JOURNAL OF SOFTWARE MAINTENANCE AND EVOLUTION: RESEARCH AND PRACTICE
J. Softw. Maint. Evol.: Res. Pract. 2003; 15:245-264 (DOI: 10.1002/smr.275)

Practice

.

A case study on the adaptive
maintenance of an Internet
application

i

e

Susan Bergin and John Keating™ '

Department of Computer Science, National University of Ireland, Maynooth, Co. Kildare, Ireland

SUMMARY

We describe an Internet application for providing mobile phone tariff information for Northern Ireland
and the Republic of Ireland. Using this application it is possible to accurately and easily determine and
compare mobile phone packages offered by different service providers. One of the important features of
such an Internet application is the potential for high maintenance associated with the data in the system
and more importantly the structure of the system given the inevitable changes in the corresponding mobile
phone market. We have identified the maintenance tasks associated with our system to reflect changes in
the mobile phone market and outline an evaluation technique for describing the system’s ability to cope
with change. In particular, we evaluate the actual change required to our software system to implement
various maintenance tasks. We have found that there is an upper bound (~5%) on the maintenance
effort associated with the system which is both acceptable and manageable for maintenance purposes.
We show that at most the changes required to our system are no greater than 3.07%, when a complete
new service provider is added or removed. We conclude that the development of a maintenance model in
conjunction with system design is essential for estimating the maintenance effort associated with similar
Internet applications. Copyright (© 2003 John Wiley & Sons, Ltd.

KEY WORDS: maintenance evaluation model; Web-based technologies; object-oriented development; Java;
the UML

1. INTRODUCTION

In March 2000 the Center for Cross Border Studies commissioned a study, ‘The Evolution of
Telecom Technologies: Current Trends and Near Future Implications’ [1] which was concerned

*Correspondence to: Dr John G. Keating, Department of Computer Science, National University of Ireland, Maynooth,
Co. Kildare, Ireland.

TE-mail: john.keating@may.ie

Contract/grant sponsor: Centre for Cross-Border Studies; contract/grant number: 2000-2001

Received 23 October 2002
Copyright © 2003 John Wiley & Sons, Ltd. Revised 31 March 2003

246 S. BERGIN AND J. G. KEATING

with the advancement in, and comparison of, telecommunications in the Republic of Ireland and
Northern Ireland, with particular emphasis on telecommunication policy. As part of this study we were
commissioned to build an Internet application—B4Ucall . com—that allowed users to view the cost
of mobile telephone calls in and between Northern Ireland and the Republic of Ireland. The border
between Northern Ireland and the Republic of Ireland is open and people move freely between both
jurisdictions, especially people living in border counties who regularly cross the border as part of their
day to day business.

From a consumer’s perspective, choosing the most suitable mobile phone package can be difficult
as pricing is obscure and it is often difficult to compare prices between different packages offered by
the same service provider and packages offered by other service providers. Some of the reasons why
prices can appear obscure and comparison is difficult are:

e there is no universal agreement on what are peak and off-peak times, and at what time weekend
pricing should begin and end, if at all (some packages do not have special weekend rates); and

e pricing may be per-second or per-minute; for the per-second packages a minimum charge for the
first minute may apply and with certain packages the rate may reduce on a call after a certain
duration.

Additional factors affecting pricing are the package used to make the call, the type of network called,
e.g., a fixed line number in the same or different country, a mobile number on the same or different
network and roaming (using your mobile phone in another jurisdiction). As mentioned already people
travel across the border frequently in Ireland therefore roaming is a major issue in this context.

All of these factors have major implications for the design, development and maintenance of a
publicly accessible information system. For example, a vendor could decide to alter its definition of
peak and off-peak times, or a vendor could withdraw or introduce a package, or a new vendor could
enter the market. Such real-world variables require the development of a flexible, scalable system with
low maintenance overheads.

The B4Ucall. com Internet application addresses the difficulties in determining and comparing
the costs of mobile phone calls in the Republic of Ireland and Northern Ireland by visualizing and
modelling the highly structured mobile phone pricing data. The purpose of this paper is to present
a case study on the design of a scalable low-maintenance Internet application and outline a model to
describe the system’s ability to cope with change. Such changes are usually characterized as extensions,
revisions and refinements to the software system. In particular, this encompasses changes to data, data
structures and functionality.

This paper is structured as follows. First, we provide an overview of related research in the fields
of software maintenance and design. Next we outline the design of the B4Ucall . com Internet appli-
cation, followed by a description of our evaluation model used to measure the software maintenance
effort potentially required to maintain the Internet application. Finally, we assess the impact of the
design on the maintenance effort and conclude that our model is appropriate for similar systems.

2. RELATED RESEARCH

Software maintenance is the process of modifying a software system or component after delivery
to correct faults, improve performance or adapt to a changed environment. Maintenance can be

Copyright © 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:245-264

ADAPTIVE MAINTENANCE OF AN INTERNET APPLICATION 247

further refined as corrective, perfective or adaptive, that is maintenance performed to correct faults
in hardware or software, maintenance performed to make a program usable in a changed environment
and maintenance performed to improve performance, maintainability or other attributes of a program,
respectively [2].

We are concerned with the adaptive maintenance of systems that need to respond to a dynamic,
changing world and in particular with an Internet application that reflects real-world change. However,
regardless of the particular type of software system under development there are certain maintenance
issues that are common to all types of systems [3—5]; for example:

e software life cycles tend to be long and staff turnover can be high making it unlikely that the
original designer will be available to maintain the system;

e it is commonly accepted that single well-defined structures make it easier to maintain software;

e a well-documented design rationale can guide subsequent maintenance decisions and result in
greater cost effectiveness; and

e key features of easily maintainable software are flexibility, adaptability, readability, and the fact
that they are well-modelled and well-documented.

These issues have recently been reinforced by Brereton et al. [6]. They are investigating new
approaches to software development, particularly addressing the need for highly-flexible software
systems. Their initial outcomes are:

e future software will be component based;

e these components will not be rigid but customizable and flexible;
e there is an enormous potential for employing visualization; and
e software will be focused on the design process.

We concur with these initial outcomes and believe that they are reflected in our Internet application.

Burge [4] stresses the importance of well-documented design decisions and, in particular, addresses
the importance of keeping records of design decisions. These decisions can then be used for reference
in the software maintenance process by a maintainer who was not involved in the original design.
While we agree with Burge, our concern, however, is that even if well-established design principles,
documentation of design decisions and best practices are followed, it may not be evident that the
eventual design will result in a system with an associated low maintenance effort. We believe that
the use of a software maintenance model in conjunction with the development process is an absolute
necessity.

Grefen and Schneberger [7] examined the software maintenance effort by modelling the distribution
of software modifications to determine if maintenance modifications decrease over time and to
determine if software maintenance is a single homogenous process. They classified maintenance effort
based on maintenance types: either corrective maintenance oradaptive maintenance.
They found that corrective maintenance decreases over time while adaptive maintenance increases,
and that maintenance exhibits a homogenous distribution of modifications only when it is considered
in the aggregate and not when examined by modification type. Their study focused on a large-scale
information system, typical of those developed on mainframes for large organizations. The system was
built and managed by a vendor with extensive experience in developing and maintaining such systems.

Niessink and Van Vliet [8] carried out two case studies in two separate organizations to investigate
possible cost drivers (for example, maintenance activity, the experience of the engineer with the

Copyright © 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:245-264

248 S. BERGIN AND J. G. KEATING

code, code structure) for software maintenance. The changes required were requested by customers
to their own internal information systems and carried out by one of the two organizations. Statistical
techniques (primary component analysis and multiple regression) were applied to the cost-driver data
to explore the relationship between characteristics of the change requests and the effort required to
implement them. They determined the number of hours spent on each change request and concluded
that a standardized software maintenance process is essential. The change requests were to 22 different
information systems mostly written in COBOL.

Stark [9] defined a software change taxonomy to classify maintenance effort for modification
changes and changes required for program fixes. The change taxonomy includes logic changes,
performance changes, computational changes and input and output changes. Stark acknowledges that
as the taxonomy does not classify changes in terms of the lines of source code it is difficult to compare
their productivity and process throughput with other organizations and industry averages. The above
research although useful is limited for our purposes as:

e the information systems investigated tend to be large-scale systems with stable boundaries;

e the change requests are made by users and not dynamically required due to changes in the real
world; and

e the software maintenance process was generally handled by dedicated maintenance teams.

Our concern is with small-to-medium-sized Internet application with variable boundaries that need to
reflect the changes of a dynamic changing world and that do not have dedicated software maintenance
teams to handle the maintenance processes, primarily for cost reasons.

Epping and Lott [10] studied the effects of software design complexity on the costs of software
maintenance. They tested the hypothesis that changes to modules with high software design complexity
would require more maintenance effort than changes to modules with low complexity. They test this
hypothesis by investigating how the complexity factors affect the costs of changing the software.
Maintainability was defined in terms of the change isolation effort, change implementation effort and
the number of modules changed. Their hypotheses were tested in two separate studies on FORTRAN
systems. They found that changing the modules that implement many specifications did not require
more effort than changing modules that implement few specifications, while changing modules that
are tightly coupled to each other via data and control flow relationships do require more effort than
changing modules that are not closely coupled to each other.

Jorgensen [11] also measured the software maintenance effort based on the complexity of the
maintenance tasks involved and found that tasks with a high complexity require significantly more
maintenance effort than tasks with a low complexity. Basili ef al. [12] are interested in understanding
and estimating the cost of maintenance releases of software systems. As part of their research
they propose a predictive effort model for software maintenance releases in large-scale software
maintenance organizations. This model takes into account:

e the type of change requested (error correction, enhancement or adaption);

e the effort spent isolating/determining the change as well as the effort spent design-
ing/implementing and testing the change; and

e the number of lines of source code or components changed, deleted or added and how much code
is newly written or reused.

Copyright © 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:245-264

ADAPTIVE MAINTENANCE OF AN INTERNET APPLICATION 249

Maintainers were requested to break down software effort based on the number of hours spent on
each type of change request or as other hours and by specifying hours by the software activities
performed (design, implementation, etc.). This information was used to predict the distribution of
effort among software maintenance activities and types of change. The authors acknowledge that their
models are organization dependent and as such the work, although the most closely related to our
interests, is limited for our purposes in that it is based on software releases for large-scale software that
are maintained by dedicated maintenance organizations and not for small-to-medium-sized publicly
accessible information systems.

3. B4UCall.com CASE STUDY

Internet applications vary in content from wholly static to completely dynamic data. This variation
can lead to systems that require changes to be made as infrequently as zero times in the former case
and as often as daily, hourly or more often in the latter case. In our case, these changes can be to
both the data (prices and packages) and the data structures (service provider models). A key design
requirement in the production of low-maintenance Internet applications that have to handle dynamic
data is to make the system self-adapting to the data it is processing. This can be achieved by separating
the data processing from the data. This requirement has been satisfied through our system design and
is described in detail in this section.

To address the highly structured nature of mobile phone pricing data, a component-based approach
to price model design was chosen. This approach provides techniques such as inheritance, abstraction
and polymorphism to build reusable code to best utilize data patterns and to allow similar features that
differ only in level of detail to be defined and extended as necessary. Architecturally, three primary
elements are required, namely, a centralized tariff server, a chart generator and a user interface.

The tariff server maintains a complete set of tariff data for each service provider and is centralized
to ensure data integrity and reliability. Some of the advantages of this architecture are as follows.
(i) This centralization means that client applications do not require redundant tariff data. When data is
changed on the server it is available transparently to incoming clients. As clients do not require copies
of the data, maintenance effort is greatly reduced. (ii) It ensures that users can interact with the data
but cannot modify or remove any part of the tariff data. (iii) The system only uses standard Internet
protocols for communication. As soon as the server is restarted any updated tariff data is available
transparently and immediately to incoming clients.

The chart generator can query all tariff data maintained on the tariff server for a user. Operationally,
the chart generator requests a cost calculation from the tariff server and generates a bar chart for the
user based on the returned costs. The tariff server provides the cost (in local currency), of a 10-, 30-
and 60-second call for each cost calculation request and these durations are presented on a bar chart to
the user.

The user interface provides three separate direct-manipulation mobile phone tariff calculators to
allow users to compare the cost of three calls simultaneously. At the commencement of the software
project there were three service providers available to consumers in Northern Ireland and two in the
Republic of Ireland; therefore, by providing three calculators users could compare packages available
from each service provider. The interface is designed using Human—Computer Interaction (HCI) design
principles and proven best practices. These HCI aspects are not covered in this paper but the reader can
refer to [13] for further details.

Copyright © 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:245-264

250 S. BERGIN AND J. G. KEATING

Browser
— Other
/ Clients
h 4

.

g > — > Chart = Object »

g User Interface Cenerator Communication SDTVjiCC

= Protocol Provider

< < P Models
Y Test
Cﬂmp0n€l1t5
Web Server Tariff Server

Figure 1. System overview.

Our design approach is essentially user-centric and maintenance-centric, and is based on the primary
requirement of system functionality that the user should be able to make the following query using the
system: ‘How much does it cost to make a mobile phone call at some particular time (day) using
a particular service provider?’. This is crucial as, although the highly-structured software models
representing the service provider packages cannot be directly compared, this is the way that the user
compares the packages, and as such all models must provide enough information in order to answer
such questions. In our analysis of this system requirement we considered if and how often this question
would need to be revised? We also considered whether new services or tariffs might appear and not fit
this particular question model, or whether the question might be overloaded with multiple parameters.
However, consultation with the Irish Office of the Director of Telecommunications Regulation (ODTR)
indicated that this question is crucial to the design of an unbiased and necessary Internet application.

Each of the models (classes) were customized to suit the highly structured nature of the service
provider packages. However, regardless of the composition of each of models, each model must
implement a CalculateChartCosts () method to return the costs of a particular call. An object-
oriented approach provides the ability to define a CalculateChartCosts () method in a publicly
accessible interface and each software model must implement this method. An overview of the system
architecture is illustrated in Figure 1.

3.1. The UML design

The system was modelled using the Unified Modelling Language (UML) [14]. In particular, the UML
use case diagrams were used to illustrate the behaviour of the system from the user’s perspective.
A ‘user’ is anything that interacts with the system but is external to it. The UML Use Cases were used
to illustrate the behaviour of the system for a request to calculate a call cost, one of which is shown
in Figure 2. The user accesses the Web site (www.B4Ucall.com) and requests a tariff calculation.
The Web server invokes the chart generator. The chart generator application makes a method call to
obtain the call costs. An object communication protocol is used to communicate with the tariff server

Copyright © 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:245-264

ADAPTIVE MAINTENANCE OF AN INTERNET APPLICATION 251

O

N

web user

%O

genarate chart

web server
— ;O; —

get call cost calculate cost
rmiTlient

Figure 2. UML use case.

in order to retrieve the call costs. The tariff server calculates the costs and returns them to the chart
generator via the object communication protocol. The chart generator generates the relevant bar chart
image and presents it to the user on the user interface.

The UML interaction diagrams were used to show how the system realized a use case or a
particular scenario in a use case. Sequence diagrams are used to show how the system realizes the
‘calculate cost’ use case. Two sequence diagrams are shown, Figure 3. shows the sequence
of events if the costs to be calculated are for a non-roaming call (a call made in your home
jurisdiction) and Figure 4. displays the sequence of events followed to calculate roaming call costs
(a call made in another jurisdiction). To calculate the costs of a non-roaming call (Figure 3), the
following sequence of events takes place: each service provider is an instance of the SPImpl class
(service provider implementation). The number of monthly packages available for the service provider
is first determined. Then, starting with the first monthly package for the service provider, a reference
to the standard features StdFeat (basic features of a service provider package excluding voice-
call charges and roaming charges) object for the monthly package is obtained from SPPackage
(service provider package). The StdFeat object for the package invokes a method to obtain a
reference to the name of the monthly package. This package name is compared against the name
of the package being queried. This process continues until the correct monthly package to be queried
has been identified. Having identified the correct package object, an instance of the monthly package
SPPackage is created. A method call is made to the Time class to determine if the time of
the call to be queried is charged at a peak, off-peak or weekend rate. A method call made by
the SPPackage object takes the type of network as a parameter and returns a reference to the
correct VoiceCallCharge (costs of voice-calls using a particular service provider package) object
for the particular monthly package. Finally, the VoiceCallCharge object makes a method call
which takes the service provider name and call rate (peak, off-peak or weekend) as parameters.
The CalculateChartCosts (.. .) method uses the particular service provider data to calculate

Copyright © 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:245-264

252 S. BERGIN AND J. G. KEATING

- SPImpl . SPPackage . StdFeat . VoiceCall
Charge
non-
roaming
call
—»

1: getNoOfPkgs()

1

2: getFeatures()

3: getpackageName()

gl

4. SPPackage sp = (SPPackage()SPPackages.elementAt(i);)

<]

5: char t =getTime(day, hour)

6: name =getServiceProvider()

< |

7. VoiceCallCharge vce = sp.getVoiceCallCharge(callType();)

1]

8: values = vce.calculateChartCosts(name, t)

Figure 3. UML sequence diagram to generate the cost of a roaming call.

the call costs and the costs are returned to the chart generator using the service provider implementation
of SPImpl.

Figure 4 illustrates the sequence of events for a roaming call. First, the number of roaming networks
available are identified. Starting with the first network, a method call to RoamCharges (costs of
roaming calls using a particular service provider package) determines whether the particular roaming
network is available for a prepay or monthly package. If the roaming option is for a monthly package,
a reference to the name of the roaming network is obtained. If this name is the same as the name of
the roaming network to be queried, the CalculateChartCosts (.. .) method is invoked on the
RoamCharges object. The results are returned to the chart generator via SPImp1.

In the design on the B4Ucall. com Internet application the use of the UML was significant for
design and implementation purposes. The chart generator and the tariff server were developed in
parallel and thus comprehensive documentation and modelling was essential to assist the designers
while moving between the different components. Additionally, it was recognized early in the design

Copyright © 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:245-264

ADAPTIVE MAINTENANCE OF AN INTERNET APPLICATION 253

- SPImpl - Roam
Charges

Roam l
Call >
1: getNoOfRoamOptions()

P

2: getpackageType()

3: getNetwork() /I—H

4: calculateChartCosts(callType)

|

Figure 4. UML Sequence Diagram for a non-roaming call.

phase that the original designer might not be available for the maintenance process requiring the design
to be modelled using a standardized universally accepted notation.

3.2. System technologies

In order to deploy the full system (B4Ucall. com client and tariff server) a number of technologies
were employed as illustrated in Figure 5. Our choice of implementation technologies was based on
minimizing the system operational cost. The chart generator runs within an Apache Web Server [15]
environment. It is written in Perl [16] and uses the Common Gateway Interface [17] and graphic
development (GD) image generating libraries [16]. The tariff server is implemented using Java.
The models use Java interfaces to define their publicly accessible behaviour. As clients do not require
any further information, method implementations can be changed without affecting clients. This also
strengthens the system’s maintainability. The test suite and the data update software were written
in Java. The calculator was written in HTML and JavaScript.

The charting software, chart .pl, is a Perl script that accepts user requests for specific pricing
queries via the (JavaScript) tariff calculator, obtains the costs associated with this request from the
tariff server and creates a bar chart as shown in Figure 6. It is essential that this software must
accomplish these tasks very quickly in order to maintain user satisfaction. Perl was chosen as the
development environment as it provides comprehensive modules for the Common Gateway Interface
(CGI) protocol and GD. Additionally, the prototype Web server (a virtual server) purchased to host
the B4Ucall . com service provided only Perl CGI access and did not support Java Servlets, JSPs

Copyright © 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:245-264

254 S. BERGIN AND J. G. KEATING

Browser
F
User Interface » Charl Generator Other
1P| Clienls
.
v -
Al Test
Communication RMI components
Sernvice registry
BélUcall.cam client RMI Tariff Server

Figure 5. System implementation.

BT Cellnet BT Cellnet BT Cellnet

TIME (SECS)
TIME (SECS)

Het 100 cosT (PENCE) Mt 100 COST (PENCE) Met 100 COST (PENCE)

Figure 6. Prototype for bar chart.

or other suitable technologies. The Web server used was provided by ‘The Apache Project’ and the
version used by the hosting company did not provide options for embedding a Perl charting module
directly, therefore all calls to the charting software required loading the Perl interpreter each time a
chart request was made. The program uses several techniques to improve performance, particularly
in relation to resource access and locking. For example, all of the graphics are duplicated for each of
the five service providers and an appropriate graphic suite selected for use by the program for each
request. This reduces potential resource access (file lock/unlock waiting) delays by 20% if resource
allocation is pipelined during periods of extensive access. Perl also provides complex code construction
facilities that allow many simple tasks to be compiled into a single statement resulting in improved
performance and, where possible, the charting program utilizes composite statements. Currently, there
is no direct mechanism to enable communication between Perl and Java. In the implementation a back-
end server, JavaServer [18] is used to communicate between Perl and Java. The JavaServer uses a plain
text protocol language and socket connections. The chart generator connects to the port the JavaServer

Copyright © 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:245-264

ADAPTIVE MAINTENANCE OF AN INTERNET APPLICATION 255

is running on and obtains a handle to the JavaServer environment. The chart generator uses this handle
to get a reference to the Remote Method Invocation (RMI) client SPC1lient. Once the chart has this
reference it can invoke any of the methods defined in the remote object’s public interface.

The system requirements indicated that a mechanism for providing a distributed object
communication methodology was required. Java provides a native tool, Java RMI, for enabling
distributed environments. Java RMI is the core communication technology used in the implementation
of this system and was used to implement the tariff server. The server maintains five remote objects,
one for each service provider. Each of these objects is an instance of SPImpl and its public methods
are defined in the interface SP. The server is responsible for binding instances of the remote object
to the RMI registry for client look-up operations. The RMI client, SPClient, can access these
methods remotely. In addition, non-RMI clients can access the tariff data; for example, in order to
test components a test suite was developed which acts as another RMI client to the tariff server.

Each of the service provider models are implemented as components and access to these components
is through a well-defined interface. This means that new components can be implemented and deployed
with minimal integration. Also, techniques such as inheritance, polymorphism and abstraction facilitate
code reuse, ensuring minimal code development by system maintainers. A centralized tariff server also
facilitates minimal change for modifications as changes to the existing service provider packages and
tariffs only need to made to the server and clients do not require modification. The UML is a universally
accepted notation and thus maintainers who were not involved in the original design can use the UML
to accelerate their understanding of the system. Finally, maintainers can refer to a graduate thesis [13]
for further information on the design and implementation of the system.

4. MAINTENANCE EVALUATION

As part of our design specification we proposed an evaluation model to determine how well our
software system can cope with changes in ‘mobile phone tariff data and structure in the Republic of
Ireland and Northern Ireland’, referred to here as the ‘tariff world’. We based our model on the work of
Halstead [19] and others [20,21]. For the project, we drew up a list of all typical measures, with a view
to determining the most suitable measure for our purposes. Ultimately, we chose to record variation
primarily in the lines of code (LOC) measure as we felt that this was sufficient given the size of the
system and the fact that some of the languages in the system did not support operator—operand pairs.
We also could have included any other measurable quantity, for example maintainers’ time, number of
maintainers, etc.

At any given time, the state of our system may be represented, from a maintenance perspective, as
the vector

o =(00,01,...,0%) (1)

where each o; represents a measurable quantity of the system. We consider a measurable quantity to
be any system attribute that may be quantified; for example,

e the number of lines of code in the system,
e the number of images used in the system and
e the response time of the system.

Copyright © 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:245-264

256 S. BERGIN AND J. G. KEATING

The system is a software representation of some state of the domain (tariff world)

S = (50,81, .--55m) 2)

where each s; is some observable in the domain, ideally represented by the software system o.
We consider our software system o to be successful if it is easily synchronized with the domain world
s and that changes in s are reciprocated in & with minimal effort on behalf of the software maintainers.

If §; = (8?, 8‘5, ..., 04") represents a change in the tariff world and §, = (52, 8},, ..., 80) is the
corresponding change required to synchronize the software system, then we can define a measure A,
representing the total amount of change to the system for a particular maintenance task, represented as
a percentage change to the software prior to applying the change. Typically, for our system §; and 8,
are sparse, with contributing changes yielding values of m and n of the order of 7 and 12, respectively.
In general, for a well-designed and implemented system, A, is small for small changes §, and the size
of change to A, is proportional to the size of change to §,. We believe, however, that an indication of
an easily maintainable application is that A, is relatively small for all changes 8, and, if A, is less
than some predefined acceptable upper bound, then the system should be considered maintainable and
manageable. Furthermore, the extent of change in A, should be proportional to the extent of change
in 85, where extent is the number of components that change in each vector when a change is made.
A good design supports sparse vector changes at the system level. It follows, therefore, that if over time
the extent of the change A, is less than some upper bound then the maintenance effort is manageable.
This is important for a publicly accessible information system such as B4Ucall . com as the currency
and accuracy of the information depends on how quickly the system can evolve and respond to changes
in the tariff world. We define two measures A and A, as

A, = < 19 X 100) % (3a)
sl

Ay = < 19| x 100) % (3b)
llo @Il

where ||§;]| is the magnitude of the change in domain state s(¢) over some time ¢ to time (¢ + Ar) and
1651 is the corresponding magnitude of the required change in system state o (¢) for the same time
period.

It is difficult to accurately quantify the frequency of change in the domain world, or indeed the
type of change, as the mobile phone market is unstable due to competition, take-overs, marketing, etc.
Following an analysis of the mobile telecommunications market [1] we have identified the typical
scenarios that potentially lead to changes in the software. Each scenario (8§,) corresponds to an element
of the vector representing a change to the domain, mentioned earlier. It is difficult to produce an
orthogonal list as we are particularly interested in real-world scenarios that contribute to changes in
the system. The list of scenarios is as follows:

1. a new service provider becomes available and the implementation must be updated to include
this new service provider and all their packages (8 51);

2. an existing service provider offers a new package and the implementation must be updated to
include it (62);

3. existing tariff data changes and the implementation must be modified to reflect the new tariffs
(8

Copyright © 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:245-264

ADAPTIVE MAINTENANCE OF AN INTERNET APPLICATION 257

a new package has a new set of heuristics therefore the system will have to be modified to
represent the new heuristics (8;‘);

a package is withdrawn from the market and will have to be removed from the implementation
(8);

a service provider ceases services and will have to be removed from the implementation (5?);

a service provider ceases trading under their current name and commences trading under a new
name (8)).

W

The vector d; = (5‘3, 53 e 857), representing a change in the tariff world s(f) at some time ¢,
will require identification of a corresponding vector §, representing a change in the measurable
quantities of the software model. It is possible that all changes will occur simultaneously, of course,
but for the purposes of our evaluation we concentrate on the impact of each element individually,
1.€. (8}, ,0,0,0,0,0), (0, 852, 0,0, 0,0) and so forth. We drew up a list of relevant system measures;
for example, the number of lines of source code to be changed, the number of images to be changed,
the amount of time associated with each change, the expertise of the maintainer, the familiarity of the
maintainer with the system, etc. As the maintainer was one of the original developers, we selected
the first three measures as most suitable for our purposes. It was also determined that in all instances
the amount of time the change took as ratio of the overall development time was negligible and thus
we removed it as a measure. Therefore, the significant system measures, 55,, have been identified as:

e the number of lines of code that must be written, modified or removed for system software
(written in Java, JavaScript, Perl and HTML) resulting in 12 different measures (5}, to 8(1,2); and

e the number of images that must be produced and replaced or removed from the user interface or
component images for the dynamically generated charts (8},3).

The most commonly accepted definition of a line of code states that a line of code is a non-
commented source statement, that is, any statement in the program except for comments and blank
lines [22]. A line of code according to this definition is actually a non-commented line (NCLOC),
also known as an effective line of code (ELOC). We use this definition to count the lines of code in
our system’s Java, Perl and JavaScript files. For HTML, we decided that a line of code starts with an
opening tag and ends with a closing tag.

The total change to the measures in each of the following test cases is presented as a percentage
of the overall change to the implementation. The test cases are described in detail in the following
section. In each test case only the measurable quantities that were changed are presented in the test
results. In each case, the service provider or service provider package selected for the test was chosen
because it was representative of a typical service provider or service provider package. It should be
noted that each test case assumes that the software maintainer has already acquired the tariff data to
be changed. As mentioned previously, this may be a substantially time-consuming task. Using data for
Table I as an example, we conclude this section with a brief worked example giving the derivation of
Ay using

lines of code changed images changes changed
Ay = wy X w; 4)

lines of code in system number of images

The values of the weightings w; and w; above were determined following a discussion with the
graphics developer, Web developer and the Java developer. Each of these developers are regarded as
having the same level of expertise in each of their speciality areas. The developers kept a log of their

Copyright © 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:245-264

258 S. BERGIN AND J. G. KEATING

Table 1. Results for maintenance case 1.

Measurable quantity 6{, Change(s) required
Number of lines of Java code written 8}, 38
Number of lines of JavaScript code written 52 7
Number of lines of HTML code written 83 6
Number of lines of Perl code modified 8. 2
Number of images produced or removed 8},3 1
Percentage change to the software model As 3.07%

time and effort (both for pricing purposes and future analysis). Bearing in mind that different processes
take different times, it was agreed that a ratio of 80:20 best reflected the overall contribution of lines of
code and images to the system. Although we are certain confident that this contribution split accurately
reflects the contribution of images and lines of code to the system we also checked Table I for a split
of 70:30 and 90:10. In the former case the A, fell to 2.21% and in the latter it rose to 3.94%; however,
both of these values are considered reasonable and acceptable for our maintenance purposes.

5. MAINTENANCE CASES: RESULTS AND DISCUSSION

Case 1. Adding a new service provider to the system.

Purpose. To determine the effect of adding a new service provider to the implementation. The results
are given in Table I.

Description. During the development of this system a new service provider, ‘Meteor’, commenced
operations in the Republic of Ireland. To evaluate maintenance case I the operator Meteor is
added to the system.

Discussion. In this test case, the majority of the new code was a Java initializer class for Meteor,
thus the testing stage was greatly simplified as component testing sufficed. The changes to
HTML and JavaScript were simple, involving copying an already tested template and inserting
the appropriate field-level changes. The results of this test case indicate that adding a new
service provider, which is most likely to be the biggest change required for the design of the
implementation, results in A, = 3.07% change to the implementation.

Case II. Adding a new package to an existing service provider.

Purpose. To determine the effect of adding a new package for an existing service provider. The results
are given in Table II.

Copyright © 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:245-264

ADAPTIVE MAINTENANCE OF AN INTERNET APPLICATION 259

Table II. Results for maintenance case II.

Measurable quantity 6{, Change(s) required
Number of lines of Java code written 8}, 7
Number of lines of JavaScript code written 52 2
Percentage change to the software model As 0.2%

Table III. Results for maintenance case I11.

Measurable quantity 85, Change(s) required
Number of lines of Java code modified 88 4
Percentage change to the software model Ay 0.1%

Description. To test case II a hypothetical ‘BTCellnet’ (Northern Ireland service provider) package
was added to the system. The package is typical of the existing BTCellnet packages, that is, it has
a similar structure and the same set of heuristics as the existing BTCellnet packages represented
in the software model. In case IV we test the effect of adding an atypical package.

Discussion. The changes required to the system are minimal and involve copying already tested code
and inserting the appropriate field level changes for both Java and JavaScript. Additionally, only
one Java class must be changed, so component testing is sufficient. The results indicate that
adding a new service provider package to the system results in a minimal change to the system
of Ay = 0.2%.

Case III. Modifying existing tariff data.

Purpose. Determine the effect of modifying existing tariff data on the system. The results are given in
Table I11.

Description. For maintenance case III the cost of ALL voice calls (includes peak, off peak and
weekend calls to the same network, another mobile network, a fixed network and a cross border
network) were changed for ‘Orange’ (Northern Ireland service provider) package “Talk 100°.
This package was selected as it is representative of a standard monthly package.

Discussion. In the implementation, each of the different voice call rates (peak, off-peak and weekend)
to each network (same network, another mobile network, a fixed network and a cross border
network) are encapsulated in an instance of an (VoiceCallCharge) object. Therefore, to

Copyright © 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:245-264

260 S. BERGIN AND J. G. KEATING

Table IV. Results for maintenance case I'V.

Measurable quantity 6{, Change(s) required
Number of lines of Java code written sk 22
Number of lines of JavaScript code written 52 4
Percentage change to the software model As 1%

change any of these rates involves modifying the line of code which instantiates each of the
four objects. The total change required to the system is results in A, = 0.1% change to the
implementation.

Case IV. Adding a new package that has a new set of heuristics to those in the current implementation.

Purpose. Determine the effect of adding a new package that has different heuristics to existing
heuristics. The results are given in Table V.

Description. This test relies on the systems ability to cope with changes in tariff rules. For this test
a hypothetical package, called (EsatSuperPlus), is added to the system. This package has
many similar features to a standard monthly package but offers cheaper calls to Northern Ireland
if the user pays an additional £5.00 per month and makes more than 60 minutes peak calls first,
i.e. the reduced rate does not take effect until the 61st minute and this rate is available at all times
of day. The effect on the system will be the effect of adding a new package, as in case IV, plus
the effect of incorporating the new tariff rule.

Discussion. The new tariff rule affects the Java class for representing voice call charges. As an object-
oriented design approach is used for the system, inheritance is used to handle this new rule
and the above Java class is extended to include the new attributes. The calculator must also be
adjusted to offer this new option and four lines of JavaScript code must be copied and modified
to reflect the new option. Component testing is used to verify the new class and takes minimal
time. The overall change required to add a new package with a new set of heuristics to the current
implementation is only A, = 1%.

Case V. Removing all data pertaining to a specific package from the system.

Purpose. Determine the effect of removing all data pertaining to a specific package from the system.
The results are given in Table V.

Description. To evaluate maintenance case V, an Orange package ‘Talk 150’ is removed from the
system.

Discussion. This case is the reverse of case II. As above the modifications required for this change
are minimal. The results indicate that removing a new service provider package from the system
results in an overall change to the software model of A, = 0.2% change to the implementation.

Copyright © 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:245-264

ADAPTIVE MAINTENANCE OF AN INTERNET APPLICATION 261

Table V. Results for maintenance case V.

Measurable quantity 6{, Change(s) required
Number of lines of Java code removed 82 7
Number of lines of JavaScript code removed 80 22
Percentage change to the software model As 0.2%

Table VI. Results for maintenance case V1.

Measurable quantity 6{, Change(s) required
Number of lines of Perl code modified 8. 2
Number of lines of Java code removed 8 38
Number of lines of JavaScript code removed 8(1,0
Number of lines of HTML code removed 8(1,2 6
Number of images produced or removed 8(1,3 1
Percentage change to the software model As 3.07%

Case V1. Removing all data pertaining to a service provider from the system.

Purpose. Determine the effect of removing all data pertaining to a service provider from the system.
The results are given in Table VI.

Description. To evaluate maintenance case IV, and to compare with case I, the operator Meteor is
removed from the system.

Discussion. The majority of code removed was the Java initializer class for Meteor. The additional
relevant lines of code were located and removed. As the code is very familiar to the developer
and well-documented this process involved little difficulty. As with case I the results indicate an
overall change to the software model of A, = 3.07%.

Case VII. Changing the name of a service provider.

Purpose. Determine the effect of changing the name of a service provider. Eircell was recently taken
over by Vodafone and is now trading under Vodafone. The results are given in Table VII.

Description. To evaluate maintenance case VII, the Eircell image was removed from the system and
a new image for Vodafone (IRL) was created.

Discussion. As the developer had gained experience in image creation having created an image for
each of the six service providers this change did not pose much difficulty. The results indicate an
overall change to the software model of A, = 2%.

Copyright © 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:245-264

262 S. BERGIN AND J. G. KEATING

Table VII. Results for maintenance case VII.

Measurable quantity 83 Change(s) required
Number of images produced or removed 8(1,3 2
Percentage change to the software model Ay 2%

6. ASSESSING THE MAINTENANCE EFFORT

It is generally accepted that 65-75% of a software’s life cycle is spent on the software maintenance
phase [23], generally composed of numerous smaller maintenance tasks. For our Internet application,
we developed a maintenance evaluation model in conjunction with the design which may be used to
estimate the maintenance effort for the resulting implementation. We argue that the inclusion of such
a model in the design process is critical as the currency of an Internet application is dependent on how
well it adapts to changes in the real world. If the maintenance effort on the software system does not
have some upper bound over the lifetime of the system, then maintenance costs rise and could result in
the withdrawal of the system.

As shown in the previous section, we have measured that each of the seven test cases for our
system result in nominal maintenance effort. The greatest change required is when a complete new
service provider is added or removed (A, = 3.07%). Using our test cases and maintenance evaluation
model, we have also measured that both incremental change (change to an already changed system) and
composite change (simultaneous changes) have an upper bound with A, ~ 5%. The greatest change
required is when a complete new service provider is added or removed. It can be concluded, therefore,
that our system is maintainable and is sufficiently robust to cope with change without having to revisit
the design process.

We believe that a number of design features contributed to the low amount of maintenance effort
required to the B4Ucall . com application.

1. Separation of jurisdiction: the separation between the B4Ucall . com client and the tariff server
means that changes to existing service provider packages and tariffs need only be made to the tariff
server and the B4Ucall . comclient does not need to be modified.

2. Component-based approach: the service provider models are implemented as reusable compo-
nents and access to these components is through clear, consistent and well-defined interfaces. Addition
of new service providers or service provider packages only require the implementation and deployment
of new components, hence integration is minimal. Additionally, the implementation of a component
requires minimal effort as much of the program code can be reused from existing components.

3. Well modelled system: the original designers modelled the application using the UML. The UML
is a universally accepted notation for modelling software. The use case diagrams model the behaviour
of the software and helps the maintainer to visualize the specific tasks executed by the system.
The interaction diagrams help the maintainer to understand how the system realizes the use cases.

Copyright © 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:245-264

ADAPTIVE MAINTENANCE OF AN INTERNET APPLICATION 263

4. Well documented system: the system was designed as part of a Masters project [13], thus a volume
of comprehensive information is available for reference. Original design rationale are outlined in this
thesis and the source code is well commented. Based on this documentation maintainers are able to
share a common mental model with the original developers and form a comprehensive understanding
of the Internet application.

7. SUMMARY

In this paper we have described a software maintenance case study of an Internet application for pro-
viding mobile phone tariff information for Northern Ireland and the Republic of Ireland. This system
can be used to easily determine and compare the cost of mobile phone calls using packages offered by
the same or different service providers. Given the inevitable changes in the mobile phone market, our
system must be easily changed to reflect corresponding changes in the mobile phone market.

We identify the maintenance tasks associated with our system and argue that the development of a
maintenance evaluation model, to determine how well our software system can cope with the changes
in the mobile market, was an essential part of the design process. Using our process, we have found
that there is an upper bound (~5%) on the maintenance effort associated with the system which is both
acceptable and manageable for maintenance purposes. We show that at most the changes required to
our system are no greater than 3.07%, when a complete new service provider is added or removed. We
conclude that the development of a maintenance evaluation model in conjunction with system design
is essential for estimating the maintenance effort associated with similar Internet applications.

REFERENCES

1. Murtagh F, Keating J, Bergin S, Harper C, McParland G, Farid M. The Evolution of Telecom Technologies: Current Trends
and Near-Future Implications. The Centre for Cross Border Studies: Armagh, Northern Ireland, 2001; 105.

2. IEEE Computer Society. IEEE Standard for Software Maintenance, IEEE Std, 1219-1998. The Institute of Electrical and
Electronic Engineers: New York, 1998; 47.

3. Gustafsson J, Paakki J, Nenonen L, Verkamo Al Architecture-centric software evolution by software metrics and design
patterns. Proceedings Sixth European Conference on Software Maintenance and Reengineering CSMR 2002. 1EEE
Computer Society: Los Alamitos CA, 2002; 108-115.

4. Burge J. Design rationale for software maintenance. Proceedings 16th IEEE International Conference on Automated
Software Engineering, ASE 2001. IEEE Computer Society: Los Alamitos CA, 2001; 433.

5. Layzell P. Addressing the software evolution crisis through a service-oriented view of software: A roadmap for software
engineering and maintenance research. Proceedings IEEE International Conference on Software Maintenance, ICSM 2001 .
IEEE Computer Society: Los Alamitos CA, 2001; 5.

6. Brereton PO, Budgen D, Bennett K, Munro M, Layzell PJ, Macaulay LA, Griffiths D, Stannett C. The future of software:
Defining the research agenda. Communications of the ACM 1999; 42(12):78-84.

7. Grefen D, Schneberger SL. The non-homogeneous maintenance periods: A case study of software modifications.
Proceedings IEEE International Conference on Software Maintenance, ICSM ’96. IEEE Computer Society: Los Alamitos
CA, 1996; 134-141.

8. Niessink F, Van Vliet H. Two case studies in measuring software maintenance effort. Proceedings International Conference
on Software Maintenance, ICSM "98. IEEE Computer Society: Los Alamitos CA, 1998; 76-85.

9. Stark GE. Measurements for managing software maintenance. Proceedings International Conference on Software
Maintenance, ICSM ’96. IEEE Computer Society: Los Alamitos CA, 1996; 152-161.

10. Epping A, Lott CM. Does software design complexity affect maintenance effort? Proceedings of the NASA/GSFC 19th
Annual Software Engineering Workshop. Software Engineering Laboratory: NASA Goddard Space Flight Center: Goddard
MD, 1994; 1-16.

Copyright © 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:245-264

264 S. BERGIN AND J. G. KEATING

11. Jorgensen M. An empirical study of software maintenance tasks. Journal of Software Maintenance 1995; 7(1):27-48.

12. Basili V, Briand L, Condon S, Kim YM, Valett J. Understanding and predicting the process of software maintenance
releases. Proceedings of the 18th International Conference on Software Engineering, ISEW 1996/ISCE 18. ACM Press:
New York, 1996; 464-474.

13. Bergin S. Visualization and modelling of highly structured mobile phone pricing data. Master’s Thesis, National University
of Ireland, Maynooth, Ireland, 2001.

14. Pooley R, Stevens P. Using UML Software Engineering with Objects and Components. Addison-Wesley: Reading MA,
1999.

15. Apache Digital Corp. Apache Web Server Resource Center. Apache Digital Corp.: Durango CO, 2003.
http://www.apache.com/ [31 March 2003].

16. Finnish IT Center for Science. Comprehensive Perl Archive Network. Scientific Computing Ltd.: Espoo, Finland, 2003.
http://www.cpan.org/ [31 March 2003].

17. W3C. Common Gateway Interface. World Wide Web Consortium: Massachusetts Institute of Technology, Cambridge MA,
2003. http://www.w3.0org/CGI/ [31 March 2003].

18. ZZO Associates. JVM< _ > Perl5 Communication. ZZO Computing Solutions: Sunnyvale CA, 2003.
http://www.zzo.com/pix/ [31 March 2003].

19. Halstead MH. Elements of Software Science. Elsevier North-Holland, Inc: New York, 1977.

20. Oman P, Hagemeister J. Metrics for assessing a software system’s maintainability. Proceedings Conference on Software
Maintenance, ICSM’92. IEEE Computer Society Press: Los Alamitos CA, 1992; 337-344.

21. McCabe TJ, Watson AH. Software complexity. CrossTalk The Journal of Defense Software Engineering 1994; 7(12):5-9.

22. Fenton NE, Pfleeger SL. Software Metrics A Rigorous and Practical Approach. PWS Publishing Company: Boston MA,
1997; 246-257.

23. Sommerville I. Software Engineering. Addison-Wesley: Reading MA, 1995; 659-673.

AUTHORS’ BIOGRAPHIES

Susan Bergin is a graduate research student at the National University of Ireland,
Maynooth, (NUIM), Ireland. Susan received a Masters in Computer Science in 2000 and is
currently a candidate for a doctoral degree (PhD) at this university. Her primary research
interests are in dynamical systems, data-management, data-modelling and data-mining
and she is particularly interested in software maintenance of Web-based systems.

John Keating is a senior lecturer at the National University of Ireland, Maynooth
(NUIM). He has a BSc in Physics and Mathematics and a PhD in Experimental
Physics, both from NUIM. His research interests include software development, content
management, artificial neural networks and their implementation.

Copyright © 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:245-264

	1 INTRODUCTION
	2 RELATED RESEARCH
	3 B4UCall.com CASE STUDY
	3.1 The UML design
	3.2 System technologies

	4 MAINTENANCE EVALUATION
	5 MAINTENANCE CASES: RESULTS AND DISCUSSION
	6 ASSESSING THE MAINTENANCE EFFORT
	7 SUMMARY

