differences in test behaviors (such as neuron coverage differences). That suggests if we can design amore fine-grained
accuracy measurement for classification models, the correlation between test coverage and error-revealing capability
may be effectively improved.

4.1.2 | Results on Non-structural Coverage
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F IGURE 2 Spearman correlation under different settings of U for
LSC and DSC on the subject (ID: 4).

We then analyzed the correlation be-
tween non-structural coverage and error-
revealing capability from the last two
columns in Table 3. Different from struc-
tural coverage, both LSC and DSC have
moderate to extremely strong positive
correlations in almost all the cases. The re-
sults demonstrate that measuring the dif-
ference of DNN behaviors between test
inputs and training data is effective to
measure the error-revealing capability of

test sets, when controlling for the size and the saturated diversity of test sets. That is, the non-structural coverage
outperforms the structural coverage in this scenario, and LSC slightly outperforms DSC.

But the remarkable thing for LSC and DSC is that some parameters in them are required to be specially set for
different subjects. These parameters may affect the performance of LSC/DSC, but there is no guide to help set them
for different subjects. Here, we conducted an experiment to investigate the influence ofU on both LSC and DSC since
this parameter is very important, which is used to filter out irrelevant test inputs. We studied six settings of U : Umax

(the maximum value of LSA/DSA), which is the setting used in our study and means that we did not filter out any test
inputs (even though some are irrelevant), and U2% ∼ U10% with the step size of 2% (the 2%∼10% quantile values of
all the ranked LSA/DSA values in their descending order), which simulates different degrees of filtering out irrelevant
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F IGURE 3 Correlation between test coverage and test diversity on the subject (ID: 4).

test inputs.
Figure 2 shows the results, where the x-axis represents different settings of U while the y-axis represents the

Spearman correlation coefficient between LSC/DSC and error-revealing capability. From this figure, the correlation
decreases monotonically as the upper boundU becomes smaller, demonstrating the significant influence ofU . This is
because more test inputs with large LSA/DSA values are filtered out, which are more likely to contain both irrelevant
test inputs and really error-revealing test inputs (especially when U is not set properly). This demonstrates the large
influence of the parameter U and the importance of providing the guide to set the parameter U properly.

Therefore, providing a guide for setting the parameters of LSC and DSC or designing an automatic method of
adaptively setting the parameters for different subjects is an important future work for improving LSC and DSC.
4.2 | RQ2: Correlation between Test Coverage and Test Diversity

TABLE 4 RQ2: Spearman correlation between
test coverage and test diversity.
ID Adv. DNC NBC SNAC TKNC KMNC IDC LSC DSC

1
CW 0.99 0.75 0.81 0.99 0.62 0.94 0.01 0.43
FGSM 0.99 0.66 0.83 0.98 0.77 0.99 0.25 0.83
BIM 0.99 0.15 0.66 0.98 0.62 0.95 0.02 0.54
JSMA 0.99 -0.41 0.76 0.99 0.62 0.95 -0.12 0.43

2
CW 0.93 0.2 0.14 0.96 0.88 0.87 -0.15 -0.15
FGSM 0.96 0.7 0.7 0.96 0.84 0.87 0.2 0.82
BIM 0.99 0.41 0.41 0.98 0.85 0.88 -0.15 -0.38
JSMA 0.96 0.49 0.08 0.98 0.85 0.88 0.2 0.42

3
CW 0.9 -0.75 -0.75 1.0 0.33 0.83 -0.36 0.14
FGSM 0.65 -0.03 -0.03 0.99 0.03 0.84 -0.27 -0.26
BIM 0.75 -0.82 -0.82 1.0 0.22 0.87 -0.27 -0.15
JSMA 0.89 -0.71 -0.71 1.0 0.07 0.84 -0.26 0.5

4
CW 0.75 -0.9 -0.88 0.85 0.04 0.7 -0.75 -0.78
FGSM 0.76 0.45 0.45 0.72 0.03 0.12 -0.7 -0.64
BIM 0.79 -0.87 -0.82 0.81 0.02 0.7 -0.62 -0.72
JSMA 0.79 -0.93 -0.88 0.82 0.01 0.45 -0.61 -0.67

5
CW 0.98 -0.93 -0.93 0.89 0.36 0.15 -0.61 -0.52
FGSM 0.98 -0.13 -0.13 0.85 0.35 0.05 -0.46 0.32
BIM 0.98 -0.43 -0.43 0.85 0.66 0.13 -0.59 0.92
JSMA 0.98 -0.94 -0.95 0.92 0.25 0.14 -0.83 -0.2

6
CW 0.98 0.53 0.56 0.95 0.98 0.6 -0.18 -0.37
FGSM 0.99 0.43 0.45 0.96 0.99 0.6 0.05 -0.68
BIM 0.98 0.81 0.82 0.98 0.98 0.65 -0.2 -0.29
JSMA 1.0 0.53 0.53 0.98 0.96 0.71 0.13 -0.26

For each coverage on each subject, we plot the correla-
tion between test coverage and test diversity, where the
x-axis represents the ratio of covered classes (represent-
ing test diversity) and the y-axis represents the achieved
coverage. Different colors represent the results of dif-
ferent adversarial test input generation methods. We
found that the conclusions across different subjects are
similar and due to space limit, we show the results of
CIFAR-10 and ResNet-20 (ID: 4) as the representative
in Figure 3. All the results can be found on our project
homepage [27].

In particular, we calculated the Spearman correlation
between test coverage and test diversity by using the
medium of each box as the achieved coverage under the
corresponding degree of test diversity for calculation, as
shown in Table 4. According to these tables and figures,
we obtained the following major conclusions.

First, regarding the four structural coverage metrics
(i.e., DNC, TKNC, KMNC, and IDC), with the test diver-
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sity increasing, the achieved coverage increases (especially when the test diversity is small). That indicates when
controlling for the size and the ratio of error-revealing test inputs, they show positive correlation (especially for DNC
and TKNC). That is, different neurons are responsible for the prediction of different classes. When covering more
classes, more neurons could be activated, leading to the increment of these structural coverage metrics.

When the test diversity reaches a certain extent, the increment is starting to flatten. The possible reason lies in
the limitation of the test-set size. When the number of covered classes becomes large in a test set, the number of
test inputs for each class becomes small accordingly, which may cause the responsible neurons for each class are not
sufficiently activated. That is, the coverage increment brought by increasing test diversity may be counteracted by
the coverage decrement caused by decreasing the number of test inputs for each class.

Second, regarding the remaining two structural coverage metrics (i.e., NBC and SNAC), in most cases there is no
obvious positive correlation between the two metrics and test diversity. The correlation tends to be stronger when
using FGSM to generate adversarial test inputs. The reason is that it is difficult to improve both NBC and SNAC due
to their inherent “corner-case” characteristics, and thus regardless of test diversity, both NBC and SNAC stay small
values stably. Regarding the results on FGSM, as presented before, the adversarial test inputs generated by FGSM
are more likely to cover corner-case regions of the output values for neurons, causing that both NBC and SNAC may
break away from small values.

Third, regarding the two non-structural coverage metrics, the achieved coverage does not increase with the test
diversity increasing, indicating no obvious positive correlation between them. This is because these metrics measure
the distance between a test input and the training data with the same label. Since training data tend to be sufficient,
the distributions of the training data for different classes are stable, causing that the distance cannot be affected
obviously by different classes of test inputs.

4.3 | RQ3: Correlation between Test Coverage and Error-revealing Capability per
Diversity Unit

TABLE 5 RQ3: Spearman correlation between
test coverage and error-revealing capability per
diversity unit (1st group).
ID Adv. DNC NBC SNAC TKNC KMNC IDC LSC DSC

1
CW 0.72 -0.43 -0.43 0.8 0.79 0.77 0.98 0.99
FGSM 0.76 0.46 0.32 0.86 0.53 0.06 0.97 0.97
BIM 0.8 -0.47 -0.47 0.9 0.72 0.77 0.97 0.97
JSMA 0.85 -0.46 -0.46 0.89 0.96 0.68 0.99 0.99

2
CW 0.86 0.39 0.04 0.79 0.71 0.44 0.87 0.94
FGSM 0.8 0.43 0.23 0.84 0.75 0.42 0.79 0.88
BIM 0.77 0.23 0.04 0.73 0.43 0.36 0.81 0.94
JSMA 0.84 0.54 0.32 0.8 0.8 0.5 0.82 0.95

3
CW 0.94 -0.6 -0.65 0.98 0.96 0.61 0.95 0.5
FGSM 0.95 0.87 0.86 0.98 0.99 0.67 0.88 0.94
BIM 0.95 0.8 0.8 0.98 0.97 0.73 0.94 0.89
JSMA 0.96 -0.57 -0.69 0.99 0.96 0.47 0.92 0.67

4
CW 0.63 -0.19 -0.09 0.85 0.32 0.96 0.84 0.73
FGSM 0.63 0.8 0.85 0.89 0.93 0.94 0.83 0.62
BIM 0.38 -0.06 0.13 0.85 0.6 0.94 0.82 0.62
JSMA 0.41 -0.22 -0.09 0.84 0.45 0.94 0.86 0.51

5
CW 0.84 -0.56 -0.54 0.89 -0.72 -0.33 0.55 0.95
FGSM 0.73 0.5 0.49 0.91 -0.53 -0.48 -0.04 0.95
BIM 0.68 0.63 0.64 0.89 -0.85 -0.48 0.04 0.95
JSMA 0.72 -0.5 -0.5 0.92 -0.77 -0.37 0.22 0.95

6
CW 0.67 -0.08 -0.05 0.12 -0.53 0.5 0.19 -0.85
FGSM 0.76 0.64 0.63 0.68 0.66 0.65 0.83 -0.63
BIM 0.69 -0.24 -0.21 0.15 -0.42 0.67 0.26 -0.65
JSMA 0.71 0.14 0.14 0.01 -0.37 0.6 0.57 -0.78

According to RQ1 and RQ2, we found that some of test
coverage metrics are positively correlated with the test
diversity, but are not positively correlated with error-
revealing capability under saturated diversity. One sub-
sequent question is that when test diversity is not satu-
rated, what about the correlation between test coverage
and error-revealing capability?

To answer this question, for each coverage on each
subject, we measured the correlation between test cov-
erage and error-revealing capability per diversity unit. Al-
though we repeated the experiment five times by select-
ing different groups to construct the test sets with one
diversity unit (presented in Section 3.4.2), we only show
the results on the first group in Table 5 due to the space
limit.

Indeed, the conclusions are consistent across differ-
ent groups, which can be found on our project home-
page [27]. From Table 5, we found that the four struc-
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F IGURE 4 Trend of correlation between coverage and error-revealing capability with test diversity increasing on
subject (ID: 1)
tural coverage metrics (DNC, TKNC, KMNC, and IDC) that are positively correlated with test diversity, also have
positive correlation with error-revealing capability under small test diversity (i.e., one diversity unit). However, as
shown in RQ1, they have no correlation or negative correlation with error-revealing capability under saturated diver-
sity. The reason is that although the test inputs in a test set concentrate on only 10% of classes, the error-revealing
ones among them may predict the classes out of the 10% of classes, causing that they are more likely to share similar
traces in the DNN with the other classes of test inputs. That is, under such a small degree of test diversity, increasing
the ratio of error-revealing test inputs may cover different neurons with those covered by the 10% of classes of test
inputs.

Furthermore, we investigated the correlation trend with the degree of test diversity increasing from one diversity
unit to saturated diversity (i.e., 10 diversity units) with the step size of a diversity unit. Due to the space limit, we
show the trend results by taking MNIST and LeNet-5 (ID: 1) as the representative in Figure 4. Indeed, there are
almost consistent conclusions across different subjects, and we put all the results on our project homepage [27].
In Figure 4, the x-axis represents the degree of test diversity and the y-axis represents the Spearman correlation
coefficient. From Figure 4, with the degree of test diversity increasing, the correlation between test coverage and
error-revealing capability becomes weaker for the four structural coverage metrics (DNC, TKNC, KMNC, and IDC).
This is as expected, since when the degree of test diversity is large, more error-revealing test inputs cannot bring
more coverage of different neurons that are covered by other classes. Therefore, the four structural coverage metrics
are not useless to guide the generation of test inputs, but the proper usage scenario for them is not found before. In
actual, they can be effective to guide to generate error-revealing test inputs when using a set of test inputs with small
test diversity as seed inputs.

Regarding the remaining four test coverage metrics (i.e., NBC, SNAC, LSC, and DSC), with the degree of test diver-
sity increasing, the correlation between test coverage and error-revealing capability is stable. That is, their correlation
between test coverage and error-revealing capability is not largely affected by various degrees of test diversity, which
is as expected based on the conclusions obtained in RQ1 and RQ2. Specifically, the correlation is stably strong for
LSC and DSC, but is stably weak for NBC and SNAC.

4.4 | Conclusion

In this paper, we revisited the existingDNN test coverage from the test-effectiveness perspective by considering three
test-effectiveness criteria (i.e., error-revealing capability, test diversity, and error-revealing capability per diversity unit).
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Different from those previous studies, we controlled the size of test sets to more reasonably validate the correlation
betweenDNN test coverage and the three test-effectiveness criteria. In the following, we summarize themain findings
by addressing three research questions in our study:
Findings for RQ1: (1) In general, the six structural coveragemetrics do not havemoderate to extremely strong positive
correlation with the error-revealing capability of the test set while the two non-structural coverage metrics have,
when controlling for the size and saturated diversity of test sets, showing the superiority of non-structural coverage
in this scenario. (2) Though non-structural coverage is more effective in perceiving the error-revealing test inputs, the
parameters of LSC and DSC significantly impact their performance. How to set the parameters properly remains a
challenge. (3) Compared with the classification models, the correlation on the regression model is stronger since the
metric used to measure the accuracy of regression (i.e., MSE) is more fine-grained and sensitive to capturing neuron
coverage differences.
Findings for RQ2: (1) When controlling for the size and the ratio of the error-revealing test inputs, four structural cov-
erage metrics (i.e., DNC, TKNC, KMNC, and IDC) have positive correlation with test diversity, especially under small
test diversity, demonstrating that the four structural coverage metrics can guide the improvement of test diversity. (2)
The remaining two structural coverage metrics (i.e., NBC and SNAC) and the non-structural coverage metrics are not
significantly correlated to test diversity.
Findings for RQ3: (1) The four structural coverage metrics (i.e., DNC, TKNC, KMNC, and IDC) are positively correlated
with error-revealing capability under small test diversity, and the correlation becomes weaker with the degree of test
diversity increasing, indicating that they are useful to guide the generation of error-revealing test inputs by taking
the test inputs with small test diversity as seed inputs. (2) As for the remaining four test coverage metrics (i.e., NBC,
SNAC, LSC, and DSC), their correlation between test coverage and error-revealing capability is relatively stable and
not largely affected by various degrees of test diversity.

5 | IMPLICATIONS AND SUGGESTIONS

Based on the conclusions from our extensive study, we summarize a series of implications from both academia and
practice perspectives.
Implications from the academia perspective: (1) Some empirical studies have been conducted to investigate the use-
fulness of existing DNN test coverage from some perspectives, and they delivered negative conclusions that may
drive future research towards the direction away from the existing coverage. Different from them, our work investi-
gates the usefulness of these coveragemetrics from another perspective (i.e., test effectiveness measured by different
criteria), which identifies the practical usage scenarios for the existing coverage. That is, our study can inspire future
research that continue around the existing coverage but in their proper scenarios. In recent years, many studies have
been conducted to overturn a (small) area of existing techniques/measurements, opening another direction for the
area. They are appealing, but revisiting these existing techniques/measurements from different perspectives and iden-
tifying the proper usage scenarios for them are also inspiring for the development of the area. Please note that we do
not overturn the conclusions from the previous studies since those previous studies and our study were conducted
from different perspectives and used different criteria to measure the correlation with DNN test coverage. Our test-
effectiveness perspective and criteria help identify the usage scenarios of the existing DNN test coverage, making
the overall conclusions positive to a large extent.

(2) The usefulness of some structural coverage metrics can be manifested by incorporating test diversity. In our
study, we propose a coarse-grained measurement (i.e., the ratio of covered classes among all classes involved in a
DNN) for test diversity, but such a coarse-grained measurement can indeed inspire the usefulness of these coverage
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metrics. In the future, it is promising to design more fine-grained measurements for test diversity in order to better
utilize the existing structural coverage (such asmeasuring test-input diversity under each class based on input features).
Moreover, it is also important to incorporate the concept of test diversity in regression tasks.

(3) The correlation between test coverage and error-revealing capability is much stronger on regression models
than classification models due to the fine-grained accuracy measurement for the former. Such a fine-grained measure-
ment is more sensitive to capture the differences in test behaviors (such as neuron coverage differences). Therefore,
decomposing the accuracy measurement for classification models to be more fine-grained may be a promising direc-
tion to improve the usefulness of these coverage metrics (especially structural coverage).

1 2 3 4 5 6 7 8 9 10
Diversity Units

20
30
40
50
60
70
80
90

100

# 
Er

ro
r-r

ev
ea

lin
g 

te
st

 in
pu

ts

F IGURE 5 Trend of attack success rate with
test diversity increasing on the subject (ID: 1).

Implications from the practice perspective: (1) The usage sce-
nario of the non-structural coverage (i.e., LSC andDSC) is using
it to guide the generation of error-revealing test inputs regard-
less of taking the whole test set or a small number of classes
of test inputs as seed inputs. But the remarkable thing is how
to properly set the parameters of LSC and DSC for different
subjects, which can be studied carefully in the future. More-
over, it is hard to guarantee the diversity of the generated test
inputs guided by LSC and DSC.

(2) The usage scenario of the structural coverage (i.e.,
DNC, TKNC, KMNC, and IDC) is using it to guide the gener-

ation of error-revealing test inputs by taking a small number of classes of test inputs as seed inputs. In particular,
the guidance of these structural coverage can also help improve the diversity of the generated test inputs. However,
they are not capable of guiding to generate error-revealing test inputs by taking the whole test set (with saturated
diversity) as seed inputs. We conducted a proof-of-concept application of our finding to further make our implication
actionable. Here, we applied DNC to guide the generation of test inputs on MNIST-LeNet5 under different degrees
of test diversity. Specifically, for each degree of test diversity, we randomly sampled 200 test inputs as seeds and
then used DNC to guide the generation of test inputs by maximizing activation values of inactive neurons and taking
the penultimate fully-connected layer as the targeted layer. The maximum iteration is set to 50 and the process was
repeated 10 times to reduce the influence of randomness. The Figure 5 shows the results, where the x-axis represents
different degrees of test diversity while the y-axis represents the number of successfully generated error-revealing
test inputs. We find that DNC can help generate more error-revealing test inputs when seeds have small test diversity.
This is a specific scenario that is suiteable for structural coverage.

(3) In practice, we can first use the four structural coverage metrics (i.e., DNC, TKNC, KMNC, and IDC) to guide
the generation of diverse error-revealing test inputs by taking each class of test inputs as seed inputs respectively.
When the generated error-revealing test inputs based on each class of test inputs are diverse enough, we can then
adopt the non-structural coverage (i.e., LSC and DSC) to guide to generate more error-revealing test inputs by taking
diverse test inputs as seed inputs, which can complement with the four structural coverage metrics.
6 | DISCUSSION
Apart from the six structural coverage studied above, Sun et al. [45] proposed MC/DC-inspired neuron coverage,
which is tailored to the distinct features of a DNN. It instantiates the decision change and condition change in a DNN
by defining the sign change and value change of neurons, which show the degree of the change of neuron activation
values under two different test inputs. Same as the existing studies on DNN coverage [23, 24], we did not investigate
MC/DC-inspired neuron coverage [46] in our study, since it is limited in scalability (hard to apply to large subjects) as
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demonstrated by the existing work [10, 47].

Indeed, it is interesting to investigate whether our conclusions still hold for this state-of-the-art structural cov-
erage. Thus, we conducted an experiment by taking VGG-16, CIFAR-10, C&W, and the MC/DC-inspired coverage
metric – Sign-Sign Coverage, as the representative. We repeated the process in RQ1 by constructing 200 test setswith
the size of 1000. By calculating the Spearman correlation between the coverage and the ratio of error-revealing test
inputs, we found that the correlation coefficient is -0.54 and the p-value is 5.92e-18 (< 0.05). The result demonstrates
there is negative correlation between the Sign-Sign Coverage and the ratio of error-revealing test inputs, which is con-
sistent with the conclusions from the other studied structural coverage, indicating the generality of our conclusions
to some degree.

7 | THREATS TO VALIDITY

Our study mainly has five kinds of threats to external validity. (1) Subjects: Our used subjects may not represent other
subjects. To reduce this kind of threat, we carefully considered the diversity of subjects and used some new subjects
that have never been used to evaluate these studied DNN test coverage metrics. (2) Created test sets: We controlled
for the size of created test sets, i.e., 800, which may not represent other sizes. Actually, we have conducted a small
experiment to investigate the influence of different test-set sizes (i.e., 100, 500, 800, and 1000) and obtained almost
consistent conclusions. We put the experimental results on our project homepage [27]. (3) Studied test coverage: Our
studied test coverage may not represent other coverage. To reduce this kind of threat, we considered all the DNN
test coverage studied in the existing studies [24, 23] (except TKNP [10]) and additionally studied the most recent test
coverage. In the future, we will study more coverage metrics, such as t-way combination coverage [48] and state
coverage [49]. (4) Adversarial test input generation methods: We adopted the most widely-used FGSM, BIM, JSMA,
C&W for general image-domain DNN models, the widely-used DeepXplore-Patch and DeepXplore-Light for Driving
following the existing work [36, 21], CTCM for Speech-Commands and PWWS for 20-Newsgroups, which may not
represent other methods. However, this kind of threat may be not serious since the conclusions obtained from BIM,
JSMA, and C&W are almost consistent. (5)Used errors: We regard a test input predicted wrongly as an error-revealing
test input, but do not distinguish whether they trigger the same bugs. This kind of threat exists in all existing studies
to evaluate DNN coverage since it is challenging to distinguish them due to involving huge manual effort. Actually,
the number of error-revealing test inputs is also important in DNN testing since identifying them can help improve
the accuracy of the DNN model [50].

Our study also has a kind of threat to construct validity: diversity unit partition method. In RQ2 and RQ3, we treat
covering 10% of classes in a test set as a diversity unit. For a subject, we evenly divided all classes into 10 groups
according to the default order of the class IDs. Also, we constructed test sets with different numbers of diversity
units according to the default order of the group IDs. However, the method of diversity unit partition may be not a
serious kind of threat. This is because we investigated the influence of different groups when studying the correlation
between test coverage and error-revealing capability per diversity unit in RQ3, and found that the conclusions are
consistent.

Besides, the hardware environment can also be a potential factor affecting our study. Regarding the influence
of hardware, it may be a threat to all the studies on deep learning. Same as the existing studies [24, 23], we did not
systematically investigate the influence of this factor, but reported the details of our experimental environment (in
Section 3.3), released our artifact for replication [27], and repeated our experiments five times to reduce the influence
of randomness. In the future, we will repeat our study on different hardware to further reduce this threat.
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8 | RELATED WORK
DNN Testing. There is a lot of research on DNN testing [51, 52, 45, 53, 54, 46, 26, 55]. We classify them into:
measuring test effectiveness, generating test inputs, and improving test efficiency.

Regardingmeasuring test effectiveness, we have introduced six structural coveragemetrics and twonon-structural
coveragemetrics in Section 2, and conducted a pilot study onMC/DC inspired neuron coverage. Besides, Ma et al. [48]
proposed t-way combination coverage for DNN testing by borrowing the idea of traditional combinatorial testing. Du
et al. [49] proposed state coverage for RNN-based stateful DNN testing. Ma et al. [56] proposed a mutation-based
metric by designing a set of mutation operators for DNN source programs and models.

Besides the two empirical studies on DNN test coverage discussed in Section 1, there are some other stud-
ies [57, 58, 25] on evaluating DNN test coverage. Dong et al. [58] conducted a study to investigate the correlation
between test coverage and model robustness and found the correlation is very limited. Li et al. [57] conducted a pre-
liminary study on structural coverage using only two datasets, and found that adversary-oriented search may make
more contributions to the error-revealing capability than structural coverage. Yang et al. [25] extended the existing
study [24], further confirming the negative conclusions on the existing test coverage from the perspective of model
retraining quality. They also claimed that the defense strategies against coverage-driven methods are worth further
investigating. Different from them, our study is to systematically revisit DNN test coverage from the test effectiveness
perspective. In particular, we designed our study systematically, i.e., considering both structural and non-structural
coverage (including the state-of-the-art one), three test effectiveness criteria, andmore comprehensive subjects. Also,
we did not deliver only negative conclusions like existing studies, but identified the practical usage scenarios for the
existing coverage. Furthermore, there are some metrics to measure DNN robustness [59, 60, 61, 62]. Since they are
different from the metrics measuring test effectiveness (the target of our work), we do not discuss them.

Regarding generating test inputs, many approaches have been proposed. For example, Guo et al. [63] proposed
DLFuzz, the first differential testing framework for DNNs by maximizing neuron coverage. Xie et al. [64] proposed
Deephunter, a coverage-guided fuzz testing framework for DNNs. Sun et al. [65] proposed to generate test inputs for
DNNs through concolic testing. Shen et al. [66] leveraged sentence-level mutation to generate natural test inputs to
achieve precise testing of question answering software. You et al. [67] proposedDRFuzz, which aims at generating test
inputs triggering regression faults for DNNmodels. Moreover, there are somework focusing on generating test inputs
for DL libraries and DL programs [68, 69, 70]. For example, Wang et al. [68] proposed a mutation-based approach
to generating models for DL libraries. Yan et al. [70] proposed a gradient-search-based approach to generating test
inputs to expose numerical bugs in DL programs.

Regarding improving test efficiency, some test input selection and prioritization approaches have been proposed
for DNNs [71, 36, 72, 37]. For example, Li et al. [36] proposed to select test inputs by minimizing the cross entropy
between the selected test inputs and thewhole test set, so as to save labeling costs. Feng et al. [72] proposedDeepGini
to prioritize test inputs bymeasuring the purity of test inputs, so as to label error-revealing test inputs earlier. Different
from them, our work aims to investigate the correlation between DNN coverage and test effectiveness through a
systematic study.
Empirical Studies on Traditional Test Coverage. In traditional software testing, there are some studies to investigate
the correlation between traditional test coverage and test effectiveness. For example, Namin and Andrews [73] con-
ducted a study to explore the relationship among the test-suite size, structural coverage, and test effectiveness based
on C/C++ programs, and found that coverage is sometimes correlated with test effectiveness when controlling for
the test-suite size. Inozemtseva and Holmes [13] conducted a study to investigate the above relationship based on
Java programs, and found that the correlation between test coverage and test effectiveness is low to moderate when
controlling for the test-suite size. Zhang and Mesbah [14] conducted a study to investigate the correlation between
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assertions and test effectiveness based on Java programs, and found that both assertion numbers and assertion cov-
erage are strongly correlated with test effectiveness.

Different from them, our study is to investigate the correlation between test coverage and test effectiveness in
DNN testing. Traditional software testing and DNN testing have different test coverage and their subjects have totally
different characteristics.
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