
R E S E A R CH A R T I C L E - EM P I R I C A L

Embracing modern C++ features: An empirical assessment on
the KDE community

Walter Lucas1 | Fausto Carvalho1 | Rafael Campos Nunes1 |

Rodrigo Bonifácio1 | João Saraiva2 | Paola Accioly3

1Computer Science Department, University of

Brasília, Brasília, Brazil

2Universidade do Minho, Braga, Portugal

3Federal University of Cariri, Juazeiro do

Norte, Brazil

Correspondence

Walter Lucas, Computer Science Department,

University of Brasília, Brasília, Brazil.

Email: walter.mendonca@aluno.unb.br

Funding information

FAP-DF; CAPES, Grant/Award Number:

07/2019; Foundation for Science and

Technology (FCT), Grant/Award Number: LA/

P/0063/2020

Abstract

Similar to software systems, programming languages evolve substantially over time.

Indeed, the community has more recently seen the release of new versions of main-

stream languages in shorter and shorter time frames. For instance, the C++ working

group has begun to release a new version of the language every 3 years, which now

has a greater number of modern C++ features and improvements in modern stan-

dards (C++11, C++14, C++17, and C++ 20). Nonetheless, there is little empirical

evidence on how developers are transitioning to use modern C++ constructs in leg-

acy systems, and not understanding the trends and reasons for adopting these new

modern C++ features might hinder software developers in conducting rejuvenation

efforts. In this paper, we conduct an in-depth study to understand the development

practices of KDE contributors to evolve their projects toward the use of modern C+

+ features. Our results show a trend in the widespread adoption of some modern C

++ features (lambda expressions, auto-typed variables, and range-based for) in KDE

community projects. We also found that developers in the KDE community are mak-

ing large efforts to modernize their programs using automated tools, and we present

some modernization scenarios and the benefits of adopting modern C++ features of

the C++ programming language. Our results might help C++ software developers,

in general, to evolve C++ legacy systems and tools builders to implement more

effective tools that could help in rejuvenation efforts.

K E YWORD S

C++ programming language, language evolution, software rejuvenation

1 | INTRODUCTION

The C++ programming language was designed at the beginning of the 1980s with the main purpose of extending the C language with object-

oriented constructs. The first C++ standard was released in 1998 (C++98), with contributions from a language committee* formed in 1990. The

language has adhered to the C++11 standard in 2011 and is currently receiving updates more frequently (an estimated time of 3 years difference

between releases of the new standards). These updates, in turn, made the language more expressive and secure, adopting certain idioms or

completely new constructs such as type inference, lambda expressions, resource transfer, smart pointers, and concurrent support within the stan-

dard library.1

*Committee ISO/IEC JTC1 (Joint Technical Committee 1)/SC22 (Subcommittee 22)/WG21 (Working Group 21).

Received: 14 October 2022 Revised: 25 April 2023 Accepted: 18 July 2023

DOI: 10.1002/smr.2605

J Softw Evol Proc. 2023;e2605. wileyonlinelibrary.com/journal/smr © 2023 John Wiley & Sons Ltd. 1 of 24

https://doi.org/10.1002/smr.2605

https://orcid.org/0000-0001-7391-9622
https://orcid.org/0000-0002-6622-2330
https://orcid.org/0000-0003-3769-6171
https://orcid.org/0000-0002-2380-2829
https://orcid.org/0000-0002-5686-7151
https://orcid.org/0000-0002-4428-2543
mailto:walter.mendonca@aluno.unb.br
https://doi.org/10.1002/smr.2605
http://wileyonlinelibrary.com/journal/smr
https://doi.org/10.1002/smr.2605
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fsmr.2605&domain=pdf&date_stamp=2023-08-02

These language modifications change the way developers write their programs. Nonetheless, keeping legacy systems up to date with new

versions of a language is a common concern related to language evolution.2 On the one hand, developers wish to use modern C++ features in

their programs, to improve some quality concerns (e.g., software readability, maintenance, and security). On the other hand, migrating a code base

to support new versions of a language is everything but trivial. Developers have to conciliate dependencies with external libraries and also con-

sider the implications of changing the configuration or versions of compilers to the users of their programs or libraries.3 Indeed, we have observed

in the developer's mailing lists of open-source communities some extensive, even heated discussions about whether or not to conduct a mainte-

nance effort on a program or library toward language evolution. For instance, Figure 1 presents two snippets of message threads from the open-

source community, revealing not only the interest in updating the code to support C++11 but also some challenges that might hinder software

developers from modernizing legacy code bases.

Given the importance of C++ and the challenges related to evolving legacy systems to adopt new versions of programming languages, it is

worth characterizing how software developers embrace the modern features of C++ and which practices developers use during rejuvenation

efforts. Indeed, previous work4–6 reports efforts to rejuvenate programs, a particular kind of software maintenance whose goal is to replace legacy

code features and idioms with modern constructs available in recent versions of a programming language.7 Efforts to rejuvenate software systems

have also been investigated and reported in the literature.

For instance, Mazinanian et al5 report a large-scale study to understand how professional developers use lambda expressions in Java pro-

grams, after its adoption on Java 8. The study evaluated 100,540 lambda expressions in 241 open-source projects, revealing an increasing trend

in lambda expression adoption. Similarly, Alqaimi et al4 investigate the use of lambda expressions in Java programs on GitHub and report that

11% of the repositories use lambda expressions and that only 6% of lambda expressions are accompanied by source code comments—which

might suggest that lambda do not make the programs harder to understand. The authors also present an automated tool to generate complete

documentation for lambda expressions in Java. Kumar et al6 present a tool for rejuvenating C++ code that implements source code transforma-

tions of C++ macros into C++11 feature usages. They report that 68% to 98% of macros can be translated into modern C++11 features. In

addition, the authors also present techniques to assist developers to automate the rejuvenation process.

Despite all these research efforts to discuss modern C++ features adoption, there is still a lack of literature about the practices C++ devel-

opers use to conduct rejuvenation efforts. Our research aims to fill this gap by conducting a large-scale empirical study where we analyze

272 open-source projects from the KDE community,† in order to understand the trends in the adoption of modern C++ features and the prac-

tices developers use while modernizing C++ code. Our findings characterize maintenance efforts in the KDE community to introduce modern C+

+ features released in the recent versions of C++: C++11, C++14, and C++17. We discuss the trends in the adoption of modern C++ features

such as lambda expressions, auto-typed variables, and range-based for, and our results bring evidence of the use of automated tools for C++ code

F IGURE 1 Open-source forum messages discussing the need for updating the C++ version.

†KDE is an international cross-platform project community designed for Linux systems.

2 of 24 LUCAS ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2605 by U
niversidade D

o M
inho, W

iley O
nline L

ibrary on [18/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

modernization. In addition, we present a catalog of commits (Table A.1) of rejuvenation efforts conducted by KDE developers that could help

other developers rejuvenate their programs and tool builders identify opportunities to implement source code transformations.

This paper is organized as follows: Section 2.1 presents some background information about the evolution of C++ language. Section 2.2

compares our study with previous work about software rejuvenation in the literature. Section 3 presents our research questions and the proce-

dures that we follow during our investigation. Section 4 shows the results of our quantitative assessments and its implications. Section 5 presents

some examples of rejuvenation efforts and summarizes the perspective of KDE developers rejuvenation efforts in C++ project. In Section 6, we

summarize the implications of our study and the main threats to the validity of our work. Finally, Section 7 presents our final considerations.

1.1 | Artifacts availability

Our study is fully reproducible. All developed tools, collected data, and R scripts are available online for statistical analysis in a Git repository:

https://github.com/PAMunb/cppEvolution.

2 | BACKGROUND AND RELATED WORK

Some programming languages are constantly evolving and follow a rigorous and organized evolution process. The C++ community, for instance,

is responsible for steering the language's evolution in accordance with the recommendations of the International C++ Standard Committee. The

C++ community is composed of organizations such as Apple, Facebook, Google, IBM, Intel, Microsoft, and Nvidia, as well as interested parties

from multiple nations. In addition, universities and hardware vendors support the C++ committee, along with representatives from diverse fields

such as finance, game development, C++ library communities (e.g., Boost), and platform vendors. The community organizes meetings into work-

ing groups (WGs) and study groups (SGs).1 It is the responsibility of committee members to submit proposals, which may include modifications to

the language or standard libraries. Additionally, the committee functions as a filter to prevent bad proposals from entering the standard.1 The

majority of the committee's efforts are devoted to addressing simple issues such as naming conventions, grammatical details, the addition of new

constructs, and backwards compatibility with previous versions of C++. In the following Section 2.1, we provide an overview of the C++ evolu-

tion process and its modifications. Next, in Section 2.2, we discuss related works and how our own compares to them.

2.1 | C++ Language evolution

The C++ programming language is a multi-paradigm and general-purpose language, whose first official version, known informally as C++98, has

been released as an ISO/IEC standard (ISO/IEC 14882:1998).8 The C++98 standard includes numerous language features such as templates,

exceptions, dynamic_cast, namespaces, declarations in conditions, named casts, and bool_type. C++ also includes the Standard Template Library

(STL),9 which provides features such as the general and efficient framework of containers, iterators, and algorithms. In addition, other resources

such as traits, string, bitset, locales, auto_ptr, and shared_ptr were added to the standard language library.10

In 2003, the WG21 committee issued a new version, which became known informally as C++03. This version of the language was primarily

a bug fix release that included several library revisions (C++ Standard Library Issues List TC1‡). In 2006, the committee issued a new version

known as C++0x. The C++0x version was to contain a large number of features that were frozen and not released until the next version in

2011.1 Starting in 2011, the International C++ Committee agreed to publish a new C++ release every 3 years.

In 2011, the committee released the standardized version known as C++11, which brought significant changes to the C++1 programming

language and paved the way for what is now called modern C++.11 C++11 introduced various modern language features such as auto and

decltype, range-for, nullptr, constexpr functions, user-defined literals, lambda expressions (unnamed function objects), variadic templates, and the

noexcept keyword, among many others.12 The C++11 version also included several built-in modern C++ features from the Boost Library,13

which had a significant impact on the new release of the C++14 Standard. Some of these modern C++ features are the thread library,

exception_ptr, error_code, error_condition, and iterator improvements.

The C++14 standard was issued by the WG21 committee as an extension of the C++11.1 The changes consisted mainly of bug fixes that

had been noticed during the initial use of the C++11 standard, and also included minor improvements to existing language features (two-range

overloads for some algorithms, type alias versions of type traits, user-defined literals for basic_string, duration, and complex).12 The C++14 ver-

sion included language features such as variable templates, generic lambdas, lambda init capture, new/delete elision, and aggregate classes with

‡https://open-std.org/JTC1/SC22/WG21/docs/lwg-status.html#TC1.

LUCAS ET AL. 3 of 24

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2605 by U
niversidade D

o M
inho, W

iley O
nline L

ibrary on [18/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/PAMunb/cppEvolution
https://open-std.org/JTC1/SC22/WG21/docs/lwg-status.html#TC1

default non-static member initializers.12 Some library resources such as std::make_unique, std::shared_timed_mutex, std::shared_lock, std::

integer_sequence, std::exchange, and std::quoted have also been included.

The C++17 standard has not undergone major changes like the previous standards C++11 and C++14, but it includes modifications and

features to improve the previous standards. C++17 included changes to remove language and library features that were deprecated during the C

++ standard evolution.11 C++17 also added modern language features like u8 character literal, made noexcept part of the type system, new

order of evaluation rules, and lambda capture of *this. Improvements in the library were also part of this standard, such as file system,

scoped_lock, shared_mutex (reader-writer locks), any, variant, optional, string_view, parallel algorithms, and others.11,15

C++20 introduced a programming concept that differs from previous standards, with language features aimed at concurrency, generic

lambda expressions, metaprogramming, stricter type safety, and others.16 The new standard has language features such as feature test macros,

the three-way comparison operator < ¼ > and the operator ¼¼ðÞ¼ default, designated initializers, init statements, and initializers in range-for. C

++20 also included new library features such as concepts, ranges, dates and time zones, span, formats, improved concurrency, parallelism sup-

port, and others.1

2.2 | Research on software rejuvenation

Software maintenance can be motivated by various factors, such as business adaptations, changing requirements, architectural transitions

(e.g., the use of cloud environments), the need for quality improvements (e.g., refactoring), and also technical aspects, such as program evolution

scenarios that are driven by the evolution of the programming languages used.17 Software rejuvenation is a particular type of software mainte-

nance whose goal is to replace obsolete features with modern programming language features that can coexist with evolved software.2 Research

works that investigate the evolution of software through rejuvenation is increasingly common in software engineering.5,6,18,19

Regarding previous studies proposing tools to automate software rejuvenation, Kumar et al6 presented a tool for rejuvenating C++11 code.

The methodology proposed in the paper involves three main steps: identifying preprocessor macros in the codebase using a combination of lexical

and syntactic analysis, transforming the macros into equivalent C++ code using a set of predefined rules, and analyzing the transformed code to

detect any issues that the macro transformation process may have introduced. They reported that modern C++11 features can replace 68%

to 98% of macros. Their results suggest that it is possible to replace a large part of legacy code with modern C++ features, but some transforma-

tions require manual adjustments. Dantas et al18 presented a library of Java transformations developed in the Rascal metaprogramming language

to rejuvenate legacy systems to support newer programming language constructs. The authors ran a total of 2462 source code transformations in

40 open-source projects. A small sample of these transformations was submitted to projects via GitHub's pull-requests mechanism. The study

identified that simple transformations, such as adopting diamond operators, are more likely to be accepted than transformations that substantially

change the code, such as replacing for loops by the new functional style. Unlike our study, these works6,18 do not investigate what motivations

drive developers to adopt modern language features or the benefits of adopting modern language features.

Mazinanian et al5 conducted a large-scale study with a mixed-methods approach to understanding how developers use lambda expressions in

Java programs. The authors evaluated 100,540 lambda expressions across 241 open-source projects to identify the usage patterns of lambda

expressions. They also surveyed Java developers to collect information on their experience with using lambda expressions. The survey questions

focused on developers' experiences with the language feature, how often they use it, and what benefits and limitations they perceive when using

it. The study revealed an increasing trend in adopting lambda expressions in 2016 (the proportion of lambdas introduced per line of code doubled

compared with 2015). In addition, they present that leading developers introduce more lambda expressions than external collaborators and that

Java developers tend to write them manually. We also found a trend (Section 4) of adoption of some features (auto-typed variables, lambda expres-

sions, and range-based for) since 2016 for C++ projects in the KDE community. In addition, our study shows evidence that the top developers

were responsible for 63.2% of the rejuvenation commits found. Finally, the survey results indicate some benefits of using lambda expressions, like

improved code readability and reduced code verbosity. However, developers also reported challenges when using lambda expressions, including

debugging issues. Additionally, the findings suggest that the Java community should continue to improve tooling to support developers' use of

lambda expressions.

Lucas et al19 conducted an empirical study to investigate the impact on code comprehension after introducing lambda expressions in Java pro-

grams. The study evaluated 66 pairs of code transformations (one pair consists of a source code snippet in the version before the transformation

and the same snippet after the introduction of lambda expressions). First, some metrics were extracted for each pair of transformations: two met-

rics related to source code complexity (number of lines of code and cyclomatic complexity20) and two metrics that estimate source code readabil-

ity.21,22 Then, the authors surveyed professionals to collect their perceptions about the benefits of understanding the program by adopting

lambda expressions. Such results presented a contradiction. Based on the quantitative assessment, the researchers found no evidence that the

introduction of lambda expressions leads to improvements in the readability of software, which differs from the qualitative evaluation that sug-

gests improvements in program comprehension. Additionally, the study revealed that the use of lambda expressions in some scenarios can improve

code comprehension (like the replacement of anonymous inner classes by lambda expressions). Differently, just replacing a simple for statement

4 of 24 LUCAS ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2605 by U
niversidade D

o M
inho, W

iley O
nline L

ibrary on [18/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

over a collection statement by a collections.forEach() does not bring any benefits, according to the participants of the survey. Our work

differs from those studies5,19 in two aspects: (a) We study the adoption of modern features introduced by the evolution of the C++ language

introduced between three versions (C++11, C++14, and C++17); and (b) our study is not limited only to features that introduce the functional

style (such as lambda expressions).

Contrary to Mazananian et al. and Lucas et al., Uesbeck et al23 and Zheng et al24 conducted studies showing harmful effects of adopting

lambda expressions in C++ and Java projects, respectively. Uesbeck et al. conducted controlled experiments to understand the impact on devel-

opers' productivity while implementing different tasks with and without lambda expressions. Their results show that using lambda expressions nega-

tively affects productivity for less experienced developers regarding how quickly they can write correct programs. However, it had no positive or

negative effect on more experienced developers' productivity. The results suggest that learning how to use lambda expressions properly might take

some time. Moreover, Zheng et al. show data confirming a trend of developers removing lambda expressions from their code in Java starting in

2016. They conduct a study to understand the reasons behind such phenomena. As a result, the authors describe developers often misusing

lambda expressions, causing unwanted side effects, such as memory leakage or inducing new bugs. They provide seven main reasons for removing

lambda expressions and seven common migration patterns. Such results are beneficial for developers that are still learning how to use lambda

expressions in Java. These previous studies23,24 complement our results because we also show an increasing use trend in lambda expressions

since 2016 and the factors that might explain it, but we do not analyze the harmful effects of this trend.

Finally, Chen et al25 conduct a study to understand how developers have used C++ templates since their first release. They find out that the

main reason for using C++ templates is to avoid code duplication. Moreover, they also measure the proportion of explicit type declarations ver-

sus implicit type declarations (the auto-typed variables), concluding that developers prefer to keep explicit type declarations instead of changing to

the auto-typed variables. This result complements our study because, while we describe many examples where developers chose to rejuvenate

code by using auto-typed variables, we do not measure how much of the code still uses explicit type declarations.

3 | STUDY SETTINGS

This study aims to gain a comprehensive knowledge of how C++ developers utilize modern C++ features included in the C++11, C++14, and C

++17 standards. This study focuses on a few of C++11 and C++14 innovations, including lambda expressions, type inference algorithms based

on auto-typed variables, and the brand-new range-based for statement. According to Stroustrup, these features would be subject to more adoption

expectations.1 In addition, we incorporate the C++17 if-statement with initializer and the new C++ support for concurrent programming in our

research.

Also related to the scope of our research, we focus on a relevant organization of C++ developers: the KDE open community, an international

free software community responsible for developing hundreds of applications targeting different domains, such as Games, Education, and Frame-

works, including the Plasma desktop that runs in Linux distributions (e.g., OpenSuse) and mobile phones. Similar to other open-source organiza-

tions, KDE makes available development policies§ and leverages static analysis procedures for conformance checking (including the Krazy tool¶).

We started analyzing 1061 C++ repositories that we checked out from the GitHub KDE community (the official read-only mirror of the KDE

projects). We removed 11 repositories that do not contain C++ files. From the remaining 1050 repositories, we filtered out projects with a small

percentage of C++ code (below 50%) and projects that started after 2010 or that did not have recent updates—that is, we only consider projects

that have at least one commit in 2022. Our curated dataset contains 272 KDE programs and libraries written in C++.

3.1 | Research questions

We investigate the following research questions:

RQ1. To what extent do KDE systems rely on modern C++ features?

RQ2. When did KDE developers start using modern C++ features?

RQ3. Is there any trend in the adoption of modern C++ features in KDE applications?

RQ4. Do KDE developers conduct maintenance efforts having the sole goal of rejuvenating C++ code?

RQ5. Which tools do KDE developers use to support maintenance efforts for code rejuvenation?

RQ6. What are the reasons that motivate KDE developers to conduct maintenance efforts for code rejuvenation?

RQ7. Are the core developers of the projects responsible for conducting rejuvenation efforts in KDE projects?

§https://community.kde.org/Policies.
¶https://github.com/Krazy-collection/krazy.

LUCAS ET AL. 5 of 24

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2605 by U
niversidade D

o M
inho, W

iley O
nline L

ibrary on [18/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://community.kde.org/Policies
https://github.com/Krazy-collection/krazy

Answering the first research question allows us to understand how popular modern C++ features such as lambda expressions, auto-typed

variables, range-based for, and if-with-initializer statements are in the KDE applications' code base. Answering the second research question enables

us to know how long it takes for fully fledged KDE projects to start migration efforts of the codebase to use modern C++ features. Answering

the third research question allows us to understand if there is a trend toward rejuvenating the code of KDE applications. Answering the fourth

and fifth research questions allows us to identify whether or not KDE developers conduct rejuvenation efforts, and, if so, what tools they use.

Answering the sixth research question allow us to identify what motivations lead KDE developers to conduct rejuvenation efforts in their pro-

grams. Finally, answering the last research question enables us to identify which developers conduct rejuvenation efforts and whether they are

the main developers of KDE projects.

3.2 | Research procedures

To answer our research questions, we mined the source code repository of 272 KDE applications and collected facts about the usage of modern

C++ features using a static analysis tool we implemented using Java and the Eclipse CDT infrastructure for parsing and traversing C++ code. For

the research questions RQ5 and RQ6, we also surveyed KDE developers via e-mail messages.

In more detail, to answer the first research question, we first run our static analysis infrastructure on the latest revision of the applications.

We then (i) calculate the absolute number of occurrences of the modern C++ features we are interested in (e.g., lambda expressions, auto-typed

variables, range-based for, and if-with-initializer statements) and (ii) carry out descriptive statistics on that data. To answer the second and third

research questions, we collect the same statistics considering a weekly based interval of all revisions of the applications' code base, starting from

January 1, 2010, until June 1, 2022. Our primary motivation for establishing this range is due to the considerable number of commits that some

projects have, which can lead to a time-consuming analysis. As a means to mitigate this issue, we defined the range to ensure the feasibility of our

study. Algorithm 1 clarifies this approach. We use Time Series to investigate the trend in the adoption of modern C++ features.

We use a conservative heuristic to search for commits that characterize rejuvenation efforts in KDE projects and then answer the fourth and

fifth research questions. Our heuristic iterates over consecutive commits in our dataset (i.e., with a distance of at least seven days) and computes

the increase in the adoption of each modern C++ feature. Whenever we find an increase of at least 50% in the adoption of modern C++ fea-

tures and the amount of statements increases by less than 5%, we assume that a rejuvenation effort might have taken place in that period.

Using this conservative heuristic, we automatically identified 207 intervals that could contain a rejuvenation effort. We then retrieve all com-

mits within the period of each interval and again perform a search for patches that might contain a rejuvenation commit. Using our approach, we

then iterate over the commits several times, reducing the number of commits that must be manually evaluated. Within all intervals, we found the

207 that contain between 1000 and 24,000 commits. Because this approach would demand a huge amount of time to iterate over large commits

to collect the metrics, we use a keyword search in the commit messages in cases where an interval contains more than 100 commits. The key-

words we consider in the search include lambda, auto, range-based, or modern for combined with modern, modernize, port away,

migrate, migration, c++11, c++14, and c++17. We select these keywords from commits we found during a manual search of commit mes-

sages. Otherwise, if the interval contains fewer than 100 commits, we use the iterative approach to identify smaller intervals that might contain a

rejuvenation effort. Our heuristic produces two independent text files, containing the results of the commit message keyword-based search and

6 of 24 LUCAS ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2605 by U
niversidade D

o M
inho, W

iley O
nline L

ibrary on [18/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

the results of the iterative search. We manually analyze the results to validate whether or not a given commit corresponds to a rejuvenation

effort.

Subsequently, we mine the authors of the commits that we validate as rejuvenation efforts. To answer the sixth research question, we con-

tacted these developers via email to understand their motivations for carrying out maintenance efforts aimed at rejuvenating the projects' source

code. The developers we contacted are the same contributors who conducted the large rejuvenation efforts identified in earlier stages of our

research. Finally, to answer the last research question, we used the notion of Truck Factor (TF) to verify if these contributors are the core devel-

opers of the projects in which they conducted rejuvenation efforts. The notion of TF aims to identify a minimum set of developers that, if they

abandon the project, the maintenance and evolution of that project might be discontinued. Furthermore, TF is suitable for assessing the distribu-

tion of knowledge among the developers of a project as shown by Ricca et al.26 As reported by Bosu and Sultana,27 the notion of TF can also be

used to identify developers who have made significant contributions to guide the development and evolution of projects. There are several

approaches to calculating TF in the literature, but here, we used the approach proposed by Avelino et al28 for the following reasons: (i) The

approach proved to be superior to other strategies,29 and (ii) there is an easy-to-use implementation available, which (iii) has been used in another

study to identify core developers.30

In Section 4, we present the results of a descriptive statistic analysis of our dataset, considering all projects. In this way, we give high-level

answers to our research questions. Next, in Section 5.2, we present more detailed qualitative information regarding the KDE developer's adoption

of modern C++ features.

4 | RESULTS OF THE QUANTITATIVE ASSESSMENT

In this section, we present the findings of a descriptive analysis that we conducted on our dataset, which includes all projects. We also address

the research questions RQ1, RQ2, and RQ3. In the following section, we will discuss qualitatively the modern C++ features used by KDE devel-

opers. Table 1 shows the general adoption of our modern C++ features of interest in KDE projects, as well as when a feature first appeared in

our dataset. Notably, auto-typed variables, lambda expressions, and range-based for are present in over sixty percent of the KDE projects in our

dataset. This confirms Bjarne Stroustrup's prediction that certain modern C++ features would be extensively adopted.1 Moreover, a few months

before the formal release of C++11, auto-typed variables, lambda expressions, and decltype specifier began to appear. Although C++11 added C+

+ multithreading capability, it is hardly used in our dataset. Conversely, we did not find evidence of the use for four other modern C++ features

(async function, future declarations, promise declarations, and shared future declarations) that were in our initial subset. Therefore, we have focused

our research on these three modern C++ features (auto-typed variables, lambda expressions, and range-based for).

The modern C++ features lambda expressions, auto-typed variables, and range-based for are widely used across the projects, even though their

adoption distribution is not uniform (see Figure 2). The median distribution of lambda expressions, auto-typed variables, and range-based for is 2, 9,

and 8.5, respectively. However, the KDevelop project alone contains 4441 occurrences of auto-typed variables (13.36% of the total). We observe

the same lack of uniformity for lambda expressions and range-based for. We run a test to estimate the Spearman correlation31,32 between the mod-

ern features adoption and the size of the projects (in terms of the total number of statements and the total number of C++ files). First, we found

just a moderate correlation (cor ≤0:62) between the adoption of language features and the size of the projects, indicating that we cannot explain

a large use of language features using only project size metrics. Next, we run a test to estimate a correlation between the usage of modern C++

features (lambda expressions, auto-typed variables, and range-based for). We found a positive and strong correlation (cor ≥ 0:71) between lambda

expressions, auto-typed variables, and range-based for usage and a very strong correlation (cor ≥0:85) between auto-typed variables and range-based

for. Although LLVM introduced the support for modern C++ features before 2011 (e.g., LLVM version of 2008 already supports lambda expres-

sions33), our results give evidence that, within the KDE projects in our dataset, the widespread adoption of modern C++ feature took place years

after the release of the C++11 standard.34

TABLE 1 Adoption of modern C++ features in KDE projects.

Feature Projects adoption (%) Occurrences (#) First occurrence

auto-typed variables 80.51 33,225 March 2010

constant expressions 14.70 777 November 2012

if-with-initializer statements 4.4 71 May 2020

lambda expressions 63.60 8918 March 2010

range-based for 78.30 16,485 December 2011

thread declaration 0.73 6 May 2018

decltype specifier 2.2 27 April 2010

LUCAS ET AL. 7 of 24

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2605 by U
niversidade D

o M
inho, W

iley O
nline L

ibrary on [18/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

RQ1: To what extent do KDE systems rely on modern C++ features? Our findings suggest that KDE developers extensively use

auto-typed variables, lambda expressions, and range-based for—more than 80% of the projects use auto-typed variables in our dataset,

while more than 60% of the projects use lambda expressions and 78% of the projects use range-based for. Other modern C++ features,

such as constant expressions, decltype specifier, if-with-initializer statements, and thread declaration are rarely used in KDE projects.

Although KDE developers started using auto-typed variables, lambda expressions, and range-based for before 2012, we observed a more signifi-

cant growth in their usage after 2016 (5 years after the release of the C++11 specification); see Figure 3. After this moment, we found rejuvena-

tion efforts that changed many files to introduce these language features. We present more detailed information about these efforts in the next

section.

RQ2: When did KDE developers start using modern C++ features? Our findings suggest that the widespread adoption of modern

features happened 5 years after the release of the C++11 specification—for those modern features frequently used. Accordingly, our

results suggest that the general and widespread adoption of new language is not immediate—even for long waited features such as C+

+ lambda expressions.

Besides an observable trend in adopting new C++ features, Figure 3 presents some interesting situations, in which the total number of a

given language feature usage declines. We manually investigated this issue and found two main reasons for that (a) there are specific commits that

revert contributions that aim to rejuvenate the code base and (b) commits that merge branches often lead to this disruptive language feature

Features

To
ta
l

0

1000

2000

3000

4000

rof_egnarotuaadbmal

F IGURE 2 Distribution of modern C++ features usage across the KDE projects in our dataset. Each of the points on this graph represents
the respective amount of that modern feature (auto-typed variables, lambda expressions, and range-based for) usage per project.

8 of 24 LUCAS ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2605 by U
niversidade D

o M
inho, W

iley O
nline L

ibrary on [18/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

adoption pattern, which contains contributions that reduce the number of feature adoption followed by contributions that rejuvenate the code

again.

For instance, commit 1a5e7ab4 of konversation (commit date on October 1, 2020, and message Port away from Qt's foreach: loops over

method-local containers) converts 110 foreach statements into the modern range-based for statement. This commit changed a total of 41 files.#

Subsequently, commit ef184b7d reverts the changes in the aforementioned commit. The reversion goal is explicit in the commit message: “Revert
Port away from Qt's foreach: loops over method-local containers.” The author of this commit further details his/her motivation: “This patch

reverts commit 1a5e7ab, which was accidentally … pushed as squashed commit of multiple commits which should be separate.” For this particular
case, the motivation to revert the commit was a procedure error when integrating and pushing a set of commits. We also observed the exclusion

of many modern feature usages after merge commits.

We model our dataset using time series and conduct a regression analysis study using the tslm function available in the Forecast R pack-

age. To this end, we consolidate a monthly snapshot of the total usage of the modern C++ features auto-typed variables, range-based for, and

lambda expressions. The tslm function implements a conventional regression analysis, though it includes additional predictors such as trending

and seasoning. Because our dataset does not present seasonal data, we just estimate the trend component. The regression analysis results suggest

a statistically significant trending increase for the adoption of the three features in our study (auto-typed variables, range-based for, and lambda

expressions), with trending values of 210.78, 112.48, and 57.19 for auto-typed variables, range-based for, and lambda expressions, respectively. This

means that every month, there is a trend of including 210.78 new auto-typed variables declarations. Note that if we constraint the same analysis

for the period from 2010 until 2016, the same analysis will lead to trend values of 40.02, 10.29, and 14.31 auto-typed variables, range-based for,

and lambda expressions. This result suggests a reasonable increase in adopting these modern C++ language features.

RQ3: Is there any trend in the adoption of modern C++ features in KDE applications? Our findings also suggest a consistent trend

toward increasing adoption of modern C++ language features in KDE projects, as well as a leaning toward the migration of legacy code

to adopt auto-typed variables, lambda expressions, and range-based for. Nonetheless, occasionally, it was possible to identify commits that

regress some migration efforts. This might explain points in the change history of the systems where we observed a reduction in

adopting new language features followed by new commits that revert the reduction.

We find this trend interesting, and we investigated the motivations that can lead to increased adoption of these modern C++ features (auto-

typed variables, lambda expressions, and range-based for). We present quotes from the answers of KDE developers who participated in our survey

and some results of our descriptive analysis that can explain this trend. We detailed it in Section 5.3. In the next section, we present some exam-

ples of rejuvenation efforts to introduce auto-typed variables, lambda expressions, and range-based for statements. In particular, we highlight the

KDE developers' perspectives on this particular type of software maintenance.

#Qt is an application development framework widely used by KDE projects. The KDE Free Qt Foundation https://kde.org/community/whatiskde/kdefreeqtfoundation/ ensures the availability of

the Qt tools for KDE software development.

F IGURE 3 Distribution of auto-typed variables, lambda expressions, and range-based for usage across the KDE projects in our dataset.

LUCAS ET AL. 9 of 24

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2605 by U
niversidade D

o M
inho, W

iley O
nline L

ibrary on [18/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/KDE/konversation/commit/1a5e7ab44635913ece2a161cb1174ae19b5cf6be
https://github.com/KDE/konversation/commit/ef184b7df350fc99ea50b278d24f605c29a30534
https://kde.org/community/whatiskde/kdefreeqtfoundation/

5 | RESULTS OF THE QUALITATIVE ASSESSMENT

We use two strategies in our qualitative assessment. First, we mine the source code history searching for possible rejuvenation scenarios that we

further validate, via a manual analysis, focusing on commits that introduce many occurrences of auto-typed variables, lambda expressions, and

range-based for. Second, we contacted KDE developers that implemented these rejuvenation efforts in their programs to answer the following

questions:

SQ1. What are the main motivations for adopting modern C++ features, such as lambda expressions, range-for, and declarations using the auto

operator?

SQ2. How often do you conduct software rejuvenation efforts? Do you use any tool to support this kind of software maintenance?

SQ3. Is there any direction from the KDE community about when features of a new version of the C++ language should be used more widely in KDE

projects, or is this an individual or small team decision in each project?

SQ4. What are the main reasons for the adoption rate of modern C++ features having increased substantially between 2015 and 2016?

SQ5. We have found that some features for concurrent programming in modern C++ (like thread declaration, futures, and async) are rarely used within

the KDE projects. Is there an explanation for this?

The first strategy (mine the source code history) allowed us to answer RQ7. In the second strategy (survey KDE developers), we use the

answers from question SQ1 of the questionnaire to address our research question RQ6, while question SQ2 allows us to tackle question RQ5.

Furthermore, questions SQ1, SQ3, and SQ4 give us insights into the motivations behind the trends, allowing us to explore RQ3 in more detail.

Finally, SQ5 helps us understand the motivations that lead KDE developers not to use some modern C++ features like async and concurrence.

We surveyed KDE developers primarily through email correspondence and conducted one interview with a contributor through an online meeting

to collect data. We consolidated the survey results and presented a summarized overview of the findings using quoted text.

5.1 | Rejuvenation efforts

In Sections 3, we detail our conservative approach for mining rejuvenation efforts: source code patches that increase by at least 50% the amount

of a modern C++ language feature (such as auto-typed variables, lambda expressions, and range-based for) and do not increase the total number of

project statements in more than 5%. This conservative approach might lead to both false positives and false negatives. The results of our conser-

vative approach to identifying rejuvenation efforts reveal a total of 81 commit candidates, from which we were able to manually confirm that

57 of them (70.37%) correspond to true positives—that is, commits that update the code with the sole goal of rejuvenating a program. More inter-

esting, part of large rejuvenation efforts (8.7%) were conducted with the support of automatic refactoring tools.

These 57 rejuvenation efforts we confirm relate to 43 distinct projects in our dataset (15.80% of 272 projects). Also, of the 57 rejuvenation

commits found, seven commits correspond to the introduction of lambda expressions, 27 commits correspond to the introduction of auto-typed

variables, and 27 commits correspond to the introduction of range-based for. We found commits that introduce more than one feature, though.

For instance, commit ea924b146 of plasma-framework (commit date on May 7, 2015, and message port libplasma away from sycoca as much as

possible) introduces lambda expressions, auto-typed variables, and range-based for. Other examples include:

• Commit 2e508ac of kdenlive (commit date on April 20, 2017, and message Use modern for) replaces more than 200 occurrences of the

foreach Qt statementk by the new range-based for statement in 59 files. Figure 4 shows one example of the changes in this particular commit.

Similar to several other contributions, the sole purpose of this commit was to rejuvenate the source code to use modern C++ features.

• Commit 5c28a3e5 of labplot (commit date on December 3, 2017, and message Replace foreach macros with range-based for loops in many

places) is another example of a large transformation that replaces more than 300 occurrences of the foreach macro by the modern range-

based for statement. This particular commit changes a total of 36 files. Listing 2 in Figure 4 shows an example of transformation in this particu-

lar commit—which also introduces more than 250 new declarations using the auto-typed variables feature for type deduction.

• Commit f519ce07 of kid3 (commit date on September 29, 2018, and message Use auto where it improves the readability) corresponds to

another example of code rejuvenation, introducing more than 400 auto-typed variables in 88 files. This commit is also representative w.r.t the

KDE developer's adoption of tools to support code rejuvenation efforts. In the full message, the author says Refactored automatically using

clang-tidy. See an example in Listing 3 (Figure 5). Listing 4 in Figure 5 shows an example of transformation in this particular commit. Another

commit 7e6ff7d7 of akregator (commit date on November 2, 2020, and message Modernize code) introducing more than 94 auto-typed vari-

ables in 41 files.

khttps://doc.qt.io/qt-6/foreach-keyword.html.

10 of 24 LUCAS ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2605 by U
niversidade D

o M
inho, W

iley O
nline L

ibrary on [18/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/KDE/plasma-framework/commit/ea924b14691da3819ca17d876f63ffc686fcf840
https://github.com/KDE/kdenlive/commit/2e508acc340ff1d6ddda55e538c9fe01f09975f6
https://github.com/kde/labplot/commit/5c28a3e5f994fbc586519fad3ec2aadff7357070
https://github.com/kde/kid3/commit/f519ce07581980b95599227307eb46c8bc7f9abe
https://github.com/kde/akregator/commit/7e6ff7d7b14c47db21b71518edbdec44367574bd
https://doc.qt.io/qt-6/foreach-keyword.html

Although we found several commits that introduce many occurrence of auto-typed variables and range-based for, this kind of rejuvenation

effort is more scarse for lambda expressions. Commit 40a2aee94 of kbibtex (commit date on July 20, 2019, and message Refactoring usage of

QSignalMapper by using lambda functions in QObject::connect calls) introduces new 40 lambda expressions distributed in 16 files. Listing 5 in

Figure 6 shows one example of the changes in this particular commit. Finally, commit 034e0b7b of kwidgetsaddons (commit date on May

7, 2021, and message Modernise code base … Less SLOT() usage where PMF or lambda works) introduce more than 50 new lambda expressions dis-

tributed in 65 files. Listing 6 in Figure 6 shows one example of the changes in this particular commit.

RQ4: Do KDE developers conduct maintenance efforts having the sole goal of rejuvenating C++ code? We found evidence that

KDE developers conduct rejuvenation efforts to adopt auto-typed variables, lambda expressions, and range-based for—maintenance tasks

whose goal was mainly to refactor the code to replace legacy features with new ones. Even considering an overly conservative

approach, we identified more than 50 rejuvenation efforts, changing several hundreds of lines of code to modernize C++ code.

5.2 | Responses from KDE developers

We identified thirty-two developers from the KDE community who were responsible for driving the 57 commits that characterize the rejuvena-

tion efforts according to our heuristics. We contacted these developers to understand the motivations that led them to rejuvenate the project's

F IGURE 5 Example of introducing auto-typed variables

F IGURE 4 Example of introducing range-based for.

LUCAS ET AL. 11 of 24

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2605 by U
niversidade D

o M
inho, W

iley O
nline L

ibrary on [18/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/kde/kbibtex/commit/40a2aee94fdc14b66b6806d552b599de3b4e64c1
https://github.com/kde/kwidgetsaddons/commit/034e0b7b1d5af08136e38a9eb7df4ee514fe385b

source code and received responses from 34.37% of the developers contacted. We used the TF metaphor (Section 3.2) and found that 7 (63.63%)

of the 11 developers who responded to our contact are in the list of top developers of the KDE projects in which they conducted rejuvenation

efforts. Also, top developers were responsible for 36 (63.2%) of the rejuvenation commits found by our heuristic. Table 2 presents the characteris-

tics of the developers participating in our survey. The first column presents the identification of the participant in our study. The second column

contains the project name on which this developer performed a modernization effort. The third column presents the number of contributions of

the developer to the project. The fourth and last columns inform whether this developer is a core developer according to the TF metaphor.

RQ7: Are the core developers of the projects responsible for conducting rejuvenation efforts in KDE projects? We used the TF

metaphor and found that 36 (63.2%) of the 57 commits marking the largest rejuvenation efforts were made by the core developers of

the project. Our results suggest that software rejuvenation is a high-level concern that requires the involvement of technical leaders to

conduct large maintenance efforts.

Our data analysis consists of a process involving annotations extracted from the developers' responses following a two-step coding approach:

the first consisted of the open coding process followed by a second step to categorize the codes according to the recommendations described by

Saldana.35 The first author conducted the coding under the supervision of the fourth author, who supported code validation and categorization.

This process resulted in seven main categories and 35 codes. The followings are the categories and the codes associated with them.

• Motivations to rejuvenate: Code quality improvements, Avoid writing boilerplate code, Performance improvements, Modern features can reduce

error-prone, Code rejuvenation can attrack new contributors, Modern features allow faster writing of code, Delays Software aging, Prevent

the software from dying.

• When rejuvenations occur: When the benefits of modern features are considerable, When the code really needs to be rewritten, Incremental

code rejuvenation for small changes, When the compiler supports the modern features, When the frameworks evolves, Rejuvenation efforts

are conducted during bug fixing, During the implementation of modern C++ features, Developers conduct rejuvenation efforts when learning

about the modern C++ features, Rejuvenation efforts are made when the quality of the code has already degraded.

• Tooling support: Tooling support to identify rejuvenation opportunities, Tooling support for large rejuvenation efforts, Automated code rejuve-

nation can introduce bugs, Tooling support can reduce rejuvenation costs.

• Challenges: High cost of making changes, Incompatibility of modern features with old versions of frameworks, Habit of using existing features

makes it difficult to adopt modern features, Modern features may worsen readability,modern features that require a change in logic are harder

to port automatically.

F IGURE 6 Example of introducing lambda expressions.

12 of 24 LUCAS ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2605 by U
niversidade D

o M
inho, W

iley O
nline L

ibrary on [18/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

• Existence of third-party libraries: Existing features facilitate the work, Existing features have better integration with APIs from the same library,

The features made available by third-party libraries meet expectations.

• Decision to rejuvenate: The project team decides when to rejuvenate, Individual members can decide to perform rejuvenation.

• Direction for rejuvenation: Framework libraries influence rejuvenation, The compiler influences the language version to use, Discussions of

developers community influences the adoption of modern features, the community decides which compiler version to use.

5.2.1 | Motivations to rejuvenate

This category summarizes the motivations and factors found in this research that drive developers in the KDE community to rejuvenate their pro-

grams. The most emerging motivations pointed out by the participants are related to the benefits acquired by adopting the modern features of

the C++ language in their software. All participants report on code quality improvements (increased code understanding, making code more con-

cise, readability improvements, ease of maintenance activities, security improvements, and machine code quality improvements).

My personal motivations for adopting new C++ features has been to write code which is easier to understand and more concise,

as well as the convenience that these new features bring.

Kphotoalbum—P1

Lambda expressions come very handy in Qt's signal and slot connections, the code is more compact in such places … range based

for-loops also allow for a more compact code. Same for the auto-keyword, especially when dealing with enums inside of class

namespaces or so—this is where the auto-keyword can save a lot of space and a lot of typing work.

Labplot—P7

Furthermore, participants (P1, P3, and P6–P10) report that the adoption of modern features like lambda expressions, range-based for, and

auto-typed variables reduces the amount of boilerplate code and makes the code leaner. Another benefit reported by participant P3 was perfor-

mance gain when adopting range-based for. Participants P5 and P10 report that they performed rejuvenation to attract new collaborators to the

project. Participant P5 reports that the use of modern features makes programs less error-prone.

A big factor is to reduce boilerplate code, to get the code much more readable (for instance range for instead of plain iterators.. at

least where possible) speaking about iterators, also something like auto it ¼ myLisy:beginðÞ; is much more readable than

QList <QString > :: iterator ii ¼ myList:beginðÞ; .
Plasma-framework—P8

Range-for was already kind of present through some Qt macro kung-fu, so it's more getting rid of this magic to switch to the

proper way of doing things, and getting some performance improvements by removing useless copy constructions …

Calligra—P3

TABLE 2 Group of KDE developers that participated in the survey and conducted rejuvenation efforts.

Id (#) Project name Commits realized (#) Is core developer?

P1 kphotoalbum 1602 Yes

P2 kwin 2473 Yes

P3 calligra 271 No

P4 partitionmanager 495 Yes

P5 akonadi 1688 Yes

P6 discover 6 No

P7 labplot 3801 Yes

P8 plasma-framework 2 Yes

P9 kdevelop 2133 Yes

P10 amarok 14 No

P11 okular 47 No

LUCAS ET AL. 13 of 24

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2605 by U
niversidade D

o M
inho, W

iley O
nline L

ibrary on [18/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

My main motivation is better legibility and more concise and expressive code. I believe all three lead to code that is easier to main-

tain and less error-prone.

Akonadi—P5

Finally, participant P10 reports that software rejuvenation must be performed periodically to slow down software aging and increase its

lifespan; otherwise, the software may die.

In the case of the linux client here at the company, I have been doing it weekly, because like, here I have been using GTK instead

of Qt, but it is the same. Because GTK has evolved, the language has evolved and I want the client to be more readable, I do it

weekly. In the end, if you don't do this, nobody will be interested anymore, the software will get old and will die … so this work has

to be done periodically or it will die.

Amarok—P10

RQ6: What are the reasons that motivate KDE developers to conduct maintenance efforts for code rejuvenation? Our results

show that KDE developers perceive that modern C++ features can improve code readability, reduce the error-prones, and simplify soft-

ware maintenance. They use lambda expressions, range-based for, and auto-typed variables to eliminate boilerplate code by avoiding cre-

ating unnecessary classes, rewriting variables with long names, and making the code cleaner. In addition, developers rejuvenate the

code base of their programs in an attempt to attract new contributors to the repository, as well as delay aging and prevent software

from reaching the end of its useful life. Such reported benefits show some advantages in using modern C++ features. Also, KDE devel-

opers rejuvenate their programs' source code with the goal of attracting new contributors to the project.

5.2.2 | When rejuvenations occur

This category summarizes the situations, moments, and ways in which some of the rejuvenation efforts reported by developers in the KDE com-

munity are taking place. Developers P3, P8, and P10 reported making rejuvenation efforts as the framework evolves. Other rejuvenation efforts

take place when the compiler supports modern features. According to developers P1 and P7, rejuvenation occurs gradually as small changes are

made to the C++.

It depends on the project mainly. Most of the time, a major Qt upgrade (Qt4=>Qt5, Qt5=>Qt6) will require a more modern C++,

thus allowing the full feature set. But there are some projects that will simply use these features when they consider most distribu-

tions will have a modern compiler handling them.

Calligra—P3

Some developers report some conditions that need to be evaluated to decide whether rejuvenation should be performed. Participants P1 and

P8 perform rejuvenation only when the program code needs to be rewritten. Participant P1 reports that rejuvenation is always performed when

the benefits of introducing a modern C++ feature are significant. Participant P9 reports that rejuvenation is performed when code quality has

already deteriorated.

it's more continuous and low intensity, new code tends to use more modern C++ features, old code is ported more when it really

needs to be rewritten.

Plasma-framework—P8

KDE developers report that rejuvenation efforts occur during code creation and review. Participant P5 reports that he takes rejuvenation

actions when he fixes bugs in the program. On the other hand, rejuvenation efforts may also take place after a new feature is implemented,

according to participants P4 and P5. Finally, participant P6 reports that some rejuvenation efforts are made when he learns the modern features

of the C++ language.

14 of 24 LUCAS ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2605 by U
niversidade D

o M
inho, W

iley O
nline L

ibrary on [18/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Often code modernization just happens by writing new modern code. Occasionally when doing major porting, e.g., Qt4 to Qt5, or

Qt5 to Qt6.

Partitionmanager—P4

I usually end up modernizing a particular piece of code when I'm fixing some bug or implementing a feature there and I notice that

the particular area of code base could benefit from a little bit of modernization.

Akonadi—P5

KDE developers report various situations in which they perform rejuvenation efforts, such as when enhancing frameworks, performing code

reviews to fix bugs, and implementing new features into the program. There are some criteria they use to decide whether or not to perform reju-

venation efforts, such as whether the compiler now supports modern language features. In addition, developers report that program rejuvenation

is performed incrementally for small changes to the language.

5.2.3 | Tooling support

This category summarizes KDE developers' perceptions of tooling support to advance rejuvenation efforts in their programs. Most of the

developers (81.8%) surveyed report using some tool to support rejuvenation efforts. Participants P3, P7, and P10 report using automated

tools to identify opportunities for rejuvenation. Participant P1 reports that automated tools can be useful when major rejuvenation efforts

are needed. In addition, participant P9 reports that tool support can reduce the cost of rejuvenation. The participants P3, P6, and P9

report that automated tools (like Clazy and Clang-tidy) have adequate tooling support for process rejuvenation efforts automatically.

Finally, the automated tools to support program rejuvenation used by developers in the KDE community are Clazy,** Clang-tidy,††

KDevelop,‡‡ and Clion.§§

We had some phases were we spent dedicated time on our side to modernize the code a bit. We used clang-tidy to identify and to

adjust the code … more was done later manually in multiple further iterations from time to time. Right now these activities are

more or less done, we follow our code style using the C++11 features and there is no need anymore for a “modernization effort.”
Labplot—P7

Depending on the feature. C++11 was a huge improvement over C++98, which meant that a dedicated modernization effort was

warranted. Tools that we used at this time were refactoring scripts … written by other KDE developers.

Kphotoalbum—P1

On the tooling side, we are pretty well equipped, with clang-tidy and clazy. I use both regularly, and I think the same is true for

many other KDE community members. They are able to modernize some patterns automatically. clang-tidy is useful for general C+

+ modernization, while clazy handles Qt specific things.

Discover—P6

Clazy introduced checks that suggested rewriting code to use several C++11 features. If you look at the history of the foreach

check (it suggests replacing an old Q_FOREACH macro with range-based for), you can see it was created back in 2015. […] Rewrit-

ing code to use auto or range-based for is simple and can be helped by tools (and I don't know about the other devs, but most of

my for loops use auto variables, the two go together nicely). Using lambda, on the other hand, is something you will do when writ-

ing of fixing code for other purpose, not because a tool told you could use one there, but because you see a pattern where lambdas

will be helpful.

Calligra—P3

**Clazy is a static code analyzer based on the Clang framework.
††Clang-tidy is a clang-based C++ linter tool.
‡‡KDevelop is an extensible IDE plugin for C/C++ and other programming languages.
§§Clion CLion is a C/C++ development environment with many built-in features.

LUCAS ET AL. 15 of 24

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2605 by U
niversidade D

o M
inho, W

iley O
nline L

ibrary on [18/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/KDE/clazy
https://clang.llvm.org/extra/clang-tidy/
https://www.kdevelop.org/
https://www.jetbrains.com/en-us/clion/

RQ5: Which tools do KDE developers use to support maintenance efforts for code rejuvenation? Our findings show that KDE

developers use tools (Clazy, Clang-tidy, KDevelop, and Clion) to support rejuvenation efforts. According to their reports, they mainly

use the tools to identify scenarios that can be rejuvenated. In addition, automated tools can support major rejuvenation efforts and

reduce the costs of these changes according to reports from developers in the KDE community. Finally, developers reported that fea-

tures such as range-based for and auto-typed variables have adequate tooling support for process automation, while lambda expressions

require additional cognitive effort from developers to be included in a code snippet of a program.

5.2.4 | Challenges

This category summarizes some factors that KDE developers believe can prevent programs from being rejuvenated. Most developers report at

least one factor that can prevent or delay program rejuvenation. Participants P6, P8, and P10 report that some of the modern features can affect

code readability. Developers P3 and P6 report that some features are not adopted due to incompatibility with older versions of the framework. In

addition, participants P1 and P9 report that the cost of performing rejuvenation is high. Finally, participants P3 and P4 report that the habit of

using legacy features of the C++ language can delay the adoption of modern C++ features. Finally, participant P5 reports that features that

require logic changes are difficult to port automatically.

So in a business context it's relatively difficult to get time/budget for doing these kind of things, usually it's being done when the

code quality has degraded quite a bit already, i.e. when it's too late or people finally get too annoyed working with the legacy

code base.

Kdevelop—P9

But some features have been integrated in Qt for a very long time, and the newcomers have a hard time rising above and replacing

years of habits. For instance, std::thread. It's a welcome addition to the C++ standard library, and it was badly needed. But the

need for an abstraction to system threading APIs is not new, and for a long time Qt had a QThread class, deeply rooted in its object

and event models.

Calligra—P3

Mostly, Qt already has facilities for concurrent programming. Moving from these to different ones has a far higher cost as with the

features mentioned in the first question. I would therefore expect the uptake to be slightly higher in newly written applications.

Kphotoalbum—P1

With auto, especially when using templated classes, writing new code is much more comfortable, since long type signatures don't

need to be spelled out every time. Also, when changing the type of a variable, with auto the amount of code that needs to be chan-

ged becomes a lot less. However, it might even sacrifice some of the readability to speed of development. At least while using

IDEs, this isn't a problem in practice.

Discover—P6

When KDE adopted C++11 we used some scripts to automatically port from the old connect() syntax to the new syntax [0],

although regarding latest C++17 features (e.g. optional), those are hard to port automatically as usually change in code logic is

needed.

Akonadi—P5

KDE developers face some challenges in rejuvenating their programs, such as the incompatibility of legacy versions of the framework, and

projects often need to maintain compatibility with older platforms that do not yet support the modern C++ features. Some features such as

auto-typed variables can affect the readability of the code. Moreover, the habit of using legacy features may delay the adoption of modern fea-

tures by developers. Another problem for developers is the high cost of program changes. Finally, some features require cognitive efforts to be

introduced in the code and are difficult to port automatically.

16 of 24 LUCAS ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2605 by U
niversidade D

o M
inho, W

iley O
nline L

ibrary on [18/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

5.2.5 | Existence of third-party libraries

This category summarizes the motivations that lead KDE developers to use existing features instead of modern features of the C++ language. In

our quantitative analysis, we found that modern features for working with multithreading are rarely used by KDE developers. Some features that

are not included in the standard library are available in third-party libraries (Qt) that facilitate developers' work. Participants P2, P3, P5, and P6

report that C++ language features provided by third-party libraries integrate better with developed APIs that support the same library. Partici-

pants P1, P7, and P10 report that these features meet the current needs of developers and that they do not need to make changes to adopt mod-

ern features immediately.

This is available in Qt already for very long time and many projects, including LabPlot and Cantor, are using this. Right now there is

no need and no plans on our side to move away from what Qt is offering. This can change in future, of course, but right now our

spare time is better invested in other areas.

LabPlot—P7

Such preference is motivated by the fact that QThread is integrated with other Qt APIs better than say std::thread.

Kwin—P2

Multi-threading is mostly done by the means of QThread and QObjects. Methods of QObjects can be executed indirectly by the

Qt metaobject system, and that is clever enough to call functions from the QThread which the object belongs to. For futures and

async, there is a Qt framework (QtConcurrent) which provides similar APIs that are easier to integrate into existing Qt projects.

Discover—P6

Our results show that KDE developers use the modern C++ features provided by the Qt library to work with threads and that these language

features meet the current needs of developers. Moreover, the feature provided by the Qt library is easier to integrate into the APIs of their pro-

jects. According to these developers, there is no need for a migration to use the new library currently available in the standard library.

5.2.6 | Decision to rejuvenate

In this category, you will find those responsible for performing rejuvenation, that is, those who make the decision to rejuvenate a program by the

developers of the KDE community. Most participants (P1–P6 and P9) report that the decision to rejuvenate is made by the development team.

Participants P5–P7 and P10 report that this decision can also be made by an individual member.

This is a team decision in each project. Of course, one looks at other projects (especially the frameworks libraries) as a reference,

but ultimately every team can make their own rules.

Kphotoalbum—P1

The KDE Community is working on multiple bigger project like the Frameworks, Plasma but also such big applications like Krita,

Kdenlive, LabPlot, Cantor, etc. There are code styles and minimal compiler requirements within every single project and there is no

“global” prescription for what to use. The project maintainers decide on their own what they need and when. I'm mainly working

on LabPlot and Cantor and we have C++11 as the minimum supported version now.

Labplot—P7

The results presented show that the decision to rejuvenate a program in the KDE community is made by the development team and can also

come from a single team member.

5.2.7 | Direction for rejuvenation

This category summarizes the factors that influence the use of modern features of the C++ language. Developers report that there is no direction

from the community, but some factors may influence the decision of developers in the KDE community developers. Participants P1, P3, P4, and

P5 report that framework libraries, when using modern C++ features, influence rejuvenation. Participants P6, P9, and P10 report that they can

be influenced to use modern C++ features by following mailing list discussions, talks, and community events and C++ language. In addition, the

LUCAS ET AL. 17 of 24

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2605 by U
niversidade D

o M
inho, W

iley O
nline L

ibrary on [18/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

community decides which compiler version to use, which in turn influences which language version to use and which features are supported by

the compiler.

But the KDE Frameworks will have a bigger influence, and they are much more carefully driven than the applications. If one of the

major framework was to require, say, coroutines (in the future obviously), it sure would influence the applications into using this

feature even for things not related to the said framework.

Calligra—P3

The standard set in KDECompilerSettings.cmake is updated every now and then, after some discussion on some KDE mailing list

(kde-devel, kde-core-devel) weighting the pros and cons.

Kdevelop—P9

Usually there is no organized modernization effort in KDE. People tend to start to modernize their own projects when they learn

about the new possibilities, and if I remember correctly there were modern C++ talks at Akademy, which certainly helped

adoption.

Discover—P6

Nowdays the modernization effor on C++ go a bit hand in hand with another effort as we are in the middle of the transition

between Qt5 and Qt6, which will also bring a major, source and binary incompatible major release of the KDE frameworks, that

leads to a general modernization effort.

Plasma-framework—P8

Our findings suggest that KDE developers report that the community does not provide direction, but their participation in discussion lists,

talks, and events can influence the decision to rejuvenate a program. In addition, the evolution of the frameworks influences the decision of devel-

opers in the KDE community to use modern C++ features.

5.3 | The primary reasons for the increased adoption of modern C++ features

As presented in Section 4, we found a trend (see Figure 3) of adoption for three modern C++ features (auto-typed variables, lambda expressions,

and range-based for) that had increased substantially between 2015 and 2016. This trend motivated us to investigate and additional question:

What are the main reasons for the adoption rate of modern C++ features having increased substantially in this period? Based on the responses of the

interviewed developers and our findings (Sections 4, 5.1, and 5.2), three main reasons might explain that trend:

R 1. C++ projects within the KDE community are closely linked to the Qt framework. In 2016, version 5.7¶¶ of the framework was released,

which requires compilers to support the C++11 version (like Clang and GCC). According to our interviewees (P3, P4, and P8), during this

period, developers began migrating to the Qt5 version of the framework and occasionally started adopting the modern C++ features of the

language made available by the C++11 standard. Additionally, 55 (96.49%) commits that characterizes rejuvenation efforts identified by our

heuristic, were made between 2016-2022. See quotes below with the developers' responses.

It depends on the project mainly. Most of the time, a major Qt upgrade (Qt4=>Qt5, Qt5=>Qt6) will require a more modern C++,

thus allowing the full feature set. But there are some projects that will simply use these features when they consider most distribu-

tions will have a modern compiler handling them. A lot of KDE projects will use tools like Clazy and Clang-tidy to help identify parts

of code that need modernizing. Clazy is really Qt oriented while, as you surely know, Clang-tidy is a generic tool.

Calligra—P3

It's mostly individual decisions. However, there is also baseline determined by Qt requirements. E.g. Qt5 needs at least C++11

and Qt6 needs C++17, so all KDE software can depend at least on C++11 or C++17 if it targets Qt6.

Partitionmanager—P4

¶¶https://wiki.qt.io/New_Features_in_Qt_5.7.

18 of 24 LUCAS ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2605 by U
niversidade D

o M
inho, W

iley O
nline L

ibrary on [18/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://wiki.qt.io/New_Features_in_Qt_5.7

R 2. In 2015, the Clazy tool introduced changes## that suggest the use of modern features in the C++11 standard. Additionally, KDE developers

(participants P3, P6, and P9) reported that features such as range-based for and auto have adequate tooling support for process automation

(e.g., replacing a deprecated Q_FOREACH macro), while lambda expressions require additional cognitive effort from developers to be

included in a code snippet of a program. See quote below.

Clazy introduced checks that suggested rewriting code to use several C++11 features. If you look at the history of the foreach

check (it suggests replacing an old Q_FOREACH macro with range-based for), you can see it was created back in 2015. […] Rewrit-

ing code to use auto or range-based for is simple and can be helped by tools (and I don't know about the other devs, but most of

my for loops use auto variables, the two go together nicely). Using lambda, on the other hand, is something you will do when writ-

ing of fixing code for other purpose, not because a tool told you could use one there, but because you see a pattern where lambdas

will be helpful.

Calligra—P3

R 3. According to P3 and P8, the KDE projects often need to maintain compatibility with older platforms that do not yet support the new C++

language constructions. This could explain why adoption slowed between 2012 and 2014. See quotes below with the developers' responses.

One first big factor is that some projects can't adopt modern C++ that fast perhaps because they need to support old platforms

where that is not possible (think about a commercial Windows app that perhaps still supported XP until a couple of years ago, or

very old embedded systems..) We don't have this requirement as our target platform is primary linux/bsd distributions in their cur-

rent release (and secondary android, windows and mac, but also for those, only recent releases).

Plasma-framework—P8

There is no major direction given. Each project does as it wants. For instance, calligra chose for a long time to keep compatibility

with some very old libraries because one of our known users, Jolla, is still using Qt 5.6, prohibiting some new constructions from

being used. But the KDE Frameworks will have a bigger influence, and they are much more carefully driven than the applications.

If one of the major framework was to require, say, coroutines (in the future obviously), it sure would influence the applications into

using this feature even for things not related to the said framework.

Calligra—P3

6 | DISCUSSION

In this section, we discuss the implications of our results (Section 6.1) and present some limitations that might threat the validity of our work

(Section 6.2).

6.1 | Implications of the results

We conducted a large-scale study of C++ projects in the KDE community. We evaluated the use of modern features such as auto-typed variables,

lambda expressions, and range-based for in community projects and contacted developers who have made efforts to rejuvenate their programs. In

this section, we summarize the implications of our study on some topics:

• We present a list of benefits and rejuvenation scenarios that developers can adopt in their programs. Our results for RQ1, RQ3, RQ4, and RQ6

show that using lambda expressions, range-based for, and auto-typed variables provides benefits such as readability, makes code cleaner, and

simplifies software maintenance. KDE developers also report that using lambda expressions reduces the amount of boilerplate. Lucas et al19

and Mendonça et al36 show that developers also realize these benefits of using lambda expressions in Java programs. Our findings for RQ2

show that the use of lambda expressions is recommended by KDE developers in conjunction with resources for working with Qt's signals and

slot connections in C++ programs.

##https://github.com/KDE/clazy/commits/master/src/checks/level1/foreach.cpp.

LUCAS ET AL. 19 of 24

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2605 by U
niversidade D

o M
inho, W

iley O
nline L

ibrary on [18/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/KDE/clazy/commits/master/src/checks/level1/foreach.cpp

• Our findings for RQ5 demonstrate the use of automated tools (Clazy, Clang-tidy, KDevelop, and Clion) to help KDE developers identify rejuve-

nation scenarios. In addition, the tools can reduce the cost of rejuvenation efforts, which benefits developers in terms of the time it takes to

complete these efforts. A broader audience of C++ developers can also benefit from these findings.

• Our results for RQ4 present a catalog of commits (Table A.1) that characterizes rejuvenation efforts. We hope the examples in the catalog

could help software developers to rejuvenate their programs and tool builders to identify opportunities to implement source code

transformations.

• Our findings for RQ7 revealed that core developers were responsible for most of the rejuvenation commits found to adopt modern C++ fea-

tures in our dataset. It is similar to the occurrences reported by Mazinanian et al5 for Java developers.

• KDE developers report that lambda expressions requires additional cognitive effort from developers to be included in a code snippet of a pro-

gram. According to Uesbeck et al,23 using lambda expressions negatively affects productivity for less experienced developers regarding how

quickly they can write correct programs. Based on these results, we recommend that rejuvenation efforts to include lambda expressions be

undertaken by experienced developers with knowledge of the codebase of programs.

6.2 | Threats to validity

Regarding construct validity, we have employed the TF metaphor28 to identify the core developers of KDE projects. Our research findings indicate

that the core developers contributed to 63.15% of the rejuvenation efforts identified through our conservative approach. Critics may question our

decision to use TF as a proxy for identifying the core developers, but previous studies30 have demonstrated the effectiveness of this metric. Further-

more, we assert that other metrics29 could have yielded the same result, which is that technical leaders are responsible for significant rejuvenation

efforts. Additionally, this result is consistent with our qualitative assessment, as seven out of 11 survey respondents were core developers in the

projects.

The accuracy of our conservative approach to identifying rejuvenation efforts represents an internal threat for our research. In Section 5.1,

we show that our conservative approach resulted in 57 (70.37%) of the rejuvenation efforts between 81 intervals we collect. We stressed that

our initial research goal was to evaluate whether the KDE community developers conducted large rejuvenation efforts. To achieve this goal, we

would not necessarily have to find all the contributions that characterize rejuvenation efforts, but some that showed the occurrence of this phe-

nomenon in the KDE community projects. That is, here, we privilege precision over recall, and many other rejuvenation efforts might not have

been captured using our conservative approach.

In terms of external validity, we analyzed 272 out of 1050 C++ projects from the KDE community. The projects we selected satisfy the

criteria of having more than 10 years of development and at least one recent contribution (after January 1, 2021). This represents a wide range of

application domains so that we can generalize our results to the KDE organization as a whole. However, studies in source code repositories from

other organizations might reveal different results. Furthermore, we cannot generalize our findings to closed-source projects because we only look

at open-source repositories. Besides that, we believe that developers in general can benefit from the rejuvenation practices we present in our

study. Also related to external validity, we contacted 32 KDE developers that led the rejuvenation efforts found using our heuristic, to better

understand their motivations to use modern C++ features. Eleven developers (34.37% of the initial population) answered our survey, which does

not allow us to generalize our findings.

7 | CONCLUSIONS

During this research, we investigate the practices C++ developers use to rejuvenate open-source programs in the KDE organization. Our findings

bring evidence about a trend toward the widespread adoption of modern C++ features, including lambda expressions, range-based for, and auto-

typed variables. Nonetheless, to our surprise, the new concurrent support for C++ multithreading is rarely used in KDE projects. The main reason

for this observation is the use of the Qt support for multithreading in KDE projects, which is not being replaced by the new standard multi-

threading features of C++.

Our research also revealed large modernization efforts, some of them replacing hundreds of occurrences of legacy constructs with the range-

based for and auto-typed variables statements, for instance. Some of these efforts have even been conducted using the support of tools, such as

Clazy and Clang-Tidy. After surveying KDE developers responsible for these large modernization efforts, we identified a couple of reasons that

motivate this kind of software maintenance, which aims at improving the readability, conciseness, and expressiveness of the code, slowing soft-

ware aging, and even attracting new contributors to the project repositories. We believe our findings could help a broader range of C++ devel-

opers in taking a decision on whether or not to rejuvenate their programs.

Our research findings indicate that developers perceive some benefits to adopting modern features of the C++ programming language and

how they adopt them in their programs. Programming language designers need to know how developers embrace the new features of the

20 of 24 LUCAS ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2605 by U
niversidade D

o M
inho, W

iley O
nline L

ibrary on [18/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

language and the impact on their programming productivity. We presume that this is an important aspect that merits a thorough investigation.

For future work, we advise conducting exploratory research focused on the interests of software language designers. We also intend to look into

the technical aspects to suggest improvements for automated tools and help developers to rejuvenate their software.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their valuable comments, which helped us improve the quality of this paper. This work

was partially supported by FAP-DF, CAPES research grant 07/2019, and national funds through the Portuguese funding agency, Foundation for Sci-

ence and Technology (FCT), within project LA/P/0063/2020 (INESC TEC INTERNATIONAL VISITING RESEARCHER PROGRAMME 2022 EDITION).

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are openly available in cppEvolution at https://github.com/PAMunb/cppEvolution.

ORCID

Walter Lucas https://orcid.org/0000-0001-7391-9622

Fausto Carvalho https://orcid.org/0000-0002-6622-2330

Rafael Campos Nunes https://orcid.org/0000-0003-3769-6171

Rodrigo Bonifácio https://orcid.org/0000-0002-2380-2829

João Saraiva https://orcid.org/0000-0002-5686-7151

Paola Accioly https://orcid.org/0000-0002-4428-2543

REFERENCES

1. Stroustrup, B. Thriving in a crowded and changing world: C++ 2006-2020. Proc ACM Program Lang. 2020;4(HOPL):70:1-70:168. https://doi.org/10.

1145/3386320

2. Overbey, JL, Johnson, RE. Regrowing a language: refactoring tools allow programming languages to evolve. In: Arora, S, Leavens, GT, eds. Proceedings

of the 24th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2009, October 25–29,
2009, Orlando, Florida, USA: ACM; 2009:493-502, https://doi.org/10.1145/1640089.1640127

3. Bragagnolo, S, Anquetil, N, Ducasse, S, Seriai, A, Derras, M. Software Migration: A Theoretical Framework (A Grounded Theory Approach on System-

atic Literature Review), Inria Lille Nord Europe—Laboratoire CRIStAL—Université de Lille; 2021. Research Report. https://hal.inria.fr/hal-03171124

4. Alqaimi, A, Thongtanunam, P, Treude, C. Automatically generating documentation for lambda expressions in Java. In: Storey, M-AD, Adams, B,

Haiduc, S, eds. Proceedings of the 16th International Conference on Mining Software Repositories, MSR 2019, 26–27 May 2019, Montreal, Canada:

IEEE/ACM; 2019:310-320, https://doi.org/10.1109/MSR.2019.00057

5. Mazinanian, D, Ketkar, A, Tsantalis, N, Dig, D. Understanding the use of lambda expressions in Java. Proc ACM Program Lang. 2017;1(OOPSLA):85:1-

85:31. https://doi.org/10.1145/3133909

6. Kumar, A, Sutton, A, Stroustrup, B. Rejuvenating C++ programs through demacrofication. 28th IEEE International Conference on Software Maintenance,

ICSM 2012, Trento, Italy, September 23–28, 2012: IEEE Computer Society; 2012:98-107, https://doi.org/10.1109/ICSM.2012.6405259

7. Pirkelbauer, P, Dechev, D, Stroustrup, B. Source code rejuvenation is not refactoring. In: van Leeuwen, J, Muscholl, A, Peleg, D, Pokorný, J, Rumpe, B,

eds. SOFSEM 2010: Theory and Practice of Computer Science, 36th Conference On Current Trends in Theory and Practice of Computer Science, Špindlerův

Mlýn, Czech Republic, January 23–29, 2010. Proceedings, Lecture Notes in Computer Science, vol. 5901: Springer; 2010:639-650, https://doi.org/10.

1007/978-3-642-11266-9_53

8. Stroustrup, B. Evolving a language in and for the real world: C++ 1991-2006. Proceedings of the Third ACM SIGPLAN Conference on History of Program-

ming Languages, HOPL III: Association for Computing Machinery; 2007:4-1–4-59, https://doi.org/10.1145/1238844.1238848
9. Stepanov, A, Lee, M. The Standard Template Library, Vol. 1501: Hewlett Packard Laboratories; 1995.

10. Stroustrup, B. The C++ Programming Language. 3rd ed.: Addison-Wesley Longman Publishing Co., Inc.; 1997. ISBN 0201889544.

11. Josuttis, NM. C++ 17: The Complete Guide: Nicolai Josuttis; 2019. ISBN 9783967300178. https://books.google.com.br/books?id%

3DUAmQzQEACAAJ

12. Meyers, S. Effective Modern C++: 42 Specific Ways to Improve Your Use of C++11 and C++14. 1st ed.: O'Reilly Media, Inc.; 2014. ISBN 1491903996.

13. Schäling, B. The Boost C++ Libraries: XML Press; 2014. ISBN 9781937434366 1937434362.

14. Stroustrup, B. The C++ Programming Language. 4th ed.: Addison-Wesley Professional; 2013. ISBN 0321563840.

15. O'Dwyer, A. Mastering the C++17 STL: Make Full Use of the Standard Library Components in C++17: Packt Publishing; 2017. ISBN 178712682X.

16. Deitel, P, Deitel, H. C++20 for Programmers: An Objects-Natural Aproach, Deitel Developer Series: Pearson Education Canada; 2022. ISBN

9780136905691. https://books.google.com.br/books?id%3Dcih_zQEACAAJ

17. Rajlich, V. Software evolution and maintenance. In: Herbsleb, JD, Dwyer, MB, eds. Proceedings of the Future of Software Engineering, FOSE 2014, Hyder-

abad, India, May 31–June 7, 2014: ACM; 2014:133-144, https://doi.org/10.1145/2593882.2593893

18. Dantas, R, Carvalho, A, Marcilio, D, et al. Reconciling the past and the present: an empirical study on the application of source code transformations to

automatically rejuvenate Java programs. In: Oliveto, R, Penta, MD, Shepherd DC, eds. 25th International Conference on Software Analysis, Evolution and

Reengineering, SANER 2018, Campobasso, Italy, March 20–23, 2018: IEEE Computer Society; 2018:497-501, https://doi.org/10.1109/SANER.2018.

8330247

19. Lucas, W, Bonifácio, R, Canedo, ED, Marcilio, D, Lima, F. Does the introduction of lambda expressions improve the comprehension of Java programs?

In: do Carmo Machado, I, Souza, R, Maciel, RSP, Sant'Anna, C, eds. Proceedings of the XXXIII Brazilian Symposium on Software Engineering, SBES 2019,

Salvador, Brazil, September 23–27, 2019: ACM; 2019:187-196, https://doi.org/10.1145/3350768.3350791

LUCAS ET AL. 21 of 24

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2605 by U
niversidade D

o M
inho, W

iley O
nline L

ibrary on [18/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.fap.df.gov.br/
https://www.gov.br/capes/pt-br
https://github.com/PAMunb/cppEvolution
https://orcid.org/0000-0001-7391-9622
https://orcid.org/0000-0001-7391-9622
https://orcid.org/0000-0002-6622-2330
https://orcid.org/0000-0002-6622-2330
https://orcid.org/0000-0003-3769-6171
https://orcid.org/0000-0003-3769-6171
https://orcid.org/0000-0002-2380-2829
https://orcid.org/0000-0002-2380-2829
https://orcid.org/0000-0002-5686-7151
https://orcid.org/0000-0002-5686-7151
https://orcid.org/0000-0002-4428-2543
https://orcid.org/0000-0002-4428-2543
https://doi.org/10.1145/3386320
https://doi.org/10.1145/3386320
https://doi.org/10.1145/1640089.1640127
https://hal.inria.fr/hal-03171124
https://doi.org/10.1109/MSR.2019.00057
https://doi.org/10.1145/3133909
https://doi.org/10.1109/ICSM.2012.6405259
https://doi.org/10.1007/978-3-642-11266-9_53
https://doi.org/10.1007/978-3-642-11266-9_53
https://doi.org/10.1145/1238844.1238848
https://books.google.com.br/books?id=UAmQzQEACAAJ
https://books.google.com.br/books?id=UAmQzQEACAAJ
https://books.google.com.br/books?id=cih_zQEACAAJ
https://doi.org/10.1145/2593882.2593893
https://doi.org/10.1109/SANER.2018.8330247
https://doi.org/10.1109/SANER.2018.8330247
https://doi.org/10.1145/3350768.3350791

20. McCabe, TJ. A complexity measure. IEEE Trans Software Eng. 1976;2(4):308-320. https://doi.org/10.1109/TSE.1976.233837

21. Buse, RPL, Weimer, W. A metric for software readability. In: Ryder, BG, Zeller, A, eds. Proceedings of the ACM/SIGSOFT International Symposium on

Software Testing and Analysis, ISSTA 2008, Seattle, WA, USA, July 20–24, 2008: ACM; 2008:121-130, https://doi.org/10.1145/1390630.1390647

22. Posnett, D, Hindle, A, Devanbu, PT. A simpler model of software readability. In: van Deursen, A, Xie, T, Zimmermann, T, eds. Proceedings of the 8th

International Working Conference on Mining Software Repositories, MSR 2011 (co-located with ICSE), Waikiki, Honolulu, HI, USA, May 21–28, 2011, Pro-
ceedings: ACM; 2011:73-82, https://doi.org/10.1145/1985441.1985454

23. Uesbeck, PM, Stefik, A, Hanenberg, S, Pedersen, J, Daleiden, P. An empirical study on the impact of C++ lambdas and programmer experience. Pro-

ceedings of the 38th International Conference on Software Engineering, ICSE '16: Association for Computing Machinery; 2016:760-771, https://doi.org/

10.1145/2884781.2884849

24. Zheng, M, Yang, J, Wen, M, Zhu, H, Liu, Y, Jin, H. Why do developers remove lambda expressions in Java? Proceedings of the 36th IEEE/ACM Interna-

tional Conference on Automated Software Engineering, ASE '21: IEEE Press; 2022:67-78, https://doi.org/10.1109/ASE51524.2021.9678600

25. Chen, L, Wu, D, Ma, W, Zhou, Y, Xu, B, Leung, H. How C++ templates are used for generic programming: an empirical study on 50 open source sys-

tems. ACM Trans Softw Eng Methodol. 2020;29(1):1-49. https://doi.org/10.1145/3356579

26. Ricca, F, Marchetto, A, Torchiano, M. On the difficulty of computing the truck factor. In: Caivano, D, Oivo, M, Baldassarre, MT, Visaggio, G, eds. Prod-

uct-Focused Software Process Improvement—12th International Conference, PROFES 2011, Torre Canne, Italy, June 20–22, 2011. Proceedings, Lecture
Notes in Business Information Processing, vol. 6759: Springer; 2011:337-351, https://doi.org/10.1007/978-3-642-21843-9_26

27. Bosu, A, Sultana, KZ. Diversity and inclusion in Open Source Software (OSS) projects: where do we stand? 2019 ACM/IEEE International Symposium on

Empirical Software Engineering and Measurement, ESEM 2019, Porto de Galinhas, Recife, Brazil, September 19–20, 2019: IEEE; 2019:1-11, https://doi.
org/10.1109/ESEM.2019.8870179

28. Avelino, G, Passos, LT, Hora, AC, Valente, MT. A novel approach for estimating truck factors. 24th IEEE International Conference on Program Compre-

hension, ICPC 2016, Austin, TX, USA, May 16–17, 2016: IEEE Computer Society; 2016:1-10, https://doi.org/10.1109/ICPC.2016.7503718

29. Ferreira, MM, Valente, MT, Ferreira, KAM. A comparison of three algorithms for computing truck factors. In: Scanniello, G, Lo, D, Serebrenik, A, eds.

Proceedings of the 25th International Conference on Program Comprehension, ICPC 2017, Buenos Aires, Argentina, May 22–23, 2017: IEEE Computer

Society; 2017:207-217, https://doi.org/10.1109/ICPC.2017.35

30. Canedo, ED, Bonifácio, R, Okimoto, MV, Serebrenik, A, Pinto, G, Monteiro, E. Work practices and perceptions from women core developers in OSS

communities. In: Baldassarre, MT, Lanubile, F, Kalinowski, M, Sarro, F, eds. ESEM '20: ACM/IEEE International Symposium on Empirical Software Engi-

neering and Measurement, Bari, Italy, October 5–7, 2020: ACM; 2020:26:1-26:11, https://doi.org/10.1145/3382494.3410682

31. Myers, L, Sirois, MJ. Spearman Correlation Coefficients, Differences between: John Wiley & Sons, Ltd; 2006. https://onlinelibrary.wiley.com/doi/abs/10.

1002/0471667196.ess5050.pub2

32. De Winter, JCF, Gosling, SD, Potter, J. Comparing the Pearson and Spearman correlation coefficients across distributions and sample sizes: a tutorial

using simulations and empirical data. Psychol Methods. 2016;21(3):273.

33. Järvi, J, Freeman, J. Lambda functions for C++0x. In: Wainwright, RL, Haddad, H, eds. Proceedings of the 2008 ACM Symposium on Applied Computing

(SAC), Fortaleza, Ceara, Brazil, March 16–20, 2008: ACM; 2008:178-183, https://doi.org/10.1145/1363686.1363735

34. Becker, P. ISO/IEC 14882:2011 Information technology—Programming languages—C++. https://www.iso.org/standard/50372.html. [Online;

accessed 03-May-2022]; 2011.

35. Saldana, J. The Coding Manual for Qualitative Researchers, English Short Title Catalogue Eighteenth Century Collection, publisher=SAGE Publications;

2012. ISBN 9781446247372. https://books.google.com.br/books?id%3DkUms8QrE_SAC

36. de Mendonça, WLM, Fortes, J, Lopes, FV, et al. Understanding the impact of introducing lambda expressions in Java programs. J Softw Eng Res Dev.

2020;8:7:1-7:22. https://doi.org/10.5753/jserd.2020.744

AUTHOR BIOGRAPHIES

Walter Lucas is a PhD student in Computer Science at the University of Brasília, Brazil, since 2019. He earned a master's degree in Computer

Science from the University of Brasília, Brazil, in 2019. He obtained a degree in Information Systems at the University Center of Patos de

Minas in 2015, working in Software Engineering, in the areas of Code Comprehension, Software Evolution and Program Transformations.

Fausto Carvalho is a software engineer at the Brazilian Public Prosecutor's Office, with a degree in Computer Science from the Catholic

University of Brasília, Brazil. His areas of interest are software security, programming languages, software maintenance, and evolution.

Rafael Campos Nunes is a Computer Science BSc undergraduate student at the University of Brasília. Currently, he is a software engineer

working in the Communications Industry building the next generation of streaming CDNs and is interested in studying software engineering

and programming languages.

Rodrigo Bonifácio is an associate professor at the University of Brasília, Brazil. His main research interests focus on program analysis and

manipulation, with particular emphasis on software maintenance and evolution and software security.

João Saraiva is an associate professor in the Department of Informatics at the University of Minho, Braga, Portugal, and a senior researcher at

HASLab/INESC TEC. He obtained a master's degree from the University of Minho in 1993 and a PhD degree in Computer Science at the

University of Utrecht in 1999. His areas of interest are programming language design and implementation, program analysis and transforma-

tion, and functional programming.

22 of 24 LUCAS ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2605 by U
niversidade D

o M
inho, W

iley O
nline L

ibrary on [18/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1145/1390630.1390647
https://doi.org/10.1145/1985441.1985454
https://doi.org/10.1145/2884781.2884849
https://doi.org/10.1145/2884781.2884849
https://doi.org/10.1109/ASE51524.2021.9678600
https://doi.org/10.1145/3356579
https://doi.org/10.1007/978-3-642-21843-9_26
https://doi.org/10.1109/ESEM.2019.8870179
https://doi.org/10.1109/ESEM.2019.8870179
https://doi.org/10.1109/ICPC.2016.7503718
https://doi.org/10.1109/ICPC.2017.35
https://doi.org/10.1145/3382494.3410682
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471667196.ess5050.pub2
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471667196.ess5050.pub2
https://doi.org/10.1145/1363686.1363735
https://www.iso.org/standard/50372.html
https://books.google.com.br/books?id=kUms8QrE_SAC
https://doi.org/10.5753/jserd.2020.744

Paola Accioly holds a PhD in Computer Science from the Federal University of Pernambuco and is an assistant professor at the Federal Uni-

versity of Cariri. She obtained a master's degree in Computer Science from the Federal University of Pernambuco (2012) and a degree in

Computer Science from the Federal University of Pernambuco (2009). Her thesis focuses on software engineering, specifically on collabora-

tive software development support and empirical software engineering.

How to cite this article: Lucas W, Carvalho F, Nunes RC, Bonifácio R, Saraiva J, Accioly P. Embracing modern C++ features: An empirical

assessment on the KDE community. J Softw Evol Proc. 2023;e2605. doi:10.1002/smr.2605

APPENDIX A

TABLE A1 Catalog of commits that characterize rejuvenation efforts.

Project name
Commit
date Commit hash

Modern feature
adopted

Files
modified Additions Deletions

akonadi 02/04/21 ddd7758e07917d7968177c0cfdaa82d620ca8d4b Auto-typed variables 143 709 709

akonadi 04/23/17 5535d6e5604d3bc800868ba5ea820fd6ffeb3d24 Auto-typed variables 166 5943 13,311

akonadi-

contacts

11/02/20 d7bea9b44aece787d7faf42b419f6dffbd468ca1 Auto-typed variables 78 237 237

akregator 02/03/21 b65b4e407a80324f528efa1a8bc3a6abd9082d33 Auto-typed variables 37 73 73

akregator 11/02/20 7e6ff7d7b14c47db21b71518edbdec44367574bd Auto-typed variables 41 94 94

baloo-widgets 06/01/22 93b3e120c96469a28b423ddf646e397d30e3a232 Auto-typed variables 18 55 73

gwenview 02/09/22 02ce8d7907048beb1c8aebd3d5a4b485c2c0c349 Auto-typed variables 83 312 312

kdenlive 04/14/17 387199e1a602cd1101916ed2a96b0e8b3e8e86c5 Auto-typed variables 178 1401 1420

kdepim-runtime 02/04/21 fdc00bcca3ad00362dc310238aae1761f6966f19 Auto-typed variables 5 9 9

kdevelop 01/22/20 4626d69f68ea9e3af81f5324167d5608a5505c45 Auto-typed variables 114 280 282

kid3 09/30/18 4fa1900eed4091f4100b244df07311e62208a1ab Auto-typed variables 65 283 557

kid3 09/29/18 f519ce07581980b95599227307eb46c8bc7f9abe Auto-typed variables 88 495 495

kmail 11/01/20 3055a93326cc6b90cba8c50d72b8ab0d1d33c2ac Auto-typed variables 130 524 524

knotes 02/04/21 0c6207800da3a16b8c0b4dda171c4cc7e4628e80 Auto-typed variables 37 133 133

knotes 05/02/21 4d1e8e4d60e95b63286ac0103fed2e0310a3cd92 Auto-typed variables 35 131 130

konversation 06/15/21 7c6ed0b7658a5c2ea66d6032c569012258847b91 Auto-typed variables 63 252 252

korganizer 02/03/21 003270471b1314abf46226a92a1d32d808a83219 Auto-typed variables 9 13 13

kpimtextedit 11/01/20 c6fa90c5c0bf719439fd9e2d2678eb0e329ff624 Auto-typed variables 47 125 125

krfb 10/23/20 a109e3d6c9cf5e312567ec5d5d98534457ec14b9 Auto-typed variables 7 18 19

krusader 02/24/19 59ad209a23d28ea6e745a097bf06e889b8dfb88b Auto-typed variables 96 455 455

okteta 02/22/19 c4c70a1e758b3fb319c0e41d3dd6ce787bf6194a Auto-typed variables 173 456 496

systemsettings 10/07/21 68273cc95d6760f0e4289538e19985b041bcaa5f Auto-typed variables 15 288 404

zanshin 02/11/15 3dfeb5fed3ceaead480444cb2be8d4e6e879ca69 Auto-typed variables 12 18 18

calligra 03/13/21 33973e1295b Lambda expressions 9 33 29

kbibtex 07/20/19 40a2aee94fdc14b66b6806d552b599de3b4e64c1 Lambda expressions 16 367 435

kwidgetsaddons 05/07/21 034e0b7b1d5af08136e38a9eb7df4ee514fe385b Lambda expressions 65 446 426

gwenview 07/13/21 222ed1fa0c40fb036b19bd5ecdd09a0faeb6c016 Auto-typed

variables, lambda

expressions

6 155 138

(Continues)

LUCAS ET AL. 23 of 24

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2605 by U
niversidade D

o M
inho, W

iley O
nline L

ibrary on [18/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

info:doi/10.1002/smr.2605

TABLE A1 (Continued)

Project name

Commit

date Commit hash

Modern feature

adopted

Files

modified Additions Deletions

plasma-

framework

05/07/15 ea924b14691da3819ca17d876f63ffc686fcf840 Auto-typed

variables, lambda

expressions,

range-based for

22 385 366

akonadi 12/17/16 46badf63d00f46cdb8ffcb2ff45791d4a6d63173 Range-based for 54 115 115

discover 05/21/21 13891987fbeba55d2ecc6f6ec4cf948f7c34d460 Range-based for 35 111 92

dolphin 10/23/20 a24327cd50ef17b953ecb908d260b73460158107 Range-based for 38 140 121

granatier 05/15/18 8a03ba70008f7f2c73cdd3f3d03b9ed7e922a37e Range-based for 9 108 120

granatier 04/07/16 1535c053127e485fd6d6851f9938c677763eb00b Range-based for 4 59 59

kalarm 08/11/19 61590fae7ba5fd8bea501c68f2f754af3f74776f Range-based for 17 598 663

kate 09/24/19 0bbb048bd2255c1082b939c2013bf3dd0b99c2a4 Range-based for 9 15 13

kcontacts 05/10/21 3971b6278f62a9568792f7f41bd2e4ff46daf021 Range-based for 23 222 343

kdenlive 04/20/17 2e508acc340ff1d6ddda55e538c9fe01f09975f6 Range-based for 59 226 228

kdepim-runtime 12/28/16 d10456bd725e2e724c778a58a779d850f1b69420 Range-based for 29 57 58

kdesvn 07/31/19 ad2ef6dd1302af5d04a97798a6ea4b01fc60e5ee Range-based for 1 72 76

kimap 01/20/21 c5278fe4c77329b64cef6eb097665d4b1e2e16a3 Range-based for 7 40 20

kio 10/21/19 103e13c2765e7fb587fd778c1d04c90d3af42aff Range-based for 1 8 11

kio-extras 04/05/19 a50a8f8082baef51132562c85931c9e7ab9c7814 Range-based for 14 45 64

kleopatra 02/27/17 96409339 Range-based for 9 19 16

konsole 11/24/19 c83bb19a68a65a59e149586d809c442168ba35aa Range-based for 13 55 51

konversation 10/19/20 9f9bf118 Range-based for 6 27 43

kphotoalbum 04/10/20 233c3d7fc43217f6acf2a4e2db915bf5747cb50c Range-based for 53 206 206

ktorrent 06/29/17 7f8795555185226bb17909b8a954592fa7c947de Range-based for 14 66 66

ktorrent 07/06/17 2ad882b61101dfe8414e8f47f89360f4e2d96754 Range-based for 10 47 45

kwin 08/08/19 91faa589c70f9ca9a9d518ac072e186846c88827 Range-based for 1 184 112

labplot 12/03/17 5c28a3e5f994fbc586519fad3ec2aadff7357070 Range-based for 36 388 389

marble 01/27/17 33eff9bc4ea9581dc3d84783f62747463f2c047e Range-based for 176 537 532

okular 03/26/19 f34ebf659f6cd93233cca345d873bd54c039b83a Range-based for 3 50 90

partitionmanager 08/31/16 e7ac5e5fa2800c9583ec1223abd1fce2a6e51a50 Range-based for 6 30 16

krusader 02/24/19 15ca9d93c97b0729e29c74f38e6cdeb31793d09c Auto-typed

variables, range-

based for

22 148 153

amarok 09/26/20 ce93fb34c396f1b7766daaf43669d82f949ff091 Auto-typed variables 104 7170 783

kdevelop 10/25/18 c50f4442ccbb6ecb95d2e0d7f0484060bddb5747 Lambda expressions 343 1224 1224

kwin 07/14/18 049c6e0966ceda533e023a22f29a5d43a65cef0c Auto-typed variables 1 4 4

24 of 24 LUCAS ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2605 by U
niversidade D

o M
inho, W

iley O
nline L

ibrary on [18/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

	Embracing modern C++ features: An empirical assessment on the KDE community
	1 INTRODUCTION
	1.1 Artifacts availability

	2 BACKGROUND AND RELATED WORK
	2.1 C++ Language evolution
	2.2 Research on software rejuvenation

	3 STUDY SETTINGS
	3.1 Research questions
	3.2 Research procedures

	4 RESULTS OF THE QUANTITATIVE ASSESSMENT
	5 RESULTS OF THE QUALITATIVE ASSESSMENT
	5.1 Rejuvenation efforts
	5.2 Responses from KDE developers
	5.2.1 Motivations to rejuvenate
	5.2.2 When rejuvenations occur
	5.2.3 Tooling support
	5.2.4 Challenges
	5.2.5 Existence of third-party libraries
	5.2.6 Decision to rejuvenate
	5.2.7 Direction for rejuvenation

	5.3 The primary reasons for the increased adoption of modern C++ features

	6 DISCUSSION
	6.1 Implications of the results
	6.2 Threats to validity

	7 CONCLUSIONS
	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT

	REFERENCES
	APPENDIX A

