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SUMMARY

Grammar inference is a family of machine learning techniques that aim to infer grammars from a sample
of sentences in some (unknown) language. Dynamic analysis is a family of techniques in the domain of
software engineering that attempts to infer rules that govern the behaviour of software systems from a
sample of executions. Despite their disparate domains, both fields have broadly similar aims; they try to
infer rules that govern the behaviour of some unknown systemfrom a sample of observations. Deriving
general rules about program behaviour from dynamic analysis is difficult because it is virtually impossible
to identify and supply a complete sample of necessary program executions. The problems that arise with
incomplete input samples have been extensively investigated in the grammar inference community. This
has resulted in a number of advances that have produced increasingly sophisticated solutions that are more
successful at accurately inferring grammars from (potentially) sparse information about the underlying
system. This paper investigates the similarities and showshow many of these advances can be applied with
similar effect to dynamic analysis problems by a series of small experiments on random state machines.
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1. Introduction

Dynamic software analysis is the process of executing a program (usually several times) and gathering
properties that potentially govern its behaviour. It is particularly appealing because of its inherent
precision. Results are limited to a very specific set of concrete program executions, and large quantities
of dynamically recorded information can be used to infer strong properties about program behaviour.

The narrow focus that makes dynamic analysis so precise can however also be problematic [1].
The resulting program properties can only be regarded as representative of general program behaviour
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2 N. WALKINSHAW ET AL.

(regardless of input or environment) if the supplied set of program executions is ‘complete’. For this to
be the case, the executions would have to provide a total coverage of every feasible program behaviour.

Depending on the complexity of the program, this set of necessary executions can be prohibitively
large. If the assumption is made that the developer is not intricately familiar with the program (which
is probable in many dynamic analysis application domains such as program comprehension), the
requirement to know the input combinations for every necessary execution renders the whole task
of obtaining a complete execution set even less realistic.

In practice, developers are often reduced to supplying analysis techniques with incomplete (often
random) sets of executions, which fail to exercise key partsof the program. The results of the analysis
must therefore be regarded with a large degree of skepticism. Although certain dynamic analysis
techniques and tools have been successfully adopted for programming tasks that do not rely on the
ability to generalise, there are many other potentially powerful dynamic analysis techniques that have
been neglected because of the time and effort required to provide them with the necessary (complete)
set of program executions.

This problem is not unique to dynamic analysis. Grammar inference is an example of another field
that is subject to a similar weakness. Here the challenge is to identify the grammar of a language
by analysing a sample of sentences. The sample can often be sparse, which means that the resulting
grammar is inevitably only partial or even wrong. However, asubstantial amount of research in
grammar inference has focused on addressing this problem, and has produced a number of relatively
successful solutions. These include the use of both possible andimpossible sentences and the use
of active, oracle-driven techniques to guide grammar inference by answering simple questions about
system behaviour.

The similarity of the problems and limitations faced by dynamic analysis and grammar inference is
striking. This paper argues that many of the solutions in grammar inference, which have resulted in
techniques that produce reliably accurate approximationsof regular grammars, can be applied with a
similar effect to improve dynamic analysis techniques. In exploring this, the paper makes the following
three principal contributions:

(1) It provides an overview of the grammar inference problem, and highlights the parallels with
dynamic analysis.

(2) It shows how many well-established solutions to the grammar inference problem can be used in
dynamic analysis, and demonstrates the value of doing so by aseries of experiments on random
state machines, which are specifically generated to resemble state machines of software systems.

(3) It elaborates on existing work to evaluate the accuracy of state machines by precision and recall
by using systematic model-based testing techniques to ensure that the precision and recall values
are not biased by random test case selection.

Section2 describes the problems that are encountered by traditionaldynamic analysis techniques.
Section3 provides an introduction to the grammar inference problem.It also presents some of the
key theoretical work that has helped to demarcate the limitsof traditional inference algorithms and
shows some of the more recent solutions that attempt to work around these limits. Section4 makes
explicit the similarities between the two fields. It shows how some of the solutions that have proved
successful in the grammar inference field can just as well be applied to dynamic analysis problems. It
also adapts and elaborates an existing evaluation method from the field of dynamic analysis to provide
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IMPROVING DYNAMIC SOFTWARE ANALYSIS 3

a more authoritative measure of the accuracy of reverse-engineered state machines. Section5 presents
three small experiments that show the effect of adopting particular grammar inference principles on
the accuracy of dynamic analysis techniques. Finally, section 6 offers some conclusions, and outlines
some future research.

2. Dynamic Analysis and its Problems

Identifying and recording suitable program executions canbe difficult and expensive, which can make
dynamic analysis results difficult to interpret and apply inpractice. The term ‘dynamic analysis’ has a
broad scope. In this paper we use the following (deliberately loose) definition:

Dynamic analysis: A dynamic analysis technique takes recorded information from one or more
program executions, and uses that information to infer rules that govern program behaviour.

The recorded information can for example come in the form of program traces, break point
information, or print statements. The program behaviour rules can range from detailed models to simple
assertions and invariants. These rules can be generated by automated inference engines or they can
simply be in the mind of the developer.

Dynamic analysis is inherently precise; a technique is given a collection of actual observations of
program behaviour to start with and, provided that these observations are representative, can construct
models that are faithful to the program’s behaviour. By using information from program executions,
the final models can contain information that could not be obtained from examining the system from a
static perspective alone.

Static analysis techniques on the other hand (e.g. symbolicexecution or call graph analysis) are
forced to consider every conceivable program execution. Because the possible ranges for variables and
run-time properties of data structures are not always known, they often end up producing conservative
results. Although valid for every feasible program execution, these can often also apply to program
executions that are infeasible in practice. This can produce results that are too general to be of practical
use to the developer.

However, as with static analysis, dynamic analysis techniques also suffer from major weaknesses.
The models or rules they produce about program behaviour arespecificto the set of executions they are
given as input. Although partial models are often useful forproviding insights into particular aspects
of program behaviour, many programmer tasks require a complete model [1]. For a complete model,
an analysis must be given a set of program executions that accounts forevery possible behaviourin the
target model. If this requirement is to be fulfilled, the techniques can rapidly become unscalable. These
issues are elaborated in the rest of this section.

2.1. Identifying and recording a suitable set of executions

Obtaining the set of program executions that adequately exercise a system is a notoriously difficult
problem. Dynamic analysis techniques usually presume the existence of some ‘representative’ and
‘complete’ set of program executions. In practice however there are two barriers that make it almost
infeasible to collect them in their entirety.

Firstly, depending on the size and complexity of the (targetmodel of) the underlying system,
there can be a vast number of executions that are required by the dynamic analysis technique. For
a behavioural model of the system, the set of required executions would be equivalent to a complete
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4 N. WALKINSHAW ET AL.

functional test set for the whole system. Obtaining such a test set can be extremely expensive in terms
of the amount of time required, the effort required to run thetest sets and the expense of storing the
executions.

If these reservations are put aside, the task becomes relatively straightforwardif there is an existing,
complete and accurate model of the system; established model-based testing techniques can be used
to systematically execute the software system [2]. However, the second barrier arises because dynamic
(or static) analysis is usually carried out for applications such as program comprehension, precisely
because there is no such model. If there is no prior knowledgeof system behaviour, the task of
accurately identifying and recording the complete set of necessary executions becomes virtually
impossible. Without the existence of a model, users are reduced to using other testing techniques,
such as selecting random inputs, pair-wise input combinations or using structural coverage criteria.
These techniques are used in the hope that the final set of set of executions will at least approximate
the complete set.

2.2. Incompleteness and inaccuracy of dynamic analysis results

Given the probability that the initial set of program executions is incomplete, dynamic analysis results
have to be interpreted with a degree of skepticism. This is unacceptable if the intended application
relies upon a model that is complete and correct, e.g. the model is required for test set generation, or
as the basis for program transformations and optimisations. As a result, these application domains are
often dependent on less accurate (but at least complete) static analyses.

Applications of dynamic analysis techniques tend to acceptthat the supplied set of input traces
will inevitably be incomplete to an extent. If this assumption is made, it is reasonable to suggest that
the technique should simply produce a result that is as accurate as the set of supplied executions is
complete. Although useful for providing certain insights into program behaviour, the specificity of the
results makes them difficult to use with confidence. The evaluation of dynamic analysis techniques in
terms of their accuracy is often similarly unsatisfying, presenting the accuracy only as a relative value
to the set of executions that are provided in the first place, and not as an absolute value with respect to
the actual software system itself.

2.3. Scalability of trace analyses

Identifying rules or patterns in program traces can be extremely expensive. Traces can contain vast
amounts of information, which can render them cumbersome tostore and process. If the information
required is only simple (e.g. the highest and lowest values of a particular variable), the size of the trace
is unproblematic, because the amount of time taken to identify the required information is linear to the
size of the trace (every data point in the trace only has to be examined once). However, as soon as an
analysis attempts to identify more complex patterns that require the a more expensive analysis process,
scalability inevitably becomes a limiting factor.

3. The Regular Grammar Inference Problem and its Solutions

This section introduces the grammar inference problem, provides an overview of some inherent limits
on certain traditional approaches, and introduces some of the most successful recent solutions. It does
not provide an in-depth overview of the underlying mechanics of grammar inference techniques. The
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IMPROVING DYNAMIC SOFTWARE ANALYSIS 5

purpose of this section is to provide a high-level view of some of the key insights that have led
to the most substantial advances in the field. For a more comprehensive overview, there are recent
authoritative surveys by Angluin and Smith [3] and Parekh and Honavar [4].

3.1. The Grammar Inference Problem

The problem of grammar inference (also known as grammar induction) was investigated and formalised
by Gold [5] in 1967. He investigated the nature of the task facing humans trying to learn new languages,
with an aim of producing a theoretical framework for the development of automated techniques that
could emulate this learning process. He defined the problem as follows:

Grammar inference technique: A grammar inference technique attempts to learn a grammarG
that produces a languageL(G), given a set of samplesS. The set of samples must contain a set of
positive samplesS+ that belong to the language and can optionally contain a set of negative samples
S− that do not. So, denotingΣ as the alphabet ofL andΣ∗ as the set of all finite sequences overΣ,
S = S+ ∪ S− whereS+ ⊆ L(G) andS− ⊆ Σ∗ \ L(G).

The simplest class of languages that can be inferred are those that are produced by regular grammars.
A machine that produces or accepts a regular language does not require a memory [6] (hence it cannot
be used to describe more complex language constructs such aspalindromes for example). This lack
of memory requirements means that regular languages can simply be described by deterministic finite
automata, where transitions are labelled with elements of an alphabet and the automaton represents
every valid ordering of those words in a sentence. This representation is particularly appealing because
[4]: (a) DFAs are easy to understand and (b) there exist severalefficient DFA algorithms that are useful
for a number of inference techniques (such as minimisation,determining the equivalence of two DFAs,
and determining whether the language produced by one DFA is asuper set of the language produced
by another).

Deterministic finite automaton: A deterministic finite automaton (DFA)is a quintupleA =
(Q, Σ, δ, q0, T ), whereQ is a finite set of states,Σ is a finite alphabet,δ is the partial transition function
Q×Σ −→ Q, q0 ∈ Q is the initial state andT ⊆ Q is the set of accepting states. Ifα is a sequence of
symbols inΣ, the target state is denoted asδ(q0, α). The stringα is accepted ifδ(q0, α) ∈ T .

Regular grammar inference problem: The regular grammar inference problemcan be defined
as identifying the DFAA(L) for some languageL such thatδ(q0, s) ∈ T for everys ∈ S+, and
δ(q0, s) /∈ T for everys ∈ S−.

Figure 1 illustrates the DFA for a simple regular grammar. Positive samples of the grammar
correspond to sequences that would be accepted by the machine, and negative samples correspond
to strings that would be rejected. As an example, a positive sample could consist of{abbbbc, b, abc}
and a negative sample could consist of{c, aba, ba}. Given that we do not have any prior knowledge of
the structure of the DFA, a grammar inference technique would attempt to guess it, given only the sets
of positive and negative sequences.

3.2. Traditional State Merging Approaches

Most grammar inference solutions revolve around the principle that a state in the DFA of the target
grammar is defined by the possible future strings that can stem from it (this notion of equivalence is
called the Myhill-Nerode relation [7]). The task of identifying a grammar fromS invariably involves
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(a) DFA for (ab*c)+b (b) APTA for abc,abbbbb,b (positive) and aba,c,ba (negative)

Figure 1. Examples of DFA and APTA

searching through the strings inS and identifying prefixes in the strings that have identical suffixes.
This problem has been shown to be NP-complete in general [8] and was even compared to problems
such as breaking the RSA cryptosystem [9].

Nonetheless, since Gold’s initial research into the subject, a number of techniques have emerged
that can correctly infer a grammar in polynomial time by placing restrictions on certain factors, such as
making assumptions about the initial sample of sentences, or adding oracles that can provide additional
information to the inference algorithm. Some of those advances have been prompted by a substantial
body of theoretical work that establishes the inherent computational limitations on particular solutions
to the grammar inference problem. As an example, Gold [8] proved that (for any infinite language) an
inference algorithm will require aninfinite number of positive input sentences to determine the target
grammar – thus establishing that any tractable solution would necessarily require some quantity of
negative sentences to eventually produce the correct result.

Thestate mergingapproach was originally developed by Trakhtenbrot and Barzdin [10]. They use
S to produce anaugmented prefix tree acceptor (APTA)- a tree-shaped state machine that represents
exactly the samples of positive and negative sequences provided. This is illustrated in Figure1 (b) (the
state numbering can be ignored at this point). The inferenceprocess consists of iteratively comparing
the suffix-trees of pairs of states, and merging them if theirsuffixes are identical. As this process
continues, the prefix tree acceptor eventually converges upon a minimal DFA representing the target
grammar.

Trakhtenbrot and Barzdin’s approach requires acomplete setof samplesS (where all possible strings
in S+andS−are provided). This of course becomes impossible for any non-finite language, and in
practice strings are only provided up to some given length. Although guaranteed to converge upon
the correct solution in polynomial time, the approach is cumbersome. It is prevented from making a
false merge because this would instantly cause a conflict in the comparison of the suffix-trees. This
can however only be achieved whenS is complete - as soon as this is not the case, incorrect merges
can occur, and it becomes increasingly probable that the technique will ultimately end up producing
an incorrect machine that may not even be consistent with thestrings inS. Although polynomial, the
simplistic strategy of attempting to merge nodes in a breadth-first manner tends to result in a large
number of unnecessary state merges.
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IMPROVING DYNAMIC SOFTWARE ANALYSIS 7

Subsequent work by Lang [11] and Oncina and Garcia [12] has resulted in the RPNI (Regular
Positive Negative Inference) algorithm∗. This improves upon the Trakhtenbrot and Barzdin algorithm
because it will guarantee a machine that is consistent withS even ifS is not complete. Oncinaet al.
[14] also show that the algorithm can still produce an accurate machine, provided thatS contains a
characteristicsample of the target grammar. Informally this means that, given the minimal DFA for
some target language,S is characteristic if it contains positive sequences that cover every transition,
as well as a sufficient set of positive and negative sequencesto differentiate between any pair of non-
equivalent states. For a more formal definition the reader isreferred to work by Dupontet al. [15].

The requirement for a characteristic sample of the target grammar is however still impractical.
Depending on the size and complexity of the target machine, the number of required sequences
in the characteristic sample can be extremely large. Constructing a characteristic sample requires
a substantial amount of prior knowledge about the underlying system, ultimately rendering the
requirement unrealistic for a large number of practical applications.

3.3. Active State Merging

Traditional state-merging techniques fail when the supplied sample is sparse†. They use rigid
techniques such as breadth-first search to construct work lists of possible state merges. If the provided
sample of sentences is sparse, there is not going to be enoughinformation to prevent a wrong merge
from happening. Because the selection of merges is in effectarbitrary (not based on any evidence
to support the similarity of a pair of states), there is a highprobability that an erroneous merge will
occur. When an incorrect merge occurs, subsequent merges inevitably compound the error, resulting
in a highly inaccurate final machine. Lang [11] reinforces this point by demonstrating empirically that
for a sparse sample of sequences, a traditional merging algorithm will only approximatelyidentify
the correct target machine if the size of the (random) sampleis exponential in the size of the target
machine.

Recent advances in grammar inference have addressed this problem by (a) augmenting traditional
techniques with the ability to question an oracle in an efficient manner and (b) making use of the
available data to identify suitable state merges by using heuristics instead of rigid work lists. These two
approaches are presented below. The section then concludesby introducing Dupont’s QSM technique,
which combines the two approaches and will form the basis forthe implementation that we use in the
experiments in section5.

3.3.1. Incremental and Active Algorithms for State Merging

One of the major weaknesses of the conventional RPNI and Trakhtenbrot and Barzdin algorithms
mentioned above is the fact that they require the entire set of samplesS in advance (this is referred to
aspresentation from given data). Listing every necessary sample inS to produce a correct machine
can simply become too expensive and often requires so much prior knowledge about the underlying
grammar that it practically undermines the purpose of inferring the grammar anyway.

∗The equivalence between RPNI and Lang’s algorithm is discussed by Garciaet al. [13]
†A sample is termedsparseif it is neither complete nor characteristic.
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8 N. WALKINSHAW ET AL.

Dupont developed the RPNI2 algorithm [16], which allows for sequential presentationof data.
Instead of requiring every string inS to begin with, positive and negative strings can be fed to the
algorithm in an iterative fashion (as they become available). Although the same result could of course
be achieved by simply restarting the conventional RPNI algorithm with the extended sample, the RPNI2
algorithm achieves the same effect much more efficiently. Although the experimental results show only
a minor improvement in terms of performance, the real benefitlies in the usability, as the scenario of
sequential presentation is more likely to occur in practice.

Although the incremental extension renders the algorithm easier to use, it still does not solve the
more fundamental problem of identifying the relevant sets of strings that are required to arrive at a
correct machine. This would require anactiveapproach. This was the subject of subsequent work by
Damaset al.[17]. They elaborated on Dupont’s earlier work by producing an extension of RPNI that is
not only incremental, but also active; it does not depend on the user to think of suitable inputs, but asks
the usermembership queries, and the user merely has to answer with a ‘yes’ (the full queryis valid) or
identify the point in the query that is invalid. The queries are not posed randomly; due to the fact that
a characteristic set of samples is proven to generate a complete and consistent grammar, questioning
process aims to ‘home in’ on this set. Each proposed merge of apair of states is tested, by producing
questions that should highlight whether a pair of states is different. If they are, these new negative
sequences can be used to produce a more accurate model, and the merging process is restarted.

This questioning strategy is valuable because it allows theuser to start off with a relatively sparse set
of initial sentences. The user does not need an extensive prior knowledge of the underlying grammar,
and the questioning technique will attempt to ensure that the final model is nonetheless relatively
accurate (provided that questions are answered correctly). By attempting to identify the characteristic
set, the question generation process ensures that only essential information is gathered from the oracle.

3.3.2. Heuristic State Merging

A major source of inefficiency in the traditional algorithmslies in their rigid approach to selecting
candidate pairs of states to merge. As an example, RPNI states are simply merged by ranking states
in the APTA (see figure1(b)) in terms of the length of their prefixes. The ranking is according to
standard lexicographical order, and pairs(a, b) are chosen so that the rank ofa ≤ b (i.e. a is closer
to the root of the tree). Ultimately though merges are chosenarbitrarily, in the hope that a pair of
states is either equivalent, or that there is otherwise a string in S that will prevent an invalid merge
from happening. If a false merge does happen, and there is notenough information inS to prevent it
from happening (assuming that no questioning procedure as detailed above has been implemented), the
resulting machine will be wrong, and the error will merely becompounded by future merges.

This problem has been addressed by a variety of recent solutions in the grammar inference
community, many of which have been spurred by competitions to promote the development of better
algorithms. The simplicity of the problem - to learn a deterministic finite automaton, makes the format
of such competitions relatively simple as well. All that is required is a random FSM (it must be
deterministic and finite), along with a set of strings to train the candidate algorithms, as well as a
set of strings to test the accuracy of the resulting model.

The Abbadingo One competition [18] is perhaps the most famous, because it spawned two
techniques that have had a major impact on the field: the Blue-Fringe approach for selecting potential
pairs of states to merge, along with the EDSM algorithm, which can be used to assign a score
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IMPROVING DYNAMIC SOFTWARE ANALYSIS 9

1. Colour all nodes in the APTA white, mark the root node as red
2. while(! all nodes are red)

(a) Mark all nodes that are adjacent to red nodes blue
(b) If a blue node can’t be merged with any red node

i. mark as red

(c) else

i. Compute compatibility scores for all red-blue pairs
ii. merge highest-scoring pair

Figure 2. Blue-Fringe EDSM algorithm

to a particular merge pair. These two techniques, especially when used in conjunction, can vastly
improve the inference process, and have become a practical base-line approach to inferring grammars
in practice.

The Blue-Fringe algorithm can be used to, at any point duringthe execution of a state-merging
algorithm, identify a relatively small set of candidate pairs of states to be merged. The number of
candidate pairs that would need to be considered by a conventional merging algorithm at any one point
is usually huge; the conventional RPNI algorithm, for example, can in theory try to merge every node in
a given sub tree of the APTA with a single node near the root. The Blue-Fringe algorithm significantly
reduces this, by partitioning the set of nodes in the APTA into three groups. Red nodes represent a
core of nodes that are considered to be mutually unmergable,the ‘blue fringe’ is a set of nodes that are
adjacent to the core of red nodes, which are considered to be potential merge candidates, and the rest
of the nodes are white. The algorithm is shown in figure2, step 2(c) is elaborated below.

Given the set of red-blue node pairs, a conventional algorithm would simply go about attempting
to merge them in an arbitrary order. This is however often overly optimistic, and heavily relies on the
availability of sufficient samples to prevent a false merge from happening. To lessen this reliance, De
la Higueraet al. [19] suggest that at any given point an algorithm should order the potential merges
in terms of the likelihood of the pair of states being equivalent. However, their proposed solution
contained a number of flaws which rendered it relatively ineffective on certain data sets. Price’s EDSM
algorithm [18] (winner of the Abbadingo competition) adopts De la Higueraet al.’s idea, and provides
a solution that is more effective over a wide range of sample sets. For a given set of potential pairs of
states to be merged, it can assign a compatibility score to each pair. This is computed by comparing
the state transitions that happen after each set of nodes, and counting the number of transitions that are
equivalent. If a conflict is identified (e.g. a pathx leads to a reject state fromq, but to an accept state
from q′), the pair receives a negative score and is not merged. When used together, the Blue-Fringe and
EDSM techniques tend to produce a significant improvement over other state merging techniques.

Dupont’s QSM approach [15] is perhaps one of the most usable and effective inference techniques
developed so far, because it is an active approach that incorporates the Blue-Fringe and EDSM pair
selection strategy. Merges are selected by using the Blue-Fringe strategy and appropriately scored and
ordered using the EDSM algorithm. As the merges are processed, the QSM algorithm generates lists
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10 N. WALKINSHAW ET AL.

of questions for each merge to (a) check that the merge is valid and (b) garner missing information
to prevent false merges from being attempted in the future. Depending on the initial sampleS, this
can produce a highly accurate grammar, and substantially reduce the amount of time and computation
effort required by the inference algorithm.

3.4. Alternative Approaches

It is important to note that the overview presented in this section is only partial. The point is to convey
the main attributes of effective grammar inference solutions to the reader, to set the context for the rest
of the paper. There are however a number of other approaches (notably Angluin’sL∗ technique [20]),
that incorporate negative information and are active. The QSM andL∗ techniques differ fundamentally
because theL∗ algorithm exhaustively explores the entire state space of the learned machine, whereas
the QSM algorithm takesS and generalises only from the presented set of traces. Although L∗ is
always guaranteed to produce a complete and correct machine, it can become prohibitively expensive
when a sparse set of samples is provided for a complex state machine, which is why we argue that the
(possibly incomplete) QSM technique is more suited for the domain of dynamic analysis.

4. Applying Grammar Inference Principles to Dynamic Analysis

There is an obvious overlap between the problems that are addressed in the grammar inference
and dynamic analysis communities. Both attempt to derive facts or models from a finite sample of
observations. Regular grammar inference aims solely to infer a DFA, whereas dynamic analysis has
a broader range of potential target models. This section points out some of the parallels between the
two fields. If the purpose of dynamic analysis is to infer a model that is equivalent to a DFA, the
analysis problem can be recast as a grammar inference problem, and the solution can take advantage
of the many advances that have made regular grammar inference more tractable. Even if the target of
dynamic analysis is not to produce a DFA-equivalent model, there are still many sufficiently general
principles that can be applied regardless of the target model.

The next subsection will present an overview of existing approaches to dynamic analysis that are
inspired (at least to some extent) by grammar inference approaches. Section4.2presents the grammar
inference principles that have not yet been applied in the domain of dynamic analysis techniques.
Although the primary dynamic analysis application considered here is the use of execution traces to
reverse engineer state machines of software systems, the principles are sufficiently general that they
can be effectively applied to most other dynamic analysis applications that involve generating a model
from a limited set of observations.

4.1. Existing solutions inspired by grammar inference

The analogy between grammar inference and dynamic analysiswas first realised over 30 years
ago when Biermann and Feldman [21] proposed theirk − tails state-merging algorithm that could
generate state machines from sample executions. Thek − tails algorithm is a variant of Trakhtenbrot
and Barzdin’s passive state merging algorithm that considers two states equivalent if they are buth
succeeded by a string of lengthk. The best value fork depends primarily on the developer’s judgment.
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A largek value may make the state comparison process more costly, butwill produce a more precise
machine, but will often prevent merges that should happen, merely because there is a lack of evidence
to justify them. A smallk value can result in the merging of non-equivalent states andproduce incorrect
machines, but requires less computation time.

A number of papers exist that explore the link between grammar inference and dynamic analysis.
Most of these augment thek − tails algorithm [22, 23, 24, 25, 26, 27]. However, these techniques
restrict themselves to a rigid notion of dynamic analysis that does not permit them to take advantage
of some of the substantial advances that have taken place in grammar inference. The conventional
dynamic analysis framework is subject to those problems that were introduced in section2; it assumes
the provision of a single ‘representative’ selection of execution traces (i.e. it is passive) and it
conventionally only acceptspositivetraces of program behaviour (no negative information). Gold’s
work [8] proved that, for any infinite language (which for us translates to any software system with
loops - i.e. the majority) a dynamic analysis technique willnecessarily require an infinite number of
program executions to produce a definitive result. The only alternative is thateverypositive sample
up to a given length is provided, which in the case of dynamic analysis becomes impossible for any
non-trivial system.

Consequently, the result of a dynamic analysis based on a finite set of program executions is
inevitably only an approximation of the target system and is, without any negative information,
inherently prone to over-generalisation. In practice thismeans that the model that is presented by
such an analysis will exactly show some set of rules that govern the provided set of program traces,
but will not be able to make any useful inferences about the general system behaviour; it cannot infer
impossible behaviour and, due to a combination of insufficient negative information and incomplete
set of samples, any steps that attempt to infer behavioural rules beyond the supplied set of samples will
probably be false.

This problem is addressed (at least to an extent) by reverse engineering approaches that are based
on Angluin’sL∗ algorithm [20]. A large number of techniques exist that use theL∗ algorithm to build
models from software systems [28, 29]. These are interesting because they are active, and incorporate
negative information about system behaviour to produce a complete model of system behaviour.
However, as mentioned in section3.4, their nature of exhaustively probing system behaviour and
generating vast numbers of queries renders them prohibitively expensive for non-trivial systems. These
techniques are not intended for what would be considered a typical dynamic analysis scenario (i.e. the
developer has a set of traces from some arbitrary system and wants to generate a model from them).
These are instead used for relatively specialised softwaresystems, where the execution of thousands of
tests is not a concern.

4.2. Applying techniques from grammar inference to dynamicanalysis

The problems with dynamic analysis that are mentioned in section 2 are unnecessary. A number of the
advances that have vastly improved the performance of the grammar inference algorithms introduced
in section3 can be adapted to dynamic analysis. Before showing how this can be done, we make the
following assumptions about the underlying system and the collected program traces:

1. We assume that the model of the underlying system is staticand deterministic (i.e. the system is
not self-modifying in an way). This means that, for multipleexecutions, the system must respond
in a consistent manner.
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2. Traces of program executions retain the sequential orderin which program elements are
executed. Ultimately a trace should be properly abstractedto represent a path in the target
machine - Ammonset al. [22] describe how this can be achieved.

Preprocessing traces to facilitate storage and analysis

In grammar inference, state merging approaches store the initial set of sequences in a single structure,
called the (augmented) prefix tree acceptor (see section3.2). Depending on the characteristics of the
provided set of sentences, this can substantially reduce the amount of storage space required. Reiss and
Renieris [27] make this point with respect to the storage of traces for dynamic analysis.

Systematic merging algorithms such as RPNI take advantage of the structure of the APTA. The
compression of the traces into a tree means that there are fewer nodes to compare to each other. This
can be further reduced by adopting the Blue-Fringe approach(section3.3.2), which takes advantage of
the tree structure to more efficiently evaluate potential merges in a systematic manner.

It is however important to note that the benefits of storing traces in an APTA range beyond state-
merging techniques. Any dynamic analysis technique that needs to compare different trace points can
benefit from a compact tree representation. The technique becomes more efficient because the number
of comparisons that have to be made are reduced, without losing any essential information about traces
themselves. Also, generally, the representation of a set oftraces as a tree makes them amenable to well-
established tree-based search algorithms, a potentially important step towards improving the scalability
of trace analysis algorithms (see section2.3).

Incorporating negative information

As established by Gold, the use of only positive information(i.e. valid program executions), without
any negative input cannot produce a definite result with a finite amount of input. This can only
be achieved by including a sufficient amount of information about whatcannothappen (negative
information) to prevent the analysis from over-generalising from the provided set of traces. Whereas
traditional grammar inference techniques can usually onlyrely upon the manual provision of negative
strings, software analysis is better-equipped, with a range of (largely automated) techniques that can
be used to generate this information in large volumes. Some possible sources are presented below:

• Static analysiscan provide a substantial amount of program behaviour that is impossible by
examining the complement of its results. The most suitable static analysis approach ultimately
depends on the level of abstraction of the state machine. If,for example, each state transition is
triggered by a method call, a static call graph can be used to identify impossible call sequences.
If the state machine is at a lower level of abstraction, e.g. transitions correspond to individual
blocks of statements, techniques such as symbolic execution can be used to identify impossible
sequences of statement blocks [30].

• Testing can answer specific questions about software behaviour. Questions may be in terms
of the behavioural model (e.g. ‘Is it possible to reach stateA from stateB?’), in which case
established model-based testing techniques can be adopted[2]. Alternatively they can be at a
lower level, in terms of the source code itself (e.g. ‘is it possible to reach statements at all?’), in
which case there are several established structural testing techniques.
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• The developerwill usually be able to provide a limited amount of negative information about
program behaviour.

The combination of dynamic analysis with static analysis isnot novel in itself, and has been a feature
of a number of established analysis techniques. However, conventionally the two analysis types have
been seen as complementary in the sense that each covers a subset of program executions [1]. One
novel aspect of using static analysis in the manner suggested above is the fact that we do not need it to
provide information about feasible program executions (a task for which it is often ill-suited anyway);
instead this approach would take advantage of its strengths- namely identifying executions that are
infeasible.

Active dynamic analysis

Dynamic analysis, particularly in the context of program comprehension, is not necessarily restricted
to passive techniques (which expect a single initial set of traces and produce a result in a single
step). Active and iterative techniques in grammar inference (see section3.3.1) have been shown to
outperform passive techniques, and are much more usable because they do not require all of the input
to be identified and provided at once. One major weakness of such approaches is however the fact that
it is difficult to find a reliable oracle to answer the questions that are posed by the technique. If the
technique has been provided with only a sparse sample of system behaviour, it may be necessary to ask
a large number of questions to obtain all of the missing information. A human can answer a limited
number of questions, and is not guaranteed to answer all questions correctly without perfect knowledge
of the underlying system behaviour (which is usually unlikely).

The domain of software analysis is ideal for active techniques that require oracles. As discussed
above, there are numerous means toautomaticallyquery the underlying software system about its
behaviour, without requiring a substantial amount of manual interference. Questions can be posed
as tests, which can be executed with automated testing frameworks, call graphs can be queried, and
invariants can be checked automatically.

The key to generating an accurate and efficient active dynamic analysis technique is knowledge of
what would constitute a complete set of traces. If the analysis is intended to infer a state machine, it
would be reasonable to adopt the notion of acharacteristicsample from the RPNI work. This states that
a model will only be guaranteed to be complete if there is enough positive and negative information
to differentiate between states that are not equivalent, and all of the behaviours that are part of the
underlying system behaviour are included. In this case, onereasonable questioning strategy (as is
the case with QSM for example) would be to gear the question generation process to distinguishing
between as many states as possible.

5. Evaluation and Discussion

The previous section presents three principles from the field of grammar inference that can be used
to improve dynamic analysis techniques. This section demonstrates the potential contribution of each
principle, by measuring the resulting improvement with respect to a large collection of synthesised
quasi-random state machines, which are specifically generated to resemble the sorts of state machines
that represent software systems. To better evaluate the accuracy of grammar inference / dynamic
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analysis techniques, we present and demonstrate an improved evaluation technique that can provide
more insights into the type of information returned by a technique. Section5.1 describes how the
synthetic machines and the rest of the experiments are constructed, section5.2describes our evaluation
approach, and the following subsections describe each experiment in turn.

5.1. Experimental setup

The synthesised state machines are quasi-random. There areparticular constraints that must be satisfied
for the sake of mimicking real state machines, which are:

• They must bedeterministic - for every state, there can be no two outgoing transitions with the
same labels.

• They must beminimal - they must not contain more states than are necessary to accept /
reject sequences (as abstracted from program traces). Given a non-minimal machine, there are
established techniques that can be used to derive a minimal equivalent [31].

• All of the states must bereachable from the initial state - this is implied when a machine is
minimal.

• The machine must support the the ability for multiple (differently labelled) transitions to lead
from one state to another.

Machines are generated by specifying the number of states, the number of labels (size of the machine
alphabet), and a desired number of state transitions. The program executions that form the basis
for inference are simulated by taking random paths across the machine. Their length (number of
transitions) is chosen to fit a uniform distribution[0, d + 5], whered represents the maximum depth
of the machine (this is inspired by Dupontet al. [15]). The selection process ensures that no path is
entirely subsumed by another path. In the case of negative paths, a lengthl is picked from the uniform
distribution, a positive random path is traced to lengthl− 1 and is then appended by a single input that

would cause the string to be rejected. In Dupont’s work, as mentioned in the previous experiment,|Q|2

2

is considered to be the upper limit of the number of (initial)traces required to accurately infer some
target machine. We instead established that the limit of4 ∗ |Q| produced a sufficiently accurate result,
despite the fact that the total number of traces is much smaller as machines increase in size (the total
set of traces is reduced to 100 for 25-state machines, whereas it would have been 312 using Dupont’s
measure).

The experiments use sets of machines where|Q| = 5 and|Q| = 25. The machines were constructed
to represent both complex and simple models.Crowdedmachines represent complex systems, and
have3 ∗ |Q| transitions, where|Σ| = |Q|. Sparsemachines represent simpler systems, and have2 ∗ |Q|
transitions, where|Σ| = 3.

5.2. Measuring Accuracy with Precision and Recall

Precision and recall [32] is a measure that is conventionally used to measure the accuracy of
information retrieval systems. In the context of information retrieval, precision measures the proportion
of retrieved information that is relevant (exactness) and recall measures proportion of relevant
information that is retrieved (completeness). Precision and recall are computed with respect to two
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sets - what is relevant (REL) and what has been retrieved (RET ). Precision (proportion of captured
information that is required) is computed by|REL∩RET |

|RET | and recall (proportion of required information

that is captured) is computed by|REL∩RET |
|REL| .

When used to evaluate the accuracy of reverse-engineered state machines (as typified by the work
of Lo et al. [24]) RET andREL are allocated test paths in the machines.REL denotes the set of test
paths that are accepted by the specification machineS andRET denotes the set of test paths that are
accepted by the hypothesis machineH . The two machinesS andH are deemed to be identical if they
accept the same strings. This metric only takes the accepting behaviour of two machines into account,
but ignores their rejecting behaviour and cannot be used to conclusively establish the equivalence of
two machines without potentially requiring an infinite testset. Conventional grammar inference test
sets contain an even balance between valid and invalid strings to ensure that the machines both reject
and accept the same sets of sequences.

To account for both accepting and rejecting state machine behaviour, the conventional precision and
recall measure has to be refined. Instead of computing a single precision and recall tuple, we compute
one that describes the accuracy ofH in terms of the set of traces it should accept, and the other in
terms of how the set of traces it should reject. For this reason, we divideRET andREL into RET +,

RET−, REL+ andREL−.. Thus,precision+ = |REL+∩RET+|
|RET+| andrecall+ = |REL+∩RET+|

|REL+| ,

and the same approach is used to compute the negative precision and recall fromRET− andREL−.
The final overall precision and recall values can be computedas the weighted harmonic mean of the

positive and negative parts, soprecision = 2∗precision+∗precision−

precision++precision−
andrecall = 2∗recall+∗recall−

recall++recall−
.

The final precision and recall scores describe in absolute terms the completeness and exactness of a
reverse engineered machine in terms of the sets of traces it acceptsand rejects.

5.3. Experiment 1 - Compressing multiple traces as a PTA

This experiment shows the extent to which a set of multiple traces can be compacted when stored as a
PTA. The boxplots in figure3 show the extent to which random paths through 5- and 25-staterandom
machines are compressed, given different numbers of paths (in terms of percentages of4 ∗ |Q| paths).
Each box-plot represents the distribution of percentages (for a given percentage of the total learning
sample) to which the set of traces was compressed by storing it as a PTA.

One apparent observation is that the compression rate is higher for sparsely populated machines
than it is for crowded ones. This suggests that (abstracted)execution traces become harder to compress
with the PTA as software systems under analysis become increasingly complex. This seems intuitive;
additional transitions in a machine increase the number of possible paths through it. Accordingly paths
are less likely to traverse the same transitions, are more likely to vary and are thus more likely to have
distinct prefixes, which implies that the prefix tree containing them would be larger.

The relatively low compression values for the 5 state, 10% sample point can be explained by the fact
that only two strings are provided (10% of4 ∗ |Q|). If these two paths are completely different (which
is quite likely), there will be no branching points in the PTA, and correspondingly no compression.
However, as soon as more strings are provided, the likelihood of shared prefixes (and thus branching
points in the PTA) is increased, which accordingly results in higher compression rates.

Suprisingly, apart from the 10% and 20% points in the 5 state examples, the rate of compression
remains almost constant with a very low deviation as more strings are added to the PTA. As an
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Figure 3. Compression rates for sparse and crowded random state machines with 5 and 25 states

example, the compression rate for sparse 25-state graphs remains virtually constant at around 58%
compression, and at around 43% for crowded graphs. The compression rate for 10% of the learning
sample is virtually the same as for 100%.

5.4. Experiment 2 - Incorporating negative information

The provision of negative traces is necessary to reverse engineer a precise machine. As with grammar
inference, dynamic analyses often have to decide whether two points in a set of traces correspond
to the same state, and will only reliably decide that this is not the case if there is enough negative
information to differentiate between the two. For this experiment, 100 sparse 25-state machines were
used. For each machine the (passive) EDSM state merging algorithm (employing the blue-fringe search
technique) was executed on two sets of paths (pos andneg). The pos set was populated with 100
random paths, and theneg set consisted of all of the traces inpos, but specified one impossible input
to follow each string inpos. In other words, two negative transitions were added to the leaf nodes of
the APTA constructed bypos. Because the strings inpos alone contained no negative information at
all, thek limit was set to 3 to prevent it from over generalising (this choice is based largely on intuition
- any lower value tended to result in gross overgeneralisations). To make sure that any differences
in performance between the negative and the positive samples were not influenced by thek limit, it
was kept at 3 for the inference of machines using the negativetraces as well. Figure4 contains two
bagplots that compare the accuracy of the two sets of state machines produced with and without a
portion of negative (invalid) sequences. The dark bags showthe precision-recall spread for machines
that are produced without negative sequences, and the blue bags represent the spread for machines that
are produced with the help of negative information. Figure (a) shows how accurate the machines are at
accepting sequences, and figure (b) shows how accurate they are at rejecting invalid sequences.
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Figure 4. Plots showing distributions of precision and recall of reverse-engineered state machines

Without the use of negative information, there is a danger that the state-merging algorithm can end
up over-generalising. This results in a machine that accepts too many sequences that should in fact
be rejected. This is illustrated in figure (a), where the positive-only machines have a high recall (they
accept all of the strings that they need to), but a low precision (generally below 50% - they also accept
too many sequences that should be rejected). This is confirmed by figure (b), where machines that are
constructed with no negative information can have a low precision and recall (they accept too many
sequences that they should reject). In some cases, the bag extends down to zero precision and zero
recall, which means that the machine does not accurately reject any sequence at all.

The machines that are produced with negative sequences are usually more successful in both
respects. In both figures (a) and (b) the results for machinesconstructed with negative strings tend
to be in two clusters. Machines with a relatively low precision and recall are the result of training sets
where there was not enough negative information to prevent afalse merge from occurring at some point
during the merging process. The machines that produce a relatively high precision and recall value are
the result of training sets where there was sufficient negative information to prevent such merges. If a
false merge occurs early on in the sequence of state merges, subsequent merges will merely compound
the error, resulting in a state machine that is highly inaccurate.

The experiment illustrates that positive sets of traces showing valid system behaviour can only
be used to accurately infer system behaviour if they are complemented by a sufficient amount of
information about invalid behaviour as well. This information need not necessarily be supplied in the
form of program traces, but could also be synthesised by using alternative sources of information such
as static analysis. Nonetheless, there remains the problemof identifyingwhatnegative information is
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required. Exhaustively supplying every infeasible execution trace would be impractical; the developer
needs to be guided to only supply information that is relevant to the inference of the final state machine.

5.5. Experiment 3 - Active dynamic analysis

The notion of active dynamic analysis, where the analysis elicits only the information it requires from
the software system (and / or its developer), addresses the aforementioned problem. The use of active
techniques in grammar inference is becoming increasingly popular, because they produce results that
are more accurate, are more resilient to sparse sets of inputsamples [17, 15] and better at identifying
states that are particularly hard to reach [33]. This experiment illustrates the performance of such an
active technique (Dupont’s QSM technique [17, 15]) versus the passive state merging technique used
for the previous experiment. The idea of using QSM to reverseengineer state machines by dynamic
analysis has been previously presented by the authors [34].

Figure 5 shows the precision and recall distributions of the active and passive algorithms for
(crowded) 5-state and 25-state machines. The passive algorithm was used in the same vein as the
previous experiment (provided with negative traces, and the k limit was set to 1). For the active
algorithm thek limit was set to zero.

In all experiments, the active algorithm outperformed the passive version. Passively learned
machines have a very low recall (fail to capture most of the required machine behaviour) and mediocre
precision (much of the behaviour thatis captured is incorrect). Nonetheless, the active learner is
relatively successful at using this information to garner further information, which is successful at
increasing both precision and recall. Given 100% of the input traces (i.e. all4 ∗ states traces) the
actively learned machines could generally be considered asaccurate (the median was above 95%
precision and recall).

The improved performance of the active algorithm is not surprising, as it benefits from the ability
to collect the information it needs, whereas the passive algorithm has to work with what it’s given.
However, an obvious factor in the use of the active algorithmis its cost - how many questions does it
have to ask of the system to produce an accurate result? The boxplots in figure5 clearly show that the
number of questions rises as the number of traces increases.Given the full set of 100 initial traces, the
median for the active algorithm is at 2313 questions, but canrange as high as 8000.

The high number of questions is primarily due to the complexity of the target machine (large number
of transitions and possible labels). In a conventional grammar inference context (where a human is
providing the input), this would clearly render the technique impractical. However, as was mentioned
in section4.2, answering these questions can be mostly straightforward in the context of reverse
engineering, due to the availability of automated static analysis techniques. Any questions that cannot
be answered by them can be rephrased as tests. Investigatingto what extent the question answering can
be automated in this vein forms a major part of our future work.

Although active dynamic analysis can help to identify the set of executions that are necessary for
a more complete analysis, there is still the inevitable problem that the process can in practice still
be prohibitively expensive for large numbers of questions (even with the use of static analysis and
automation of the question answering). So far emphasis has been placed on simply establishing the
improvement in accuracy and reliability that is possible with active dynamic analysis - without taking
the practicality of the technique into account. We concludethis experiment by demonstrating that, by
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5 States 25 States

Figure 5. Precision and recall for passive and active algorithms for machines with 5 and 25 states

adding constraints to the QSM algorithm, it is however possible substantially reduce the number of
questions and in doing so only slightly reduce the accuracy of the final result.

With Dupont’s unconstrained algorithm, a large number of questions ask questions about merges
that are almost certain to be correct anyway (the merges havea high score). In practice, questions
are only necessary if there is not enough information there to support the correctness of the merge.
One possibility therefore is to only ask questions if the score for a particular merge is below a given
threshold, and to accept any proposed merges above that threshold as correct by default. The number
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of questions is reduced dramatically - the number of questions for 100% of the traces reduced from a
mean of 3824 questions to 220. However, despite this substantial reduction in the number of questions,
the mean reduction in precision and recall for 100% of the traces is only by 13% and 6% respectively.
Whether this reduction is acceptable ultimately depends onthe application of the dynamic analysis (for
many areas it would certainly be acceptable). Even with sucha reduction in precision and recall, it can
be argued that these results are still a much more accurate, and therefore appealing alternative to the
conventional passive dynamic analysis techniques discussed in section2.

6. Conclusions and Future Work

This paper has presented the parallels between the two fieldsof grammar inference and dynamic
analysis. Although the problems of dynamic analysis and grammar inference have been largely
addressed separately, there is enough of an overlap to adoptsolutions from one field to the other.
This paper shows, from the perspective of dynamic analysis,at the field of grammar inference, how
some of the techniques that have proved successful in the field of grammar inference can just as well
be applied to dynamic analysis techniques.

To demonstrate the value of adopting these grammar inference techniques in the context of dynamic
analysis, a number of small experiments have been carried out. We have developed an algorithm that
synthesised random state machines with characteristics ofsoftware state machines. We have generated
these in their hundreds, varying the number of states transitions, to show empirically how analysis
algorithms employing particular techniques that are used in grammar inference outperform the standard
approaches that are used for dynamic analysis.

Although the benefits are apparent, these can only be achieved by changing the process of
dynamic analysis itself. This paper suggests greater use ofnegative information, as well as iterative
(active) approaches that test and probe the program during the analysis process. It also suggests that
complementary techniques such as static analysis can play agreater role in the identification of negative
information about program behaviour.

Our future work will focus on minimising any required manualinput (such as tests and traces) whilst
retaining the accuracy of the final state machine. Ultimately, we aim to implement a fully automated
technique, that automatically tests and analyses the system, and can produce a correct and accurate
state machine. This will only be possible by adopting and extending the techniques from grammar
inference that we have demonstrated to be so effective in this paper.
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