
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: May 20, 2024

SOFTM: a software maintenance expert system in Prolog

Pau, L.; Negret, J. M.

Published in:
Proceedings of the Conference on Software Maintenance

Link to article, DOI:
10.1109/ICSM.1988.10181

Publication date:
1988

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Pau, L., & Negret, J. M. (1988). SOFTM: a software maintenance expert system in Prolog. In Proceedings of the
Conference on Software Maintenance (pp. 306-311). IEEE. https://doi.org/10.1109/ICSM.1988.10181

https://doi.org/10.1109/ICSM.1988.10181
https://orbit.dtu.dk/en/publications/2ee065d9-fc41-41b3-b0e1-589662df4bb5
https://doi.org/10.1109/ICSM.1988.10181


L. Pau 
Technical University of Denmark 

Bldg. 348/EMI, DK 2800 Lyngby, Denmark 

ABSTRACT: This paper describes a software maintenance 
(SM) knowledge based system ealled SOFTM, serving the 
three following purposes: (1) assisting a software programmer 
or analyst in his application code maintenFce tasks, (2) gen- 
erating and updating automatically sonware correction docu- 
mentation, (3) helping the end user register, and possibly in- 
terpret, observed errors on the successive application code ver- 
sions. The knowledge based system SOFTM is written in 
PROLOG 11, and is largely applicable to application codes 
written in different programming languages, provided code 
descriptors can be retrieved. SOFTM does not address any of 
the syntactic, input-output, or procedural errors normally de- 
tected by the syntactic analyzer, compiler, or by the operating 
system environment. SOFTM is relying on a unique ATN 
network based code description, on diagnostic inference proce- 
dure based on context based pattern classification, on main- 
tenance log report generators, and on interfacing capabilities 
of PROLOG I1 to a variety of other languages. 

1. INTRODUCTION 

1) The current concern about software maintenance is 
justified by the cost and quality of code repair and up- 
dates, while at least maintaining software reliability 
and performances. The estimated productivity gains ex- 
pected from software maintenance are, according to Bar- 
ry Boehm, TRW [451 

Corrective maintenance: 18% of current effort 

Adaptative maintenance: 14% of current effort 

J.M. Negret 
Battelle Memorial Institute 

- software maintenance personnel selection 
- performance goals, and quality control during mainte- 

ance 
- software maintenance work breakdown 
- distribution of responsibilities amongst code users, dew- 

loppers, quality assurance, and maintenance 
- audits and user reviews 
- problem reporting systems 
- maintenance logs 
- use of specification formalisms, typically of the SAD1' 

model 
- use of program design languages 
- use of structured techniques to maintain unstructured 

code 
- designing in code maintainability 

Amongst the tools in use, or at the research stage, can he 
mentioned: 

- specification and program design languages 
- software configuration systems 
- conversion of source code in its structural control-flow 

graphs (e.g.S3, ADA, Z specification languages) 
- source code controllers, formatters and comparators 
- declarative constructs 
- paragraph parsers 
- cross referencing and linking facilities (mapping) 
- display of data flows 
- symbolic debuggers 
- test data generation - sequence analysis tools (for synchronization and 

recoverability) 
- interpreters of abnormal endings 
- coverage analysis 
- diagnostic metarules 

Perfective maintenance: 7 % of current effort 

Update: due to mismatch between user requirements and 
software specification: 14% of current effort 

Many of the above are still at an early stage, thus result- 
ing in the still overwhelming use of debugging he1.r- 
istics as the basic software maintenance approach and 
tool. 

The major issues in software maintenance and its role 
in the software production process, are discussed in 
[3,8,9,13,14,21,22,24,25,26,27,28,35,43,45,461. The classical 
approaches followed are: 

2) Some research focusses on knowledge based programm- 
ing, where code is being written with user driven access 
thru an intelligent editor to: 

CH261S-3/88/oooO/030$01.@I Q 1988 IEEE 
306 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 16, 2009 at 09:11 from IEEE Xplore.  Restrictions apply. 



gnowledgeeources TOOlS 
Data flow models and Data flow design 
descriptors Transform aids 
Design rules Transaction analysis 
Data dictionary Procedural templates 
Abstract procedures Design codes 
Common data structures 
Structured programming rules 
Common algorithms 

Examples of such related CASE projects are (non ex- 
haustively): Tediummedious Enterprises,  Pro- 
grammers ApprenticeJMIT, USE-IT/Higher order Soft- 
ware, RlOOOAXational, REFINWReasoning systems, 
Knowledge-based software assistant (KBSA)/Kestrel In- 
stitute, Intelligent program editor/Advanced Informa- 
tion and decision systems, POISE Interactive pro- 
gramming environment/Univ. of Massachusetts, IN- 
FORM/Univ. Stuttgart [ll, KBPAlEsprit 121 and also in 
AI related CASE research 13,6,13,15.16,21,24, 40,43,44, 
45,473. 

Research has been reported on experthowledge based 
debugging: Message trace analyzer - Source code debug- 
germniv. Waterloo [4l,SPEAWDigital Eqipment [5l,FA- 
LOSYNniv. Minnesota [7l,SOFTM/ Technical Univ. 
Denmark & Battelle C301, besides [6,8,13,15,19,36,37,41, 
47,481. 

However, little work has dealt so far with knowledge ba- 
sed software maintenance, incorporating some of the re- 
levant approaches and tools mentioned above in 1): see 
[10,11,17,20,21,30,421. It is the purpose of this paper to de- 
scribe the structure of a software maintenance expert 
system SOFI'M, written in Prolog I1 1493 , and operating 
on the source code of a diversity of programming langu- 
ages. 

1) On a specific piece of application code C(L), written in a 
programming language L for which there is an 
interpretor, compiler, linker, and editor, the actual 
knowledge based software maintenance system SOFTM 
carries out essentially error diagnosis and provides for 
the propagation of corrective changes (see Figure 2): 

1. detection of errors: except : a) syntactic errors 
detected by the compiler 
b) cross-referencing errors 
c)  calculation errors due to a wrong algorithm 
d) search, query or IO errors due to a wrong algorithm 

2. location of errors, except 1) a,b,c,d 

3. error diagnosis 

4. maintenance guidance for C(L) 

5. generation of explanation facilities for 1.-4. 

6. automatic generation of code maintenance logs, to be 
incorporated into the C(L) code documentation. 

This obeys the diagnostic strategies described in 1291 
and using context based pattern classification. This is 
essentially a backward chaining process where root 
error ceusdcorrection goals are found from their 
consequences and partially known attributes C501. 

The knowledge base of SOFTM is divided into three 
parts: 

KB-1: Facts in predicate form, about error types, error 
localizations, diagnostic classes, the environment, 
and observables. Observable8 are passive if measured 
without modifying code execution, and active if 
external perturbations are necessary. 
KB-2 Code independent kernel rules, applying to the 
general software maintenance task. 
KB-S: ,Symbolic descriptors of C(L), derived by 
rewriting in predicate form C(L) features provided by 
the compiler, the specification language, or the data 
flow model, in an augmented transition network 
(ATN) form. 

All three part are assigned to different sub-worlds in 
Prolog, for separation and decomposition; they are edited 
each by a knowledge base editor specific to each of the 
three parts. The knowledge base KB-3 is interfaced to 
other tools as indicated. 

Regarding inferences and queries, the access is as fol- 
lows: 

- the code developper, can query and update KB-1 alone, 
and update C(L) thru the editor of that L language; he 
can also execute C(L) 

- the code user, can query KB-1 and run C(L) 
- the code maintenance programmer, can query and up- 

date KB-1, query KB-3, and update KB- 2. 

3. APPLICATION DEPENDENT CODE KNOWLEDGE RE- 
PRESENTATION 

The code representation is treated as fact predicates in a speci- 
fic knowledge base world. It consists of: 

a) code structure: it describes the information flows between 
code modules and arguments, stressing the call order 
during execution. The representation i s  an augmented 
transition network (ATN) with attributes, written in pre- 
dicate logic. The node labels are provided by the linker, 
and the attributes by a standard run of the code (altemati- 
vely by a Petri-net based simulator). 

module structure: each module of the application code is 
represented by a frame, attached to the corresponding 
ATN node. The frame fields are: pointers to U0 argu- 
ments, pointers to internal arguments, ordered textual 
description of the functional purpose of each successive 
block in the module (as specified e.g. in structured or 
functional programming). These frame fields are provi- 
ded by the linker or compiler, and by the module docu- 
mentation located in "Comments". 

b) 

307 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 16, 2009 at 09:11 from IEEE Xplore.  Restrictions apply. 



4. KNOWLEDGE REPRESENTATION OF APPLICATION 
CODE CIL) (gB3) 
The relations between modules of C(L) are described by 
an ATN with the following fact descriptions of each rela- 
tion in Prolog syntax: 

mm(ml,m2,L,p)-->; . 

where: m l  : is the module name being called 
from m2 

m2 : is the module name calling ml,  with 
retum to m2 

.t : list of call sequence numbers in call 
chronology, terminated by nil 

p : name of code or root module 

The relations between arguments (compiled by the inter- 
preter or  debugger) and a module, are described by the 
facts: 

am (a,m,line,p)-->; 

where: a : is an (YO) argument of module m 
m : module name 
line: 

p : name of code, or root module 

relative address of argument a, or 
pointer 

Each code module is represented by the Prolog frame 
structure: 

md (m, 41,L2, b,p) --> 

where: m : module name 
L 1  : list of YO arguments to m represented 

by relative address pointers in 
list form, terminated by nil 

22 : list of internal arguments in m, which 
are not in L 1 

b : pointers to relative address of first line 
in each functional block of m, in list 
form, ended with nil 

p : name of code or root module 

md may be represented also with explicit arguments 
names, while preserving the same frame structure 

From the above knowledge descriptions of C(L) i t  i s  ob- 
vious to estimate the number of steps and processes invol- 
ved in the code, and to sort them by size. 

C(L) can also preserve the timelstate dependent informa- 
tion necessary to determine what activities are possible 
in a dynamic environment; in this case, the arguments 
about time and state are tagged separately for data flow or 
I/O control. 

5. APPLICATION CODE INDEPENDENT KNOWLEDGE 
BASE 

This knowledge baselworld, which is application code inde- 
pendent, contains in predicate form, according to the diag- 
nostic strategy of [291: 

Y) : observables about the errors, yielding the values of q d j -  
tativdcontinuous measurements on the application code, 
once instantiated; 

L): physical or virtual error locations; 
E): generic error type or descriptor, such as data type erroi; 

undefined arguments, etc. 
C): diagnostic causes (from the domains: design, execution, 

environment, human errors); 
M): generic or specific SM actions affecting:application code 

programming, application code design, software envi *- 
onment, human factors. 

6. KNOWLEDGE REPRESENTATION FOR THE DOMAIIq 
I”DENTFAC’I-BASES (EB- 1) 

1. 

2. 

3. 

4. 

6. 

6. 

The facts in K33-1 are described by the following Prolcg 
data structures: 
Observables: passive( Y-P) or active Cy-A) 
< observable - (type) - p/a, (number of observable), (timi!- 
stamp), nil, (sentence defining observable). (measuru- 
ment location). (value of observable) . nil > -->; 

Location IL) 
< location, (number), (time-stamp), nil, (sentence d 2- 

fining locations) . (error number) . nil > -+; 

En” 
< error, (number), (time-stamp), (likelihood), (error de- 
scription sentence) . nil > -->; 

Diagnosis (C) 
< caase, (number), (time-stamp), (likelihood), (cause 
name sentence) . (error number) . (cause name sent- 
ence) . (error number) ... nil > -+; 

DlaintenanceN 
< correction, (number), (time-stamp), (likelihood of c f- 
fect), (sentence describing correction) . nil > -+; 

Documentation 0) 
< documentation, (number), (time-stamp), nil, (tiile 
sentence) . (location number) . nil >-->; 

7.l”cEpRocEDuREs 
They consist of (see Figure 2): 

a) control structure: i t  is the Prolog I1 depth first backtrack- 
ing with top-to-bottom and left-to-right clause deletian, 
supplemented by verification and domain dependent pve- 
dicates; these predicates are supplemented by contc xt 
sensitive control predicates such as diffx,y) and 
freeze(x,p), which implement truth maintenance a i d  
conditional propagation [491 

b) explicit inference procedures: they include both a for- 
ward and backward chaining, with an observatiodgc a1 
restriction phase followed by pattem matching on the scts 
of rules in (e) below, and then by action clauses. The tic- 
tion clauses consist in addinddeleting facts with likc li- 
hoods, and by automatically logging them in the SM do- 
cumentation file; 

308 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 16, 2009 at 09:11 from IEEE Xplore.  Restrictions apply. 



c) domain dependent inference rules: this rule base con- 
tains in predicate form, with a list syntax: 

1. detection rules: Y -> E 
2. localization rules: E -> L 
3. diagnostic rules: ExLxY -> C 
4. maintenance rules: ExLxYxC -> M with SM error 

5. incorrectness and insufficiency metarules operating 

6. sequencing constraint control metarules, to check call 

documentation update 

on the ATN 

sequences and propagate effects of corrections 
accordingly 

code blocks 
7. rule cluster documentation generators for functional 

d) uncertainty representation, by attaching likelihoods to 
each error (E), cause (C) or correction (M) fact, the likeli- 
hoods are propagated and combined along each inference 
path into an importance qualifier for each hypothesis or 
goal 

The combination of a) b) and c) allows for the automatic propa- 
gation of maintenance changes, by asserting into &e fact base 
KB-3 these changes. If new types of errors or locations or cor- 
rections are entered into KB-1 through the proper editors, they 
are automatically accounted for thanks to the Prolog declar- 
ative form. Thus the inference procedure in SOFTM uses fully 
propagation mechanisms and analysis. 

8. ENVIRONMENTAND IMPLEMENTATION 

The SOFTM knowledge based software maintenance envir- 
onment in Prolog I1 [491 has been supplemented, besides the in- 
terfaces to the operating system, compiler, and higher level 
utilities (specification language output, simulator input), by: 

- SM documentation explanation facilities 
- fact, rule, code structure editors (specialized) 
- knowledge base management commands 
- query editor for forward chaining (diagnose an error) 
- backward chaining editor (reason to possible candidate- 

correctionderrors) 
- likelihood calculations 
- time-stamp management on all SM actions 
- debugger 
- interface between Prolog I1 and constants, variables, 

lists in different languages (PASCAL, COBOL, FOR- 
TRAN, ADA) 

- optional interface to a text database management system 
containing the full software documentation (e.g. BASIS) 

The current implementation is on VAXNMS for application 
code written in either COBOL, FORTRAN or ADA, and Prolog 
itself. Specialized application code languages are also consi- 
dered, e.g. image processing language, test language, and ex- 
pert systems [391. 

9. KNOWLEDGE EXIEMSIONS 

The basic information has been collected, although not yet im- 
plemented, to enhance the application independent knowledge 
basis (KB-2) with respect to: 

- metarules for identifying modules or module to module 
relations with similar structures 

- measuring debuggindmaintenance stress, to estimate 
likelihoods for detection or corrective actions 

- generate and place scope markers to delineate code gov- 
emed by conditional expressiona 

- protect from any corrective measure the YO arguments 
- introduce simple software metric attribqtes to compare 

old from revised code 
- generate from the call sequences a maintenance plan 

which obeys module interaction 
- inclusion of simple alternate program verification tech- 

niques likely to appear in software testing certification 
standards. 

REFERwcEs 

ref. as [91 

G. Fischer, H.D. Boecker, 
The nature of design processes and how computer 
systems can support them, in P. Degano, E. Sandewall 
(Ed), "Intgegrated interactive computing systems", 
North Holland, 1983, 73-86 (INFORM system, Univers- 
ity of Stuttgart) 
K. Poulter, Representing programming knowledge in 
the KBPA, in G.J.P. Katz (Ed), "ESPRIT'85: Proc. of 
the meeting", North Holland, 1986 (KBPA Franz- 
Lisplc prototype) 
K.A. Frenkel, Toward automating the software deve- 
lopment cycle, Comm. ACM, Vol28, no 6, jun 1985,578- 
89 
N.K. Gupta, R.E. Seviora, An expert system approach to 
real time system debugging, Proc. 1st IEEE Conf. on AI 
applications, 1984, p. 336 (Message Trace analyzer in 
Prolog, Univ. Waterloo) 
SPEAR, Expert systems J., Vol 1, no 2, October 1984, p 98 
(SPEAR computer error log analyzer at Digital equip- 
ment) 
M. Schindler, AI begins to pay off with expert systems 
for engineering, Electronic Design Magazine, Aug. 9, 
1984,106146 
R.L. Sedlmeyer, W.B. Thomson, P.E. Johnson, Diag- 
nostic reasoning in software fault localization, Proc. 
IJCAI-83, Karlsruhe 1983, Vol 1,29-31 (FALOSY master 
file update software fault finding, Univ. Minnesota) 
H.J. Hindin, Intelligent tools automate high-level lan- 
guage programming, Computer Design Magazine, May 
l5,1986,46-56 
D. Gustafson, A. Melton, A model for software main- 
tenance, Proc. IEEWACM Conf. on software mainten- 
ance (CSM.87). Austin, TX, Sept. 1987 

B. Terry, R.D. Cameron, Software maintenance using 
meta-programming, same ref. as [9] 
F. Cross, An expert system approach to a program' s in- 
formatiodmaintenance system, same ref. as [91 
D. Richard Kuhn. A source code for maintenance. same 

309 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 16, 2009 at 09:11 from IEEE Xplore.  Restrictions apply. 



1131 

[14l 

[15l 

Cl61 

R.L. Baber. The Spine of software: designing provably 
correct software, Wiley, 1988 
M.W. Evans, J. Marciniak,Software quality assurance 
and management, Wiley, 1987 
C. Rich, R.C. Waters (Ed), Readings in AI and soft- 

ware engineering, Morgan Kaufman Publ., 1986 
B. Liskov, J.Guttag, Abstraction and specification in 
program development, MIT Press, Cambridge (MA), 
1986 

L.B. Alperin, B.I. Kedzierski, AI based software main- 
tenance, Proc. 3rd IEEE Conf. on AI applications, Or- 
lando (FL), Feb. 1987 
Proc. conf. on reliability and robutsness of engineering 
software,Computational Mechanics Institute, Como (Ita- 
ly), Sept. 1987 
M.A. Ould, C. Unwin, Testing in software mainten- 
ance development, Cambridge Univ. Press, 1986 
S.S. Yau, S.S. Liu, A knowledge based software main- 
tenance environment, Proc. IEEE COMSAC'86, IEEE 
Computer Society, Chicago, 6-10 Oct. 1986 
D.A. Higgins, Data structured software maintenance, 
Dorset House Publ.iWiley, 1987 
J. Mastow, Toward better models of the design process, 
AI Magazine, Spring 1985 
GL.B. Kotik. A.. Rockmore, D.R. Smith, Use of RE- 
FINE for knowledge based software development, Proc. 
4 t h  Int. Workshop on software specification and de- 
sign, IEEE Catalog TH 0181-8, April 1987 
M. Lubars, M.T. Harandi, Intelligent support for soft- 
ware specification and design, IEEE Expert, Vol 1, no 4, 
winter 1986,3341 
I. Sommerville, Software engineering, Addison Wes- 
ley, 1985 
NTIS, Annotated bibliography on software mainten- 
ance, Superintendent of documents, Washington DC, 

Software maintenance, IEEE Computer society Press, 

L.F. Pau, Failure diagnosis and performance monitor- 
ing, Marcel Deker, N.Y., 1981 
L.F. Pau, J.M. Negret, SOFTM: a software mainten- 
ance expert system, Battelle Memorial Institute, Gene- 
va, 1985 
T.S. Chow, Testing software design method by finite 
state machine, IEEE Transactions on software engin- 
eering, May 1979 
R.L. Glass, Software reliability guidebook, Prentice 
Hall, 1979 
J.E. Hopcroft, J.D. Ullman, Introduction to automata 
theory, languages and computation, Addison Wesley, 
1979 
P.P. Howley, A comprehensive software testing metho- 
dology, Second software engineering standards appli- 
cation Workshop, SanFrancisco, May 1983 
Standard for software test documentation, ANSYIEEE 
std 829,1983 

J.M. Morin, J. Perez, S. Xanthakis, MBthodes de mod- 
Blisation pour la g6nBration de tests de recette, Institute 
genie logiciel, T/0052/DI", 1985 
G.J. Myers, The art of software testing, John Wiley and 
sons, New York, 1979 
P. Zave, A comprehensive approach to requirement pro- 
blem, Proceedings of COMPSAC, 1979 

[lfl 

1181 

[19] 

1201 

El] 

[22] 

[233 

[25l 

Ea 

127J 

S/N 003-003-02756-1,1986 
1281 

1291 

[301 

Cat. 0-8186-0002-0. EH-02014,1983 

E311 

1321 

1331 

1341 

1353 

1361 

O7l 

1381 

1391 

r4a 

1411 

r431 

1441 

14n 

1481 

1491 

m1 

L.F. Pau, Prototyping, validation and maintenance of 
knowledge based systems software, h o c .  IEEE 3ri 
Conf. on expert systems in government, Washingtoll 
DC, Oct. 1987 
D. Partridge, AI: applications in the future of software 
engineering, Elis HorwoodlWiley, 1986 
Proc. ACM Symp. software engineering for high levtd 
debugging, SIGPLAN Notices Vol 18, no 8, Aug. 1983, 
ACM Order 593830 
C.A. Dyer, Expert systems in software maintainabilit:r, 
Proc. 1984 Annual reliability and maintainability 

M. Schindler, Through automation, software shapes it- 
self to the task at hand, Electronic Design, July 25,198!i, 

H. Abelson, G. Sussman, The structure and interpretat- 
tion of computer programs: a LISP perspective, MIF 
press, 1985 
A.J. Rockmore, Knowledge based soRware tums spe:- 
ifications into efficient programs, Electronic Design, 

S. Bendifallah, W. Scacchi, Understanding softwa -e 
maintenance work, IEEE Trans. Software engineer- 
ing, Vol SE-13, no 1, Jan 1987 
H. Wertz, Automatic correction and improvement >f 
programs, Ellis Horwood/Wiley, 1986 
J. Loecky, K Sieber, The foundations of prowam ver- 
ification, Wiley-Teubner, 1987 
F. Giannesini, H. Kanoui , R. Pasero, M. van Ca- 
neghem, PROLOG, Addison Wesley, 1987. 
L.F. Pau, A survey of expert systems for failure diagn- 
osis and maintenance, Expert Systems J., April 1986 

s ~ P . ,  IEEE publ. 0149-144 xEB4,295-2!39 

87- 

July 25,1985,105 - 112 

310 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 16, 2009 at 09:11 from IEEE Xplore.  Restrictions apply. 



Figurel: SofcwareengineeringCASEcycle 

r- 
representa- 
tion of 

lcodeATN application 1 
module 

----------------- 
I 

SOFTM 

t I 
I t 

Diagnose gh 
Propose maintenance actlons 

corrective 
actions 

Figure 2 s o m  inference functions 

31 1 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 16, 2009 at 09:11 from IEEE Xplore.  Restrictions apply. 


