Document Quality Indicators:
A Framework for Assessing
Documentation Adequacy
James D. Arthur and K. Todd Stevens

TR 90-60

Document Quality Indicators:

A Framework for Assessing Documentation Adequacy*

James D. Arthur K. Todd Stevens
Department of Computer Science Wang Incorporated
Virginia Tech Lowell, MA 01851

Blacksburg, VA 24061 (508) 976-5088

(703) 231-7538

Index Terms: Documentation Quality, Documentation Quality Indicators, Metrics, Factors, Quan-

tifiers, Automated Assessment

Abstract

This paper presents case study results of a research effort funded by the Naval Surface Warfare
Systems (NSWC) at Dahlgren, Virginia. The investigation focuses on assessing the adequacy of
project documentation based on an identified taxonomic structure relating documentation charac-
teristics. Previous research in this area has been limited to the study of isolated characteristics
of documentation and English prose, without considering the collective contributions of such char-
acteristics, The research described in this paper takes those characteristics, adds others, and
establishes a well-defined approach to assessing the "adequacy” of software documentation. The
identification of Document Quality Indicators (DQIs) provide the basis for the assessment proce-
dure. DQIs are hierarchically defined in terms of document Qualities, Factors that refine Qualities

and Quantifiers that provide for the measurement of Factors.

* Work supported by the U.S. Navy through the Systems Research Center under Basic Ordering

Agreement N60921-83-G-A165 B003S.

1. Introduction and Background

The dual problem of high costs and low quality of software are general concerns in the software
engineering community today. Generally, quality is sacrificed due to cost constraints, but the inverse
occurs as well: costs are driven up in order to achieve higher levels of quality. The two problems are
connected, in that deficiencies in the development process visit huge costs on the maintenance of
many systems; it is claimed that more than one-half of the total life cycle costs are incurred during
the maintenance phase (Boehm, 19786, Lientz, 1978). Contributing to this substantial burdern are

several Tactors:

* a severe shortage of talent in software engineering, especially lacking is the experience so

vital for maintenance activities,

* alack of complementary methods and techniques for guidance and direction of the majn-

tenance support, and

* a scarcity of fools for supporting the maintenance activities so intrinsic to complex soft-

ware,

Solutions to problems in this domain advanced with the acknowledgement of a life cycle
perspective of the development process, which helped to focus attention on the root problems
of early software/hardware systems. Aided by the visibility attributed to software maintenance,
computer scientists have been able to explain the need for a disciplined development process,
controlled through meticulous attention to condiguration management and governed by an emerging
set of fundamental principles (Arthur 1987, Murine, 1986). In practice, these principles are
associated with objectives for a given software development activity and are assessable through

associated atiributes of the product (Arthur 1987).

Among these principles is Concurrent Documentation: the recording of requirements, design,

specification and implementation decisions as they occur with the commitment to convey purpose,

2

content and clarity (Tausworthe, 1977). This principleis particularly important for the maintenance
phase because good documentation may be the only means available to maintenance personnel to
understand the internal details of the software and then intentioﬁs of the original developers.
Unfortunately, as with other principles, the failure to observe the Concurrent Documentation
principle is common in all application domains. Because Concurrent Documentation is so crucial
to the software development process, and later, to the maintenance activity, the extent to which this
principle is observed must be measurable and controlled. This leads to the problem of determining
how one might evaluate the quality of documentation as used during the software development and

maintenance activities.

The research presented in this paper does not attempt to prescribe another method by which
one can guarantee that the principle of concurrent documentation is employed. It does suggest,
however, one approach to evaluating the adequacy of documentation relative to the system that it
purportedly describes. Intrinsic to this research effort has been the investigation of two fundamental

questions:

o What constitutes “adequate” documentation?

¢ How does one “measure” the adequacy documentation?

Among the several findings coming from an investigation of the above questions, the following are

viewed as key:

¢ the development of an Evaluation Taxonomy that relates document Qualities to Factors

and document Factors to measurable Quantifiers, and

® the formulation of a general theory of documentation analysis based on the Document

Quality Indicator (DQI) concept.

A discussion of how these findings enable one to effectively address and answer the above two

fundamental questions is the focus of this paper.

3

Adequate
Documentation

quiy [o S
F .. F
B
On ..

Factor
Level
F F
— /]\
Quantifier

Level QOn Qn .. On Qn .. Qn ... Qn Qn ..

Figure 1
The Taxonomy Tree: A Hierarchical Structure

2. A Taxonomy for Identifying Document Quality Indicators

Seeking to identify what constitutes “adequate” documentation and to establish a way to
measure that adequacy has led to a general taxonomy for the evaluation of documentation. During
the process of identifying evaluative “characteristics” of documentation, it was noticed that some
characteristics were descriptive, but too vague and subjective from a measurement perspective,
whereas, others were quantifiable, but too narrow and questionably associated with documentation
adequacy. Consequently, our research focused on a progressive refinement of the vague character-
istics into the quantifiable ones. This approach produced a natural hierarchy of documentation

characteristics with three “levels”, viz., Qualities, Factors, and Quantifiers.

The hierarchical structure is best visualized as a tazonomy tree with the following top-down
description. As illustrated in Figure 1, the nodes at the first level represent Qualities often associ-
ated with adequate documentation; the second level is populated with Factors, as they are related

to the Qualities; finally, the third level represents measurable Quantifiers related to individual

4

Factors. As described in more detail later, the principal Qualities of adequate documentation are:
Accuracy, Completeness, Usability and Expandability. Although these Qualities are not directly
measurable, they can be further broken down into "smaller” and less abstract characteristics (or
Factors) that do support the measurement of a particular Quality. For example, factunal consis-
tency and conceptual consistency are two Factors whose measurements are directly correlated with
the perceived accuracy of a document. The evaluation taxonomy (from which Document Quality
Indicators are determined) is a product of a decomposition and refinement process like the one
implied above. The decomposition and refinement process is applied recursively unti! 1l-;he most

subordinate characteristics are tangible and directly measurable.

Implicit in this tree structure is the recognition that documentation adequacy can be deter-
mined through its Qualities, each of which must be assessed through Factors that are measured at
the Quantifier level. Qur search for measurable surrogates reflecting document qualities has led to
the synthesis of Document Quality Indicators (DQIs). Intuitively, a DQIis a variable whose value
can be determined through the direct analysis of document characteristics and whose evidential
relationship to a document quality is undeniable. More precisely, a DQI is defined to be a triple

whose elements are

* 2 Quality (of a document),
* a Factor (refining a Quality), and

* aQuantifier (measuring a Factor).

Clearly, the tree-structured taxonomy provides a natural basis for reasoning about documentation
adequacy because it most naturally conveys the relationships among the contributors to docu-
ment quality. Moreover, because each branch of the tree structure implies a reduction in the
level of characteristic abstraction, each path from a Quality node to a Quantifier (or leaf) node
uniquelydescribes a measurable quality indicator, i.e. a DQL

5

adequate
documentation

Ccurac completeness usability expandability
Figure 2
Decomposition into Qualities

3. Qnualities of Adequate Documentation

A preliminary investigation and extensive literature review (U.S. ARMY, 1984, U.S. Air Force,
1987, Collofello, 1986, Horowitz, 1986a, Horowitz, 1986b, Murine 1986, Sneed 1985) reveals that
the primary, high-level Qualities of good documentation to be: Accuracy, Completeness, Usability
and Ezpandability. Qualities are the abstract characteristics of Adequate Documentation, yet,
essential to its to its definition. As illustrated in Figure 2, Qualities are the nodes directly under
and most closely tied to the even more abstract notion of Adequate Documentation. Although
intangible, the identified Qualities most closely convey the meaning of Adequate Documentation;
they are also the first of three elements that comprise the DQI triple. For the purpose of clarity,
and to set the stage for the decomposition process leading to Factors of Qualities and Quantifers
measuring Factors, the following paragraphs provide a brief description definition and description

of all four qualities.

Accuracy

The common definition for “accuracy” is the freedom from mistake or error; a Synonym is
"correctness.” Within the context of computer documentation, Accuracy can be defined as the
consistency among the code and all documentation of the code, for all requirements. That is,

accurate documentation should reflect the realized state of the system that it represents.

6

Inconsistencies among documents and the instantiated system can be introduced in several
way. For example, errors can be introduced when system requirements are translated into design
specifications, or when the design specifications are being interpreted and implemented as code.
Effectively, the requirements can be correct and the code and/or development documentation
incorrect. Alternatively, the product can be modified to correct an execution defect, but the
corresponding development and/or requirements documentation might not be updated. As a

result, same or all of the development documentation could be incorrect.

Completeness

The standard definition for “completeness” is the possession of all necessary parts, elements,
or steps. For the purposes of computer documentation, a set of documentation is complete if all of

the required information is present.

With respect to document Completeness, however, the major problem lies in determining
what is required or needed. To determine what documentation is necessary for a computer system,
one must first consider the computer system itself; computer systems vary significantly, so their
documentation must necessarily vary. Their differences notwithstanding, standards do exist for
every type of computer system; these standards define what is required for documentation com-
pleteness. Many such standards have already been established (ANSI 1974, IEE 1985, Poschmann
1984, U.S. Department of Commerce 1976) Hence, incorporating standards into the description, a
more precise definition for Completeness in the context of document quality is: the existence of all

documents required by a set of standards.

Usability

The dictionary definition for “nsability” is the capability, convenience, or suitability of being
employed. Relative to assessing documentation quality, Usability is more appropriately defined
as the suitability of the documentation relative to the ease with which one can extract needed

information. For example, part of assessing Usability is evaluating the Logical Traceability of

7

the documentation. That is, assessing the ease with which one can {a) locate an item or the
presentation of a concept within a set of documents and /or (b) trace an item or the development

of concept through different parts of the documentation.

Expandability

A general definition for “expandability” is the ability to increase an object’s extent, number,
volume, or scope. A synonym is “extensibility.” The rationale for including expandability as a
desirable Quality is to reflect concepts underlying document maintainability, and in particular, the
ease with which the documentation can be added to and modified. In concert with the notion
of document maintainability, a more precise definition for Fxpandability is: the capability of the
documentation to be modified in reaction to changes in the system. This Quality is assessed

through measures reflecting ease of modification.

- Because the research effort discussed in the paper considers only pre-defined, static sets of
documentation, the partitioning of Expandability into its constituent Factors and Quantifiers has
not yet been completed. Nonetheless, Expandability is included here to complete the description

of documentation Qualities relative to assessing the adequacy of documentation.

4, Factors of Accuracy

Accuracy, Completeness, Usability and Expandability are the four Qualities most directly
related to adequate documentation. Because of their intangible nature, however, document Qual-
ities elude direct measurement. As one moves from the concept of a document Quality to that
of a Quality Factor, abstract connotations give way to more concrete perceptions. Based on the
identification of Qualities of documentation and reflective of the tree-structured model, the follow-
ing discussion focuses on Factors that refine Qualities. For presentation purpose, however, only
Factors Accuracy will be considered. The identification and development of other documentation

characteristics supporting the assessment of documentation adequacy follow similar development

8

adequate
documentation

accuracy

reg;;j;ement‘s@. esign gonsistency
traceability

conceptual factual
gonsistency consistency

Figure 3
Decomposition to the Factor Level

paths. The authors refer the interested reader to (Stevens, 1988)for a more expansive description

of that process and the resulting evaluation taxonomy.

In general, Factors can be defined as an essential part that contributes to the production of
a result. Within the taxonomy framework, Factors are those more tangible characteristics that
further refine each abstract document Quality. Factor are directly derived from Qualities, are less
abstract than Qualities, and provide the second of three elements comptising the DQI triple. The
remainder of this section describes the role that Factors play in defining a framework for assessing

the quality of a document through DQIs.

To demonstrate that documentation exhibits the Quality of Accuracy, one must show that the
documentation is consistent with the deployed system. Effectively, all documentation elements,
from requirements to high- and low-level design documents, need to be consistent with the code and
exhibit consistency among themselves. In order to assess consistency, pertinent information items
must be linked in some manner and must be tracenble from one documentation element to another.
As illustrated in Figure 3 this traceability characteristic, along with two forms of consistency, are

the Factors that support an assessment of documentation Accuracy. In the following sub-sections,

9

each Factor of Accuracy is discussed.

Requirements/Design Traceability

Requirements/Design Traceability is viewed as the ability to track individual system and design
requirements to/from their corresponding manifestation in the source code. Requirements/Design
Traceability provides the means for assessing the extent to which each level of documentation (from
requirements to code) reflects the same set of requirements. Clearly, if the requirements and design
documents state that requirement X must be met, yet, in the code we see a realization of Y, then
one must question the accuracy of the documentation (or at least the implemented system). To
achieve traceability, the requirements and design decisions must he enumerated as “atoms,” with
each requirement given as a single, indivisible entity. These atoms can then be traced through
code and documentation, and assessed for consistency (Lamb 1978). In determining the extent to
which requirements are traceable we must also recognize that requirements introduced because of

design decisions must also be included in the assessment process.

As an example of requirements /design traceability, suppose that one system requirement states
that specifications set forth in Standard “X1” must be met. Suppose further that among those
specifications one finds the statement: “error messages must be logged in filee ERROR FILE.”
Not only do the high- and low-level designs have to reflect this requirement, the code must also
implement it. The high- and low-level designs might, in fact, group the atoms together in the
same general way that the system requirements do, such as by simply saying, “in accordance with
Standard X1.” Nonetheless, it is important for evaluation purposes that the requirements can be

atomized because

¢ the requirements cannot be systematically assessed for consistency unless the requirements
can be treated as atoms, and

® the requirements can break apart at the source code level, in that only some of them are
germane to each section of the code.

10

The manner in which these requirements are actually assessed for traceability is described in Section

5.0.

Conceptual and Factual Consistency

Consistency is the agreement or harmony demonstrated among separate items. Relative to
documentation, it is the agreement or concurrence of all information in the documentation. That
is, the same idea must be expressed in a similar fashion or in a way that is not contradictory.
Consistency has two facets: Conceptual and Factual. Conceptual Consistency means that an idea
may be stated in different forms, but the forms must convey the same thought or notion. For
example, one expects the physical representation of a stated requirement to change as it evolves
from a description rooted in a requirements language, through a design language and finally
culminating in an implementation. Nonetheless, the conceptual idea expressed in each of these
forms must be consistent. Factual Consistency means that statements of value, logical relationships,
and definitive structures must remain invariant irrespective of their location and repetition within
the documentation. Many system requirements, for example, are stated as simple numeric or name
facts, e.g. the system must be able to buffer a minimum of 10 requests. The design document

would state the same numeric fact, and the code would explicitly reflect that lower bound.

Although in the next section we discuss only one approach to quantifying quality Factors,
the authors would like to note here that consistency can (and should) be checked in two ways
relative the software development life cycle,i.e. in a vertical direction and in a horizontal direction.
Checking from the horizontal direction, all of the documents that are products produced within a
particular life eycle phase must be consistent. Checking from the vertical direction, the products
produced across different life cycle phases must exhibit consistency. Factual consistency must be
checked in both directions because facts are presented a various places in the documentation at
each stage of the development life cycle. Conceptual consistency, however, is primarily a concern in
the vertical direction because concepts have the highest potential for change, through refinement,

between stages of the life cycle.

11

accuracy

requirements/design conceptual factual
traceability consistency consistency
top-down/ invariance DM perfo ance
bottom-up of concept
cquivalence it rfa ce
GQOVBL v
Figure 4

Quantifiers for Factors of Accuracy

The authors would also like to point out that even though a requirement is referenced in a
consistent manner throughout software development life cycle phases and that even though trace-
ability exists from the systems requirements specifications to the code, Documentation Accuracy is
not necessarily assured. For example, some functionality might be included in the code for which
no requirement exists. In reality one desires “equivalence” from a top-down (requirements to code)
and bottom-up (code to requirements) assessment perspective. In the next section we illustrate how
“top-down, bottom-up equivalence” completes one DQT triple and illustrates the DQI assessment

perspective.

5. Quantifiers for Measuring Factors

Through the decomposition and refinement process, Factors are identified that support a more
tangible basis for assessing documentation adequacy than do QQualities. Nonetheless, as conveyed
by the examples given above, Factors of Quality are still missing the “concreteness” necessary to
support measurement. Quantifiers, on the other hand, are measurable characteristics. Through
their direct link to Factors, Quantifiers support Factor assessment, and ultimately, provide a basis
for assessing documentation quality. In the taxonomy tree, Quantifiers are at the bottom, i.e. the
leaves. Quantifiers particular to Factors of Accuracy are shown in Figure 4. Relative to the DQI
concept, Quantifiers occupy the third position in each DQI triple. Hence, in conjunction with a

related Factor and Quality, the addition of a Quantifier unigquely defines a DQI. As mentioned

12

in the previous section, the authors choose to restrict the following discussion to one Quantifier

supporting the assessment of requirements/design traceability relative to documentation accuracy.

Requirements/Design Traceability: T op-down/Bottom-up Eguivalence

Top-down/Bottom-up Equivalence is the equality between specified requirements and those
implemented in the system source code. In order to meet a necessary-and-sufficient condition,
equality must be assessed through a top-down and a bottom-up evaluation of the documentation
and code. The requirements must be “sufficiently” met by the implementation, and all of the code

must be “necessary” to meet the requirements, i.e. there is no superfluous code.

‘The top-down trace checks whether all of the requirements have been “sufficiently” met by the
implementation. All of the requirements are enumerated as atoms, so that they can be uniquely
identified and associated with separate features which are helping to meet or satisfy them. The
separate features are then further divided, thereby dividing the requirements with which they are
associated. The bottom-up trace checks whether all of the code modules are actually “necessary”

or needed to meet a requirement.

This top-down /bottom-up tracking can best be accomplished by setting up evaluation matrices
(see Figuresba and 5b). The matrix shown in Figure 5a relates requirements to design modules;
the matrix in Figure 5b illustrates the relationships that exist between design modules and code
modules. In the first matrix (Figure 5a), the requirements are enumerated across the top of the
maftrix and the design modules along the left side. For each requirement, an “X” is marked for
the design module(s) that partially or completely fulfills that requirement. For the second matrix
(Figure 5b), the design modules from the first matrix are enumerated across the top and the code
modules along the left side. Similar to the first matrix, an "X” is marked for the code module(s)

which partially or completely implements each design module.

Once the matrices are filled in, they are used to check that all of the requirements are met

and that all of the code modules are necessary. If a requirement column in the first matrix does

13

Design
Modules

Code
Modules

ORI e 0 BR6 T o

B -

S Yoot B W N e

e T
B oW oN

Requirements

5 6 7.8 9 10 11 12 13

"
] BN

Figure 5a.

Requirements/Design Matrix

Design Modules

e f gh i j k | m

>4

Figure 5h.

14

Design/Code Matrix

not have at least one “X”, this is evidence that no design module exists to implement it. Further,
the requirements also depend on the design modules being implemented; each design in the second
matrix which is not implemented in a code module fails to fulfill requirements. In this manner,
the requirements can be checked to determine whether they are all sufficiently fulfilled. Next, the
rows of the matrices need to be examined. Any row which does not have at least one “X” in it
is not needed; it does not help to fulfill a requirement. This examination allows one to determine

whether a design module is necessary to meet requirements.

6. Current Status

Although simplified, the use of matrices described in the previous section illustrates how
one might check the documentation and code for “sufficiently meeting the requirements” and
“necessary to meet the requirements”, respectively. Using the one DQI, “accuracy relative to
design and requirements traceability as reflected through top-down and bottom up equivalence,”
as an example, the above sections outline the relevance and importance of the DQT concept in
document analysis. The complete taxonomy tree, illustrated in Figure 6, outlines the critical
elements of a framework for assessing the adequacy of computer documentation, i.e. Document
Quality Indicators. In particular, each path from the root node of the taxonomy tree to a leaf
node uniguely defines a measurable DQI that supports the evaluation process. Through the
relationships implied by each DQI triple, Quantifier values (provided by yet to be determined
metric computation) can be related to specific document Qualities. In turn, the collective measure
of the Qualities provide a means for assessing documentation adequacy. Currently, the investigative

effort has led to the identification of

¢ four (4) major document Qualities,

® thirteen (13) Factors of Qualities, and

* thirty (30) unigue Quantifiers, all combining to form
* thirty seven (37) document quality indicators (DQIs).

15

adequate docementation,

i s/design coxxi i camer odificati wacesbility intra-docyment wadability secessibility/

ng d qti T ial code d e

& M gufficlency sufficiency 9% domain logical phiygical
vswﬁ_ﬂéu conisteny consisency CODESEICY of index of TOC covenge (comprehensibilitg)
- \ / AV
wfiement pppRg % appropriate sufficiency TBD/TBS \, % appropriste R canciseness adequacy
d Di 10 1ation . of sysiem of prim
_ﬂ Afiance % missing % missing
of 3 Fog/Cloze
conoep intectace performance B formiat
sccurity error Eming lerm ¢onsistency SPpIOpiAtencas
Tecovery . format
et unicpucness nnﬂn_,u_nsnuq
mfficiency module
of glossaty Approprieeness
adbemnce
to stundards
simplicity/
modularity
mdundancy
Approprialeness
sufficicncy
of index

Figure 6
The General Evaluation Taxonomy Tree

16

7. Concluding Remarks

Motivaling the research described in this paper is the recognition that system and project
documentation are crucial for high quality software development and maintenance. Implicit in
this recognition is that documentation must be accurate, complete and usable. Armed with
this realization the authors have initiated a research effort that attempts to identify the crucial
components of “adequate” documentation and to establish a meaningful basis for quantitatively

measuring the contributions those components from both the individual and collective perspectives.

Although the evaluation taxonomy presented in this report represents a significant step toward
assessing document adequacy, it remains only a framework. That framework, however, has been
applied “in principle” to a set of documents used for maintenance purposes at the Naval Surface
Warfare Center, Dahlgren, Virginia (Arthur, 1988). The results of that assessment are encouraging.
Nonetheless, many issues still remain unresolved. The following paragraphs outline four future
research directions that require additional investigation before a total process for document analysis

can truly be realized.

The Quest for Additional Quantifiers: The first investigative effort involves a reassessment
of the evaluation taxonomy focusing on substantiating the current DQIs and the formulation of
additional ones. In particular, an emphasis needs to be placed on the identification of additional

QQuantifiers supporting the assessment of existing Quality/Factor pairs.

Metric Identification and Formulation: A second effort must address the identification and
synthesis of metrics to support the computational process underlying document evaluation through
DQls. The findings presented in this report suggests several such metrics. Those metrics, however,
are incomplete and primarily reflect the authors’ intuition. Like the undeniable relationships on
which DQIs are based, the proposed metrics must be succinct, well-defined and reflect a high
level of reliability and validity with respect to the DQIs they are measuring. Clearly, such an

investigation requires significant experimental studies validated through statistical confirmation.

17

An Automated Assessment Framework: An investigation is also needed which focuses on
the identification of those metrics that can provide an automated framework for DQI assessment.
Several of the DQIs identified in the current research suggest metrics that require raw data whase
collection is manpower intensive and susceptible to bias. Ideally, one desires metrics whose data
elements can be collected through an automated process predicated on objectivity. Recognizing
that both subjective and objective metrics do exist and only some of either can be collected
automatically, one possible research direction might focus on the identification of a subset of
metrics that are (a) amenable to an automated evaluation framework, and (b) whose collective

characteristics and evaluation implications represent those of the total set.

A Validation of the Assessment Procedure: Utilizing results from the above three efforts,
the authors envision a final research effort aimed at validating the assessment procedure. Such
an effort would require a collaborative investigation involving a sponsoring group that has at its
disposal several sets of project documentation, knowledgeable people willing to provide an objective
assessment of the documents, and an automated process for effecting the assessment process based

on DQIs.

In summary, the research findings presented in this report provides a well-defined framework
for the evaluation of documentation. The need for methods to evaluate documentation is readily
apparent within the maintenance domain. The need becomes even more obvious when one considers
assessing the quality of complete software systems through an evaluation of the developmental
process as well as the developed product. As indicated above, however, difficult issues must be

resolved before the long range goals of this investigative effort can be realized.

The authors would like to acknowledge the contributions of

® Dr. Richard E. Nance, whose initial work on Software Quality Indicators provided a basis
for the DQI concepts, and

* Mr. Dave McConnell, Mr. Angel Martinez and Mr. Bob Barthelowe at NSWC (Dahlgren,
VA), whose constant feedback had a significant impact in shaping and refining the under-

lying document characteristic taxonomy.

18

Relerences

American National Standards Tnstitute. “American National Standard for Guidelines for the
Documentation of Digital Computer Programs,” ANS-N413-1974, American Nuclear Society,

1974.

Arthur. J. D., Nance, R. E., K. T. Stevens, “Prospects for Automated Documentation Analysis
in Support of Software Quality Assurance,” Technical Report SRC-88-002, Systems Research

Center, Virginia Tech, 1988.

Boehm, B. “Software Engineering,” IEEE Transactions on Computers, C25 (December 1976),

pp. 1226- 1241.

Collofello, J. 5. and S. Bortman, “An Analysis of the Technical Information Necessary to
Perform Effective Software Maintenance,” Proc. of the Fifth Annual Phoeniz Conference on

Computers and Communications, March 1986, pp. 420-424,

Horowitz, E. and R. C. Williamson. “SODOS: A Software Doctumentation Support Environ-
ment -Its Definition,” IEEE Transactions on Software Engineering, SE-12, No. 8 (August

1986), pp. 849-859.

Horowitz, E. and R. C. Williamson. “SODOS: A Software Documentation Support Environ-
ment -Its Use,” IEEE Transactions on Software Engineering, SE-12, No. 11 (November 1986),

pp. 1076-1087.

Institute of Electrical Engineers. Guidelines for the Documentation of Software in Industrial

Computer Systems, The Institute of Electrical Engineers, 1985.

Lamb, S.S., et al., “SAMM: A Modeling Tool for Requirements and Design Specification.”
Proceedings of COMPSAC 78, Chicago, IL, 1978, pp. 48-53.

Lientz, B. “Issues in Software Maintenance,” ACM Computing Surveys, 15, No. 3 (September

1983), pp. 271-278.

19

Murine, G. “Using Software Quality Metrics as a Tool for Independent Verification and Val-
idation,” Proc. of the Fifth Annual Phoeniz Conference on Computers and Communications,

March 1986, pp. 433-437.

Poschmann, A. W. Standards and Procedures Jor Systems Documentation, American Manage-

ment Associations, 1984,

Sneed, H. M. and A. Merey. “Automated Software Quality Assurance,” JEEE Transactions

on Software Fngineering, SE-11, No. 9 {September 1985}, pp. 909-916.

Stevens, K. T., J. D. Arthur and R. E. Nance. “A Taxonomy for the Evalnation of Computer
Documentation,” Technical Report SRC-88-008, Systems Research Center, Virginia Tech,

January 1988,
Tausworthe, R. C. Standardized Development of Computer Software, Prentice-Hall, 1977.

U.S5. Air Force, “Acquisition Management: Software Maintainability - Evaluation Guide,”

AFOTEC Pamphlet 800-2, Vol. 3, March 1987.

U.S Army, Software Quality Engineering Handbook, Computer Systems Command, Ft. Belvoir

VA, August 1984.

U.S. Department of Commerce. Guidelines for Documentation of Computer Programs and Au-

tomated Data Systems, Federal Information Processing Standards Publication 38, 15 February

1976.

20

