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SUMMARY

Grammar inference is a family of machine learning technique that aim to infer grammars from a sample
of sentences in some (unknown) language. Dynamic analysis a family of techniques in the domain of
software engineering that attempts to infer rules that goven the behaviour of software systems from a
sample of executions. Despite their disparate domains, Hofields have broadly similar aims; they try to
infer rules that govern the behaviour of some unknown systenfrom a sample of observations. Deriving
general rules about program behaviour from dynamic analyss is difficult because it is virtually impossible
to identify and supply a complete sample of necessary progma executions. The problems that arise with
incomplete input samples have been extensively investigat in the grammar inference community. This
has resulted in a number of advances that have produced incesingly sophisticated solutions that are more
successful at accurately inferring grammars from (potentally) sparse information about the underlying
system. This paper investigates the similarities and showsow many of these advances can be applied with
similar effect to dynamic analysis problems by a series of sall experiments on random state machines.
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1. Introduction

Dynamic software analysis is the process of executing arprogusually several times) and gathering
properties that potentially govern its behaviour. It istigalarly appealing because of its inherent
precision. Results are limited to a very specific set of cetecprogram executions, and large quantities
of dynamically recorded information can be used to infesrsgrproperties about program behaviour.
The narrow focus that makes dynamic analysis so precise caever also be problematid]f
The resulting program properties can only be regarded asseptative of general program behaviour
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2 N. WALKINSHAW ET AL.

(regardless of input or environment) if the supplied setrofypam executions is ‘complete’. For this to
be the case, the executions would have to provide a totatage®f every feasible program behaviour.

Depending on the complexity of the program, this set of nemgsexecutions can be prohibitively
large. If the assumption is made that the developer is notately familiar with the program (which
is probable in many dynamic analysis application domairghsas program comprehension), the
requirement to know the input combinations for every neagssxecution renders the whole task
of obtaining a complete execution set even less realistic.

In practice, developers are often reduced to supplyingyarsatechniques with incomplete (often
random) sets of executions, which fail to exercise key pafrtee program. The results of the analysis
must therefore be regarded with a large degree of skepticidthough certain dynamic analysis
techniques and tools have been successfully adopted fgraomoming tasks that do not rely on the
ability to generalise, there are many other potentially @dul dynamic analysis techniques that have
been neglected because of the time and effort required todethem with the necessary (complete)
set of program executions.

This problem is not unique to dynamic analysis. Grammarr@ifee is an example of another field
that is subject to a similar weakness. Here the challenge identify the grammar of a language
by analysing a sample of sentences. The sample can ofterabgespvhich means that the resulting
grammar is inevitably only partial or even wrong. Howeversubstantial amount of research in
grammar inference has focused on addressing this probladmas produced a number of relatively
successful solutions. These include the use of both pessaifilimpossible sentences and the use
of active, oracle-driven techniques to guide grammar @rfee by answering simple questions about
system behaviour.

The similarity of the problems and limitations faced by dyri@analysis and grammar inference is
striking. This paper argues that many of the solutions inmgnar inference, which have resulted in
techniques that produce reliably accurate approximatdmsgular grammars, can be applied with a
similar effect to improve dynamic analysis techniquesxplering this, the paper makes the following
three principal contributions:

(1) It provides an overview of the grammar inference prohlamd highlights the parallels with
dynamic analysis.

(2) It shows how many well-established solutions to the graminference problem can be used in
dynamic analysis, and demonstrates the value of doing sebyies of experiments on random
state machines, which are specifically generated to resestdie machines of software systems.

(3) It elaborates on existing work to evaluate the accurdsyate machines by precision and recall
by using systematic model-based testing techniques taetisat the precision and recall values
are not biased by random test case selection.

Section2 describes the problems that are encountered by traditdyr@mic analysis techniques.
Section3 provides an introduction to the grammar inference probliralso presents some of the
key theoretical work that has helped to demarcate the liofitsaditional inference algorithms and
shows some of the more recent solutions that attempt to wankna these limits. Sectioh makes

explicit the similarities between the two fields. It showsvheome of the solutions that have proved
successful in the grammar inference field can just as welppéed to dynamic analysis problems. It
also adapts and elaborates an existing evaluation metbotthe field of dynamic analysis to provide
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IMPROVING DYNAMIC SOFTWARE ANALYSIS 3

a more authoritative measure of the accuracy of reversaeaged state machines. Sectbpresents
three small experiments that show the effect of adoptingjiquéar grammar inference principles on
the accuracy of dynamic analysis techniques. Finallyjeeét offers some conclusions, and outlines
some future research.

2. Dynamic Analysis and its Problems

Identifying and recording suitable program executionstadifficult and expensive, which can make
dynamic analysis results difficult to interpret and applyiactice. The term ‘dynamic analysis’ has a
broad scope. In this paper we use the following (delibeydtelse) definition:

Dynamic analysis: A dynamic analysis technique takes recorded informatiomfone or more
program executions, and uses that information to infeisrtiat govern program behaviour.

The recorded information can for example come in the form mfgpam traces, break point
information, or print statements. The program behaviol@sroan range from detailed models to simple
assertions and invariants. These rules can be generategtdoyated inference engines or they can
simply be in the mind of the developer.

Dynamic analysis is inherently precise; a technique isrg&eollection of actual observations of
program behaviour to start with and, provided that thesemasions are representative, can construct
models that are faithful to the program’s behaviour. By gsimformation from program executions,
the final models can contain information that could not baiieid from examining the system from a
static perspective alone.

Static analysis techniques on the other hand (e.g. symbgécution or call graph analysis) are
forced to consider every conceivable program executionaBse the possible ranges for variables and
run-time properties of data structures are not always kndway often end up producing conservative
results. Although valid for every feasible program exemutithese can often also apply to program
executions that are infeasible in practice. This can predesults that are too general to be of practical
use to the developer.

However, as with static analysis, dynamic analysis teagscplso suffer from major weaknesses.
The models or rules they produce about program behaviogpaaficto the set of executions they are
given as input. Although partial models are often usefuldaviding insights into particular aspects
of program behaviour, many programmer tasks require a cetmphodel {]. For a complete model,
an analysis must be given a set of program executions thatiateforevery possible behaviour the
target model. If this requirement is to be fulfilled, the teicjues can rapidly become unscalable. These
issues are elaborated in the rest of this section.

2.1. ldentifying and recording a suitable set of executions

Obtaining the set of program executions that adequatelsceseca system is a notoriously difficult
problem. Dynamic analysis techniques usually presume tiste@ce of some ‘representative’ and
‘complete’ set of program executions. In practice howeliere are two barriers that make it almost
infeasible to collect them in their entirety.

Firstly, depending on the size and complexity of the (tamgedel of) the underlying system,
there can be a vast number of executions that are requiredebglynamic analysis technique. For
a behavioural model of the system, the set of required exewuwvould be equivalent to a complete
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4 N. WALKINSHAW ET AL.

functional test set for the whole system. Obtaining suclstdet can be extremely expensive in terms
of the amount of time required, the effort required to runtés sets and the expense of storing the
executions.

If these reservations are put aside, the task becomevedyadiraightforwardf there is an existing,
complete and accurate model of the system; establishedlrhaded testing techniques can be used
to systematically execute the software syst@mHlowever, the second barrier arises because dynamic
(or static) analysis is usually carried out for applicai@uch as program comprehension, precisely
because there is no such model. If there is no prior knowledgsystem behaviour, the task of
accurately identifying and recording the complete set afessary executions becomes virtually
impossible. Without the existence of a model, users arecestitio using other testing techniques,
such as selecting random inputs, pair-wise input comlmnatbr using structural coverage criteria.
These techniques are used in the hope that the final set of er¢cutions will at least approximate
the complete set.

2.2. Incompleteness and inaccuracy of dynamic analysis nelés

Given the probability that the initial set of program exéons is incomplete, dynamic analysis results
have to be interpreted with a degree of skepticism. This &caeptable if the intended application

relies upon a model that is complete and correct, e.g. theemsdequired for test set generation, or

as the basis for program transformations and optimisatidsa result, these application domains are
often dependent on less accurate (but at least completie)atalyses.

Applications of dynamic analysis techniques tend to actlest the supplied set of input traces
will inevitably be incomplete to an extent. If this assuroptis made, it is reasonable to suggest that
the technique should simply produce a result that is as atz@s the set of supplied executions is
complete. Although useful for providing certain insightg program behaviour, the specificity of the
results makes them difficult to use with confidence. The etan of dynamic analysis techniques in
terms of their accuracy is often similarly unsatisfyingegenting the accuracy only as a relative value
to the set of executions that are provided in the first place reot as an absolute value with respect to
the actual software system itself.

2.3. Scalability of trace analyses

Identifying rules or patterns in program traces can be exttg expensive. Traces can contain vast
amounts of information, which can render them cumbersonstot@ and process. If the information
required is only simple (e.g. the highest and lowest valfiesparticular variable), the size of the trace
is unproblematic, because the amount of time taken to iiyethe required information is linear to the
size of the trace (every data point in the trace only has takaen@ed once). However, as soon as an
analysis attempts to identify more complex patterns thguire the a more expensive analysis process,
scalability inevitably becomes a limiting factor.

3. The Regular Grammar Inference Problem and its Solutions

This section introduces the grammar inference problenvjiges an overview of some inherent limits
on certain traditional approaches, and introduces someeahbst successful recent solutions. It does
not provide an in-depth overview of the underlying mechsaiitgrammar inference techniques. The
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IMPROVING DYNAMIC SOFTWARE ANALYSIS 5

purpose of this section is to provide a high-level view of soof the key insights that have led
to the most substantial advances in the field. For a more celmepisive overview, there are recent
authoritative surveys by Angluin and SmitB] pnd Parekh and Honavad][

3.1. The Grammar Inference Problem

The problem of grammar inference (also known as grammacinmi) was investigated and formalised
by Gold [5] in 1967. He investigated the nature of the task facing hustiging to learn new languages,
with an aim of producing a theoretical framework for the depenent of automated techniques that
could emulate this learning process. He defined the probeimllaws:

Grammar inference technique: A grammar inference technique attempts to learn a grantimar
that produces a languad€ ), given a set of sampleS. The set of samples must contain a set of
positive sample$ ™ that belong to the language and can optionally contain afsetgative samples
S~ that do not. So, denoting as the alphabet af andX* as the set of all finite sequences oYgr
S =S8TuUS~ whereST C L(G)andS~ C ¥*\ L(G).

The simplest class of languages that can be inferred are thasare produced by regular grammars.
A machine that produces or accepts a regular language doesguire a memoryd] (hence it cannot
be used to describe more complex language constructs symdliadromes for example). This lack
of memory requirements means that regular languages caiydira described by deterministic finite
automata, where transitions are labelled with elementsiailphabet and the automaton represents
every valid ordering of those words in a sentence. This sgpr&ation is particularly appealing because
[4]: (a) DFAs are easy to understand and (b) there exist sesfficient DFA algorithms that are useful
for a number of inference techniques (such as minimisatietgrmining the equivalence of two DFASs,
and determining whether the language produced by one DFAigper set of the language produced
by another).

Deterministic finite automaton: A deterministic finite automaton (DFA)is a quintuple =
(Q,X%,9,q0,T), whereQ is a finite set of state; is a finite alphabet is the partial transition function
Q x X — Q, q € Qis theinitial state and” C @ is the set of accepting statesdlfis a sequence of
symbols inX, the target state is denoted®sgy, ). The stringa is accepted ib(qo, ) € T.

Regular grammar inference problem: The regular grammar inference problemcan be defined
as identifying the DFAA(L) for some languagé such thatj(qy,s) € T for everys € ST, and
5(qo,s) ¢ T for everys € S~.

Figure 1 illustrates the DFA for a simple regular grammar. Positiaenples of the grammar
correspond to sequences that would be accepted by the reaemd negative samples correspond
to strings that would be rejected. As an example, a positvepte could consist ofabbbbe, b, abe}
and a negative sample could consis{ofaba, ba}. Given that we do not have any prior knowledge of
the structure of the DFA, a grammar inference technique evatiempt to guess it, given only the sets
of positive and negative sequences.

3.2. Traditional State Merging Approaches
Most grammar inference solutions revolve around the ppiedhat a state in the DFA of the target

grammar is defined by the possible future strings that can &tem it (this notion of equivalence is
called the Myhill-Nerode relation7]). The task of identifying a grammar froi$ invariably involves
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(a) DFA for (ab*c)+b  (b) APTA for abc,abbbbb,b (positive)daaba,c,ba (negative)

Figure 1. Examples of DFA and APTA

searching through the strings tand identifying prefixes in the strings that have identicHfiges.
This problem has been shown to be NP-complete in gengrahld was even compared to problems
such as breaking the RSA cryptosystédh |

Nonetheless, since Gold’s initial research into the supbgaumber of techniques have emerged
that can correctly infer a grammar in polynomial time by plgaestrictions on certain factors, such as
making assumptions about the initial sample of sentenc@siding oracles that can provide additional
information to the inference algorithm. Some of those adearhave been prompted by a substantial
body of theoretical work that establishes the inherent agatnal limitations on particular solutions
to the grammar inference problem. As an example, Ggjlg¢foved that (for any infinite language) an
inference algorithm will require aimfinite number of positive input sentences to determine the target
grammar — thus establishing that any tractable solutionldvoecessarily require some quantity of
negative sentences to eventually produce the correctresul

The state mergingapproach was originally developed by Trakhtenbrot and @arl0]. They use
S to produce armaugmented prefix tree acceptor (APTAg tree-shaped state machine that represents
exactly the samples of positive and negative sequencegde\T his is illustrated in Figuré (b) (the
state numbering can be ignored at this point). The infer@noceess consists of iteratively comparing
the suffix-trees of pairs of states, and merging them if tBaifixes are identical. As this process
continues, the prefix tree acceptor eventually converges apminimal DFA representing the target
grammar.

Trakhtenbrotand Barzdin's approach requiresaplete sedf samplesS (where all possible strings
in S*tand S~are provided). This of course becomes impossible for anyfimite language, and in
practice strings are only provided up to some given lengtthodigh guaranteed to converge upon
the correct solution in polynomial time, the approach is bensome. It is prevented from making a
false merge because this would instantly cause a confli¢ttarcomparison of the suffix-trees. This
can however only be achieved wh8ris complete - as soon as this is not the case, incorrect merges
can occur, and it becomes increasingly probable that tHentgae will ultimately end up producing
an incorrect machine that may not even be consistent witlstthegs inS. Although polynomial, the
simplistic strategy of attempting to merge nodes in a biedidst manner tends to result in a large
number of unnecessary state merges.
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IMPROVING DYNAMIC SOFTWARE ANALYSIS 7

Subsequent work by LandL]] and Oncina and Garcialp] has resulted in the RPNI (Regular
Positive Negative Inference) algoritinirhis improves upon the Trakhtenbrot and Barzdin algorithm
because it will guarantee a machine that is consistent $vighen if S is not complete. Oncinat al.
[14] also show that the algorithm can still produce an accuraehime, provided tha$' contains a
characteristicsample of the target grammar. Informally this means thagmgithe minimal DFA for
some target languagsé, is characteristic if it contains positive sequences thaecevery transition,
as well as a sufficient set of positive and negative sequendatifferentiate between any pair of non-
equivalent states. For a more formal definition the readefesred to work by Duporgt al.[15].

The requirement for a characteristic sample of the targatngrar is however still impractical.
Depending on the size and complexity of the target machime,number of required sequences
in the characteristic sample can be extremely large. Cactsty a characteristic sample requires
a substantial amount of prior knowledge about the undegldgstem, ultimately rendering the
requirement unrealistic for a large number of practicaliapfions.

3.3. Active State Merging

Traditional state-merging techniques fail when the swggblsample is sparse They use rigid
techniques such as breadth-first search to construct watskdf possible state merges. If the provided
sample of sentences is sparse, there is not going to be emtogmation to prevent a wrong merge
from happening. Because the selection of merges is in effiditrary (not based on any evidence
to support the similarity of a pair of states), there is a tpgbbability that an erroneous merge will
occur. When an incorrect merge occurs, subsequent mergésioly compound the error, resulting
in a highly inaccurate final machine. Lant] reinforces this point by demonstrating empirically that
for a sparse sample of sequences, a traditional mergingitalgowill only approximatelyidentify
the correct target machine if the size of the (random) sanspéxponential in the size of the target
machine.

Recent advances in grammar inference have addressed abiemprby (a) augmenting traditional
techniques with the ability to question an oracle in an effitimanner and (b) making use of the
available data to identify suitable state merges by usingistécs instead of rigid work lists. These two
approaches are presented below. The section then condyd@soducing Dupont's QSM technique,
which combines the two approaches and will form the basith®implementation that we use in the
experiments in sectiof.

3.3.1. Incremental and Active Algorithms for State Merging

One of the major weaknesses of the conventional RPNI andhfeakrot and Barzdin algorithms
mentioned above is the fact that they require the entirefsstroplesS in advance (this is referred to
aspresentation from given daaListing every necessary sample $hto produce a correct machine
can simply become too expensive and often requires so muehkmowledge about the underlying
grammar that it practically undermines the purpose of nirigrthe grammar anyway.

*The equivalence between RPNI and Lang’s algorithm is dsenliby Garciat al.[13]
TA sample is termedparseif it is neither complete nor characteristic.
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8 N. WALKINSHAW ET AL.

Dupont developed the RPNI2 algorithrhg], which allows for sequential presentatioof data.
Instead of requiring every string ifi to begin with, positive and negative strings can be fed to the
algorithm in an iterative fashion (as they become availalihough the same result could of course
be achieved by simply restarting the conventional RPNI@tlgm with the extended sample, the RPNI2
algorithm achieves the same effect much more efficientifhhdlgh the experimental results show only
a minor improvement in terms of performance, the real beheditin the usability, as the scenario of
sequential presentation is more likely to occur in practice

Although the incremental extension renders the algorithsies to use, it still does not solve the
more fundamental problem of identifying the relevant sdtstongs that are required to arrive at a
correct machine. This would require antiveapproach. This was the subject of subsequent work by
Damaset al.[17]. They elaborated on Dupont’s earlier work by producingeersion of RPNI that is
not only incremental, but also active; it does not dependheruser to think of suitable inputs, but asks
the usemembership querieand the user merely has to answer with a ‘yes’ (the full gisewalid) or
identify the point in the query that is invalid. The queries aot posed randomly; due to the fact that
a characteristic set of samples is proven to generate a etergohd consistent grammar, questioning
process aims to ‘home in’ on this set. Each proposed mergeairaf states is tested, by producing
questions that should highlight whether a pair of statesfferdnt. If they are, these new negative
sequences can be used to produce a more accurate modeleandrtfing process is restarted.

This questioning strategy is valuable because it allowsiiee to start off with a relatively sparse set
of initial sentences. The user does not need an extensiwekprowledge of the underlying grammar,
and the questioning technique will attempt to ensure thatfiflel model is nonetheless relatively
accurate (provided that questions are answered correBthyattempting to identify the characteristic
set, the question generation process ensures that onhtiesggformation is gathered from the oracle.

3.3.2. Heuristic State Merging

A major source of inefficiency in the traditional algorithiiess in their rigid approach to selecting
candidate pairs of states to merge. As an example, RPNksiatesimply merged by ranking states
in the APTA (see figurel(b)) in terms of the length of their prefixes. The ranking is@ding to
standard lexicographical order, and pdiisb) are chosen so that the rank ©f< b (i.e. a is closer

to the root of the tree). Ultimately though merges are chaaditrarily, in the hope that a pair of
states is either equivalent, or that there is otherwiseilagsin S that will prevent an invalid merge
from happening. If a false merge does happen, and there snoetgh information irt' to prevent it
from happening (assuming that no questioning proceduretasied above has been implemented), the
resulting machine will be wrong, and the error will merelydmenpounded by future merges.

This problem has been addressed by a variety of recent @atuin the grammar inference
community, many of which have been spurred by competitiormdmote the development of better
algorithms. The simplicity of the problem - to learn a detanistic finite automaton, makes the format
of such competitions relatively simple as well. All that isquired is a random FSM (it must be
deterministic and finite), along with a set of strings torréhie candidate algorithms, as well as a
set of strings to test the accuracy of the resulting model.

The Abbadingo One competitiorL] is perhaps the most famous, because it spawned two
techniques that have had a major impact on the field: the Blugge approach for selecting potential
pairs of states to merge, along with the EDSM algorithm, Whian be used to assign a score
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IMPROVING DYNAMIC SOFTWARE ANALYSIS 9

1. Colour all nodes in the APTA white, mark the root node as red
2. while(! all nodes are red)

(@) Mark all nodes that are adjacent to red nodes blue
(b) If a blue node can't be merged with any red node

i. mark as red
(c) else

i. Compute compatibility scores for all red-blue pairs
ii. merge highest-scoring pair

Figure 2. Blue-Fringe EDSM algorithm

to a particular merge pair. These two techniques, espgaidien used in conjunction, can vastly
improve the inference process, and have become a practisaetlme approach to inferring grammars
in practice.

The Blue-Fringe algorithm can be used to, at any point dutiegexecution of a state-merging
algorithm, identify a relatively small set of candidate rgaif states to be merged. The number of
candidate pairs that would need to be considered by a caonahimerging algorithm at any one point
is usually huge; the conventional RPNI algorithm, for exéanpan in theory try to merge every node in
a given sub tree of the APTA with a single node near the roct.Blne-Fringe algorithm significantly
reduces this, by partitioning the set of nodes in the APTA ihiree groups. Red nodes represent a
core of nodes that are considered to be mutually unmerghiel&lue fringe’ is a set of nodes that are
adjacent to the core of red nodes, which are considered toteafml merge candidates, and the rest
of the nodes are white. The algorithm is shown in figirstep 2(c) is elaborated below.

Given the set of red-blue node pairs, a conventional algoritvould simply go about attempting
to merge them in an arbitrary order. This is however ofterrlgu@ptimistic, and heavily relies on the
availability of sufficient samples to prevent a false memgenf happening. To lessen this reliance, De
la Higueraet al.[19] suggest that at any given point an algorithm should orderpibtential merges
in terms of the likelihood of the pair of states being equewal However, their proposed solution
contained a number of flaws which rendered it relativelyfietive on certain data sets. Price’s EDSM
algorithm [Lg] (winner of the Abbadingo competition) adopts De la Higuetral.s idea, and provides
a solution that is more effective over a wide range of samgiie. $or a given set of potential pairs of
states to be merged, it can assign a compatibility scoredb pair. This is computed by comparing
the state transitions that happen after each set of nodaésoammting the number of transitions that are
equivalent. If a conflict is identified (e.g. a patHeads to a reject state frog but to an accept state
from¢’), the pair receives a negative score and is not merged. W8ezhtagether, the Blue-Fringe and
EDSM techniques tend to produce a significant improvemesit other state merging techniques.

Dupont’s QSM approachLp] is perhaps one of the most usable and effective infereratentques
developed so far, because it is an active approach thatpocates the Blue-Fringe and EDSM pair
selection strategy. Merges are selected by using the Blngé-strategy and appropriately scored and
ordered using the EDSM algorithm. As the merges are prodetise QSM algorithm generates lists
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10 N. WALKINSHAW ET AL.

of questions for each merge to (a) check that the merge id @alil (b) garner missing information
to prevent false merges from being attempted in the futuepedding on the initial samplg, this
can produce a highly accurate grammar, and substantiallycesthe amount of time and computation
effort required by the inference algorithm.

3.4. Alternative Approaches

Itis important to note that the overview presented in thidisa is only partial. The point is to convey
the main attributes of effective grammar inference sohgito the reader, to set the context for the rest
of the paper. There are however a number of other approachtsb{y Angluin’sLx* technique 20Q)),
that incorporate negative information and are active. TB®@ndLx* techniques differ fundamentally
because thé x algorithm exhaustively explores the entire state spackelgarned machine, whereas
the QSM algorithm take$ and generalises only from the presented set of traces. édthdx is
always guaranteed to produce a complete and correct madhia@ become prohibitively expensive
when a sparse set of samples is provided for a complex statikinega which is why we argue that the
(possibly incomplete) QSM technique is more suited for thmdin of dynamic analysis.

4. Applying Grammar Inference Principles to Dynamic Analyss

There is an obvious overlap between the problems that areessltl in the grammar inference
and dynamic analysis communities. Both attempt to derieésfar models from a finite sample of
observations. Regular grammar inference aims solely &r imfDFA, whereas dynamic analysis has
a broader range of potential target models. This sectiontpaiut some of the parallels between the
two fields. If the purpose of dynamic analysis is to infer a eldtiat is equivalent to a DFA, the
analysis problem can be recast as a grammar inference prpaiel the solution can take advantage
of the many advances that have made regular grammar infereare tractable. Even if the target of
dynamic analysis is not to produce a DFA-equivalent modiele are still many sufficiently general
principles that can be applied regardless of the target mode

The next subsection will present an overview of existingrapphes to dynamic analysis that are
inspired (at least to some extent) by grammar inferencecgpies. Sectiof.2 presents the grammar
inference principles that have not yet been applied in thaao of dynamic analysis techniques.
Although the primary dynamic analysis application consédehere is the use of execution traces to
reverse engineer state machines of software systems, itie@pbes are sufficiently general that they
can be effectively applied to most other dynamic analyspdiegtions that involve generating a model
from a limited set of observations.

4.1. Existing solutions inspired by grammar inference

The analogy between grammar inference and dynamic analesssfirst realised over 30 years
ago when Biermann and Feldma®l] proposed theik — tails state-merging algorithm that could
generate state machines from sample executionskFheails algorithm is a variant of Trakhtenbrot
and Barzdin’s passive state merging algorithm that consitleo states equivalent if they are buth
succeeded by a string of lengthThe best value fok depends primarily on the developer’s judgment.
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IMPROVING DYNAMIC SOFTWARE ANALYSIS 11

A large k value may make the state comparison process more costlyilbproduce a more precise
machine, but will often prevent merges that should happ@mneiyn because there is a lack of evidence
to justify them. A smalk value can result in the merging of non-equivalent statespanduce incorrect
machines, but requires less computation time.

A number of papers exist that explore the link between graminfarence and dynamic analysis.
Most of these augment thle — tails algorithm P2, 23, 24, 25, 26, 27]. However, these techniques
restrict themselves to a rigid notion of dynamic analysat thoes not permit them to take advantage
of some of the substantial advances that have taken placeamngar inference. The conventional
dynamic analysis framework is subject to those problenisiieee introduced in sectio?y it assumes
the provision of a single ‘representative’ selection of @k@n traces (i.e. it is passive) and it
conventionally only acceptgositivetraces of program behaviour (no negative information).d3ol
work [8] proved that, for any infinite language (which for us tratestato any software system with
loops - i.e. the majority) a dynamic analysis technique ndtessarily require an infinite number of
program executions to produce a definitive result. The olifrraative is thaeverypositive sample
up to a given length is provided, which in the case of dynamalysis becomes impossible for any
non-trivial system.

Consequently, the result of a dynamic analysis based on & fseit of program executions is
inevitably only an approximation of the target system andwihout any negative information,
inherently prone to over-generalisation. In practice thisans that the model that is presented by
such an analysis will exactly show some set of rules that igotree provided set of program traces,
but will not be able to make any useful inferences about thege system behaviour; it cannot infer
impossible behaviour and, due to a combination of insufiicreegative information and incomplete
set of samples, any steps that attempt to infer behavioulesd beyond the supplied set of samples will
probably be false.

This problem is addressed (at least to an extent) by reveigaeering approaches that are based
on Angluin’s L« algorithm R0]. A large number of techniques exist that use thealgorithm to build
models from software systemad, 29]. These are interesting because they are active, and io&igp
negative information about system behaviour to produce raptete model of system behaviour.
However, as mentioned in secti@4, their nature of exhaustively probing system behaviour and
generating vast numbers of queries renders them protahjitaxpensive for non-trivial systems. These
techniques are not intended for what would be considerediealydynamic analysis scenario (i.e. the
developer has a set of traces from some arbitrary system antswo generate a model from them).
These are instead used for relatively specialised softaygtems, where the execution of thousands of
tests is not a concern.

4.2. Applying technigues from grammar inference to dynamicanalysis

The problems with dynamic analysis that are mentioned itiae2 are unnecessary. A number of the
advances that have vastly improved the performance of tramuar inference algorithms introduced
in section3 can be adapted to dynamic analysis. Before showing how #mie done, we make the
following assumptions about the underlying system and tlected program traces:

1. We assume that the model of the underlying system is staticdeterministic (i.e. the system is
not self-modifying in an way). This means that, for multipkecutions, the system must respond
in a consistent manner.
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2. Traces of program executions retain the sequential ordevhich program elements are
executed. Ultimately a trace should be properly abstratiepresent a path in the target
machine - Ammonst al.[22] describe how this can be achieved.

Preprocessing traces to facilitate storage and analysis

In grammar inference, state merging approaches storeitis st of sequences in a single structure,
called the (augmented) prefix tree acceptor (see se8tiynDepending on the characteristics of the
provided set of sentences, this can substantially redecarttount of storage space required. Reiss and
Renieris R7] make this point with respect to the storage of traces foiaglyic analysis.

Systematic merging algorithms such as RPNI take advanthfeecstructure of the APTA. The
compression of the traces into a tree means that there aes fewdes to compare to each other. This
can be further reduced by adopting the Blue-Fringe appr(sestiion3.3.2, which takes advantage of
the tree structure to more efficiently evaluate potentialgaegin a systematic manner.

It is however important to note that the benefits of storimgéds in an APTA range beyond state-
merging techniques. Any dynamic analysis technique thatiséo compare different trace points can
benefit from a compact tree representation. The technigeenbes more efficient because the number
of comparisons that have to be made are reduced, withoaglasiy essential information about traces
themselves. Also, generally, the representation of a dedofs as a tree makes them amenable to well-
established tree-based search algorithms, a potentigiigiitant step towards improving the scalability
of trace analysis algorithms (see sectibg).

Incorporating negative information

As established by Gold, the use of only positive informatfiiog. valid program executions), without
any negative input cannot produce a definite result with defiamount of input. This can only
be achieved by including a sufficient amount of informatidioat whatcannothappen (negative
information) to prevent the analysis from over-generatisrom the provided set of traces. Whereas
traditional grammar inference techniques can usually cgllyupon the manual provision of negative
strings, software analysis is better-equipped, with a earf(largely automated) techniques that can
be used to generate this information in large volumes. Saresiple sources are presented below:

e Static analysiscan provide a substantial amount of program behaviour thatpossible by
examining the complement of its results. The most suitatiaiicsanalysis approach ultimately
depends on the level of abstraction of the state machinirlgéxample, each state transition is
triggered by a method call, a static call graph can be usedktatify impossible call sequences.
If the state machine is at a lower level of abstraction, eéansitions correspond to individual
blocks of statements, techniques such as symbolic execcdio be used to identify impossible
sequences of statement blocR§|[

e Testing can answer specific questions about software behaviouistQue may be in terms
of the behavioural model (e.g. ‘Is it possible to reach statfom state B?’), in which case
established model-based testing techniques can be ad@ptekdternatively they can be at a
lower level, in terms of the source code itself (e.g. ‘is ispible to reach statemenat all?’), in
which case there are several established structuralgesimniques.
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e The developerwill usually be able to provide a limited amount of negatiméormation about
program behaviour.

The combination of dynamic analysis with static analysisasnovel in itself, and has been a feature
of a number of established analysis techniques. Howevavertionally the two analysis types have
been seen as complementary in the sense that each coverset sliprogram executiong]f One
novel aspect of using static analysis in the manner sugdjes@ve is the fact that we do not need it to
provide information about feasible program executionsi¢a for which it is often ill-suited anyway);
instead this approach would take advantage of its strengthsiely identifying executions that are
infeasible.

Active dynamic analysis

Dynamic analysis, particularly in the context of program€mgoehension, is not necessarily restricted
to passive techniques (which expect a single initial setradels and produce a result in a single
step). Active and iterative techniques in grammar infeeefsee sectio3.3.1) have been shown to
outperform passive techniques, and are much more usaldesethey do not require all of the input
to be identified and provided at once. One major weaknesschfapproaches is however the fact that
it is difficult to find a reliable oracle to answer the questidhat are posed by the technique. If the
technique has been provided with only a sparse sample @mysthaviour, it may be necessary to ask
a large number of questions to obtain all of the missing imfmion. A human can answer a limited
number of questions, and is not guaranteed to answer allignesorrectly without perfect knowledge
of the underlying system behaviour (which is usually uriiike

The domain of software analysis is ideal for active techegjthat require oracles. As discussed
above, there are numerous meanstomaticallyquery the underlying software system about its
behaviour, without requiring a substantial amount of méimtarference. Questions can be posed
as tests, which can be executed with automated testing Warks, call graphs can be queried, and
invariants can be checked automatically.

The key to generating an accurate and efficient active dynamalysis technique is knowledge of
what would constitute a complete set of traces. If the aimlgsntended to infer a state machine, it
would be reasonable to adopt the notion characteristicsample from the RPNI work. This states that
a model will only be guaranteed to be complete if there is ghquositive and negative information
to differentiate between states that are not equivalemt,adinof the behaviours that are part of the
underlying system behaviour are included. In this case,reasonable questioning strategy (as is
the case with QSM for example) would be to gear the questioegion process to distinguishing
between as many states as possible.

5. Evaluation and Discussion

The previous section presents three principles from thd Gélgrammar inference that can be used
to improve dynamic analysis techniques. This section destnates the potential contribution of each
principle, by measuring the resulting improvement withpexs to a large collection of synthesised
quasi-random state machines, which are specifically gtatbta resemble the sorts of state machines
that represent software systems. To better evaluate theagcof grammar inference / dynamic
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analysis techniques, we present and demonstrate an inthemaduation technique that can provide
more insights into the type of information returned by a teéghe. Sectiorb.1 describes how the
synthetic machines and the rest of the experiments arercotest, sectio®.2describes our evaluation
approach, and the following subsections describe eaclriexget in turn.

5.1. Experimental setup

The synthesised state machines are quasi-random. Theraréioellar constraints that must be satisfied
for the sake of mimicking real state machines, which are:

e They must baleterministic - for every state, there can be no two outgoing transitiork thie
same labels.

e They must beminimal - they must not contain more states than are necessary tptacce
reject sequences (as abstracted from program tracesi @ien-minimal machine, there are
established techniques that can be used to derive a mingquadatent B1].

e All of the states must beesachablefrom the initial state - this is implied when a machine is
minimal.

e The machine must support the the ability for multiple (difietly labelled) transitions to lead
from one state to another.

Machines are generated by specifying the number of stétesumber of labels (size of the machine
alphabet), and a desired number of state transitions. Togram executions that form the basis
for inference are simulated by taking random paths acrosarthchine. Their length (number of
transitions) is chosen to fit a uniform distributifh d + 5], whered represents the maximum depth
of the machine (this is inspired by Dupaett al. [15]). The selection process ensures that no path is
entirely subsumed by another path. In the case of negatths palength is picked from the uniform
distribution, a positive random path is traced to lengthl and is then appended by a single mput that

would cause the string to be rejected. In Dupont’s work, astimeed in the previous expenmerﬁ%

is considered to be the upper limit of the number of (inittedices required to accurately infer some
target machine. We instead established that the limit-0fQ| produced a sufficiently accurate result,
despite the fact that the total number of traces is much ema#l machines increase in size (the total
set of traces is reduced to 100 for 25-state machines, whéreauld have been 312 using Dupont’s
measure).

The experiments use sets of machines wh@te= 5 and|Q| = 25. The machines were constructed
to represent both complex and simple mod€lewdedmachines represent complex systems, and
have3 x |Q| transitions, wheré:| = |Q|. Sparsemachines represent simpler systems, and Bayé€)|
transitions, wheréx| = 3.

5.2. Measuring Accuracy with Precision and Recall

Precision and recall3P] is a measure that is conventionally used to measure theramcuof

information retrieval systems. In the context of inforroatretrieval, precision measures the proportion
of retrieved information that is relevant (exactness) aadall measures proportion of relevant
information that is retrieved (completeness). Precisiod gecall are computed with respect to two
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sets - what is relevanf{E£ L) and what has been retrieveB£1"). Precision (proportion of captured
information that is required) is computed @%};J‘ET' and recall (proportion of required information

that is captured) is computed %@%E—?fﬂ.

When used to evaluate the accuracy of reverse-engineatedsachines (as typified by the work
of Lo etal.[24]) RET andREL are allocated test paths in the machin@g.L denotes the set of test
paths that are accepted by the specification mactiard RE'T’ denotes the set of test paths that are
accepted by the hypothesis machitieThe two machines and H are deemed to be identical if they
accept the same strings. This metric only takes the acagp&haviour of two machines into account,
but ignores their rejecting behaviour and cannot be usednalasively establish the equivalence of
two machines without potentially requiring an infinite test. Conventional grammar inference test
sets contain an even balance between valid and invalidysttmensure that the machines both reject
and accept the same sets of sequences.

To account for both accepting and rejecting state machihaweur, the conventional precision and
recall measure has to be refined. Instead of computing aesgngtision and recall tuple, we compute
one that describes the accuracyéfin terms of the set of traces it should accept, and the other in
terms of how the set of traces it should reject. For this nease divideRET andREL into RET™,

+ + + +
RET™, REL* and REL™ .. Thus,precision® = "ELCEEL L andrecallt = RELDRET

and the same approach is used to compute the negative preaisi recall fromRET~ andREL™.
The final overall precision and recall values can be compasetthe weighted harmonic mean of the

. . . siont Csiom— + -
positive and negative parts, goecision = ZLEASION APTECiSion g pecq]] = Zirecall rrecall

precisiont +precision— recallt+recall— *

The final precision and recall scores describe in absolutast¢he completeness and exactness of a
reverse engineered machine in terms of the sets of tracesdptsandrejects.

5.3. Experiment 1 - Compressing multiple traces as a PTA

This experiment shows the extent to which a set of multigleds can be compacted when stored as a
PTA. The boxplots in figur& show the extent to which random paths through 5- and 25-siattom
machines are compressed, given different numbers of patkerins of percentages df« |Q| paths).
Each box-plot represents the distribution of percentafygsa(given percentage of the total learning
sample) to which the set of traces was compressed by stomsgi PTA.

One apparent observation is that the compression rate liehfgr sparsely populated machines
than it is for crowded ones. This suggests that (abstraetezbution traces become harder to compress
with the PTA as software systems under analysis becomesdisicigly complex. This seems intuitive;
additional transitions in a machine increase the numbeossiple paths through it. Accordingly paths
are less likely to traverse the same transitions, are mieylto vary and are thus more likely to have
distinct prefixes, which implies that the prefix tree conitagrthem would be larger.

The relatively low compression values for the 5 state, 108tda point can be explained by the fact
that only two strings are provided (10% bk |Q)]). If these two paths are completely different (which
is quite likely), there will be no branching points in the BTénd correspondingly no compression.
However, as soon as more strings are provided, the liketitddshared prefixes (and thus branching
points in the PTA) is increased, which accordingly resulttigher compression rates.

Suprisingly, apart from the 10% and 20% points in the 5 statamples, the rate of compression
remains almost constant with a very low deviation as mor@gdrare added to the PTA. As an
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Figure 3. Compression rates for sparse and crowded randdewsachines with 5 and 25 states

example, the compression rate for sparse 25-state graptan® virtually constant at around 58%
compression, and at around 43% for crowded graphs. The e&ssipn rate for 10% of the learning
sample is virtually the same as for 100%.

5.4. Experiment 2 - Incorporating negative information

The provision of negative traces is necessary to reverse@sga precise machine. As with grammar
inference, dynamic analyses often have to decide whetheiptints in a set of traces correspond
to the same state, and will only reliably decide that thisas the case if there is enough negative
information to differentiate between the two. For this expent, 100 sparse 25-state machines were
used. For each machine the (passive) EDSM state mergingthlggdemploying the blue-fringe search
technique) was executed on two sets of pajhis @ndneg). The pos set was populated with 100
random paths, and thezg set consisted of all of the tracesjins, but specified one impossible input
to follow each string irpos. In other words, two negative transitions were added toe¢hénodes of
the APTA constructed byos. Because the strings ppos alone contained no negative information at
all, thek limit was set to 3 to prevent it from over generalising (tHi®ice is based largely on intuition

- any lower value tended to result in gross overgeneratisa}i To make sure that any differences
in performance between the negative and the positive samyaee not influenced by theelimit, it

was kept at 3 for the inference of machines using the negatices as well. Figuré contains two
bagplots that compare the accuracy of the two sets of stathimes produced with and without a
portion of negative (invalid) sequences. The dark bags shevwprecision-recall spread for machines
that are produced without negative sequences, and the &ysrbpresent the spread for machines that
are produced with the help of negative information. Figajeshows how accurate the machines are at
accepting sequences, and figure (b) shows how accuraterthay r@jecting invalid sequences.
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Figure 4. Plots showing distributions of precision and Hewfareverse-engineered state machines

Without the use of negative information, there is a dangetr tie state-merging algorithm can end
up over-generalising. This results in a machine that asceat many sequences that should in fact
be rejected. This is illustrated in figure (a), where the fpasionly machines have a high recall (they
accept all of the strings that they need to), but a low preniégenerally below 50% - they also accept
too many sequences that should be rejected). This is comfiopégure (b), where machines that are
constructed with no negative information can have a lowipi@s and recall (they accept too many
sequences that they should reject). In some cases, the bagdsxdown to zero precision and zero
recall, which means that the machine does not accuratelgtrapy sequence at all.

The machines that are produced with negative sequencessaedlyumore successful in both
respects. In both figures (a) and (b) the results for machinestructed with negative strings tend
to be in two clusters. Machines with a relatively low preaisand recall are the result of training sets
where there was not enough negative information to previaté@merge from occurring at some point
during the merging process. The machines that producetivedyahigh precision and recall value are
the result of training sets where there was sufficient negatformation to prevent such merges. If a
false merge occurs early on in the sequence of state metdegquent merges will merely compound
the error, resulting in a state machine that is highly inaatzu

The experiment illustrates that positive sets of tracewsig valid system behaviour can only
be used to accurately infer system behaviour if they are temmgnted by a sufficient amount of
information about invalid behaviour as well. This inforiaaitneed not necessarily be supplied in the
form of program traces, but could also be synthesised byguternative sources of information such
as static analysis. Nonetheless, there remains the pradfl@entifying whatnegative information is
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required. Exhaustively supplying every infeasible exeautrace would be impractical; the developer
needs to be guided to only supply information that is relet@the inference of the final state machine.

5.5. Experiment 3 - Active dynamic analysis

The notion of active dynamic analysis, where the analyg&g®bnly the information it requires from
the software system (and / or its developer), addressesdhenzentioned problem. The use of active
techniques in grammar inference is becoming increasinghufar, because they produce results that
are more accurate, are more resilient to sparse sets ofsapytles 17, 15] and better at identifying
states that are particularly hard to rea8B][ This experiment illustrates the performance of such an
active technique (Dupont’'s QSM techniquer] 15]) versus the passive state merging technique used
for the previous experiment. The idea of using QSM to reversgineer state machines by dynamic
analysis has been previously presented by the autBdfs [

Figure 5 shows the precision and recall distributions of the actimd passive algorithms for
(crowded) 5-state and 25-state machines. The passiveitalgowas used in the same vein as the
previous experiment (provided with negative traces, ardkithimit was set to 1). For the active
algorithm thek limit was set to zero.

In all experiments, the active algorithm outperformed tresgive version. Passively learned
machines have a very low recall (fail to capture most of tlggired machine behaviour) and mediocre
precision (much of the behaviour that captured is incorrect). Nonetheless, the active learner is
relatively successful at using this information to garnanttfer information, which is successful at
increasing both precision and recall. Given 100% of the tripaces (i.e. all  states traces) the
actively learned machines could generally be considereaceagrate (the median was above 95%
precision and recall).

The improved performance of the active algorithm is not gsiqg, as it benefits from the ability
to collect the information it needs, whereas the passiverilgn has to work with what it's given.
However, an obvious factor in the use of the active algorithiits cost - how many questions does it
have to ask of the system to produce an accurate result? Mpol®in figure5 clearly show that the
number of questions rises as the number of traces incréases the full set of 100 initial traces, the
median for the active algorithm is at 2313 questions, butraage as high as 8000.

The high number of questions is primarily due to the compyexdi the target machine (large number
of transitions and possible labels). In a conventional gnaminference context (where a human is
providing the input), this would clearly render the techrégmpractical. However, as was mentioned
in section4.2, answering these questions can be mostly straightforwartie context of reverse
engineering, due to the availability of automated stati@lgsis techniques. Any questions that cannot
be answered by them can be rephrased as tests. Investigatihgt extent the question answering can
be automated in this vein forms a major part of our future work

Although active dynamic analysis can help to identify theafeexecutions that are necessary for
a more complete analysis, there is still the inevitable f@wbthat the process can in practice still
be prohibitively expensive for large numbers of questioagef with the use of static analysis and
automation of the question answering). So far emphasis @éas placed on simply establishing the
improvement in accuracy and reliability that is possibléwéctive dynamic analysis - without taking
the practicality of the technique into account. We concltde experiment by demonstrating that, by
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Figure 5. Precision and recall for passive and active algms for machines with 5 and 25 states

adding constraints to the QSM algorithm, it is however gasssubstantially reduce the number of
questions and in doing so only slightly reduce the accurétyeofinal result.

With Dupont’s unconstrained algorithm, a large number ofsiions ask questions about merges
that are almost certain to be correct anyway (the merges &digh score). In practice, questions
are only necessary if there is not enough information thersupport the correctness of the merge.
One possibility therefore is to only ask questions if theredor a particular merge is below a given
threshold, and to accept any proposed merges above thahtideas correct by default. The number
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of questions is reduced dramatically - the number of questior 100% of the traces reduced from a
mean of 3824 questions to 220. However, despite this suirteeduction in the number of questions,
the mean reduction in precision and recall for 100% of theetsas only by 13% and 6% respectively.
Whether this reduction is acceptable ultimately dependbh@application of the dynamic analysis (for
many areas it would certainly be acceptable). Even with sugduction in precision and recall, it can
be argued that these results are still a much more accurateharefore appealing alternative to the
conventional passive dynamic analysis techniques disduassectior?.

6. Conclusions and Future Work

This paper has presented the parallels between the two fitlgsammar inference and dynamic
analysis. Although the problems of dynamic analysis andngmar inference have been largely
addressed separately, there is enough of an overlap to adiytions from one field to the other.
This paper shows, from the perspective of dynamic analgsithe field of grammar inference, how
some of the techniques that have proved successful in tldedigrammar inference can just as well
be applied to dynamic analysis techniques.

To demonstrate the value of adopting these grammar infer@atiniques in the context of dynamic
analysis, a number of small experiments have been carried\euhave developed an algorithm that
synthesised random state machines with characteristasfiofare state machines. We have generated
these in their hundreds, varying the number of states tiansj to show empirically how analysis
algorithms employing particular techniques that are usgglammar inference outperform the standard
approaches that are used for dynamic analysis.

Although the benefits are apparent, these can only be achieyechanging the process of
dynamic analysis itself. This paper suggests greater usegtive information, as well as iterative
(active) approaches that test and probe the program durngrialysis process. It also suggests that
complementary techniques such as static analysis can gl@ater role in the identification of negative
information about program behaviour.

Our future work will focus on minimising any required manirgut (such as tests and traces) whilst
retaining the accuracy of the final state machine. Ultinyatge aim to implement a fully automated
technique, that automatically tests and analyses thersysted can produce a correct and accurate
state machine. This will only be possible by adopting anerding the techniques from grammar
inference that we have demonstrated to be so effectivesrptper.
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