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SUMMARY

Mobile devices with their more and more powerful resources allow the development of Mobile Information

Systems, in which services are not only provided by traditional systems, but they are also autonomously

executed and controlled in the mobile devices themselves. Services distributed on autonomous mobile

devices allow both the development of cooperative applications without a back-end infrastructure and

the development of applications blending distributed and centralized services. In this paper, we propose

MicroMAIS: an integrated platform for supporting the execution of Web service based applications natively

on a mobile device. The MicroMAIS platform is composed of mAS and µ-BPEL. The former allows the

execution of a single Web service, whereas the latter permits the orchestration of several Web services

according to the WS-BPEL standard. Copyright c© 2011 John Wiley & Sons, Ltd.
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2 C. CAPPIELLO ET AL.

1. INTRODUCTION

Mobile devices are continuously increasing their capacity and are now able to execute more

sophisticated and complex applications than before. Several solutions based on Service Oriented

Architectures consider mobile devices as the means to provide pervasive solutions to the users

[1]. Nevertheless, mobile devices often hold the role of service consumers instead of service

providers. Due to their limitations in terms of available resources (e.g., power, memory), mobile

devices run applications able to connect to services installed on traditional devices to exploit their

functionalities. In this scenario, the service consumption requires a stable connection with the

service provider. In a mobile environment this might not be guaranteed, due to the nomadic nature

of mobile devices and different contexts of use.

In this paper, we introduce a Web service based platform, i.e., MicroMAIS †, developed as a

means for supporting Mobile Information Systems [2]. MicroMAIS is composed of two modules,

namely mAS (micro Application Server) and µ-BPEL. These modules, designed and developed

according to the most common Web service standards, are capable of supporting the execution of

simple and composite Web services directly on a mobile device. Using mAS and µ-BPEL, we aim

at enabling the execution of Web service based applications natively on mobile devices.

More specifically, mAS is an application server capable of running on the least capable mobile

device configuration (CLDC). Java-based Web services can be deployed and executed on mAS.

µ-BPEL is a Business Process Execution Language (WS-BPEL) engine designed for supporting

service orchestration in a mobile environment. By allowing the execution of both stateless and

stateful services and the possibility to manage multiple instances, the MicroMAIS platform allows

flexibility of operation in unreliable, nomadic communication environments. Also, while there has

been significant previous work in the areas of mobile Web service execution [1, 27, 29, 33, 34]

and orchestration [43, 44, 45], most proposals do not rely on the least capable device configuration

(CLDC), but they rather consider more powerful mobile devices.

†For more information on the MAIS Project (Multichannel Adaptive Information Systems) see http://www.mais-
project.it
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MICROMAIS 3

The design of mAS and µ-BPEL preserves as much as possible the interoperability with

traditional Web service based applications. Specifically, services running on mAS can be invoked

as traditional Web services and processes deployed in µ-BPEL can invoke traditional Web services

as well. As a consequence, MicroMAIS allows the execution of distributed applications involving

different types of devices.

The opportunity to execute standard Web services and Web service compositions natively in a

mobile device is considered relevant in several scenarios, such as, for example, risk management

and logistics [3, 4].

Risk management in dangerous good transportation, in particular, requires orchestration of

processes executed on mobile devices [3]. In this scenario, mobile information systems, such as

sensors on the carrier, are able to communicate position and status information via GPRS or UMTS

protocols to the Geographical Information Systems (GISs) in the headquarters of the transportation

company. GISs collect position and status information and mash it up with other information, such

as the presence of water sources, e.g. rivers and basins, or the presence of sites of public interest,

e.g. schools or arenas, to determine the best set of rescue activities to be performed on the ground

in case an accident occurs.

The process enacting rescue activities coordinates different actors on the field, such as private

rescue teams, representatives of the transportation company, and teams from public rescue agencies

(e.g. fire brigades), acting in a disrupted environment with very strict time constraints. Rescue

activities are orchestrated on the field by a manager, who coordinates many teams with different

expertise. In the rescue activities, therefore, mobile information systems can be exploited both as

server and client applications. In particular, the mobile devices of actors on the field act as client

applications of the manager(s) of the rescue activities.

MicroMAIS aims at providing a platform that can be installed on the mobile devices involved

in this kind of scenarios to execute SOAP-based services and orchestrate WS-BPEL processes. In

this way, even though the communication with traditional devices is also supported, MicroMAIS

enables information exchange directly occur among mobile devices.

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
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4 C. CAPPIELLO ET AL.

The rest of the paper is structured as follows. In Section 2 and Section 3 we discuss mAS and µ-

BPEL, respectively. Section 4 introduces an analysis of the performance of our tools when running

a BPEL process. After the Section 5 where related work is discussed, Section 6 concludes the paper

and discusses possible future work.

2. MAS: MICRO APPLICATION SERVER

The micro Application Server (mAS) is a J2ME-based application server that supports stateless

and stateful Web service execution on cellphones, PDAs, and all least-capable CLDC (Connected

Limited Device Configuration) micro (or mobile) devices. While most of the solutions in the field of

mobile Web service execution considered mobile devices only in the client-side of a client-service

interaction [5], with mAS (similarly to [1, 27, 29, 34]) a mobile device can additionally act as a

service provider to other mobile devices or traditional devices acting as service consumers.

Resource-constrained mobile devices introduce many restrictions that make it difficult to

implement a complete application server on the offered platform. Especially in case of CLDC

Java Virtual Machines (JVMs), the limitations are very strong and, consequently, may affect the

functionalities offered by mAS. For instance, hot deployment is not possible since all the classes

required during the execution of a service need to be included in the same MIDlet installed on the

mobile device before the application starts.

Even though various mobile device architectures are augmenting their performance through

technology improvement, the amount of available resources for specific classes of devices, such as

cellphones, remains limited. Cellphones use the CLDC JVM platform, which comprises a smaller

set of classes than other platforms, e.g., CDC JVMs. Therefore, despite running on a CLDC

based configuration, mAS provides a rich set of server-based features, as found only on devices

with better configurations/resources. Moreover, mAS supports the execution of both stateless and

stateful Web services to support the nomadic nature of mobile devices. mAS provisioning enables

proper management of the state of conversation with the client, especially in case of network

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
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MICROMAIS 5

disconnections. Running mAS on constrained mobile devices ensures addressing a larger consumer

market, owing to CLDC JVM’s popular deployment.

mAS design and development are inspired by existing application servers, in particular the

J2EE compliant application servers, and aim at achieving complete compatibility with existing

Web service standards and support of Web service interaction based on the Simple Object Access

Protocol (SOAP). mAS design involves two main actors: (i) the application provider which uses

the application server to ensure availability of its software components and (ii) the application

client, which communicates with server software components, in accordance with the server APIs.

The application server is responsible for deployment and execution of applications designed and

developed using specific programming and deployment models. In mAS, these models are similar

to the ones defined for Enterprise Java Beans (EJBs) and specify how the components must be

developed and how they must be described, to make the application server aware of the required

resources, the supported functionalities, and the supported communication protocols.

2.1. mAS architecture

mAS implements a container-based application server that communicates with clients according

to an Axis-like [6] architecture implementing the Chain of Responsibility [7] design pattern. mAS

architecture relies on three main elements (see Figure 1):

• SOAP Request and SOAP Response message: it represents the requests that clients make

towards mAS and also describes how mAS responds to the clients. Depending upon the

supported application protocol, mAS provides a Listener that receives and marshals incoming

messages and, in turn, unmarshals and sends the responses back to the client. After the

Listener does its processing, any mAS module, regardless of the specific application protocol,

can access the message using the MessageContext object, i.e., the Java memory-model

representation of a message. Note that the CLDC JVM allows connections only through

sockets. Opening higher level connections is unfeasible.

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
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6 C. CAPPIELLO ET AL.

• Request and Response handlers chain: it allows a step-by-step analysis of the incoming

MessageContext or a step-by-step creation of the outgoing MessageContext. In each step, a

specific Handler analyzes a part of the message, depending upon its competence. For instance,

the HTTP handler interprets protocol parameters, extracts the body, and passes it to the next

handler (SOAP Handler) that realizes the requested service, the action, and the parameters. An

exception is raised if the incoming message does not respect the rules of the communication

protocols.

• MService container: it receives all the information about the service invocation and manages

the required Web service life-cycle. The container is in charge of loading the class

corresponding to the requested service. Moreover, in case of stateful services, the container

needs to identify the client and to manage the resources.

Socket MService
Container

MService

MService

MService

Listener

SOAP
Handler

HTTP
Handler

Request Chain

SOAP
Handler

HTTP
Handler

Response Chain

SOAP Request

SOAP Response

Figure 1. mAS architecture

Although this structure is now usually adopted by application servers, the CLDC JVMs poses

new challenges in terms of (i) limited available resources (e.g., memory, computational power) and

(ii) limited set of J2ME libraries. Such limitations have a great impact, especially on the design

of the MService container that has to allow service deployment, handle the service execution, and

manage the connections with the clients. In the next section, we discuss the measures adopted by

mAS to overcome these limitations.

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
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2.2. Data Persistence

Current solutions for data storage in a mobile environment can be grouped into three main classes:

micro-databases, reusable solutions, and RMS (Record Management Store)-based solutions.

Micro databases are ad-hoc solutions specifically designed for mobile devices. They usually

include GUI-based applications allowing the users to organize and manage small databases. They

can support SQL or SQL-like queries and in some cases they also allow ODBC/JDBC connections.

An example of micro database is eSQL [8].

Reusable solutions are solutions designed for existing desktop DBMS or superior configurations

that can adapt to the constraints of mobile devices. Some cases require a re-design focused on the

resources limitations that affect the mobile environments: i.e., lack of memory, less computational

power, limited battery life and so on. For instance, SQLite [9] is a DBMS that can be installed

and executed on both a traditional PC and a mobile environment. It implements a self-contained,

serverless, zero-configuration, transactional SQL database engine.

Finally, RMS-based solutions are based on RMS, which provides a mechanism for MIDlets to

persistently store and retrieve data [10]. RMS defines a set of RecordStores that, in turn, are a

collection of records, which will remain persistent across multiple invocations of the MIDlet. The

device platform is responsible for making its best effort to maintain the integrity of the MIDlet’s

record stores throughout the normal use of the platform, including reboots, battery changes,

etc. [11].

Although the first two classes offer a good variety of solutions, all of them work only with CDC

JVMs, which, as stated earlier, offer more means than CLDC JVMs. For this reason, data persistence

in mAS is based on RMS.

J2ME provides a set of instructions to be able to:

• Manage the RecordStore;

• Monitor the RecordStore;

• Search for data in the RecordStore by filtering and comparing the contents of the records;

• Sequentially access all the records in the RecordStore.

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
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8 C. CAPPIELLO ET AL.

The contents of the records can only be Strings and this requires a marshalling procedure

to store complex objects. To simplify the use of RMS, our implementation relies on the Floggy

framework [12]. This framework makes use of RMS with usual database management techniques

easier. For instance, if a developer would like to store an entire class, instead of performing

marshalling and unmarshalling procedures, it delegates these tasks to Floggy by implementing the

interface Persistable and by exploiting the methods offered by the PersistableManager

class.

Floggy’s main limitation, in the context of the mAS platform, is the inability to handle data

structures such as a HashTable, which would be useful for storing session based information. In

the next section, we detail our approach to overcome this limitation.

2.3. Session management

When executing stateful services, the MService container needs to uniquely identify the sessions

as the association between a client and the related service instance. As a consequence, the problem

of identification of the client and the definition of links between clients and service instances holds

a central role during the service container design. Here, we consider two possibilities: cookies and

session ids. These two approaches are similar, since they both assign a unique identification code

to every session and put this id in every exchanged message. The difference lies in where each

mechanism puts the id in the message: cookies use a proper HTTP attribute and the session is

defined in terms of the client id; session ids appear in the HTTP body or, since mAS communicates

through SOAP, in the SOAP body. In this case, the same client can activate more than one session.

Although these two solutions are functionally equivalent, in mAS we adopt the solution based on

cookies, that is, to put ids in the HTTP header, for two main reasons. First, using a standard HTTP

attribute makes the solution compatible with all the HTTP clients as long as they enable the use

of cookies; on the contrary, putting the id inside the SOAP body requires to explicitly specify its

format and position. Secondly, the id can be retrieved at the very first step inside mAS (i.e., by the

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
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MICROMAIS 9

HTTP listener). This means that we have the opportunity to customize more activities with respect

to the connected client: e.g., dispatching the request to the most appropriate chain.

Once a client has been identified, the information about the session is stored in mAS. A session

is defined in terms of the client id, the instance of the MService related to the client, the state of

the execution, and the session expiration time. Since Floggy does not provide the HashTable data

structure, we cannot rely on this class to link the session id to the related information. For this

reason, we developed a data structure based on three Vectors organized as shown in Figure 2. The

first vector, i.e., memoryKey, stores the list of active session ids and it is used by mAS to browse

the active sessions. The same position, in the second vector, i.e., memoryConnection is used

to index the third vector where the information about the session is finally stored according to the

MasStateKey class.

a74 3ec 23a 445 23d

3 1 0 2 4

sessionid:23a
username
service
data

... ... ... ...

memoryKey

memoryConnection

memoryData

MasStateKey class 

StateMemory class 

Figure 2. Structure of the StateMemory class for session management.

This structure makes the session management more efficient because of three reasons. First,

using Vectors we can delegate the memory management (when adding and deleting new

sessions) directly to a class that exactly knows when to allocate or deallocate objects in memory.

Second, we exploit the search mechanisms provided by the Vector class, which are already

optimized to minimize memory consumption‡. Finally, when a session expires, the related object in

memoryData is no longer considered valid and the cell is available to be overridden with a new

‡Indeed, although the session browsing could be done also directly using the memoryData, in our solution only one
memory access is required instead of two when searching for a session id, since the session id is the element composing
the vector and not an object internal to the element composing the vector.

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
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value; this ensures that in case the same client tries to connect again, either mAS blocks the access

due to session expiration, or the client will not find the previous session id in the memoryKey

vector.

2.4. MService container design

In mAS, a MService runs inside a container that manages the entire service life-cycle. We adopt

the Inversion of Control (IoC) pattern [13], also known as inversion of dependency, to identify and

to properly instruct the class associated with the MService requested by the client.

The IoC is a well known design-pattern adopted to extend frameworks. According to this pattern,

all the resources required by a class may not be known at design time. The IoC pattern predicates

dynamic binding of these resources at run-time. As such, this pattern is adopted for developing

container based applications, such as mAS. A container knows about a component invoked by the

user only at run-time. As a consequence, all components available to be called by the container

must implement the IoC pattern, implementing a set of pre-defined methods enabling the container

to handle their life-cycles. Depending on the adopted IoC style, the container can be aware of the

available resources in three different ways:

• IoC with injection on constructor: available resources are bound when the object is

instantiated;

• IoC with injection on setters: the container has a group of setters that are invoked to inform

the object of new available resources;

• IoC with injection on interface: all resources need to implement a specific interface that makes

it possible for the object to communicate with them in a homogenous way.

Several Java based frameworks implementing the IoC with different styles are available, but they

all require CDC JVMs. For instance, the Apache Excalibur Fortress [14] project provides a light-

weight embeddable IoC container based on the injection on interface style. PicoContainer [15] and

its extension NanoContainer implement the IoC based on the injection on constructor style.

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
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mAS is inspired by these initiatives and assumes that all the deployed services are described by

at least two elements: (i) the class implementing the service features and (ii) an XML descriptor

that describes those features. As a consequence, all the services that will be executed in the mAS

container must comply to both the deployment and programming models described in the following

paragraphs. The deployment model is defined by an XML schema, i.e., the descriptor schema,

which includes a set of elements describing the main characteristics of the service. The deployment

information is used by the container to know how to call and manage the service. The programming

model is defined by the interface that all services called in mAS MService must implement to be

invoked by the container.

2.4.1. Deployment model. The deployment model in mAS follows the same approach used in

J2EE, attaching a descriptor file to the compiled class implementing the service. Moreover, all

the services must be included in the same jar of mAS, i.e., the MIDlet. This constraint is due to

a security policy for J2ME applications that forbids the invocation of classes living outside the jar

file of the invoking class. In our case, the mAS container needs to invoke, when requested by the

user, one of the deployed services. So, these services must be included in the same MIDlet. Such

a security constraint limits the possibility to perform hot deployment that application servers now

usually provide.

To elaborate, each deployed service should include a specific folder under the services folder.

In turn, in each of these Web service specific folders, an INF folder includes the XML descriptor,

whereas the Java class files of the executable service are stored starting from the service’s root.

The service descriptor includes the service logical name, i.e, display-name, a simple

description, the name to be used to invoke the service by the client, i.e., service-name,

and the service-type, which can assume the values stateless or stateful. Finally, the

service-class defines the name of the class included in the service folder that needs to

be loaded by the container, when required.

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
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+ init()
+ process(in methodName: String, in args: Object[]): Object
+ destroy()

 

«interface»
MService

+ init()
+ process(in methodName: String, in args: Object[]): Object
+ destroy()
- dep(in className: String, in bytecode: String): Object

 

Deploy

+ destroy()
+ init()
+ process(in methodName: String, in args: Object[]): Object
- add(in x:int, in y:int): Integer
- div(in x:int, in y:int): Integer
- mul(in x:int, in y:int): Integer
- sub(in x:int, in y:int): Integer

 

Calculator

+ Container()
+ execute(in className: String, in methodName: String, in params: Object[]): Object
+ invoke(in messageContext: MessageContext)

 - sRespC: ServiceResponseChain

Container

Figure 3. MService interface

2.4.2. Programming model. Mobile Web services in mAS must comply to a specific programming

model specified by the MService interface. This interface (see Figure 3, referring to an example

calculator service) reflects a mobile Web service life-cycle composed by three states: init, process,

destroy. As in a servlet life-cycle, init and destroy allocation and deallocation of resources,

respectively, whereas process concerns the mobile Web service application logic.

Due to the limitations of CLDC JVMs, the MService container is not able to obtain the list of

methods provided by a class since the method Class.getMethods(), required to accomplish

this, is not supported. As a consequence, the mAS programming model includes in the MService

interface only a standard method, i.e., process, that will be invoked by the container when any

of the functionalities of a given Web service are required. Thus, the client-side programmer is in

charge of invoking the proper code by specifying an appropriate value for the methodName input

parameter.

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
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2.5. Client side

From a client’s perspective, a Mobile Web service is equal to a traditional Web service. The

Web service is described by a Web Services Description Language (WSDL) interface and can be

invoked through an application protocol such as SOAP. The WSDL interface lists all the supported

operations and also specifies the information about the input and output data of each operation. At

this stage, the WSDL file is not automatically generated by mAS and the Web service developer is

responsible for creating and including the file in the MIDlet.

3. µ-BPEL: MICRO WS-BPEL ENGINE

Although there exist several proposals enabling workflow execution on mobile devices [43, 44, 45],

all previous work use configuration of the mobile devices more powerful than the one we consider

in this paper (i.e., CLDC).

With µ-BPEL, we propose a micro-orchestrator that allows orchestrating processes described

using WS-BPEL on mobile devices. As discussed in [16], the design of workflows with mobile

devices needs to consider some peculiar aspects due to their architectural limitations. In this regard,

µ-BPEL supports only a subset of the workflow patterns supported by WS-BPEL. In particular, it

does not support enhanced WS-BPEL constructs, such as links, correlation sets, and event handlers

(see Section 3.2 for an overview of the WS-BPEL dialect implemented by µ-BPEL).

Table I) shows the set of workflow patterns for service composition identified in [17], the ones

supported by WS-BPEL, and the subset supported by µ-BPEL. More in detail, within µ-BPEL we

do not consider branches with multiple choices (WP6 in [17]) and the related synchronizing merge

(WP7), the possibility of having multiple instances of an activity without synchronization (WP12),

deferred choice (WP16), and interleaved parallel routing (WP17).

WP6 and WP7 are not supported also by other standards such as BPML [18] or WSCI [19] [17].

Moreover, they can be implemented in WS-BPEL only with control links, the semantic of which was

unclear in WS-BPEL 1.1 and consequently revised in WS-BPEL 2.0. In µ-BPEL, we prioritize the

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
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14 C. CAPPIELLO ET AL.

Table I. Supported Workflow patterns.

Pattern µ-BPEL WS-
BPEL

Arbitrary cycles n n
Cancel activity y y
Cancel case y y
Deferred choice (WP16) n y
Discriminator n n
Exclusive choice y y
Implicit termination y y
Interleaved parallel routing (WP17) n y
Milestone n n
Multi-merge n n
Multiple choice (WP6) n y
Multiple instances without synchronization (WP12) n y
Multiple instances with a priori design time knowledge y y
Multiple instances with a priori runtime knowledge n n
Multiple instances with no a priori knowledge n n
Parallel split y y
Sequence y y
Simple merge y y
Synchronization y y
Synchronizing merge (WP7) n y

constructs that have remained stable in the WS-BPEL evolution and we leave the implementation

of WP6 and WP7 to future work.

Concerning WP12, due to the scarcity of resources in the mobile scenario, we opted for supporting

multiple instances only in case the number of instances was known a priori at design time.

Concerning WP17, interleaved parallel routing can be captured in WS-BPEL using serializable

scopes. However, the semantic of serializable scopes is not clearly defined in WS-BPEL 1.1 ([17],

p. 209).

WP16 (deferred choice) can be implemented using the pick construct in WS-BPEL. The pick

construct and, consequently WP16, is not supported in µ-BPEL. We plan to address this limitation

as future work. In practice, µ-BPEL does not support dynamic processes in which activities can be

selected on the basis of received messages or temporal alarms.

Concerning communication patterns, at this stage µ-BPEL supports the Request/Reply and One-

Way patterns. This means that the process execution can start only if requested by the client. As

a consequence, all the processes must include at least one <receive> element in the definition,

whereas, the <reply> element is optional.

In summary, stemming from the analysis of limitations discussed above, µ-BPEL is designed to:

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2011)
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μ-BPEL
Process Design

Process 
Creator

Recovery 
Manager

Instance 
Manager

WS-BPEL WS 
Manager

Process 
instances

Web service
partners

<reply> message

WSDL
documents

<receive> message

Stored 
Processes

mAS

Process Execution

Figure 4. MicroBPEL Architecture.

• support the execution of a Web service-based process;

• manage multiple activities: the orchestrator is able to manage the parallel execution of

activities belonging to the same workflow;

• manage multiple instances: multiple process instances can be managed. Instances can refer to

the same process or to different processes;

• manage the state of execution: the orchestrator is able to store the execution state (activity

state and variable values) of active processes and restore the instances execution after an

interruption. Interruptions may occur because of the nomadic nature of the mobile scenario.

3.1. µ-BPEL Architecture

The architecture of µ-BPEL is shown in figure 4. It is possible to identify two overlapping sets of

modules: (i) Process Design and (ii) Process Execution. The former set allows the specification of

the process to be executed according a specific WS-BPEL document and it comprises the Process

creator and the Web Service (WS) manager modules. The latter set includes the Instance manager,

the Recovery manager, and again the WS manager modules. These modules support the execution

of the process. The process starts when, according to the WS-BPEL specification, the process client

sends a receive message having the attribute createInstance sets to yes.
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In more detail, during the Process Design phase the Process creator receives a WS-BPEL

specification of the service-based process to execute and translates it in the WS-BPEL dialect used

by µ-BPEL (see Section 3.2), in order to build the correct process memory model. If services

provided by external partners are needed, the Process creator module sends the URL of their

WSDL documents to the WS manager module. For each service, the WS manager identifies the

corresponding client stub and sends its specification back to the Process creator, which stores the

stubs specifications into the Stored Processes repository.

The Process Execution phase starts with the activation of the Instance Manager, which represents

the core of the process engine. The Instance Manager retrieves the process model, generates the

related process instance, and then starts executing the activities. When the execution of a stub is

required, the Instance Manager sends a request to the WS manager that is responsible to invoke and

execute it. The Instance Manager module also cooperates with the Recovery Manager module that

stores and manages all the information about the process state into the Process instance repository.

This repository contains valuable information especially in case of network disconnection.

3.1.1. Process Design phase. The Process design phase starts with the preparation of the WS-BPEL

document that describes the service-based process to execute. µ-BPEL requires that this document

is sent to the Process creator, which then prepares the process memory model by instantiating

all the classes that correspond to the elements composing the process. To this aim, according to

the WS-BPEL dialect used in µ-BPEL, the process memory model is revised to eliminate all the

classes and attributes no longer supported and to compact the existing ones. Figure 5 shows the

related class diagram (some methods details are omitted to improve readability). At run-time, the

process memory model provides to the Instance manager all the information about the activities to

be executed, the variable to be stored, and all the information about the control flow.

In case the process requires the invocation of services offered by external providers, the Process

Creator sends the WSDL document containing the service description to the WS Manager. The

Process Creator also needs to check if the proper stub is already stored. If so, the process creation
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Figure 5. Process memory model for µ-BPEL WS-BPEL dialect.

can continue, otherwise an exception is raised. In such a case, by using external tools usually

included in Interactive Development Environment (IDE) for mobile devices, the proper stub is

generated and stored by invoking the Web Service manager. In the current stage, µ-BPEL assumes

that all the external providers are known and the related stubs are already accessible by the platform.

Once the memory model is instantiated, it is stored in the Process model repository.
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3.1.2. Process Execution phase. The Process Execution phase starts when a user requests to run the

process previously created. This request can be sent using either µ-BPEL’s graphical interface or its

application programming interface (API). The graphical interface allows users to start the process

filling a form that is auto generated on the basis of the variables declared in the receive activity that

starts the process. When the process terminates, the response message reporting the output variables

is directly shown on the device screen to the user. Alternatively, since a process specified in WS-

BPEL can be viewed as a Web service, it is possible to create an API that corresponds to the WSDL

associated with the whole process. The API exposes only the interactions with the client and uses

the functionality discussed in Section 2 to communicate with Web services in mAS.

Regardless of the selected interface, the process is executed by the Instance Manager module

that is supported by the WS Manager module when an invocation of an external Web service

is needed. The Instance Manager module starts the process execution as a standalone thread to

allow the concurrent execution of multiple process instances. When the Instance Manager module

receives the execution request, it retrieves the right process model and creates a process instance.

The first receive activity is then executed by initializing the corresponding variables contained in

the instantiation request. The user receives a notification of the beginning of the execution. Each

type of activity matches with a specific thread, created from the relative activity class, which is in

charge of executing the corresponding tasks. In particular, for structured activities, it is necessary

to select which one of the sub-activities has to be executed and to synchronize the activities. In

the µ-BPEL architecture the synchronization is performed by a semaphore mechanism. When a

structured activity (the parent thread) must be executed, the corresponding thread has to execute the

sub-activities (the child threads) in the correct way and in the correct order. The parent thread sets

the semaphore variable to the number of child threads that must be immediately executed and then

falls asleep. When a child thread finishes executing, it decreases the semaphore value. When the

semaphore value is equal to zero, the parent thread awakes and decides what to do. To guarantee

the immediate termination of all the activities when an exception is raised or after the execution of

a terminate activity, µ-BPEL provides an abort mechanism. There is an abort flag that is set by the
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thread throwing the exception. Each parent thread checks the value of this flag at the time of the

wakening. If the value is true, the parent thread will interrupt its own execution and will propagate

the alert to the child threads.

3.1.3. Process recovery. The data about variables and the state of a process instance are written in a

log by the Recovery Manager module. This allows µ-BPEL to recover a process instance abnormally

interrupted, because of disconnection from the network or battery failure.

Since the Recovery Manager logs also all the possible errors, in case of interruption it is possible

to recover the process by executing the remaining part. The log is implemented through the RMS

as in mAS so that the persistence of these data is ensured by the mechanisms implemented by the

MIDP. There are three types of RMS-based entities in µ-BPEL:

• RMS for processes: it is a list of all the process instances started, but not yet terminated. In

order to distinguish different instances of the same process, the name of each instance is stored

together with a timestamp. When a process terminates (correctly or for an unmanageable

error), the corresponding record is deleted. All the entries (not deleted) are used to create a

list of the recoverable processes;

• RMS for activities: each process instance in execution has a RMS to store the state of its

activities. The possible states are RUNNING, TERMINATED and ERROR. When the process

terminates, the associated entries are deleted;

• RMS for variables: each process instance in execution has a RMS to store the value of its

variables. When a process starts, the list of all the variables without an associated value is

stored. Once a variable is modified, its value is updated. When a process instance terminates,

the associated entries are deleted.

When users want to recover a process, they select one service from the list of the recoverable

processes. A new instance of the process is created and launched by the Instance Manager, which

is aware of being in recovery mode. The variables are created with the values retrieved from the

repository or with a null value if the variable is not associated with any values. At this point, the
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Instance Manager starts executing the process. For each activity, it checks the state of the activity in

the repository. If the state is TERMINATED or ERROR, the corresponding thread does nothing. If

the state is RUNNING or if there is no entry for the activity the thread is normally executed. In case

of abnormal termination during a recovery activity, it will be possible to do the recovery another

time. The name of the process would not change because the timestamp remains the same as in the

first execution.

3.2. WS-BPEL dialect

As previously introduced, µ-BPEL is able to support a subset of the constructs appearing in the

WS-BPEL 2.0 specification [20]. For instance, all the elements about complex activities and the

modeling of control links are ignored. Also, queries, i.e., XPath expressions, are not supported;

In more detail, Figure 6 lists all the modifications to the WS-BPEL language implemented

in the µ-BPEL dialect. Figure 6 contains three different tables that describe (i) the Unchanged

Constructs that are considered in the same way as in the original WS-BPEL specification; (ii) the

Unmanageable Constructs that are all the constructs that have been eliminated in the dialect; (iii)

the Modified Constructs that are all the constructs that have been modified.

4. EVALUATION

Running prototypes of mAS and µ-BPEL are now available and freely download-

able from Sourceforge: http://masproject.cvs.sourceforge.net/ and http://

microbpel.cvs.sourceforge.net/, namely. These implementations rely on kSOAP [21]

as a SOAP pull-parser for mobile devices, developed by Object Web. This parser is based on

kXML [22]: an XML pull parser specifically designed for constrained environments that is suitable

for SOAP messages. Indeed, an XML pull parser [23] can read through large XML files efficiently

using a small amount of memory.
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Figure 6. Modifications to the WS−BPEL language.

Unchanged Constructs
< empty >
< faultHandlers >
< partners >
< partnerLinks >
< sequence >
< switch >
< terminate >
< throw >
< while >

Unmanageable Constructs
< compensate >
< CompensationHandlers >
< correlationSet >
< EventHandlers >
< link >
< pick >
< scope >

Modified Construct Comments
standard-attributes Deletion of all attributes except for name, that is mandatory
< process > Deletion of the attributes: querylanguage, expressionLanguage,

suppressJoinFailure, abstractProcess
< variables > Deletion of the variables of Element type
< receive > Deletion of the constructs < correlationSets >
< reply > Deletion of the constructs < correlationSets >
< invoke > Deletion of the constructs < correlationSets > and <

compensationHandlers >
< assign > Deletion of the constructs < frompartnerLink =

”ncname”endpointReference = ”myRole|partnerRole” ><
fromvariable = ”ncname”property = ”qname” ><
topartnerLink = ”ncname” >< tovariable =
”ncname”property = ”qname” >

< wait > Deletion of deadlines
< flow > Deletion of < link >

In this evaluation we focus on the response time and the memory occupation during the service

execution. In particular, we measured the trend of these parameters with respect to the number of

clients and the nature of the executing service (i.e., stateless or stateful). About the response time

analysis, to minimize the impact on the total response time given by the execution of the service

business logic, we implemented a simple service called AddService. This service can run both in

stateless and stateful mode, and starting from 0, adds the number received as input. When running

in stateless mode, the service will always return the number sent as input. On the contrary, when

running in stateful mode, the service will keep incrementing the input values.

The AddService is firstly deployed on mAS as a stateless service (by properly setting the

service descriptor, see Sect. 2.4). To give the opportunity to measure on-the-fly the memory

occupation, we decide to run mAS on the Sun Java Wireless Toolkit 2.5.2 for CLDC emulation

environment with 2MByte total memory available.

At client-side, we implemented a thread-based Java application able to open parallel connections

to AddService. Due to the limited number of possibile simultaneous connections for mAS, we
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have 10 concurrent invocations at most. This client had been executed varying the number of parallel

connection, from 1 to 10. For each case, in order to have reliable results, we repeated the execution

for 10 times.

Figure 7 shows the results of these experiments. The analysis takes into account the execution of

Web services running in both stateless and stateful mode varying the number of connected clients.

For each case, the figure shows the average response time considering all the connected clients.

Focusing on the stateless mode, the average response time varies between 250ms and 560ms and the

trend is linear. It is worth noting that with low number of connected clients the response time is lower

than when a single invocation occurs (with 3 connected clients, the response time is the lowest).

This trend reflects the computation required by mAS to prepare the system and, in particular, by

the container to instantiate the service classes when the first call occurs. As we are considering the

stateless mode, the following calls do not require this initial step and they have a lower response

time. For higher number of clients, the response time tends to increase and, in some case, the gap

is relevant. As discussed in the following, analyzing memory monitor, this situation is due to the

execution of the garbage collector that negatively influences the response time.

Switching to the analysis of the stateful mode, the trend of the average response time is

exponential and it varies between 411ms and 1, 65s. Even in this case, with low number of

connected clients, the response time tends to decrease due to the effort required by mAS to organize

the internal classes after the first call. Unlike the stateless mode, the instantiation of the service

by the container is required for each connected clients and the StateMemory structure has to be

managed, too. This additional effort results in the increase of the response time that in some cases

is more relevant due to the execution of the garbage collector.

Focusing on the memory occupation for mAS, Figure 8 shows the trend on both stateless and

stateful mode. It is worth noting that, as the execution of the service requires a very short time, to

make the analysis possible the client sends a request every 1s and, the service waits for 10s after

performing the addition. As shown in Figure 8, in stateful mode the occupied memory is generally

more than on stateless mode. Moreover, in stateful mode, the garbage collector needed to run two
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Figure 7. mAS response time varying the number of connected clients.

times. When the first response is sent, since the garbage collector ran, the memory is occupied only

by the objects that are really alive and needed to process the requests. More precisely, at 24s mAS

occupies 188Kbyte on stateless mode and 206Kbyte on stateful model.

About the evaluation of µ-BPEL, we calculated the amount of time required to perform the most

relevant activities in a WS-BPEL process: i.e., receive, reply, assign, and invoke. We decided to

concentrate on these activities as the remaining constructs constituting a WS-BPEL process does not

affect the overall execution time. For this reason, we performed our tests using the process shown in

Figure 9. This process is deployed into the µ-BPEL environment running on a Sun Wireless Toolkit

emulator, and executed ten times. On another instance of the emulator, mAS is running and hosts

the services invoked by the µ-BPEL process. In this way, we are able to measure the response time

and the memory occupation for µ-BPEL only. With this configuration, after each execution of the

process, we considered the response time for the relevant activities and the overall response time. As

at mAS side, we are able to get information about the time required to execute the invoked service,

we excluded this value from the overall response time and the invoke response time. The average of

the response times obtained by the tests are shown in Table II for each of the activities.
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Figure 8. mAS memory occupation with 10 connected clients.

Table II. Response time for main WS-BPEL activities.

Activity Execution time
Receive 43 ms
Assign 123 ms
Invoke 156 ms
Reply 212 ms

Focusing on the overall response time, the process required 1230 ms on average §. The overhead

required to prepare the execution of the process to control the execution itself is 573 ms obtained as

follows:

overhead = 1130 ms− (43 + 123 · 2 + 156 + 212) ms = 473 ms (1)

§This value refers to the time elapsed between the receive execution and the reply execution. Thus, the time required
select a process and enter input data are not considered
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Figure 9. WS-BPEL process used to evaluate µ-BPEL

It is worth noting that about the same overhead time is also observed when executing a variant of

the process where the external service invocation occurs five times. In that case, the overall process

takes, on the average, 1766ms so that the overhead is 485 ms (i.e., 1766− (43 + 123 · 2 + 156 · 5 +

212) = 485.

Finally, Figure 10 shows how the memory occupation varies during the process instantiation and

execution. In this case, we tested µ-BPEL with the process in Figure 9 and with two variant of it:

in the parallel variant five parallel ’invoke’ are executed, whereas in the sequence variant those five

invocations occur sequertially.

As shown, the memory occupation is always under 700Kbytes and at the end of the process

execution is about 170Kbyte. Even if it is not reported in the figure, also in case of parallel

execution, the amount of the memory after the execution remains on that value, but an explicit

invocation of the garbage collected is required.
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Figure 10. µ-BPEL memory trace.

5. RELATED WORK

As stated in [5], “Mobile Web services are mainly designed so embedded devices can consume

the service provided by the server; in other words, mobile Web services are designed from the

perspective of the Web services consumer, to enable lightweight devices to share the computing

capability and database with the server”. This kind of approach has influenced the research on the

mobile computing. As a consequence, most of the solutions made available so far by pervasive,

ubiquitous, and mobile computing community consider the mobile devices only at the client side of

the application. Among the first relevant contributions in this field, we mention [24] and [25], which

provide descriptions of the methods and components needed to put together mobile networks that

can wirelessly deliver Web content. Nowadays, most of the platforms provide support for invoking
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Web services deployed on traditional servers from mobile devices. For instance, Java only provides

the WSA 1.0 (JSR 172) specification that defines an optional package providing standard access

from J2ME devices to web services.

Our paper addresses the problem of orchestrating and executing Web services on a mobile device.

Although these issues have been scarcely addressed in the literature [26], in the remainder of this

section we compare our work with previous contributions addressing the execution, messaging,

and orchestration of mobile Web services. Eventually, we also briefly discuss current proposals for

mobile Web services execution available in industry.

5.1. Execution of mobile Web services

As regards service execution, Berger et al. in [1] discuss their experience about running Web services

on a mobile device. According to them, there are no fundamental impediments preventing the usage

of Web services technology on mobile devices. Problems, however, may concern the infrastructures

and the mobile device resources. As a confirmation, the authors propose an architecture supporting

the publication and invocation of Web services on mobile devices and they demonstrate its real

effectiveness. In [27], Gehlen and Pham introduce the implementation of an environment executing

Web services on mobile devices. Although the architecture is similar to mAS, it runs on CDC

configuration. Moreover, the source code or a downloadable version are not available.

An architecture similar to ours is also proposed in [29], where the authors deploy a Web service

handling infrastructure on a SonyEricsson P800 smartphone. The authors choose to deploy their

application on PersonalJava platform rather than J2ME CLDC/MIDP, owing to the former’s richer

application set. However, our platform achieves the same capability with better response times

using the constrained J2ME CLDC/MIDP platform. Zaplata et al. in [30] propose an architecture

for dynamic adaptation of Web service request based on the resource availability between mobile

service provider and consumer. The adaptation may occur through protocol selection, encoding

format or other means. The approach in [30] has not been evaluated on advanced platforms. Wolff

et. al. [31] highlight the deployment of Web services utilizing the OSGi (Open Source Gateway
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Initiative) for core management. Kim and Lee in [32] propose the use of Web service migration as

a means to make Web service availability robust to network or communication faults. The migration

policy is driven by the resource availability with respect to target devices capable of hosting Web

services. Innovative service advertisement and discovery protocols are proposed in [33], where the

proposed architecture is deployed only on Java CDC platform. Eventually, Schmidt et al. [34]

present an architecture very similar to ours. Our architecture, however, additionally offers Web

service orchestration, incorporating the WS-BPEL industry standard.

5.2. Mobile Web service messaging

Focusing on the messaging sub-system, Park et al. [35] propose an enhanced SOAP message

processing specifically designed for mobile Web services. Even if the authors assume that mobile

devices still hold the role of the Web service client, the proposed approach performs better than

a SOAP-based message communication, which is often the bottleneck of Web service based

applications. Similarly, Lai et al. [36] propose a SOAP binding based on UDP to obtain a messaging

system 10 times faster than using TCP as a transport protocol.

Deployment of Web services on C++ and Java based platforms have been compared in [37]. In

their study, the authors conclude that C++ Web service deployment provides quicker service times

because of faster processing of SOAP messages via the gSOAP [46] library. The work in [37],

however, exploits the SOAP-based client-server architecture for deployment of their prototype.

Recently proposed alternatives, such as [39], advocate providing REST (Representational State

Transfer) based Web services on mobile devices. This claim is motivated by the need for faster

processing times lower memory consumption and lower amount of resources available for devices

hosting such services. However, REST offers limited flexibility owing to its dependance on HTTP

protocol. Hassan et al. in [40] defers heavy computational tasks involved while executing Web

services to resourceful workstations. The evaluation in [40] demonstrates an improvement of

a factor 2 in response times. However, the authors do not specify the deployment platform.

Additionally, our focus is to dispense with workstations altogether making Web services accessible
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anywhere. Glombitza et. al. [41] outline a new protocol called LTP (Lean Transport Protocol), for

device-oblivious communication requiring consumption of Web services. LTP employs message

compression without overloading device resources.

5.3. Orchestration of mobile Web services

When considering the execution of a complex application based on the orchestration of several Web

services, the available solutions are even less. Vimoware [43] is a flexible toolkit for developers to

develop Web services and to define and execute collaborative processes with customized scenario.

This work can be compared to ours, since µ-BPEL involves a lightweight flow language and allows

mobile devices to exchange messages for collaboration. However, Vimoware allows the mobile

devices to execute Web service, but a mobile device cannot manage the orchestration as in µ-BPEL.

To the best of our knowledge, Sliver [44] and ROME4EU [45] are the only WS-BPEL orchestrators

running on mobile devices. With respect to µ-BPEL, Sliver supports more workflow patterns (13

instead of 9), but it runs on a CDC configuration that has less limitation than CLDC on which µ-

BPEL can run. ROME4EU is able to support all the BPEL 2.0 specification, thus it can support

the 14 workflow patterns that also WS-BPEL supports (see Table I). Moreover, Rome4EU is based

on Microsoft .NET Compact Framework that can run only on Windows based mobile platforms,

whereas µ-BPEL is based on a CLDC profile that is supported by all the mobile platforms.

5.4. Industry standards and proposals

The OMA (Open Mobile Alliance) group [28] aims at delivering technical specifications that enable

interoperable solutions when Web services are invoked from or provided by a mobile device. In

particular, while kSOAP2 is a mature library for SOAP based Web service clients running on mobile

devices, we did not find a similarly mature proposal for enabling the provisioning of Web services

on mobile devices.

DPWS (Devices Profile for Web Services) [42] is an industry standard architecture for specifying

hosted and hosting services on resource constrained devices. Currently, Windows Vista and

Windows Embedded CE6R2 platform provide support for DPWS as a component of WSDAPI.
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uDPWS [47] is an extension of DPWS tailored for memory-efficient networked embedded systems

and wireless sensor networks.

The work in [38] compares the performance of Web service deployment on three major operating

systems currently present in the market viz. Symbian OS, Android, and Windows Mobile. Various

platforms (such as J2ME CLDC/MIDP) may be ported over either of these operating systems for

an improved performance. The study measures the tradeoff between performance and scalability of

the mobile operating systems.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a mobile platform for supporting the execution of Web service based

applications that includes both a single Web service and a composition of Web services. The

two modules composing the MicroMAIS platform, mAS and µ-BPEL, have been developed by

considering all the common Web service standards in order to ensure the interoperability with

existing platforms.

The main rationale behind mAS and µ-BPEL is to shift the role of a mobile device from being

only the service consumer to being also a service provider. Due to the nature of mobile devices,

the limitation about memory, virtual machines, and connectivity deeply affects the architecture and

the functionalities of MicroMAIS. Nevertheless, we propose a complete framework that is able to

both execute standard Web services and composite Web services orchestrated according to a WS-

BPEL process. All of these functionalities are provided on a J2ME virtual machine that provides a

small subset of classes with respect to the JVM usually installed on traditional devices. Moreover,

we decided to rely on a CLDC JVM (instead of a CDC JVM) to be sure that our platform can be

executed on any kind of mobile device on which a Java Virtual Machine can be installed.

To improve the current release of the two modules, we would like to extend the mAS

functionalities with a management framework allowing the remote deployment of a Mobile Web

service and automatically creating a WSDL file. Finally, we will investigate the porting of

MicroMAIS to more recent platforms, such as Android.
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