JOURNAL OF SOFTWARE MAINTENANCE AND EVOLUTION: RESEARCH AND PRACTICE

J. Softw. Maint. Evol.: Res. Pract. 2004; Accepted for publication:1-20 Prepared using smrauth.cls
[Version: 2008/05/07 v1.1]
Research

A metrics suite for
grammar-based software

James F. Power'and Brian A. Malloy?*

L Dept. of Computer Science, National University of Ireland, Maynooth, Co. Kildare, Ireland.
2 Dept. of Computer Science, Clemson University, Clemson, SC 29634, USA. ———

SUMMARY

One approach to measuring and managing the complexity of software, as it evolves
over time, is to exploit software metrics. Metrics have been used to estimate the
complexity of the maintenance effort, to facilitate change impact analysis, and as an
indicator for automatic detection of a transformation that can improve the quality of a
system. However, there has been little effort directed at applying software metrics to
the maintenance of grammar-based software applications, such as compilers, editors,
program comprehension tools and embedded systems. In this paper, we adapt the
software metrics that are commonly used to measure program complexity and apply
them to the measurement of the complexity of grammar-based software applications.
Since the behaviour of a grammar-based application is typically choreographed by the
grammar rules, the measure of complexity that our metrics provide can guide maintainers
in locating problematic areas in grammar-based applications.

No. of Figures: 3. No. of Tables: 3. No. of References: 48.

KEY WORDS: Program comprehension, software metrics, source code analysis, call graph, maintenance
of grammar-based tools

1. Introduction

One of the most important and costly phases in the life cycle of software applications is
maintenance. Estimates of the cost of maintenance range from 65% [1] to 80% [2, 3] of the
software budget. Much of this cost derives from the burgeoning complexity of the software
application as it evolves over time. During the life cycle of an application, many modifications
and extenstions to the software are needed to support evolving business requirements,
increasing the complexity of the application. A program that is overly complex may be difficult

*Correspondence to: Brian Malloy at malloy@cs.clemson.edu

Received October 3, 2003
Copyright © 2004 John Wiley & Sons, Ltd. Revised August 16, 2004

2 J.F. POWER & B.A. MALLOY

to comprehend and therefore more costly to maintain. Software complexity may induce a
significant number of operational failures that require a greater amount of maintenance to
correct errors introduced as a result of modifications and extensions to the code.

One approach to measuring and managing the complexity of software, as it evolves over
time, is to exploit software metrics. The use of software metrics has become essential to good
software engineering [4]. Many developers measure characteristics of a program to determine
whether the requirements are consistent and complete, whether the design is of high quality
and whether the code is too complex to permit easy test and maintenance. Metrics have been
used to estimate the complexity of the maintenance effort [5, 6, 7, 8], to facilitate change
impact analysis [9], and as an indicator for automatic detection of a transformation that can
improve the quality of a system [10]. Recent research incorporates semantic information into
metric considerations [11, 12].

In this paper we seek to extend the domain of application of software metrics to grammar-
based software applications, such as compilers, editors, program comprehension tools and
embedded systems. The traditional example of a grammar-based application is the parser
module of a compiler for a programming language. This module will likely include either a
grammar or grammar-based code together with semantic actions embedded in the grammar;
usually these semantic actions are themselves written in a high-level programming language
[13]. Related applications include language-based editors, which incorporate a grammar as
part of the implementation of the integrated environment [14]. Grammar-based software
also forms the core of program comprehension, which involves reading the source code of a
software module or application, analysing the source code, and building a model of that code
appropriate for the task at hand. Direct applications of program comprehension include tools
for software visualisation, reverse engineering, translation, metrication and instrumentation.
Embedded systems include grammar-based code to overcome hurdles in the performance of
these embedded computing solutions [15, 16].

The complexity of constructing grammar-based applications is related, at least, to the
syntactic complexity of the language under consideration. Further, the evolution of the
language, including changes to its syntax, has a direct bearing on the maintainability of
the corresponding grammar-based tools. However, there is a paucity of research that applies
metrics to the measurement and maintenance of such grammar-based applications.

In this paper, we adapt the software metrics that are commonly used to measure program
complexity and apply them to the measurement of the syntactic complexity of grammars.
We adapt concepts about programs such as control flow and function invocation, which are
used in many program metrics, and apply them to grammars. This adaptation permits us
to quantify some of the anecdotal information about grammars found in the literature. For
example, reference [17] describes the C++ grammar as “complex”, and reference [18] describes
the GNU Ct++ grammar as “complex, fragile and having a high degree of modification.” By
applying our grammar metrics to the ISO C++ grammar and to several versions of the GNU
C++ grammar, we provide results that support these anecdotal observations.

Copyright © 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; Accepted for
publication:1-20
Prepared using smrauth.cls

A METRICS SUITE FOR GRAMMAR-BASED SOFTWARE 3

To demonstrate the feasability of our approach, we present the design and implementation of
a tool, SYNQT, that automatically computes our metrics for a given grammar. We demonstrate
the applicability of our work to software evolution by using SYNQ to chart the evolution of
the GNU Ct++ compiler through several versions. We selected GNU C++ as our case study
because it is a commonly used grammar-based application and the source code is available
through the GNU public license. This case study of evolution demonstrates that our metrics
quantify the expected properties associated with the evolution. In particular, we show that
the grammar at the core of the GNU C++ compiler has increased in complexity, and that the
metrics permit us to quantify the differences between minor and major complexity increases.
Since the behaviour of a grammar-based tool is typically choreographed by the grammar
rules, the measure of syntactic complexity that our metrics provide can guide maintainers of
grammar-based applications in locating problematic areas in the application.

The remainder of this paper is organised as follows. In section 2 we introduce grammars
and the associated terminology and we describe some of the previous research about grammar
complexity. In section 3 we define the metrics used in this paper and show how they can be
applied to grammars that describe programming languages. Section 4 describes the design
and implementation of SYNQ, a tool that automatically computes these metrics. In section 5
we present the results of applying the metrics construction tool to four modern programming
languages, and we analyse the metrics. Since parser generators such as yacc are based on
grammars, the evolution of software that contains a parser often parallels the evolution of the
grammar at its core. In section 6 we use our metrics to chart the evolution of the GNU C++
compiler through several versions and in section 7 we review the work that relates to syntactic
grammar complexity. Finally, in section 8, we draw conclusions.

2. Background

In this section we define some of the terminology associated with context-free grammars, and
we describe the basic concepts associated with grammar measurement. A general description
of languages, context-free grammars and parsing can be found in reference [19]; the definitions
of successor relation and grammatical levels are found in reference [20]. The definitions in this
section are somewhat formal, but we feel that a degree of formality is necessary at this point
in order to provide unambiguous definitions of our metrics in later sections.

2.1. Terminology

Given a set of words (known as a lexicon), a language is a set of valid sequences of these
words. A grammar defines a language; any language can be defined by a number of different
grammars. When describing formal languages such as programming languages, we typically

TSYNQ is pronounced “sink”, the SyNtactic Quantification or measurement of grammar complexity.

Copyright © 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; Accepted for
publication:1-20
Prepared using smrauth.cls

4 J.F. POWER & B.A. MALLOY

use a grammar to describe the syntaz of that language; other aspects, such as the semantics
of the language typically cannot be described by context-free grammars.

Formally a grammar is a four-tuple (N, T, S, P) where N and T are disjoint sets of symbols
known as non-terminals and terminals respectively, S is a distinguished element of N known as
the start symbol, and P is a relation between elements of N and the union and concatenation
of symbols from (N UT), known as the production rules. A grammar defines a language by
specifying valid sequences of derivation steps that produce sequences of terminals, known as
the sentences of the language.

One procedure for using a grammar to derive a sentence in its language is as follows. We
begin with the start symbol S and apply the production rules, interpreted as left-right rewriting
rules, in some sequence until only non-terminals remain. This process defines a tree whose
root is the start symbol, whose nodes are non-terminals and whose leaves are terminals. The
children of any node in the tree correspond precisely to those symbols on the right-hand-side
of a production rule. This tree is known as a parse tree; the process by which it is produced is
known as parsing.

If there is a production rule of the form A — § we say that non-terminal A derives phrase 3.
If we can subsequently apply production rules to 8 to produce some other phrase v we write
A —* ~; this phrase is the reflexive transitive closure of the derivation relation.

While the simplest formulation of grammar rules allows only union and concatenation in
their definition, it is not unusual to allow the right-hand side of a rule to be formed from
regular expressions over (N UT). Such grammars are known as regular rightpart grammars,
and are equivalent, modulo a change of notation, to grammars presented in Extended Backus-
Naur Form (EBNF). In what follows we will assume that grammar rightparts may arbitrarily
mix union, concatenation, option and closure operations.

Using either regular rightpart grammars or EBNF does not increase the power of expression
over context-free grammar notation. However, it considerably eases the task of presenting a
grammar, and many programming language standards choose EBNF or one of its variants.
It is a feature of our approach that all the metrics we present work with either the standard
context-free grammar notation or with EBNF-style presentations.

2.2. Grammatical Levels

In this subsection we present some of the concepts and notation from reference [20]. We also
review some of the metrics presented in reference [20] in order to provide a context for our
own metrics presented in later sections.

If non-terminal A derives some sequence of symbols 3, and § contains some non-terminal B
we say that B is an immediate successor of A, and write A > B. If 8 derives some sequence of
symbols v, and v contains some non-terminal C' we say that C is a successor of A, and write
Ap*C.

The successor relation induces an equivalence relation on the non-terminals, where we say
that A is equivalent to C'if Ap>*C and C'>* A, and we write A = C. Any equivalence relation
on a set partitions that set into a collection of equivalence classes, and in the case of grammar
non-terminals, these classes are known as grammatical levels. For any two non-terminals A
and C in different levels, if A > C then this naturally induces a corresponding ordering on

Copyright © 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; Accepted for
publication:1-20
Prepared using smrauth.cls

A METRICS SUITE FOR GRAMMAR-BASED SOFTWARE 5

their levels. For different levels L; and Lo, if A € Ly and C € Ly, then when A > C we write
Ly > L.

Based on these definitions, reference [20] defines the following complezity measures for a
context-free grammar:

VAR The number of non-terminals

PROD The number of production rules

LEV The number of grammatical levels

DEP The number of non-terminals in the largest grammatical level

HEI The maximum length of the chain of levels Lg...L, such that each

L;i>Ljyi for0<i<n
In the remainder of this paper, we make direct use of the VAR, DEP and HEI measures. We
propose seven additional metrics, three of which are modified versions of PROD and LEV, and
four of which are original to this paper. We discuss the implementation and use of all of these
metrics, and apply them to a range of grammars and parsers.

3. A Metrics suite for programming language syntax

In this section, we define a set of ten metrics that are used in the remainder of this paper.
The size metrics are adaptations of standard metrics for programs and procedures [21, 4]. The
structural metrics are derived from the grammatical levels described in section 2 and these
metrics were originally used to measure descriptional complexity of context-free grammars
[20, 22]. For each of the ten metrics we present its formal definition and discuss some of the
pragmatics of its use.

The purpose of this section is to provide a formal, unambiguous definition of the metrics
we use. We also provide an informal justification of the definition in each case. In section 5
we provide an empirical justification of the metrics by applying them to several programming
languages.

3.1. From Software Metrics to Grammar Metrics

Since any grammar defines a language and provides a basis for deriving elements of that
language, a grammar may be considered as both a specification and a program; indeed, this
duality is often exploited in the construction of recursive descent parsers [23].

Conceptually, we may think of any program as consisting of a set of procedures, where each
procedure is defined by some procedure body, constructed using the control primitives of the
language. Thus a procedure body may be represented as a graph whose nodes are statements
and whose edges represent the flow of control between these statements. At a higher level of
abstraction, we may represent the interaction between procedures by a call graph, whose nodes
are procedures and whose edges represent a call from one procedure to another.

In order to interpret the concepts of control-flow graph and call graph for context-free
grammars we proceed as follows. The procedures correspond to non-terminals, and procedure
bodies are the right-hand-sides of the production rules. The control primitives are the union
and concatenation operations of context free grammars, which correspond to alternation and

Copyright © 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; Accepted for
publication:1-20
Prepared using smrauth.cls

6 J.F. POWER & B.A. MALLOY

sequencing respectively. This mapping can be extended in a straightforward manner to the
closure and option operators used in EBNF. In line with this mapping we interpret the call
graph of a program as the graph of the successor relation between non-terminals.

3.2. Size Metrics

To ease the description of these metrics we adopt an algebraic notation. Given any grammar
(N,T, S, P), and a production rule (n — «) € P, we refer to a as the right hand side (RHS)
of the rule. The RHS « is constructed from the application of the grammatical operators to
the terminals and non-terminals from 7" and N.

We denote this application in general as f*(z) where k € {-,|,?, x,+, €}, representing the
operations of concatenation, union, optionality, closure, positive closure and the empty string.
The operands, represented by Z, must correspond in number to the arity of the operator. We
specify that € has no operands, optionality has one operand, and all the other operators have
exactly two operands.

3.2.1. Number of Terminals and Non-Terminals (TERM, VAR)

One of the simplest, course-grained metrics that can be applied to a program to measure its
size is a count of the number of procedures that appear in that program. The equivalent size
metric for context-free grammars is the number of non-terminals in that grammar, denoted
VAR in [20]. This size metric is commonly reported by parser generators such as yacc and
bison.

Number of non-terminals (VAR) = #N (1)
A related metric is the number of terminal symbols:
Number of terminals (TERM) = #T' (2)

Although these are the simplest possible estimates of grammar size, they can still provide
useful information about the grammar. A larger number of non-terminals implies a greater
maintenance overhead, since changes to the definition of one may effect many others. In
implementation terms, the size of the parse table is usually proportional to the number of
terminals and non-terminals, particularly for popular predictive parsing algorithms such as
LL(1) and LALR(1).

3.2.2. McCabe Cyclomatic Complexity (MCC)

McCabe’s metric measures the number of linearly independent paths through a flow graph
[21]. This metric is typically interpreted as a measure of the number of decisions in the flow
graph, where decisions are typically represented by the use of boolean-valued expressions in
conditional and iteration statements. This is a useful indicator of the level of difficulty involved
in testing the procedure under consideration, since a good test suite will seek to utilise as many
paths as possible through the flow graph.

Decisions in a context-free grammar are represented by the union and option operators for
conditionals, and the closure operator for iteration. Thus, our mapping of McCabe complexity

Copyright © 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; Accepted for
publication:1-20
Prepared using smrauth.cls

A METRICS SUITE FOR GRAMMAR-BASED SOFTWARE 7

to grammars is to count the total number of alternatives in that grammar, as represented by
occurrences of these operators.

McCabe Complexity (MCC) = Z mecabe(a) (3)
(n—a)eP
where
mecabe(v) = 0 forve (NUT),
mecabe(f¥(Z)) = 1+ mccabe(z) for k€ {|,?,*,+},
mccabe(f¥(Z)) = mccabe(Z) forke{, e}

Two grammars with the same number of non-terminals can still differ in essential complexity
if one grammar has significantly more alternatives for its non-terminals than the other
grammar. The sum of the McCabe complexity measure for these alternatives will highlight
this difference. For parser generators that use only the union operators, such as yacc and
bison, the McCabe complexity of a grammar is the number of distinct production rules it
contains, and is also usually one of the measures reported by such tools. The M CC metric is
thus an extension of the PROD metric from context-free grammars to full regular rightpart
grammars.

The job of a parsing algorithm is to provide a means of choosing between the alternatives in
a grammar during a derivation. Thus, a high McCabe complexity indicates a greater potential
for conflicts in a lookahead-based parser, and a greater scope for backtracking in a search-based
parser.

3.2.8. Average RHS Size (AVS)

In a procedure, the size metric is the number of nodes in the corresponding flow graph, and is
used as a formal alternative to the common lines-of-code (loc) measure. Since production rules
correspond to procedures, the nodes in a flow graph correspond to terminals or non-terminals
on the RHS of a production rule. To compute the average RHS size, we calculate the total of
the RHS sizes for each rule, and divide by the number of non-terminals.

> size(a)
. __ (n—a)eP
Average RHS Size (AVS) = AN (4)
where
size(v) = 1 forve (NUT),
size(f¥(Z)) = size(Z) fork e {,e|, 7% +}

The average RHS size provides a measure of the number of symbols that we can expect
to find, on average, on the right-hand side of a grammar rule. In some parsers, longer RHSs
may mean that larger number of symbols or associated attributes must be placed on the parse
stack, and so may have performance implications. Typically, it is usually possible to decrease
the length of a RHS by replacing some of it by a new non-terminal, and thus the average RHS
size metric should always be considered in association with the total count of the number of
non-terminals.

Copyright © 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; Accepted for
publication:1-20
Prepared using smrauth.cls

8 J.F. POWER & B.A. MALLOY

3.2.4. Halstead Effort (HAL)

Halstead’s software science defines two main metrics to quantify programs: V', a measure of
the size (or “volume”) of the program, and E, an attempt to estimate the effort required to
understand that program. Both of these metrics are calculated as functions of the number of
operators and operands a program contains. We can apply this to grammars by interpreting
the operators as the standard grammatical operations, and the operands as the terminals
and non-terminals in a given grammar. The value for program volume V yields little more
information than TERM and V AR given earlier. However, Halstead’s effort metric E has the
effect of relativising McCabe’s metric, which counts the number of operators, by multiplying

a weighting for the number of occurrences of the grammar symbols.
Following the standard definition of Halstead Effort E from [24], we define:

Halstead Effort (HAL) =

where
M1 =

U2

T
n2 =

and
opr(v) =
opr(f*(z)) =

opd(v) =
opd(f*(z)) =

Since HAL is weighted by a measure of the grammar’s size, unlike M CC, it provides a
better basis for judging differences in complexity between grammars of different sizes.

_panz(m + m2) logy (a1 + p2)

no. of unique operators

#{'56a |a?a *, +} =6

no. of unique operands

#T + #N

total occurrences of operators
> opr(e)

(n—a)eP

total occurrences of operands
> 1+ opd(a)

(n—a)eP

0

1+ opr(z)

1

opd(z)

3.3. Structural Metrics

As described in section 2 we can represent a grammar as a graph whose nodes are non-
terminals, and where there is an edge between non-terminals A and B precisely when A > B.
This concept parallels that of the call graph in programming languages, and provides the basis

2p2

forve (NUT)
forke{, el 7% +}

forve (NUT)
forke{, el 7% +}

for the calculation of metrics based on the structure of a grammar.

Copyright © 2004 John Wiley & Sons, Ltd.

publication:1-20
Prepared using smrauth.cls

J. Softw. Maint. Evol.: Res. Pract. 2004; Accepted for

A METRICS SUITE FOR GRAMMAR-BASED SOFTWARE 9

3.3.1. Tree Impurity (TIMP)

The call graph for a program is a directed graph indicating the dependencies between
procedures in the program [4]. A high ratio of number of edges to procedures in a call graph
indicates a high level of dependency between procedures; this complexity can complicate the
testing process and can possibly indicate poor design. Since we regard a non-terminal as a
procedure, and since the successor relation >* between non-terminals defines edges in the call
graph, this metric can be applied directly to grammars. At a minimum, the call graph will
be a tree, at a maximum it will be a fully connected graph; hence, to calculate the impurity
metric we normalise the count of the number of edges between these bounds, and express it
as a percentage.

Following [4], the formula to compute the impurity metric for a call graph with n nodes and
e edges is:
2(e—n+1)

-100 (6)

where
n = #N
e = #{(AD>*B)|A BeN}

Very often a grammar must be refactored in order to make it amenable to a particular parsing
algorithm. It is reasonable to suggest that a high impurity level for a grammar indicates that
this refactoring process will be complicated, since a change in one rule may impact many other
rules.

3.3.2. Normalised Count of Levels (CLEV)

In this metric, we use the call graph, used in the calculation of the tree impurity metric, to
partition the non-terminals into a set of equivalence classes called grammatical levels. Since
each of these grammatical levels internally forms a complete graph, we may assume a high
degree of interdependence between the non-terminals in a given level.

The number of levels that can be derived from a grammar LEV gives some idea of the spread
of non-terminals among the grammatical levels. It is, however, dependent on the number of
non terminals, since, for any grammar, the number of levels lies between 1 and #N. Thus,
to facilitate comparison between languages, we define the normalised number of levels as the
total number of levels expressed as a percentage of the total possible number of levels:

N-)

Levels (CLEV) = % - 100 (7)

where
N= is the partition induced on the set of non-terminals N by the

equivalence relation = defined in section 2.

A low value here suggests that the non-terminals are clustered into a few equivalence classes,
and that these are logical choices for modularisation. A higher value means that the grammar

Copyright © 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; Accepted for
publication:1-20
Prepared using smrauth.cls

10 J.F. POWER & B.A. MALLOY

is more evenly spread out between the non-terminals, and there should be more opportunities
for modularising the grammar.

3.3.83. Number of Non-Singleton Levels (NSLEV)

An equivalence class of size 1 indicates a high degree of specification in the grammar, since
this non-terminal is not readily interchangeable with any others. On the other hand, larger
equivalence classes represent high degrees of mutual recursion among the rules, suggesting a
clustering of related functionality.

Our experience indicates that many of the equivalence classes derived from the call graphs
are in fact of size 1, and that central language concepts, such as declarations, expressions and
statements tend to be represented by larger classes. Thus we define a metric to measure the
number of these larger classes, since investigation of these non-singleton sets throws the most
light on the logical groupings among the non-terminals.

Non-Singleton Levels (NSLEV) = #{n € N= | #n > 1} (8)

Since the count of non-singleton levels is usually quite small, we choose not to normalise
this for each grammar.

3.3.4. Size of Largest Level (DEP)

The depth metric for a grammar measures the number of non-terminals in the largest
grammatical level. If the depth value constitutes a significant proportion of the total number of
non-terminals, then this value indicates (at least) an uneven distribution of the non-terminals
among these levels.

Size of Largest Level (DEP) = max{#n | n € N=} 9)

3.3.5. Mazimum Height (HEI)

We can extend the notion of the successor relation to grammatical levels, allowing us to form
a tree with levels as nodes. For any two grammatical levels N1, Ny € Nz, set N; > N5 precisely
when there exists ny € N; and ns € Ny such that ny > ns. The maximum height of this tree
gives us another measure of the dispersion of the non-terminals among the grammatical levels.

Maximum Height (HEI) = max{i | Ny > N2 [> ... > N;} (10)

While this metric can be used effectively in the discussion of theoretical properties of context-
free grammars, our experience suggests that it is less useful in practice.

Each of the metrics described above can be calculated automatically from a context-free
grammar and a tool to accomplish this is described in section 4.

Copyright © 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; Accepted for
publication:1-20
Prepared using smrauth.cls

A METRICS SUITE FOR GRAMMAR-BASED SOFTWARE

11

User

Grammar
or EBNF for F-
Programming Language

size and
complexity
metrics

structural
metrics

Phase |
Front End

flex—generated
scanner

bison—generated
parser

v

: AbstractSyntaxTree % -

Phase Il
Visitors

Walk the AST
using Visitors

lerivesInOne : DerivesTable +

Phase lll
Equivalance Classes

Warshall’s
transitive closure

‘ derivesInMany|

: DerivesTable ‘

\
\

Y partitioning based
_on equivalence

equivClasses : list(list(

NonTerminal)) ‘

calculate
structural metrics

Figure 1. A behavioural overview of the tool. This UML activity diagram provides an overview of
SYNQ, the tool that we constructed to compute the ten metrics. Input to SYNQ, indicated in the
upper left corner, is the EBNF for the grammar under consideration. SYNQ’s output is the result
of the computed metrics that measure the size and complexity of the grammar and structure of the
grammar.

Copyright © 2004 John Wiley & Sons, Ltd.

publication:1-20
Prepared using smrauth.cls

J. Softw. Maint. Evol.: Res. Pract. 2004; Accepted for

12 J.F. POWER & B.A. MALLOY

GrammarFile

—— can be either
yacc/bison
or full EBNF

TerminalRightPart

NonTerminalRightPart

processes

UnionRightPart

ConcatRightPart

<<singleton>> generates

Grammar |@——— RightPart <

INNNNNEN

Processor KleeneClosureRightPart
—— including visits
scanner & PositiveClosureRightPart
parser
accepts OptionRightPart
Visitor EmptyRightPart
DerivesTable GrammarLevels . .
—— Size Metrics
~ table : List(List(bool)) ZH + setDerive(NonTerminal, Nonterminal)

+ getClosure() +canDerive(NonTerminal, NonTerminal):bool

Figure 2. An architectural overview of SYNQ. This UML class diagram depicts the main classes used
in SYNQ. The central entity is the Grammar class, which represents a grammar rules as a mapping
from a non-terminal to an instance of the RightPart class

4. SYNQ: A Tool to Calcuate Syntactic Metrics

In this section we present an overview of the implementation of SYNQ a tool that, given a
grammar, will automatically compute those metrics described in section 3. SYNQ was written
in C++ and implemented using GNU flex version 2.5.4, GNU bison version 1.35, and the
GNU C++ compiler version 3.2.2. As well as demonstrating the feasibility of our approach, the
construction of SYNQ also acts as an operational definition of the syntactic metrics described
formally in section 3.

Figures 1 through 3 use the Unified Modelling Language, UML, to capture information about
SYNQ [25]. Figure 1 provides an overview of the behaviour of SYNQ. The input to SYNQ is
a grammar, described using a superset of the yacc syntax extended to include the full set of
EBNF operators. It is important to allow the full set of EBNF operations here, since many
programming language standards present their grammar in this way, and transformation to
another format might affect the metrics.

As can be seen in Figure 1, in phase I the input grammar is first scanned and parsed, and an
abstract syntax tree (AST) representing the production rules is then generated. The output is
produced in two further phases. Phase I uses a set of Visitors, described below, to generate the
size and complexity metrics, and to create a table representing the successor relation between
non-terminals. Phase III calculates the closure of this relation, derives the equivalence classes,
and produces the structural metrics.

Copyright © 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; Accepted for
publication:1-20
Prepared using smrauth.cls

A METRICS SUITE FOR GRAMMAR-BASED SOFTWARE 13

Visitor {abstract}

+ visitUnion(RightPart, RightPart)
+ visitConcat(RightPart, RightPart)
+ visitKleeneClosure(RightPart)

+ visitPositiveClosure(RightPart)
+ visitOption(RightPart)

+ visitTerminal(Terminal)

+ visitNonTerminal(NonTerminal)

+ visitEmpty()
CalcLevelsVisitor HalsteadVisitor McCabeVisitor
+ getLevels() : Set(GrammarLevels) + getOperatorCount() : int + getMcCabe() : int
+ getOperandCount() : int

Figure 3. The Visitor Classes. This UML class diagram presents some of the classes in our Visitor
hierarchy. The abstract base class Visitor is subclassed for each metric that is calculated.

4.1. The role of Visitors

Phase IT of SYNQ is best discussed in the context of the architectural view of SYNQ, as given
in the class diagram of Figure 2. The AST representing the input grammar is implemented
as a sequence of production rules, where each rule consists of the non-terminal being defined,
along with a RightPart. As can be seen from Figure 2, the RightPart is recursively defined as a
tree representing all the various EBNF operations.

The structure of the RightPart class hierarchy is constructed to correspond to the “node
hierarchy” of the Visitor Pattern as described in reference [26]. The use of the Visitor Pattern
here allows us to add new functionality, such as a new metric, in a modular way, without
changing the SYNQ front-end. It also facilitates the decoupling of the front- and back-ends of
SYNQ. The visitors are used to directly generate the size and complexity metrics, as well as
the grammar levels from which the structural metrics can be calculated.

An overview of some of the visitors used is given in Figure 3. Each metric is calculated
by iterating through the production rules, applying the visitor to each RightPart. The generic
code for handling visitors in a RightPart simply hands back control to the Visitor object, which
has specialised methods to deal with each type of RightPart, as can be seen in the Visitor class
of Figure 3. Each of the size and complexity metrics has its own subclass of Visitor whose
methods contain all the code required by that metric - e.g. there is a McCabeVisitor and a
HalsteadVisitor to calculate the respective metrics.

Copyright © 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; Accepted for
publication:1-20
Prepared using smrauth.cls

14 J.F. POWER & B.A. MALLOY

4.2. Representing Grammatical Levels

From Figure 1, we can see that phase III of SYNQ uses three main data structures: a graph of
the immediate successor relation, a graph of the successor relation, and a graph of equivalence
classes representing the grammatical levels. From these graphs we compute the structural
metrics.

The immediate successor relation is calculated using a subclass of Visitor, which generates as
an instance of class DerivesTable, as shown in Figure 2. This contains a two-dimensional boolean
matrix, S, indexed by non-terminals. For any non-terminals A and B, the entry S[A, B] is true
precisely when A > B.

We traverse this matrix, applying Warshall’s transitive closure algorithm to produce a second
instance of DerivesTable, representing the closure of the first. This is basically a matrix S*,
where now S*[A, B] is true precisely when A>* B. The tree impurity metric can be calculated
directly by counting the number of nodes and edges in S, since this graph represents the
successor relation.

The final data structure required by SYNQ represents the list of grammatical levels. Each
grammatical level consists of a set of non-terminals where any two non-terminals A and B
are in the same grammatical level when A = B, i.e., when both S*[A, B] and S*[B, 4] are
true. These levels can thus be readily calculated from the S* matrix. The remaining structural
metrics are generated directly from this list of grammatical levels.

5. Measurement of Programming Languages

In this section, we describe the results of a study using SYNQ, a tool that implements the
approach described in section 4. There were two purposes to this study. First, we wished to
calibrate the metrics, to ensure that they could discriminate between different grammars, and
that the results could be explained. Second, we wanted provide a basis for quantifying some
of the anecdotal information regarding the size and complexity of programming languages.

Our experiments were conducted on the syntax of four well-known modern programming
languages:

e ISO C, [27, 28] e Java vl.l, [31]
e ISO Ct++, [29, 30] e ECMA-Standard C#, [32]

In each case the programming language syntax is described by a grammar taken directly from
the first reference cited. The grammars were in various formats, all corresponding roughly to
EBNF. None of the grammars were transformed structurally, and the only modifications made
were minor changes of notation and elimination of duplicate production rules. In particular, no
transformations were applied to make the grammars more amenable to any parsing algorithm.
In each case, the grammars describe the syntactic structure of the language and no semantic
attributes or actions are included in any of the grammars.

In the first sub-section below, we present our results for those metrics that describe the
size and complexity of the programming language syntax. In the second subsection below, we
present our results for those metrics that describe the structure of the language, in particular,
those metrics derived from the grammatical levels of the syntax.

Copyright © 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; Accepted for
publication:1-20
Prepared using smrauth.cls

A METRICS SUITE FOR GRAMMAR-BASED SOFTWARE 15

Table 1. Size and complezity metrics. This table shows the results of applying
the metrics to measure the overall size and complexity of the four programming
languages. The last row of the table lists results for the Halstead effort metric,
HAL; the columns are sorted according to the results for HAL in increasing order.

C Java C++ C#
TERM &6 100 116 138
VAR 65 149 141 245
MCC 149 213 368 466
AVS 5.9 4.1 6.1 4.7
HAL 51 95 173 228

5.1. Size and Complexity Metrics

Table I presents the results of using five metrics that measure the overall syntactic size and
complexity of the four languages. The header row of the table lists the languages and the
leftmost column of the table lists the applied metrics. The columns are sorted in increasing
order of Halstead’s Effort metric, expressed in thousands.

The first and second rows of data in Table I list the number of terminals, TERM, and non-
terminals, VAR, in each grammar. Since these counts are the ones most obvious to someone
reading a grammar, we might partition the grammars into three classes. The smallest grammar
is ISO C, in the middle we have Java and C++, while C# has the largest number of terminals
and non-terminals. The relative positions of C and C++ will probably not surprise anyone
familiar with these languages, but it is interesting that the C# language, still at a relatively
early stage of evolution, should have such a high count of grammar symbols.

The third row of data in Table I gives the McCabe complexity, MCC, for each grammar, and
shows a pattern somewhat similar to the previous two rows. As expected, C is the smallest,
with Java closely following. Also, as expected, C++ is considerably larger than both, but again
C# comes out with the highest complexity.

The similarity of the numbers across the fourth row of data in Table I, ranging from 4.1
up to 6.1, reflect the notion that grammar writers typically do not allow the RHS of rules,
on average, to grow to extreme lengths. This breaking-up of overly-long rules parallels the
decision by programmers not to allow procedures to grow to extreme lengths.

The fifth row of data in Table I shows the values of Halstead’s effort metric, HAL, for each
grammar, and could be seen as a summary of the preceding rows, since the complexity and
number of operators is relativised by the number of symbols. We see a similar ranking to that
provided by the McCabe metric, with a progression from C, to Java, to C++ and finally to C#.

Copyright © 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; Accepted for
publication:1-20
Prepared using smrauth.cls

16 J.F. POWER & B.A. MALLOY

Table II. Structure Metrics. The results depicted in this table show the results of applying the metrics
to measure the structure of the four languages. The columns are sorted in increasing order of TIMP,
the tree impurity metric.

C# Java C Ct++
TIMP (%) 207 327 641 858
CLEV (%) 649 59.7 338 14.9

NSLEV 5 4 3 1
DEP 44 33 38 121
HEI 28 23 13 4

5.2. Structural Metrics

Table II presents the results of using the structural metrics to measure the overall structure
of the four languages. The header row of the table lists the four languages and the leftmost
column lists the structural metrics applied. The columns have been sorted in order of increasing
tree impurity, expressed here as a percentage. The Tree Impurity metric, TIMP, is derived from
the closure of the call graph generated by the grammar, whereas the remaining metrics are
derived from the calculated grammatical levels.

The metric presented in the first data row of Table II, TIMP, presents the results for the tree
impurity of the grammars. The ordering now is changed from the size metrics, in that C# and
Java have quite similar impurity levels, whereas C and its successor, C++, have quite high levels
of impurity. The impurity numbers for C and C++, at 64.1% and 85.8% respectively, reflect a
considerable density of edges in the closure of the call graph of these grammars. One possible
consequence of high values for impurity is a decreased potential for modular construction of
parsers for these languages.

The second data row of Table IT shows the total number of levels for each grammar, CLEV,
as a percentage of the total number of non-terminals. Since the impurity metric measures the
degree to which the equivalence classes form a fully-connected graph, it is not surprising that
the number of equivalence classes in a grammar vary roughly inversely with the impurity. Both
C# and Java have a high number of equivalence classes, indicating that the non-terminals are
well spread out between these classes. At the other end, the relatively low figure for Ct++, just
under 15%, indicates that the non-terminals are clustered among relatively few equivalence
classes.

A closer picture of the distribution of non-terminals among grammatical levels is given by
the last three data rows of Table II. The number of non-singleton levels, NSLEV, is particularly
revealing, since these describe the main syntactic components within the grammar, such as
declarations, types, statements or expressions. We can see that for all the grammars other
than C++ this value is either 3, 4 or 5.

The three non-singleton levels for Java reflect categories for expressions, statements and
types. The size of the largest level, reflected by the depth metric, DEP, corresponds to the
number of non-terminals in the level for Java expressions. The other two non-singleton levels

Copyright © 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; Accepted for
publication:1-20
Prepared using smrauth.cls

A METRICS SUITE FOR GRAMMAR-BASED SOFTWARE 17

for Java contain 25 non-terminals for statements and 4 non-terminals for types. A similar
picture emerges with C#, where these three levels are augmented with two other small levels,
one each for class and namespace member declarations.

There were just two non-singleton grammatical levels generated for the C grammar. The
depth metric of 38 reflects the cardinality of the largest grammatical level, which contained
non-terminals for expressions and declarations. The other non-singleton grammatical level,
that contained non-terminals relating to statements, had a cardinality of 6. Finally, the depth
metric for C++ at 121 non-terminals is the cardinality of the only non-singleton grammatical
level for this grammar. This is the least modular of all the grammars, where non-terminals for
types, declarations, statements and expressions are combined into a single large grammatical
level containing 86% of the non-terminals in the grammar.

The HEI metric, shown in the last row of Table II, is more difficult to interpret. The
grammatical levels form a tree, where the root node is the level containing the start symbol,
and level L is a child of Ly precisely when L; > L. The HEl metric measures the height of
this tree but, due to the large number of singleton levels, does not appear to shed any new
light on the grammatical complexity; nevertheless, we include the HEl metric for completion so
that all of the metrics of reference [20] are included in our study. It is notable at least that the
comparatively low HEI value for C++ reflects the clustering of a large number of non-terminals
in a single level.

6. Case Study: The evolution of the GNU C++ Parser

In section 5 we applied our metrics to the syntax of four different programming languages.
While most programming languages are defined by standards documents that specify a
grammar for the language, the transformation of this grammar into a parser is often a non-
trivial task. Some standards, such as [28] or [31] present both a reference grammar and a
parser-friendly equivalent. However, the construction of a parser for ISO Ct+ programming is
notoriously difficult [33, 34, 35, 36, 37, 38]. While some of this difficulty is related to semantic
issues, a portion of it is related to the complexity and scale of the language, as indicated by
the metrics in the previous section.

Programming languages can evolve over time as features are added and standardised and
this can also result in a need for the evolution of the corresponding grammar. In this section we
use our metrics to chart the evolution of the GNU Ct++ grammar, contained in gec, the GNU
compiler collection. This evolution was the result of two separate, but related threads: the
evolution of the C++ programming language toward ISO standardisation, and the convergence
of the GNU C++ parser toward that standard. By using our metrics to quantify this evolution,
we establish two important properties of the measures. First, the increasing complexity of the
GNU C++ parser is reflected by the metrics as we move from version to version. Second, the
metrics are capable of quantifying the differences between major and minor changes as we
move from one version to the next.

Copyright © 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; Accepted for
publication:1-20
Prepared using smrauth.cls

18 J.F. POWER & B.A. MALLOY

Table III. The evolution of the GNU C*+ parser. This metrics in this table chart the development of
the grammar used in the C++ parser from each major version of the GNU compiler, from version 2.0
to 3.0. The table is ordered chronologically, by version number.

Feb 1992
Mar 1992
Jun 1992
Dec 1992
Jun 1993
Jan 1994
Nov 1994
Nov 1995
Jan 1998
Jul 1999

Jun 2001

version 2.0 2.1 2.2.2 233 245 258 2.6.3 2.7.2 28.0 295 3.0

TERM 105 107 107 107 109 108 104 107 112 110 111
VAR 146 150 149 148 152 158 193 202 214 232 236
MCC 483 491 490 497 500 512 511 524 568 592 624
HAL 576 584 591 632 624 664 545 528 585 620 699
AVS 11 11 11 12 12 12 8.8 8.4 8.6 8.3 8.7

TIMP (%) 56.9 55.7 56.0 57.4 57.8 58.7 64.1 63.5 71.5 72.6 734
CLEV (%) 425 44.0 436 41.9 41.4 40.5 33.7 34.2 276 259 25.0

NSLEV 2 2 2 2 2 2 2 2 2 3 3
DEP 84 84 84 86 89 94 127 131 152 169 174
HEI 11 12 12 12 12 12 12 14 11 12 12

6.1. Stages in the evolution of the GNU C++ compiler

Table IIT presents the results of applying our metrics to the grammar used in each major
version of the C++ parser from gcc between version 2.0, released on February 22, 1992, and
version 3.0, released on June 18, 2001. This series of releases covers the evolution of the C++
parser from one of the earliest versions of the compiler to a version that is close to compliance
with the ISO standard [39]. Each version of gcc uses a bison-compatible C++ grammar at the
core of the C++ compiler, and it is this grammar that was measured in each case.

Although metrics cannot provide detailed information about the impact of grammar
transformations across different versions of the gcc C++ compiler, they can enable us to track
trends in the evolution of the parser. The number of terminal symbols TERM remains broadly
constant through the versions, as might be expected, increasing gradually from 105 to 111
terminals. The number of non-terminals VAR does not show much variance at first, but makes
a sharp jump between versions 2.5 and 2.6, when 35 new non-terminal symbols were added.
As can be seen from the figures reflecting the average RHS size, this corresponds to a drop in
the size of a rule, from 12 to 8.8 symbols, clearly the result of a major refactoring.

The McCabe complexity MCC increases slowly up to a value of 512 between versions 2.0
and 2.5, reflecting a gradual addition of functionality to the parser. It is noticeable that MCC
varies little between versions 2.5 and 2.6, further underlining our observation that this change
is a refactoring, rather than a significant addition to the grammar. Again, after this version the
complexity increases more rapidly, reflecting the increased level of development of the parser as
it approaches ISO compliance. At 624, the complexity of the gec 3.0 grammar is almost twice
that of the ISO standard C++ grammar, at 368. Clearly, this reflects the degree of difficulty in
constructing an LALR-compliant parser based on the C++ standard.

Copyright © 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; Accepted for
publication:1-20
Prepared using smrauth.cls

A METRICS SUITE FOR GRAMMAR-BASED SOFTWARE 19

The rise in the Halstead metric HAL mirrors the McCabe complexity, except for a drop
between versions 2.5 and 2.6, from 664 to 545, reflecting the increased number of non-terminal
symbols. As before, there is a notable acceleration in the rate of increase of effort after this
version, climbing from 545 in version 2.6 to a value of 699 in version 3.0. This Halstead effort
for version 3.0 at 699 is considerably larger than the corresponding value for the ISO standard
C++ grammar at 173.

In the previous section we noted that most of the non-terminals for the ISO standard C++
grammar are clustered into a single grammatical level. Thus, the structural metrics for the
versions of the gcc grammars shown in Table IIT reflect this to some extent. For version 2.0
through to version 2.8, the two non-singleton levels shown in NSLEV reflect one large level
containing most of the non-terminals, and one small level containing definitions for external
declarations. For the last two versions of gcc, versions 2.95 and 3.0, another small level is added
for template definitions.

Looking at the figures for tree impurity TIMP in Table III, we can see that the parser’s
evolution can be broken into three phases. The first phase, between version 2.0 and version
2.5 reflects the slow evolution of the parser, as indicated previously by the size and complexity
metrics. The sharp jump between version 2.5 and version 2.6, from 58.7% to 64.1% reflects the
fact that of the 35 new non-terminals introduced in this change, 33 of these were introduced
in order to re-factor rules for non-terminals belonging to the largest level, changing the DEP
metric from 94 to 127 non-terminals.

The other significant change in the impurity of the grammar is between versions 2.7 and
2.8, where the impurity rises from 62.5% to 71.5%. Here 12 new non-terminals are added to
the grammar, but a total of 21 non-terminals are added to the largest level, changing the DEP
metric from 131 to 152. This results from a two-pass approach to processing inline method
definitions, where their definitions, and thus the corresponding productions, are effectively
added in at the end of the class definition. We can see that this change also slightly increases
the normalised count of levels CLEV, from 33.7% to 34.2%. After this change, the count of
levels decreases, indicating that any new non-terminals are added to existing levels, rather
than creating new ones.

7. Related Work

In this section we review previous research that relates to our efforts at quantifying grammatical
complexity and applying this quantification to the maintenance of grammar-based software
applications. There has been considerable work directed at estimating the complexity of the
maintenance effort [5, 6, 7, 8], and the incorporation of semantic considerations into this
estimate [11, 12]; however, none of the previous research on metric complexity has targeted
grammar-based applications. The work on grammar complexity was initially reported in
references [22, 40] and extended in reference [20]; we begin by reviewing the work in references
[20] and [40]. There has been some important work on parsing complexity that relates to our
work and we review the research described in reference [41]. Finally, a preliminary version of
this work was presented in reference [42]; we compare our current work reported in this paper
to the preliminary report.

Copyright © 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; Accepted for
publication:1-20
Prepared using smrauth.cls

20 J.F. POWER & B.A. MALLOY

The definitions of VAR, PROD, LEV, DEP and HEIl were introduced in references
[22, 43, 44, 45] and we reviewed them in Section 2. These complexity measures classify
context-free languages according to the size or structural properties of their grammars.
The size of grammars are expressed as the number of terminals, VAR, and the number of
productions, PROD. The number of grammatical levels LEV, the maximal number of elements
of grammatical levels DEP, and the length of the digraph of grammatical levels HEI, are the
complexity measures reflecting the structure of grammars. An important aspect of complexity
theory is the study of the functional behaviour of the complexity measures on language classes.
Complexity measures are functions defined on context-free languages, where the function
values are natural numbers. The main result of reference [20] establishes the unboundedness
of complexity measures VAR, PROD, LEV, DEP and HEI on the classes of languages defined
by grammar forms.

Reference [41] presents algorithms for corpus-based parsing and several metrics are described
for evaluating the algorithms. Input to corpus-based parsing is a treebank, a collection of text
annotated with the “correct” parse tree. The goal is to find algorithms that, given unlabelled
text from the treebank, produce a parse that is similar to the one in the treebank. Evaluation
metrics are used to determine whether a candidate parse matches the correct parse; the metrics
include, among other criteria, Ng, the number of nonterminals in the guessed parse tree, and
N¢, the number of nonterminals in the correct parse. Some of the metrics used in reference
[41] are similar to those described in references [22, 43, 44, 45] and [20], but most are based
on parse trees rather than grammars.

Software metrics is a well-established field, and reference [4] presents a good overview. The
formulation of our metrics, particularly Section 3, was inspired by the work on object-oriented
metrics [46], which stressed unambiguous formal definition as a basis for defining metrics.
However, deciding on a choice of metrics is often a difficult task, and can vary depending on
their intended use. One approach to validating metrics proposes a set of axioms that metrics
should adhere to [47], but these are not without controversy [4, §8.6]. Other approaches
use standard statistical techniques to investigate desired properties; for example, principal
component analysis could be used to investigate the independence of the metrics in our suite.
However, further empirical work is required to provide sufficient data for such a statistical
analysis, as well as providing a basis for comparison with external product attributes.

The metrics presented in this paper were first described in preliminary form in reference [42].
The present paper extends this work in a number of important ways. First, we have extended
here and fully formalised the metrics presented in reference [42]. Second, reference [42] only
applied the metrics to C, C++ and Java, whereas we have extended this to cover C#, providing
a better insight into the significance of the metrics. Finally, the use of the metrics to chart the
evolution of the C++ parser from gcc is unique to this paper.

8. Concluding Remarks

In this paper, we have adapted the software metrics that are commonly used to measure
program complexity and to apply them to the measurement of the complexity of programming
language syntax. We have formally defined a suite of ten metrics measuring grammar size

Copyright © 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; Accepted for
publication:1-20
Prepared using smrauth.cls

A METRICS SUITE FOR GRAMMAR-BASED SOFTWARE 21

and structure. Measuring grammars in this way extends the field of software metrics to cover
grammar-based applications such as compilers and program comprehension tools.

We have described SYNQ, our tool that takes, as input, an EBNF for a context-free grammar
and produces, as output, results for the computed metrics. We have presented the results of
applying our metrics to four commonly used programming languages as well as several versions
of the evolution of the GNU Ct++ parser.

Using our metrics, together with the metrics described by other researchers [22, 43, 44, 45,
40, 20], we have shown a correlation between the computed results of the metrics and anecdotal
reports about language and the difficulty of parser construction. By using our metrics to track
the evolution of the GNU Ct++ parser we have demonstrated that they can usefully distinguish
major and minor version changes, as well as measure the impact of those changes.

The results in this paper can contribute to software maintenance and evolution in the
following areas:

e Our metrics permit a comparative analysis of programming languages, thus providing
a basis for the relative estimation of a facet of the maintenance effort for software
written using these languages. In particular, these metrics have direct implications for
tool construction and program comprehension activities.

e The metrics can be used by language designers to estimate the effect of changing
a language’s syntax, or adding a new language feature. While the creation of new
programming languages is a relatively esoteric occupation, there is a burgeoning research
field in the construction and processing of domain-specific languages [48], and our metrics
can contribute to this area.

e Qur metrics allow for the integration of grammar-based software artifacts into the
metrication process. For example, the C source code of the GNU compiler could have
been analysed using standard software metrics; our syntactic metrics allow for a complete
picture of the evolution of this software.

We believe that the metrics suite outlined in this paper can help with the construction and
evaluation of software analysis tools used in software maintenance, as well as contributing to
the study of the evolution of grammar-based software.

REFERENCES

1. Schach SR. Object-Oriented and Classical Software Engineering, McGraw-Hill: New York NY, 2001;
648 pp.

2. Martin J, McClure CL. Software Maintenance: The Problem and its Solutions, Prentice-Hall: Englewood
Cliffs, NJ: Englewood Cliffs NJ, 1983; 472 pp.

3. Pigoski TM. Practical Software Maintenance: Best Practices for Managing your Software Investment,
Wiley: New York NY, 1997; 400 pp.

4. Fenton NE, Pfleeger SL. Software Metrics: A Rigorous and Practical Approach, International Thomson
Publishing: London, England, 1998; 656 pp.

5. Abran A, Silval, Primera L. Field studies using functional size measurement in building estimation models
for software maintenance. Journal of Software Maintenance and Evolution: Research and Practice 2002;
14(1): 31-64.

6. Ahn Y, Suh J, Kim S, Kim H. The software maintenance project effort estimation model based on
function points. Journal of Software Maintenance and Evolution: Research and Practice 2003; 15(2):
71-85.

Copyright © 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; Accepted for
publication:1-20
Prepared using smrauth.cls

22

J.F. POWER & B.A. MALLOY

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.
29.

30.
31.
32.

33.

34.

. Harrison MS, Walton GH. Identifying high maintenance legacy software. Journal of Software Maintenance

and Evolution: Research and Practice 2002; 14(6): 429-446.

. Polo M, Piattini M, Ruiz F. Using code metrics to predict maintenance of legacy programs: a case study.

Proceedings International Conference on Software Maintenance. IEEE Computer Society: Los Alamitos,
CA, 2001; 202-211.

. Briand LC, Wust J, Lounis H. Using coupling measurement for impact analysis in object-oriented systems.

Proceedings International Conference on Software Maintenance. IEEE Computer Society: Los Alamitos,
CA, 1999; 475-482.

Sahraoui HA, Godin R, Miceli T. Can metrics help to bridge the gap between the improvement of
OO design and its automation. Proceedings International Conference on Software Maintenance. IEEE
Computer Society: Los Alamitos, CA, 2000; 154-162.

Chapin N. An entropic metric for software maintainability. Proceedings 22nd Annual Hawaii International
Conference on System Sciences. IEEE Computer Society: Los Alamitos, CA, 1989; 522-523.

Etzkorn LH, Gholston S, Hughes WE. A semantic entropy metric. Journal of Software Maintenance
and Evolution: Research and Practice 2002; 14(4): 293-310.

Malloy BA, Gibbs TH, Power JF. Decorating tokens to facilitate recognition of ambiguous language
constructs. Software, Practice & Ezperience 2002; 33(1): 19-39.

Reps T, Teitelbaum T, Demers A. Incremental context-dependent analysis for language-based editors.
ACM Transactions on Programming Languages and Systems 1983; 5(3): 449-477.

Panda PR, Catthoor F, Dutt ND, Danckaert K, Brockmeyer E, Kulkarni C, Vandercappelle A,
Kjeldsberg PG. Data and memory optimization techniques for embedded systems. ACM Transactions
on Design Automation of Electronic Systems 2001; 6(2): 149-206.

Rabbah RM, Palem KV. Data remapping for design space optimization of embedded memory systems.
ACM Transactions on Embedded Computing Systems 2003; 2(2): 186-218.

Maletic J, Collard M, Marcus A. Source code files as structured documents. Proceedings 10th
International Workshop on Program Comprehension. IEEE Computer Society: Los Alamitos, CA, 2002;
289-292.

Irwin W, Churcher N. A generated parser of C++. Christchurch, New Zealand, 2001.
http://citeseer.nj.nec.com/irwin0lgenerated.html [13 January 2003].

Aho A, Sethi R, Ullman J. Compilers: Principles, Techniques and Tools, Addison-Wesley: Boston, MA,
1986; 500 pp.

Csuhaj-Varji E, Kelemenovd A. Descriptional complexity of context-free grammar forms. Theoretical
Computer Science 1993; 112(2): 277-289.

McCabe TJ. A complexity measure. IEEE Transactions on Software Engineering 1976; 2(4): 308-320.
Brauer W. On grammatical complexity of context-free languages. Proceedings Symposium and Summer
School on the Mathematical Foundations of Computer Science. Mathematical Institute of the Slovak
Academy of Sciences: Czechoslovakia, 1973; 193—-196.

Elder J. Compiler Construction: A Recursive Descent Model, Prentice-Hall: Englewood Cliffs, NJ, 1994;
437 pp.

Halstead M. Elements of Software Science, Elsevier Science Inc.: New York, NY, 1977; 127 pp.

Booch G, Rumbaugh J, Jacobson I. The Unified Modeling Language User Guide, Object Technology
Series, Addison-Wesley: Boston, MA, 1998; 482 pp.

Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley: Boston, MA, 1995; 395 pp.

ISO/IEC JTC1/SC22/WG14. International Standard: Programming Languages - C, No. 9899:1999.
International Organization for Standardization (ISO): Geneva, Switzerland, 1999; 538 pp.

Kernighan B, Ritchie D. The C Programming Language, Prentice-Hall: Englewood Cliffs, NJ, 1988; 274 pp.
ISO/IEC JTC1/SC22/WG21. International Standard: Programming Languages - C++, No. 14882:2003.
International Organization for Standardization (ISO): Geneva, Switzerland, 2003; 786 pp.

Stroustrup B. The C++ Programming Language, Addison-Wesley: Boston, MA, 1997; 911 pp.

Gosling J, Joy B, Steele G. The Java Language Specification, Addison-Wesley: Boston, MA, 2000; 544 pp.
ECMA. C# language specification, No. ECMA-334. European Computer Manufacturers Association:
Geneva, Switzerland, 2002; 471 pp.

Bodin F, Beckman P, Gannon D, Gotwals J, Narayana S, Srinivas S, Winnicka B. Sage+-+: An
object-oriented toolkit and class library for building Fortran and C++ restructuring tools. Proceedings
2nd annual object-oriented numerics conference. Rogue Wave Software: Corvallis, OR, 1994; 122-136.
Knapen G, Lague B, Dagenais M, Merlo E. Parsing C+4 despite missing declarations. Proceedings 7th
International Workshop on Program Comprehension. IEEE Computer Society: Los Alamitos, CA, 1999;

Copyright © 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; Accepted for
publication:1-20
Prepared using smrauth.cls

A METRICS SUITE FOR GRAMMAR-BASED SOFTWARE 23

w
[S4)

w
[=2]

w
B

w

w

41.

42.

43.
. Kelemenova A. Complexity of normal form grammars. Theoretical Computer Science 1984; 28(3): 299—

45.
46.
47.

48.

8.

9.

114-125.

. Lilley J. PCCTS-based LL(1) C++ parser: Design and theory of operation, version 1.5. Westminster,

CO, 1997. http://www.empathy.com/pccts [13 January 2003].

. Power JF, Malloy BA. Symbol table construction and name lookup in ISO C+4. Proceedings 37th

International Conference on Technology of Object-Oriented Languages and Systems. IEEE Computer
Society: Los Alamitos, CA, 2000; 57-68.

. Reiss S, Davis T. FEzperiences writing object-oriented compiler front ends, Brown University: Providence,

RI, 1995; 18 pp.
Roskind J. A YACC-able C++ 2.1 grammar, and the resulting ambiguities, release 2.0. Indialantic, FL,
1991. ftp://ftp.iecc.com/pub/file/c++grammar [13 January 2003].

Malloy BA, Linde SA, Duffy EB, Power JF. Testing Ct++ compilers for ISO language conformance. Dr.
Dobbs Journal 2002; 27(6): 71-80.

. Ginsburg S, Lynch N. Size complexity in context-free grammar forms. Journal of the Association for

Computing Machinery 1976; 23(4): 582-598.

Goodman J. Parsing algorithms and metrics. Proceedings 34th Annual Meeting of the Association for
Computational Linguistics. Association for Computational Linguistics: East Stroudsburg, PA, 1996; 177—
183.

Power JF, Malloy BA. Metric-based analysis of context-free grammars. Proceedings 8th International
Workshop on Program Comprehension. IEEE Computer Society: Los Alamitos, CA, 2000; 171-178.
Gruska J. Some classifications of context-free languages. Information and Control 1969; 14: 152-179.

314.

Kelemenovad A. Structural complexity measures on grammar forms. Proceedings 2nd Conference on
Automata, Languages and Programming Systems. Springer-Verlag: Heidelberg, Germany, 1988; 73-76.
Briand L, Daly J, Wust J. A unified framework for coupling measurement in object-oriented systems.
IEEE Transactions on Software Engineering 1999; 25(1): 91-121.

Weyuker E. Evaluating software complexity measures. IEEE Transactions on Software Engineering 1988;
14(9): 1357-1365.

van Deursen A, Klint P, Visser J. Domain-specific languages: An annotated bibliography. ACM
SIGPLAN Notices 2000; 35(6): 26—-36.

AUTHORS’ BIOGRAPHIES

James F. Power is a lecturer in the Department of Computer
Science at the National University of Ireland, Maynooth. His
research interests include compiler design, program comprehension
and formal methods. He received a Ph.D. and M.Sc. in Computer
Science from Dublin City University, and a BSc. in Computer
Science from University College Dublin.

Brian A. Malloy is an Associate Professor in the Department
of Computer Science at Clemson University. His research interests
include software engineering, compiler technology, software design,
software specification and software testing. He received a Ph.D.
and M.S. in Computer Science from the University of Pittsburgh,
and a B.A. in Mathematics from La Salle College, Philadelphia.

Copyright © 2004 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2004; Accepted for
publication:1-20
Prepared using smrauth.cls

