
Application of Deadlock Risk Evaluation of Architectural Models

Antonio Monzón1 '* '^, José L. Fernández2 and Juan A. de la Puente3

1Airbus Military, John Lennon Av., Getafe 28906, Spain
2 Industrial Engineering School, Technical University of Madrid (UPM), José Gutiérrez Abascal 2,

Madrid 28006, Spain
^Telecommunications Engineering School, Technical University of Madrid (UPM), Avenida Complutense 30,

Madrid 28040, Spain

SUMMARY

Software architectural evaluation is a key discipline used to identify, at early stages of a real-time system
(RTS) development, the problems that may arise during its operation. Typical mechanisms supporting con-
currency, such as semaphores, mutexes or monitors, usually lead to concurrency problems in execution time
that are difficult to be identified, reproduced and solved. For this reason, it is crucial to understand the
root causes of these problems and to provide support to identify and mitígate them at early stages of the
system lifecycle. This paper aims to present the results of a research work oriented to the development of
the tool called 'Deadlock Risk Evaluation of Architectural Models' (DREAM) to assess deadlock risk in
architectural models of an RTS. A particular architectural style, Pipelines of Processes in Object-Oriented
Architectures-UML (PPOOA) was used to represent platform-independent models of an RTS architecture
supported by the PPOOA -Visio tool. We validated the technique presented here by using several case studies
related to RTS development and comparing our results with those from other deadlock detection approaches,
supported by different tools. Here we present two of these case studies, one related to avionics and the other
to planetary exploration robotics. Copyright © 2011 John Wiley & Sons, Ltd.

Received 17 January 2011; Revised 9 July 2011; Accepted 12 July 2011

KEY WORDS: deadlock; software architecture; MBSE; UML; concurrency

1. INTRODUCTION

Software architecture modeling is a relevant subject for the production of real-time systems (RTSs).
The development of architectural analysis and modeling languages in previous years has allowed
representing both structure and behavior of such systems with less consideration to implementation
details.

In this context, an architectural style is a consistent set of building elements with architecture
rules for using them to créate system models. The style well-formedness rules assure a minimum
consistency level. Nevertheless, in addition to the notational or syntactic capabilities of a style, pro-
cess and guidelines are also needed to help software architects produce feasible models concerning
particular quality attributes (e.g. efficiency or safety). The Pipelines of Processes in Object-Oriented
Architectures (PPOOA) architectural style [1] has been selected because it combines UML notation
and model driven architecture (MDA) concerns, allowing for software architectural analysis and
evaluation. In addition, this style is particularly useful to explicitly represent concurrency issues.
This style has been recently selected as one of the reference MBSE methodologies by the OMG [2].

Deadlock is far from being a solved problem. Concurrency is in fact an open issue for many
research and technical work [3-7] and of high interest to the industry, especially in the real-time

*Correspondence to: Antonio Monzón, Airbus Military, John Lennon Av., Getafe 28906, Spain.
^E-mail: antonio.monzon@military.airbus.com

mailto:antonio.monzon@military.airbus.com

embedded systems domain. Over the last three decades, different formal methods have been devel-
oped to specify and verify system properties. In this context, model checking [8] has become a
reference discipline for such an approach. Its main goal is to build a finite model of a system and
check that relevant properties are present in it. What is remarkable about this approach is that an
exhaustive search of the state space is performed to ensure the fulfillment of some property. One of
the properties particularly checked through model checking techniques applied to concurrent sys­
tems is deadlock absence [5,6]. Additionally, for the classical state explosión problem (the main
drawback of formal methods), from a practitioner point of view, other relevant issues are the intrin-
sic complexity of the modeling techniques and their applicability to large-scale RTSs. Industrial
applications require simple and practical approaches to be easily adopted by practitioners.

In addition to deadlock detection and prevention, the third traditional strategy is deadlock avoid-
ance. Under this category falls a successful mechanism that provides deadlock freedom. The group
of resource access protocols known as priority inheritance [9] has as a major objective the resolution
of priority inversión. As a collateral benefit, deadlock is also avoided if the priority ceiling proto-
col (PCP) or highest locker protocol is supported by real-time operating systems. The main issue
with this mechanism is that few commercial real-time operating systems support these protocols
and their ad hoc implementation by the developers is complex and therefore onerous. Further-
more, some authors have reported performance overheads derived from the utilization of these
protocols [10].

This paper describes the implementation of graph theory to characterize the deadlock risk of an
architectural model of an RTS. The objective is not to avoid or detect deadlock occurrence or to
prove that a design is deadlock-free but to assess the risk of deadlock present in an architectural
model. It is assumed that a model has an intrinsic risk of deadlock, which may involve further
design decisions. The underlying idea of this approach is to make designers aware about this risk as
early as possible and with the minimum analysis effort. The kind of model verification proposed in
this paper is static analysis of the system platform independent model (PIM) (Figure 1).

Figure 1 shows the model driven architecture (MDA) models and the evaluation techniques asso-
ciated with them. MDA provides four modeling levéis: computation independent model (CIM),
PIM, platform-specific model and implementation-specific model. High level models, such as CIM
and PIM, do not represent execution platforms and technical details. As Figure 1 illustrates, when
the underlying execution platform changes, the upper level models can be transformed to the new
platform without any remodeling.

We describe a new complexity metric based on the properties of the architectural models of an
RTS. The information considered in the characterization of deadlock risk comes from the following
sources: cyclic complexity of the model and structural and dynamic deadlock patterns. Although the
technique described is applicable to any kind of system, the deadlock topic is of special interest in
the RTS domain.

General

f
Syntadic Analysis

Static Model
Analysis

Model Crieckiíig.
II

ScheJulniíj
Feasitulity Test

II
WCET

II
Static Cade Analysis

' . ' •

niiíVii nn

Figure 1. MDA models and associated evaluation techniques.

Although many computer-aided software engineering tools exist in the market to support soft­
ware design activities, most of them focus only on the notational aspects with very little concern
for engineering activities (e.g. alternative design tradeoffs). Several commercial tools [11,12] sup­
port real-time characteristics but with no specific feature to analyze concurrency problems. Static
analysis tools [13] partially cover this topic, but their main purpose is to analyze the quality of
the software source code (not the models). Finally, model-checking tools [5] require the usage of
detailed models with formal notations. A clear gap has been identified in current modeling tools to
support the concurrency problem assessment at a high level of abstraction with semiformal notations
(i.e. UML).

In Section 2, we briefly describe the state of the art in deadlock handling. The PPOOA-UML style
is outlined in Section 3. The proposed characterization of deadlock and the tool created to automate
this assessment (deadlock risk evaluation of architectural model (DREAM)) are presented in Sec­
tion 4. The validation strategy is presented in Section 5, and Sections 6 and 7 present, respectively,
two case studies from the avionics and robotics domains. Finally, Section 8 contains an outline of
the decisión process for the selection of the proposed characterization.

For conciseness reasons, most of the decisions made, their justification and other facts involved
in the research work have not been described in this paper. Missing information is included in the
doctoral dissertation in [14],

2. STATE OF THE ART

Table I shows a comparison among the various strategies and techniques currently available to
address the problem of deadlock. It is assumed that all these techniques (except simulation) are
applicable at abstraction levéis near to implementation. Specific considerations for distributed sys-
tems are not taken into account as they do not add conceptual insights regarding the overall strategies
shown in this paper.

Traditional prevention techniques are easy to implement but involve serious penalties for the
use of resources and the time response of the system, requiring further specific implementations.
These techniques are useful only when the criticality criteria prevail over efficiency (e.g. safety-
critical systems).

The most effective avoidance techniques are indeed those derived from the priority inheritance
protocols, especially the highest locker protocol, which has all the advantages of the PCP but with-
out the drawback of development complexity. The most important problem with these techniques
is practicality: they are supported only in some commercial operating systems and their imple­
mentation, based on COTS, is expensive. The alternative is ad hoc implementation on the specific
platform, with the subsequent development and maintenance costs. This solution is an effective
alternative at the implementation level but also has development costs (not negligible).

Formal methods are promising approaches, which have been very effective in space real-time
applications (e.g. Mars Pathfinder), but they are computationally onerous and their applicability to
large-scale industrial systems still has to be demonstrated. Although some strategies have emerged
to address the state explosión problem (compositional techniques) [5,15,16], they have not shown
sufficient evidence that can be applied to complex/large software applications. Besides their inherent
complexity and their computational resource requirements, they also have serious practical draw-
backs for their acceptance by the system designers. Given this approach, the natural tendency of
the industry is to have simplicity and uniformity in the notation (e.g. UML) over the consistency of
formal methods.

The most similar technique to that proposed in this paper is the simulation of concurrency in
the Metrópolis platform [17,18]. From the detailed comparison of both approaches (documented
in [14]), it can be concluded that the proposal of this paper has virtually all its advantages, in
terms of level of abstraction and, in addition, increases the precisión in the characterization of dead­
lock (through static and dynamic deadlock patterns) and eases its adoption by using a UML-based
notation.

Another comparable technique is that proposed in [4]. The objective of this alternative approach is
to use static analysis to reduce the overhead of dynamic checking for deadlock potentials. The main

Table I. Techmques for the management of deadlock (from [14]).

Strategy Technique Advantages Drawbacks

Prevention

Avoidance

Detection

Concurrency prevented (cyclic executive)
Negation of deadlock conditions (Havender)

Techniques derived from Banker's algorithm

Priority inheritance protocols: PCP y HLP

• Resource Allocation Graphs (Holt)
• State Graphs

Formal Verification:
• Model Checking
• Petri Nets

Verification by simulation:
• Metropolis-DSDG

Deadlock is not possible
Very effective
Easy implementation

Negation of conditions is not required

Very effective
Priority inversión is also avoided

Easy implementation
No a priori restrictions

Very effective
Deadlock-freedom assurance

Allows conceptual assessment of
architecture level models
Very flexible

Very inefficient
Can cause starvation
Low flexibility

Complex evaluation of deadlock-free state
Low scalability (inflexible)

Difficult implementation
Not supported by all RTOS
Potential negative impact on performance

Require execution-time monitoring
Complex recovery upon detection
Non-trivial protocols abstraction

State explosión problem
Reduced implementation flexibility
Complex modeling techniques

No standard notation
Requires specific simulation infrastructure

commonalties with DREAM are the usage of cycle detection in graphs to characterize deadlocks
and the concept of deadlock potential to indícate risk of deadlock, independently of the real occur-
rence of it. The approach has the following important differences: the main difference is the level of
abstraction, which is the source code with respect to PIM in DREAM; the second is the precisión of
DREAM deadlock characterization by the refinement through static and dynamic deadlock patterns,
which allows reducing the number of false positives; and finally, the runtime overhead addressed by
the authors is in fact not a problem in DREAM, because the architecture models used do not require
any instrumentation on running programs.

Since the concept of deadlock was first presented, the entire research effort has been concentrated
on those stages cióse to implementation, as highlighted in this section. The fundamental reason for
this circumstance is that concurrency issues have been viewed as problems because of inadequate
software coding practices (particularly data access and real time software). The leitmotiv of our
approach is that concurrency issues are actually architectural problems to be evaluated from a sys-
tem perspective. One argument supporting this idea is that the increasing complexity of systems,
including distributed systems, has required an additional research effort and specific approaches to
deal with deadlock in such environments. In the specific case of distributed systems, the manage-
ment of local deadlocks does not guarantee global deadlock resolution. It is necessary to raise the
level of abstraction to address such scope. This trend towards a wider scope is summarized in the sys­
tems engineering principie of 'system thinking'. Complex problems should not be addressed under
a niche perspective but take into account global aspects of the system as a whole. The concurrency
problems on systems of systems are one of the concurrency issues that are still unsolved.

In this direction, the MBSE paradigm promotes a higher level of abstraction in both model
development and objective assessment of design alternatives (i.e. through model verification).

The approach selected in this paper is the evaluation of models, and therefore has nothing to
do with the traditional mechanisms of execution time. The objective here is not to avoid deadlock
occurrence, but to inform the software architects about its potential risk present in a model and which
building elements are contributing to this risk, to help them take corrective actions at the level of
architecture aiming to minimize the impact of this problem in further stages of development.

It is assumed that there are design decisions at the early stages of development that can lead
to chronic deadlock problems during detailed design. For example, if a software architecture is
designed containing many dependency cycles with interlocking patterns, it is quite likely that
the detailed designs derived from this architecture will show the same or worse trend to dead­
lock. A design recommendation derived from this analysis is that the designer should minimize
dependency cycles. It is also possible that an architecture holding a high deadlock risk thereafter
implements mechanisms to avoid it (e.g. using resource access protocols, such as priority inheri-
tance protocols). However, even in this case, the designer would be interested to know what is the
deadlock potential of a model so he/she can make decisions at preliminary design stages or delégate
them to the following levéis of detail.

Deadlock is not an isolated problem but closely related to other concurrency issues, such as
priority inversión. In [19], a taxonomy of concurrency problems was presented.

The approach followed in this paper proposes the assessment of concurrency properties of the
system not by formal techniques but through metrics that do not require a deep knowledge of any
specific modeling technique and have a simple physical interpretation.

3. PPOOA ARCHITECTURAL STYLE

A software architectural style encapsulates decisions about the building elements provided and
emphasizes important constraints on the elements and their relations. The PPOOA architectural
style provides building elements for RTS architectures, such as components and coordination mech­
anisms [1]. Constraints on building elements are represented in the PPOOA metamodel and by
explicit guidelines or architectural heuristics. These guidelines not only represent the semantics of
the style, but they are also helpful for the software architect using the style.

The UML stereotypes are extended with the elements of the PPOOA style (periodic and aperi-
odic processes, controller objects and coordination mechanisms). UML activity diagrams are also
adopted for PPOOA style requirements, specifically for modeling system responses [20],

The PPOOA architecture diagram is used instead of the UML component diagram to describe
the structural view of the RTS architecture. Coordination mechanisms, used as connectors, are also
visually represented in the architecture diagram.

The RTS behavior view is supported by the 'causal flow of activities' (CFA) representation.
A CFA represents a behavioral view of the flow of activities performed by the system in response to
an event. PPOOA uses the UML activity diagram with partitions to support allocation of activities
to the architecture component instances performing them.

For the purposes of this paper, these are the relevant abstractions used in PPOOA for explicit
concurrency modeling:

• Task: PPOOA building element representing system threads or light processes. It may be
periodic or aperiodic.

• Resource: Logical resources can be represented in PPOOA by domain components or struc-
tures. These building elements are abstractions of design classes and abstract data types,
respectively.

• Semaphore/mutex: A puré synchronization mechanism. It is the PPOOA building element that
supports the synchronization of tasks. Semaphores/mutexes are used to protect shared logical
resources.

• Bounded buffer: A coordination mechanism representing a FIFO queue used to communicate
asynchronously two tasks.

4. DEADLOCK CHARACTERIZATION

The process followed to créate the characterization described in this section was iterative [14],
Three different characterization strategies were considered prior to the final decisión. This decisión
was made based on the results extracted from four different case studies (two of them included
in this paper). A summary of this decisión process and a comprehensive rationale of the final
characterization are provided in Section 8.

4.1. Deadlock deflnition

According to Coffman et al. [21], the four necessary and sufficient conditions for deadlock are:
mutual exclusión, hold and wait, nonpreemption and circular wait.

Circular waiting depends essentially on the tasks' interdependency. Tasks must be in a depen-
dency cycle to have a circular waiting. The hold and wait condition depends on the coordination
protocol as it describes the way tasks behave to access resources. Nonpreemption and mutual
exclusión conditions may depend on resource constraints and coordination protocols.

4.2. Deadlock inpipelines of processes in object-oriented architectures

A theoretical example is used to represent the structural model of a generic system to highlight the
way deadlock is characterized in PPOOA. In Figure 2, tasks are represented by architectural ele­
ments of the type 'Process' and resources in the diagram are represented by 'Structure' elements of
the PPOOA style.

In this example, the resources are protected by PPOOA semaphores/mutexes (coordination mech­
anisms in the style) to guarantee mutual exclusión. This protection involves the first condition for
deadlock (mutual exclusión).

Circular waiting condition is represented in the PPOOA architectural view by a dependency cycle.
In this case, tasks D, E and G conform to a cycle. The rest of the tasks in the diagram do not involve
any cycle and therefore cannot contribute to deadlock risk. A nonpreemption condition is implicit
in the semaphore/mutex coordination protocol and cannot be represented in this diagram.

«Slrutfuíe»
T

DEADLOCK RISK

K
•

«símame»
V

Figure 2. Potential deadlock in the PPOOA architectural view.

From the circular waiting condition, a first criterion for the characterization of deadlock risk can
be extracted: identify all dependency cycles where two or more tasks are involved in an architec­
tural model. The reason why two or more tasks are required is that at least two active elements must
be competing for shared resources in a dependency cycle. The higher the cyclic complexity of the
model, the higher its deadlock risk.

Cyclic dependency of several tasks is necessary but not sufficient for deadlock. For the pur-
poses of this paper the rest of the conditions shall be summarized as follows: the tasks involved
in a dependency cycle must be waiting for conditions depending on other tasks in the same
dependency cycle.

4.3. Deadlock characterization description

The approach presented consists in refining the cyclic complexity with additional criteria from the
structural and behavioral views of an architectural model [14]. This refinement strategy is based on
the identification of structural and behavioral deadlock patterns within the dependency cycles iden-
tified in the model. Deadlock risk is broken down into two factors: structural or intrinsic deadlock
risk and behavioral or dynamic deadlock risk.

4.3.1. Structural deadlock risk. For the structural part of the deadlock risk, four deadlock pat­
terns are proposed, considering the type of PPOOA constructive elements and the dependency
relationships with others in the dependency cycles.

The first structural deadlock pattern (Figure 3 (a)) considered in this characterization involves two
(or more) tasks and two (or more) resources protected with respective semaphores/mutexes in the
same dependency cycle. This is the classical deadlock case where several tasks are waiting for each
other to use locked resources.

According to Sutter [7], protected resources are not the only architectural elements susceptible to
cause waiting of tasks. Buffers can also introduce some risk of waiting when a task accesses them
for some data and they are occasionally empty or MI. For this reason, buffers can also be considered

TI

R1

ÍS1

>
ft2

i

T3 TI

B1

I
TZ

1
B2

(a) Protected Resources Pattern

B!

(b) Buffers Pattern

T1

S2

T2
Tt

...fe.
- T2

(c) Synchronous Communication
Pattern

B1
(d) Buffer-Semaphore/Mutex

Pattern

Figure 3. Structural deadlock patterns.

as risky elements with respect to deadlock. The second structural pattern (Figure 3(b)) involves two
(or more) tasks and two (or more) buffers in the same dependency cycle.

Synchronous message communication can be represented using a combination of a buffer of
capacity one and a binary semaphore/mutex [22]. This intertask communication pattern involves
task waiting; the producer task waits until the consumer task acknowledges message reception.
Therefore, it can also be considered risky for deadlock. The third structural pattern (Figure 3(c))
involves two (or more) tasks, one buffer and one semaphore/mutex (not protecting resources) in the
same dependency cycle.

Finally, for consistency with the first two patterns, a fourth pattern shall be considered
(Figure 3(d)): two (or more) tasks, one (or more) buffer and one (or more) semaphore/mutex
protecting resources in the same dependency cycle.

Each time one of these patterns is identified in a dependency cycle, DREAM records the archi-
tectural elements involved and marks them as risky elements from the structural point of view. The
dependency cycle where they participate is therefore considered as risky from the structural point
of view. The static deadlock risk is defined in this characterization as the total number of risky
dependency cycles present in the architectural model.

4.3.2. Dynamic deadlock risk. For the behavioral or dynamic part of deadlock risk, four additional
behavioral patterns are considered in the behavioral diagrams of the PPOOA architectural style.

The first pattern (Figure 4(a)) represents the split of control fiow in a CFA. This pattern involves
execution parallelism of activities and therefore can be considered risky for deadlock.

The second pattern (Figure 4(b)) is represented by the sequence task-semaphore/mutex-resource
in a CFA. This pattern is the behavioral counterpart of the first structural pattern. The third behav­
ioral pattern (Figure 4(c)) corresponds to the second structural pattern and the fourth (Figure 4(d))
corresponds to the third structural pattern. The fourth structural pattern has no specific behavioral
counterpart because it is in fact considered in the second and third patterns.

Each time one of these sequences is found in a CFA diagram of the system architecture, DREAM
records the architectural elements involved and checks if they are included in the list of risky ele­
ments from the static point of view. In a positive case, the dependency cycle where they participate
is therefore considered as risky from the behavioral perspective.

4.3.3. Deadlock risk interpretation. The overall deadlock risk is characterized by the total number
of dependency cycles containing both structural and behavioral deadlock patterns. The interpretation

r»*%Tv-j] {̂ ""**') ̂
/ «mu,!]

(a) Flow Separation Pattern

T«X

Tni Sfr'rt&í'lúrÉi

^ ^,i y^(sg y ^ «**,,»)-»

(b) Task-Semaphore-Resource Pattern

RSnxjrc*

T a * SeTadore

(c) Task-Buffer Pattern (d) Task-Buffer-Semaphore Pattern

F igure 4 . Behav io ra l deadlock pattems.

of fhese metrics is the following: whenever the architectural model of a system has a dependency
cycle, there is potential risk of deadlock. This risk is confirmed when those dependency cycles con-
tain structural deadlock pattems. If they do not contain structural deadlock pattems, they can be
considered as (conceptually) deadlock-free, with the information available at this stage of the devel-
opment. Finally, the risk is refined with behavioral deadlock pattems. Nevertheless, the absence of
behavioral pattems does not guarantee deadlock absence, because this view can be lacking informa­
tion of the implemented architecture (e.g. sometimes designers consider implicitly the participation
of semaphores/mutexes in the access protocol to a protected resource described in a CFA).

As a summary, for the purposes of this paper, the most relevant evidence of deadlock risk is the
existence of dependency cycles containing structural deadlock pattems in structural diagrams. If
no risky cycle exists, no deadlock may occur. The characterization proposes a refinement of this
parameter based on the sequence information available in the behavioral view of the architecture.

4.4. Deadlock risk evaluation of architectural models tool

The process we implemented in DREAM to assess deadlock risk can be summarized as follows:

1. Find all dependency cycles in architectural diagrams where two or more tasks are involved;
2. Search all the structural pattems present in the risky cycles previously identified;
3. Mark all the building elements involved in risky cycles with structural pattems as risky

elements;
4. Assign a numeric valué to the intrinsic deadlock risk: the amount of risky cycles containing

structural pattems;
5. Search all the behavioral pattems present in the CFAs where the risky elements participate;

and
6. Assign a numeric valué to the behavioral deadlock risk: the amount of risky cycles containing

behavioral pattems.

The first step of this process was implemented through the particularization of a cycle detection
algorithm applicable to undirected graphs with a depth first search strategy. More details about this
algorithm were presented in a previous paper [23],

The results from the cycle detection tool are:

• List of cycle sequences.
• List of elements involved in the cycles.

Once the cycles are identified, DREAM takes into account two additional contributions to deadlock
risk: structural pattems and behavioral pattems. The structural pattems described in the previous
section are searched in all the dependency cycles. Once a structural pattem is identified, the cycle,
including all the elements participating in the pattem, is marked as risky. For the behavioral part, all

the CFAs are scanned to search each of the patterns identified. This time only those elements con-
sidered risky from the structural point of view are considered in the search. Each time a behavioral
pattern is found, the corresponding CFA is marked as risky. DREAM takes into account the overall
behavioral deadlock risk if the elements participating in a risky cycle also particípate in a behavioral
pattern. In this case the cycle is also marked as risky from the behavioral point of view.

We used PPOOA-Visio tool [24], which is currently supported on top of Microsoft Visio. This
tool is flexible enough to extend its functionality to support additional capabilities to assess the dead­
lock risk. The strategy selected was to use an XML export add-on to genérate an intermediate file
containing the dependencies and additional information necessary for DREAM to assess the mod­
els. This tool is conceived to help system architects assess the deadlock feasibility of their designs.
However, perhaps the most important aspect is that it enables them to compare the relative deadlock
risk of several design alternatives to better make and justify formal architectural decisions.

5. VALIDATION METHODOLOGY

In this section, we will explain the validation method used. During the development of the DREAM
tool, traditional verification activities were carried out at different levéis to demónstrate that it was
error-free. The subject of this section is validation.

The validation was performed at two levéis: first, corroborating that DREAM detects deadlock
and, second, showing that the valúes of the selected parameters have physical meaning according
to specific case studies. For the first validation level another tool was used (Cheddar [25]). For the
second validation level three different case studies (containing known deadlocks) were analyzed,
two of which are presented in this paper. In this context, the second case study is of particular inter-
est for the validation of the proposed approach because it serves to Alústrate the power of DREAM
for detecting risk of deadlock and in addition shows that the results match the ones provided with a
formal model assessment tool which requires much more detailed design information than DREAM.

Cheddar is not a tool specifically designed to detect deadlock. Its main function is to analyze the
schedulability of an application's tasks, but it also incorporates several features to simúlate real-time
execution, and particularly deadlock.

Although the Cheddar (Figure 5) and PPOOA-Visio metamodels are different, there is a mapping
between them [22] allowing the transformation of PPOOA models developed in Visio to be analyzed
with Cheddar (through the exchange of XML files).

In Cheddar, a task is an element that represents a thread running on one processor. To define a
task in Cheddar, it is first necessary to have defined a processor and a memory address space basis
(the latter allowing the simulation of distributed and multiprocessor environments.)

A task in Cheddar is fully equivalent to a process in PPOOA-UML. The main caveat is that Ched­
dar requires tasks to be periodic to properly run the simulations. It is therefore necessary to make
all tasks periodic in PPOOA-UML models before exporting them to Cheddar.

••eru..meYioon--
Pollcy

tSCHÉD FlFO
-SCHED RR
-SCHED OTHERS

!

i

I
Cnwoar Taik

•r/pe
•ñame
-capacity
• : « i M
-siaii_time
-deadline
-polcy

Cheddar: :E lema nt

¿ s

Cheddar::RB»oiirce_user

-stan lime
-endjime

«entjmersciúfi»
ProtoeoLlyp*

*MO P R O T O C O L

•Plp
•PCP

Cheddar:: Resou rea

-ñame
•pfOlocol_lype

1

Figure 5. Cheddar metamodel [26],

Cheddar resources should be considered as shared resources. In Cheddar, puré coordination
mechanisms (like semaphores/mutexes) are not considered. This coordination is implicit within
the resource elements. Therefore, when a PPOOA-UML model contains a generic resource (domain
component or structure) protected by a semaphore/mutex, its counterpart in Cheddar is represented
by the corresponding resource it is protecting. The rest of resources are transformed directly from
PPOOA-UML.

In the current mapping, PPOOA-UML to Cheddar buffers is mapped directly to the corresponding
elements in Cheddar. This makes sense for analysis related to the buffers (e.g. feasibility analysis),
but it represents an inconvenience for the characterization of deadlock proposed in this work. Ched­
dar buffers are transparent with respect to deadlock because the way it detects deadlock is associated
only to shared resources. To provide the buffer elements of the PPOOA-UML models in Cheddar as
potential risky elements regarding deadlock, it is necessary to assume them as shared resources in
Cheddar.

The way of describing the interdependencies between tasks and resources in Cheddar is through
the element type 'resource user'. Each resource can be used by one or more tasks. To represent that
a task uses a resource is necessary to specify the access times of the task to the resource in units of
time from the start of the task in its schedule. The access times of tasks to resources in Cheddar are
defined by the start time and end time of resource use. The only condition imposed by Cheddar is
that the finish time of use cannot be earlier than the start. The choice of these times is part of the
detailed design of a model in Cheddar and crucially determines which tasks meet their deadlines.
These inputs, along with the relative start on the tasks, are those that allow determining if a model
contains deadlocks in Cheddar.

Cheddar detects deadlocks between tasks through the identification of task blockings during their
wait for resources availability. To show a deadlock, it is necessary to first make a few preliminary
assumptions:

• Planning policy of the processor is rate monotonic.
• All tasks have the same priority.
• There is no resource access protocol activated to explicitly avoid deadlock (resources have

disabled the PCP).

It has been observed that these three conditions are necessary for Cheddar to detect deadlocks
according to its detection mechanism.

Cheddar simulates the behavior of the model in terms of tasks accessing resources. If tasks are
unable to complete their execution and the reason is that each one is blocking the other, the result is
simulation halting. The outcome of this analysis is a report stating which tasks are blocked in which
resources and the instant when simulation stops.

It is important to remark here an important limitation of Cheddar for deadlock detection. Once
this tool detects a deadlock, the simulation stops and no additional deadlocks can be detected, which
would have been revealed later in the simulation. This means that it is necessary to consider several
scenarios with different access times to show all deadlocks present in a model.

The fundamental assumption followed at this point is that if there is deadlock risk in a structural
model, it is possible to find valúes of timing parameters such that a simulation reveáis the deadlock.
At these valúes the risk of deadlock is shown. The failure to obtain a result of deadlock with a certain
configuration of access times does not necessarily mean that the risk does not exist. In fact, most of
the potential parameter settings are not deadlocked in the corresponding simulations and yet there
is risk of deadlock. This circumstance can be considered a clear drawback of Cheddar as a means of
detecting deadlock risk in front of DREAM.

6. AVIONICS SUBSYSTEM CASE STUDY

6.1. Case study description

A case study in the field of military avionics is presented here to illustrate the applicability of the
proposed deadlock analysis and to validate DREAM.

One of the functions provided by the avionics embedded in military aircrafts is the automatic
Communications management. In particular, the function known as 'automatic tuning of commu-
nication equipment' (a.k.a. Autotuning) was selected to illustrate the approach of this paper. This
function manages the frequencies of all on-board communication equipment (mainly radios and
transceivers) to avoid unauthorized interception of Communications by the enemy.

The architectural model for this function was split into three subsystems: autotuning plan
(Figure 6), tuning configuration (Figure 7) and autotuning views management (this third subsystem
was not relevant to this paper.)

The autotuning plan subsystem captures time, aircraft position and waypoint information from
the avionics bus, represented in the architecture by the buffers B2, B3 and B4, respectively. Tasks

B_Ci>tr*ni_urc

B2

PP_Update_Timo

T5

«Algonithm»

CondílHons C h « * e r

B CurTora AlC Posil'on

83

•<<P»üee55»

PP_Lpdale_A/C_Pos¡ tion

T4

B.Wayppnl

B4

Passed «Pracsss"

AP_Updató_WavpoinL_Passed

T2

R4

i
i

- i -
i

i i
+ —'-

i
i

Ssgjgat^3

S3

« $ u u e i t * » »

StaGk_Tr¡ggerad_EveflL

R3

« P V o w s s »

PP_Manager ,_A\itatyning_Plari

T1

Sema; l lora 1

-3 S1

I

S&niag lpc*a?

isr*
L¡sl_Ad ¡ve_AutMU n¡ng_Pla n

R1

B ÍI'MMICÜI d i

B5

«PfOOSSS"

AP Process Modificatlons

T3

kBV
«Suucture»

Lisl_lnaCt¿VB_Aulolun¡ng_fil3n

R2

Figure 6. Autotuning plan subsystem.

C l A ^ w i u n l ng_Contlgiiral>cm | ^ -

TB

«Proeess»
AP_Manager_Tjimi9_CíifififfLiallon

«Praoess»
AP DÜÍCCI Conflicts

"TT

í Ml j fWS

B6

T9

«PIDCH55»

APCaptureTnrooiedE í íf l í

T7

B._Tu vi ngCboTig uí abon

B8

B7

3S_Aiiley1uni(i^^^T_5emaphcira 1

« Dornas Contparenl»

Tunlfig_G onfiguralion

R5

r~r
S1

C on figura! \o n_ HF

Ri

«Üümain Cüfriponart»

CDnfigura1ÍDii_l FF

ftz

Configural ÍDn_UVHF

ta

Figure 7. Tuning configuration subsystem.

T2, T4 and T5 put these data in the buffer Bl. The periodic process TI (management autotuning
plan) is the main task of this subsystem and implements the execution of the autotuning plan. This
task browses the list of planned events, implemented by resource Rl, and compares them with the
queue of events captured in real-time in the buffer B1. It is important to remark that B1 is combined
with the binary semaphore/mutex S3 to implement a synchronous communication pattern to ensure
that all the messages from the event handlers are received by the plan manager TI.

The tasks TI and T3 can concurrently write on the shared resource Rl. In terms of the prob-
lem domain, the pilot subsystem and the planning process can update the autotuning plan. For this
reason, this resource is protected by a semaphore/mutex (S2).

Whenever the planning process TI detects that a condition takes place as a result of periodic
comparison, it pushes a new triggering event in the stack R3, which represents the command for the
second subsystem to reconfigure the communication equipment frequencies.

The aperiodic task T7 captures the event from the protected stack R3 and the controller element
autotuning configuration sends the command to set new tuning configurations to the communication
equipment, represented in the diagram by resources R5, R6, R7 and R8. The process T8 detects con-
flicts in the configurations of different communication equipment and sends the warning messages
through the corresponding bus ports represented by the buffer elements B6 and B7.

This architecture was selected to illustrate the handling of shared resources (it allows par-
allel execution of tasks), but it has some concurrency problems that shall be identified in the
following section.

The behavioral part of the model is partially represented by the CFA 'triggered event' (Figure 8).
This CFA can be interpreted as follows: at the arrival of the internal event 'new conditions' the
sequence of activities executed within the system is:

1. TI (autotuning plan manager) gets new conditions from Bl;
2. As long as Bl is protected by S3, before accessing the buffer, the semaphore/mutex has to be

acquired first. In execution time, TI may be forced to remain waiting for the semaphore/mutex
to be released;

3. Once the buffer is available, the message is received by TI;

04. Triggered Evenl

~ri«r

;{^«H^")<"^")

TI
PP_PjjrJa>

S3

f ItDHH U j

Bl
B t4v*_Cw,

AHOI

S2

C^^)^(yF] -{^)

R1
LH1_AfliW_
Aüwxiifling,

f 1 ""* i - : . - ' "

R4

cti«h*r

SI R3

Figure 8. CFA triggered event.

4. Later, the semaphore/mutex is released and the list of events opened for reading the next event
in it. This list is protected by the semaphore/mutex S2 and thus TI can remain waiting until
reléase;

5. TI compares the information captured from Bl with the data in the list, transformed by the
comparison algorithm R4 and if the result is positive, the event in the list is flagged and the
command for the communication equipment reconfiguration is sent through the intermediate
stack R3 (protected by the semaphore/mutex SI); and

6. Otherwise the next element in the list Rl is analyzed until the list ends.

6.2. Results discussion

The DREAM tool transforms the architectural diagrams described in the previous section into
the aggregated graph shown in Figure 9. This undirected graph represents all the elements of the
architecture and the relationships among them (regardless of PPOOA-UML stereotype).

This graph is used as an input by the cycle identification part of DREAM as a first step in the
deadlock characterization. The results are shown in Table II.

According to this list, eight dependency cycles were detected. Out of them only six depen-
dency cycles contain two or more tasks with structural deadlock patterns. Therefore, the structural
deadlock risk (SDR) of this model is 6.

In Figure 9, the elements participating in the structural deadlock patterns are shown as rings.
These elements shall be considered risky for deadlock. The risky elements detected are:

• Tasks:
o PP_Manager_Autotuning_Plan (TI)
o PP_Update_A/C_Position (T4)
o AP_Update_Waypoint_Passed (T2)
o PP_Update_Time (T5)

• Buffers: B_New_Conditions (Bl)
• Semaphores/mutexes: Semaphore_3 (S3)

Once the information from structural diagrams is used, the rest of the information relevant to the
deadlock analysis comes from the behavioral views or CFAs. In this case study, only three out of

Figure 9. Structural graph.

seven autotuning CFAs included risky elements. The information generated by DREAM is shown
in Table II.

From this information the foliowing conclusions can be extracted:

• All the risky elements participate in the risky CFAs 1, 2 and 4.
• All the risky elements participate in at least one behavioral pattern in some risky CFA.
• All the cycles considered risky from the structural point of view are therefore also risky from

the behavioral perspective. The dynamic deadlock risk (DDR) of this model is 6.

As a final summary, Table III shows the risky elements and the cycles and CFAs where they
participate.

6.3. Alternative design discussion and validation

From the results of the previous section, the following conclusions can be extracted:

• The elements B_New_Conditions (Bl) and Semaphore_3 (S3) are the most confiictive as long
as both participate in all risky cycles and risky CFAs (Table IV).

• The rest of the risky elements each participate in three dependency cycles and one CFA, but all
are related with the same pattern.

• The elements B1 and S3 are part of the synchronous communication pattern required to ensure
that all the messages sent by the tasks T2, T4 and T5 are received by the plan manager task TI.
This pattern is in fact the only source of deadlock risk identified in this case study

A simple way to reduce the deadlock risk can be to change the current communication pattern
among these tasks to an asynchronous one. This pattern involves removing the semaphore/mutex
S3. The resulting model has no risky elements because the semaphore/mutex causing the risk is

Table II. List of dependency cycles detected.

Cycle Elements Deadlock risk?

1 PP_Manager_Autotuning_Plan, Semaphore_3, Yes
PP_Update_A/C_Position, B_New_Conditions

2 AP_Update_Waypoint_Passed, Semaphore_3, Yes
PP_Update_A/C_Position, B_New_Conditions

3 PP_Manager_Autotuning_Plan, Semaphore_3, Yes
AP_Update_Waypoint_Passed, B_New_Conditions

4 AP_Update_Waypoint_Passed, Semaphore_3, Yes
PP_Update_Time, B_New_Conditions

5 PP_Manager_Autotuning_Plan, Semaphore_3, Yes
PP_Update_Time, B_New_Conditions

6 PP_Update_A/C_Position, Semaphore_3, PP_Update_Time, Yes
B_New_Conditions

7 Conditions_Checker, PP_Manager_Autotuning_Plan No
8 AP_Capture_Triggered_Event, B_Tuning_Configuration, No

AP_Detect_Conflicts, CT_Autotuning_Configuration

Table III. List of behavioral patterns detected.

Task-semaphore-buffer T-B T-S-R Split

1 Analyse waypoint(AP_Update_Waypoint_Passed) -> None None 0
Acquire(Semaphore_3) -> Send new condition(B_New_Conditions)

2 Analyse time(PP_Update_Time) -> Acquire(Semaphore_3) -> Send None None 1
time(B_New_Conditions)
Analyse position(PP_Update_A/C_Position) ->
Acquire(Semaphore_3) -> Send position(B_New_Conditions)

4 Requestnew conds(PP_Manager_Autotuning_Plan)-> None None 0
Acquire(Semaphore_3) -> Receive(B_New_Conditions)

Table IV. List of risky elements and their participation in risky cycles and CFAs.

ID

1
2
3
4
5
6

Risky element

PP_Manager_Autotuning_Plan (TI)
PP_Update_A/C_Position (T4)
AP_Update_Waypoint_Passed (T2)
PP_Update_Time (T5)
B_New_Conditions (Bl)
Semaphore 3 (S3)

1

X
X

X
X

2

X
X

X
X

Risky cycles

3

X

X

X
X

4

X
X
X
X

5

X

X
X
X

6

X

X
X
X

CFA1

X

X
X

Risky CFAs

CFA2

X

X
X
X

CFA4

X

X
X

missing. Nevertheless, this design decisión is in conflict with the real-time requirement of ensuring
that no message from the event managers is lost. For this reason, this alternative was discarded.

A second alternative design was proposed to fulfill two requirements: low deadlock risk and reli-
able message handling. The change consists in splitting the current buffer B_New_Conditions into
three buffers, with each one communicating the pafrs of tasks: T1-T2, T1-T4 and T1-T5. The
results from DREAM show that no risk is present in this alternative model. Further analysis can be
performed with temporal data to assess tasks overloaded with complementary tools like Cheddar.

The validation of the parameters proposed in this paper and the results of the different case studies
used to derive them were performed with the aid of the schedulability analysis and simulation tool
Cheddar. As mentioned above, Cheddar is interoperable with PPOOA-Visio [22]. A specifically
developed Visio add-on implements the interoperability between PPOOA-Visio and Cheddar, and
allows capturing the architecture model information generated with PPOOA as an XML file input
to Cheddar. Execution time estimation was added to models to allow the simulation of execution in
Cheddar showing when deadlock occurs.

6.4. Validation with Cheddar

Once this model is transformed to the XML file required by Cheddar, the simulation can be
performed.

Given the characteristics of the model, it is necessary to perform several simulations to reveal
all deadlocks present in the model. The reason is that four tasks (PP_Manager_Autotuning_Plan,
PP_Update_A/C_Position, AP_Update_Waypoint_Passed, PP_Update_Time) are simultaneously
accessing two resources (Semaphore_3, B_New_Conditions). According to the validation proce-
dure described in the validation section, it is necessary to break down the test into six scenarios, each
with two tasks accessing two resources, to demónstrate full deadlock detection coverage (contain-
ing the basic pattern of two tasks accessing two resources). In addition, it was necessary to consider
the buffer 'B_New_Conditions' as a shared resource for the purpose of deadlock simulation with
Cheddar. The results for the six scenarios are shown in Table V.

As can be seen from the results, the four confiicting tasks cannot complete their execution and six
risky cycles are identified.

7. MARTIAN ROVER EXECUTIVE CASE STUDY

7.1. Case study description

This section describes an architectural design representing the control system of a planetary explo-
ration rover. The system has been in operation in several NASA/JPL (National Aeronautics and
Space Administration/Jet Propulsión Laboratory) missions and there is documented evidence of
concurrency problems, such as priority inversión and deadlock. In [27], the authors explain how
they used model checking to evalúate the occurrence of deadlock in this system. This concrete case
study is considered particularly relevant because the detection of deadlock by DREAM with the
same design solution is an explicit demonstration that it fits the purpose.

All the information used in this section has been gathered from the architectural solution described
in several technical papers available on the website of the JPL [28-30] describing the K9 system.

Table V. Deadlock simulation results with Cheddar.
Scheduling simulat ion, Processor my_processor
* Eeidloci [ron sinulation

- teadloek « time 2 : PP_apd.ot#_AC_Posi11Í«I BJJenJMtticns.
- Desdice!; at t i l » 2 : PP_MaM5er_Autotuiiiag_PlaD S«msptiore_3.

Scheduling simulation. Processor ray_processor
- Dsailoc): Eran similatioc i

- íaadlaelí at time 2 : PP_UpdatB_Tiie Sa¡napiKirs_]-
- Dawilock at time 2 : PPJJpdttaJtLPMiticn OSWJMUÍÍ t i tas.

S c h e d u l i n g s i r a i i l a t i o n , P r o c e s s o r my_proces so r
- Dsadlccl! frnni simula ti on :

- teedlocls al time ? ; AP_Update_Waypsiüt^Pas5ed SemsphorO.
- Deadloclt at tima 2 : PP_lJpdata_AC_Pasitiori B_HB»_Corn)itioos.

Scheduling simulation. Processor my_processor :
- Desdice! Eniro siiiu latida :

- Deidletri ai tina 2 ; PP_Updatí_Tit» Seitipbore_3.
- Defldlcelt st tip» í : PP_Kflpajer_AuHrturnng_Pl»n B_tfe>_Cm°'itiei>5r

Scheduling simulation. Processor «y_processor :
- Deadlcck i r ; - simularían :

- Daadloek ai time 2 : H?_Upd*teJfaypt>irit_P4SMd SreaptiorO.
- Deadlack a l time 2 : PP_HflHBger_AutotiiaiTig_Plflii B_HHW_CüBditiaDS.

Schedulíng símulatíorL. Processor ray_processor
- íeadlc--: Eran siautetion :

- Deadlatlí ac csma 2 : Mnipdar.E_Vtaypouit_Pa.ssad Sania pl iore! .
- Deadlack at tima 2 : PPJlpdaie-JIinG a_líew_Cooditions.

The K9 rover planetary exploration vehicle is a six-wheeled rocker bogey mounted on a chassis
that incorporales the electronics and tools for scientific research and remote autonomous operation
(not human operator dependent).

The architecture of the control system software of the rover consists of five types of modules
(Figure 10): Device drivers, Resource managers, Processors and Data performance, Pilot subsystem
and Executive.

Device drivers are the lowest level software elements. They directly control the rover hardware
(engines, buses and cameras). Each device driver is controlled by a resource manager and cannot be
commanded directly by the rover operator or by the Executive.

Resource managers act as intermediaries between the higher-level elements (Pilot subsystem and
Executive) and device drivers. The components of this type are the base manager, the pan/tilt man­
ager and the visión manager. Resource managers can be commanded directly by the operator using
command messages or direct calis to component methods. The command messages are transmitted
via a Communications real-time bus, based on a datagram model.

Performance processors and data components include path planning, obstacle avoidance, visual
tracking and stereo processing. These components cannot be directly commanded by the operator
but only through the Pilot subsystem.

S*ndt u*np4*K unvnand

SS Pifot

— T —

i

D i

SS Executive
Data roquKt

$*f idi simple wmmaiv0

SSResouroesMa nager

Conwnsrijfc blíS i& d*v¡ces

SS Behaviour & Dala Processors SS Device Drivers

Figure 10. Subsystems of the rover control system.

http://Mnipdar.E_Vtaypouit_Pa.ssad

The inputs to the obstacle avoidance module are a range map of the current environment, the
desired target, the máximum allowed object size and the mínimum spacing between obstacles. The
output of this module is the safe driving direction.

The Pilot subsystem is a complex component that is responsible for decomposing/translating
complex commands into specific commands to the resource managers and handling requests for
information to parts of the behavior and data processor.

The conditional Executive subsystem is responsible for interpreting the command plans
(described in a high-level language called CRL) coming from the ground control. The files written
in this language are interpreted in a similar way as a compiler does.

The Executive checks the requirements on resources and their availability at runtime (from
resources module), monitors the execution of the plan (checks that commands are fulfilled) and
selects alternative branches of the plan according to the external conditions (the Executive subsystem
can decide autonomously whether the situation is different from that originally planned).

The plan has a hierarchical structure. At each point of a plan branch, the Executive can have sev-
eral selectable options. The Executive will choose the plan option with a higher valué of expected
utility. The utility valué at each point of the plan is combined with a model of potential events to
obtain the overall usefulness of each branch of the plan.

This decisión mechanism works as a modern chess program does: it evaluates a branch of the tree
and assigns a numeric valué that represents how good the play would be chosen according to the
possible combinations of estimated movements.

The initial estimate of the utility is carried out at the ground segment in accordance with the
theoretical availability of time and resources. Such valúes are only estimates and actual data are
known at runtime. To reduce uncertainties, the system is able to update the plan based on the actual
information available regarding time and resources.

When the implementation of a plan fails in any of the actions, the Executive subsystem reacts by
either ignoring the action or aborting and checking if there are alternative plans. In the second case,
the Executive aborts the plan, leaving the rover in standby mode.

Because of the incomplete information available, only a partial view of the software architecture
is provided. The architectural diagrams of the subsystems SS_Behaviour_&_Resource_Managers
and SS_Executive are considered. The remaining parts of the system have been excluded from this
analysis, but these have been taken into account through design decisions to avoid potential prob-
lems arising from the interaction with the missing parts (e.g. use of semaphores/mutexes to protect
resources potentially available for other elements not considered).

The SS_Executive subsystem (Figure 11) is responsible for reading the command plan and inter­
preting complex commands to be translated into simple commands to be sent to the physical

9 ft*i "Procsss»
Plan Wateher

'••'••Uouid ii H Í I H X Í I I M I : "

Pian Branch

Action Execution

"t
— I —

' 4 I E<acoi¡ve
«Proeess»

Conditions CfoetkBf

4-
«Controller»

Pilo! «Dwiialn Componente
Command

«Struclure"
Condilions

Figure 11. SS_Executive subsystem architecture.

device drivers. In the figure, the task in charge to receive the plan is Plan_Watcher. The plan is
essentially a complex list of instructions in a particular format (instruction tree in high-level lan-
guage CRL), which is represented in the model through a domain component. The reason for this
selection (instead of a structure component) is that it can save the internal state (utility). The plan is
an element that can be changed at runtime depending on the conditions and the utility factor. For this
reason, it is protected by a semaphore/mutex (SI) to avoid simultaneous writing by the Executive
and Action_Execution tasks. The plan is read sequentially by Plan_Watcher, which is performing
the browsing of the branches of the plan. Each instruction is placed in the Event_Queue as a new
command that is in turn read by the Executive, which is the main component of this subsystem.
This task takes the last command in the Event_Queue and checks the available resources (repre­
sented by the structure element named Conditions), assesses whether they are sufficient for running
the corresponding command and finally breaks down the complex command into simple commands
(represented by the domain component Command in Figure 11). The reception of resource data
must be conducted synchronously (messages cannot be missed because otherwise the Executive
could be considering conditions different from the current ones and therefore its decisions may
result in damage to the rover). For this reason it is necessary to use the synchronous communica-
tion pattern (Figure 3(c)) for the tasks Executive and Conditions_Checker (semaphore/mutex S4
and buffer B_Conditions). The domain component Command is protected by a semaphore/mutex
to prevent other tasks (not shown in this partial view of the architecture) from writing on it
simultaneously. The task Action_Execution is responsible for monitoring the implementation of
simple commands generated by the task Executive. This monitoring task can read the plan and the
Event_Queue, but its main functionality is to take simple commands generated by the Executive,
send them to physical devices (represented in the diagram by the complex task Pilot) and check
that these have been executed satisfactorily. Because messages between tasks Action_Execution
and Pilot cannot be lost (which could mean, e.g. not performing obstacle avoidance actions), the
synchronous communication pattern is used again (represented by the semaphore/mutex S3 and the
buffer B_Movement_Command). Once execution confirmation of a simple command is received,
the task Action_Execution updates the status of the command and instructs the Executive through
the Event_Queue.

The pilot is a subsystem not described in this paper, but it interacts with the subsystem
SS_Behaviour_ & _Resource_Managers shown in Figure 12. In this diagram, the pilot subsystem
is represented by the complex task Pilot. The pilot subsystem receives simple commands from the

I-
ttComroiief"

Pilot

«Hracais>?

SaísDifeciior»

«P*ocess»
Position Moíiilor

Sí

Viiion Managet

Stereo P*ocessor

f — ¡

'«troces*»
VisuaLTrackirtg

«Procesa»

^íUMna ñconiporenL»
Rover Status

Hsicam_i(ins9e

«3ff¡Klüri>>
Navcamjmage

¡I «s í rva le»
Range_Map

J Target_L«alion

Figure 12. SS_Behaviour_ & _Resource_Managers.

SS_Executive and translates them in a coordinated manner to different physical devices. A part of
the operation of this subsystem is described in Figure 13, but in this section, we justify the selection
of the building elements and coordination mechanisms.

The Pilot subsystem has to compare the current rover position with the visual information received
by the video capture devices. For this reason it must be coordinated with the position monitoring
task (Position_Monitor). In this case we have chosen the semaphore/mutex S5 to prevent simul-
taneous writing on the domain component Rover_Status, which holds among other things, the
rover geographic position. Vision_Manager task is responsible for the management of navigation
cameras (NavCams) and alert cameras (Hazcams). The cameras are actually duplicated to provide
stereoscopic images, which are represented in the model by the structures Hazcam_Image and Nav-
cam_Image. The Stereo_Processor task processes the Hazcam_Image for the Obstacle_Avoidance
task, responsible in turn for avoiding obstacles. The Visual_Tracking task is in charge of processing
the Navcam_Image to genérate the Target_Location structure, used by the Obstacle_Avoidance task
together with the Range_Map to genérate a safe direction (Safe_Direction) used by the Pilot sub­
system to command the physical devices of movement (motor and wheels) represented in Figure 12
by the Base_Manager element.

The dynamic view of the architecture is represented by three CFA diagrams. Each of these CFAs
represents the response that is triggered by the particular events within the system.

The CFA 1 (Figure 13) describes the behavior of the system in response to the arrival of a new
command plan and describes the behavior needed to transform complex commands into simple ones
for the subsystem Pilot. When the operator sends a command plan to the rover, the Plan Watcher
reads the plan (previous acquisition of the semaphore/mutex SI) and sends its current branch to the
Executive. The Executive reads the plan branch and reads the resource Conditions. If the resources
are sufficient then the utility of the branch is calculated and the next command is processed.

1
Naw p l a n ¿ _ J Ruad plan J

é«

Plan walctor

í SBfid plan — $í Acquir» L |M Serid ttfgnth

Reléale k •

No

SI

i Acquina L í .

Rateaba

Plan

í Requesl 1
•A plan Inflo I

Eiacuiiua

Process
:.a\. i : ior í .

Malte
riec: üior]

$*

KResd píen
branch

^ —I Ralease K;

CondilkHís

condhiara

Figure 13. Transforming complex in simple commands.

The CFA (Figure 14) describes the behavior of the system responding to a particular command
that is part of the basic operation of the rover: to go to a certain position while avoiding obstacles in
the path.

The sequence of actions triggered by the command is described as follows:

1. The Pilot subsystem processes the current position of the rover, which is available in
the Rover_Status element (which in turn is updated regularly by various tasks, such as
Position_Monitor).

2. In the event that the current position does not correspond to the destination, then the rover
continúes moving to the destination.

3. The Pilot subsystem requests the Vision Manager to acquire two stereoscopic images of the
front cameras (hazcams) and two more from the navcams.

4. Then the Pilot subsystem passes the hazcam images to the Stereo Processing element and it
returns a ground level map.

5. Simultaneously, the Pilot subsystem passes the navcam images and an image of the destination
to the Visual Tracking element.

6. The Visual Tracking returns the position of the destination, which in turn is used by the
Obstacle Avoidance component together with the ground level map.

7. The Obstacle Avoidance element returns the safe direction, which is used by the Pilot
subsystem to send the appropriate commands to the Base Manager to move the rover.

This last operation involves transformations to transíate the direction into motion instructions for
the actuators (rover control laws). This process is repeated periodically (internal periodic event)
until the rover reaches the destination safely

7.2. Results discussion

The results generated by DREAM can be summarized as follows:

• Twenty-eight dependency cycles containing two or more tasks have been detected.
• Only 8 out of the 28 contain some deadlock patterns. Therefore, the valué for the static deadlock

risk is SDR = 8.
• The risky elements identified are:

[
Pt'ixnii

pcvarví £

C MiÜt \r

^ ***** J_

_ y

VrtiCíi_M¡iP

•nug»

w
Sana

pmagn

I T.jp I

V:--y,il_1r,ir.

J P U C K I ^

r ptKluOf* .

^ 1 ^ J PreMM 1

J trntoan J

• : - •

i
54*d

conmanA
l0 4i fWi

r̂ i

_f flrtvi» }

ñaDd
tur i «íi

Figure 14. Go to a certain position while avoiding obstacles.

o Tasks: Executive, Action Execution, Plan Watcher, Conditions Checker, Pilot
o Buffers: Event_Queue, B_Conditions, B_Movement_Command
o Semaphores/mutexes: SI* (protecting resource), S2* (protecting resource), S3, S4* (protect-

ing resource)
o Resources: Plan, Command, Conditions

• The risky elements detected from the static point of view are involved in CFAs 1 and 2. The
CFA3 does not include any risky elements and therefore it does not contribute to the dynamic
deadlock risk.

• Only the elements Executive, Plan Watcher, SI, S2, S4, Plan, Command and Conditions are
involved in dynamic patterns. The remaining elements cannot be considered risky from the
dynamic point of view.

• Only 7 out of the 8 cycles considered risky from the static point of view can be considered
also risky from the dynamic point of view because they are composed of elements involved in
dynamic deadlock patterns. The valué of dynamic deadlock risk is therefore DDR = 7.

• The total number of dynamic patterns detected is 3.

In light of the results obtained, the following conclusions can be extracted:

• The most problematic elements of the model are Executive and Action Execution as they are
involved in 6 out of 8 risky cycles. In addition the 'Executive' is involved in the two risky
CFAs.

• The resource 'Plan', protected by the semaphore/mutex SI, is the next item on the list of prob­
lematic elements as it participates in 5 risky cycles. It is also involved in the dynamic patterns
withintheCFAl.

• The elements Plan Watcher, Event_Queue and Command are involved in 3 risky cycles.
• The remaining risky elements are less relevant.

7.3. Comparison versus formal methods

Giannakopoulou [27] showed the results of applying formal verification techniques to the specific
case of the K9 rover executive. In the first section, they presented the software architecture of the
rover executive and architectural decisions taken to improve its preliminary design. The main change
in the modeling is the way to represent the system behavior; changing an approach based on state
machines to another based on events responses. To improve the communication among the Exec­
utive subsystem and other elements of the architecture, they proposed the use of a FIFO queue of
events (Event_Queue). Additionally, the designers decided to enable the simultaneous execution of
threads for the monitoring task Action_Execution. These improvements introduce, however, a num­
ber of concurrency issues that are brought to light through the formal verification technique used by
the authors.

They used the tool Labeled Transition System Analyzer (LTSA) [16] to carry out the verification
of the improved model. This tool supports modular verification (compositional reachability analy-
sis) [15] to analyze the characteristics of the system, modeled with Kripke structures (in this case
using the formal language FSP) and incrementally applied to parts of the system. This technique
significantly reduces the number of states and transitions to be checked with respect to the mono-
lithic application of traditional model checking techniques (as evidenced in the comparative tables
of the paper's discussion).

They proposed the evaluation of a series of system properties that are relevant to assessing the
quality of models, among which are deadlocks and race conditions.

From the incremental evaluation of the first property (Absence of local and global deadlocks')
they reported the detection of a deadlock involving the tasks and Action_Execution and Execu­
tive. The counterexample derived from the formal technique (assume-warrantee) was a behavior in
which the Executive actively tried to stop the action without knowing whether or not it was already
completed, while Action_Execution was waiting to start a new action (deadlock situation). They
proposed a solution to tackle this problem consistent with the level of design detail they were using.

From the results shown in Table VI, the first conclusión is that the most problematic elements are
Executive and Action_Execution. This result corresponds to the information reported by the authors
in [27]. This can be considered as evidence that our approach works correctly and is able to identify
deadlock risk where other much complex tools handling more implementation details have yielded
positive results in this regard. Both elements, Action_Execution and Executive, participate in 4 out
of the 8 risky cycles detected by DREAM.

The remaining deadlock risks identified by DREAM (4 additional risky cycles) can be considered
as deadlock potentials that have not materialized. The fact that they were not detected by the LTSA
tool does not mean that they are false positives but only potential risks to be taken into account
when refining the model with the data available at this level of detail. In this sense, it can be con­
sidered that DREAM is a better tool for detecting deadlock threats than LTSA when limited design
information is available.

8. CHARACTERIZATION RATIONALE

The objective of the deadlock characterization proposed in this paper is to provide a metric that is
easily adopted by practitioners to make architectural decisions with respect to deadlock. With this
aim in mind, this section explains the process followed to decide the final characterization described
in Section 4. Table VII shows the comparative results of a set of primitive metrics applied to three
different case studies and a fourth alternative design of the first one in order to illustrate the argu-
ments proposed in this section. The case studies (CS) shown in this paper correspond, respectively,
to the CS2 and CS3 in this table.

Table VI. Correlation matrix between risky elements, cycles and CFAs.

ID

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Risky element

Executive
Action Execution

Plan Watcher
Conditions Checker

Pilot
Event Queue
B Conditions

1

X
X

X

B Movement Command
SI*
S2*
S3

S4*
Plan

Command
Conditions

Table VIL

X

X

Comp:

CS1

2

X
X

X
X

X
X

Risky cycl
3

X
X

X

X

X

4

X

X

X

X

X

5

X

X

X

X

X

es
6

X
X
X

X
X

X
X

irative results of case

CS2 CS3 CS4

7

X

X

X

X

8

X
X

X

X

studies.

CS4 vs <

Risky
CFA1

X

X

X

X
X

X

CFAs
CFA2

X

X

X

CS1 CS2 vs CS1

Number of elements
Number of ares
Relational complexity
Number of dependeney cycles
Static deadlock risk
Dynamic deadlock risk
Number of risky elements
Risky elements ratio
Number of static patterns
Number of dynamic patterns

21
24
1,1
7
5
5
11

52%
5
8

34
31
0,9
8
6
6
6

18%
6
4

34
46
1,4
28
8
7
15

44%
8
3

20
22
1,1
4
4
4
10

50%
4
8

-5%
-8%
0%

-43%
-20%
-20%

-9%
-4%

-20%
0%

62%
29%

- 1 8 %
14%
20%
20%

- 4 5 %
- 6 5 %

20%
-50%

8.1. Comparison based on percentages

The first approach proposed to evalúate the risk of deadlock [23] was a relative metric com-
paring the number of risky elements with the total number of elements of each kind (tasks,
semaphores/mutexes, buffers and generic resources). This metric was intended to be interpreted
in probabilistic terms: the higher its valué, the higher the deadlock risk. Nevertheless, this option
was discarded because it was observed that changes in the valúes of the intermediate parameters did
not involve proportional increases of the risk (as discussed in [14]).

8.2. Comparison based on dependency cycles

The second approach was also based on a relative metric that compared the number of risky cycles
with respect to the total number of dependency cycles present in a model. This metric was also
promising, but its applicability to properly characterize deadlock risk was again considered ques-
tionable. The reason for this was that reducing the number of risky cycles did not involve reducing
the valué of this metric. If a model holds 7 dependency cycles and 5 of them are risky, its relative
valué is 71% (see CS1 in Table VII). The alternative design CS4 holds only 4 risky cycles, but it
also has 4 dependency cycles and therefore the relative valué of this parameter is 100%, which is
higher than the valué with a higher deadlock risk (which is contradictory).

An alternative to this metric can be the ratio of risky cycles with respect to the model size (number
of building elements). For the same CS1, the metric valué is 33% and for the alternative design CS4,
it is 20%, which seems to be consistent with the expectations. The first drawback of this parameter
is its physical interpretation: it is difficult to understand the concept of risky cycles compared with
respect to a number of building elements as they are heterogeneous elements. However, the main
issue had to do with the lack of proportionality of this metric when changing the primitive metrics.
Let us consider a model holding 10 elements and just one risky cycle. The overall valué of risk
should be 10% (1/10). Now if we double the number of elements to 20 keeping the risky cycle, the
valué is now 5% (1/20). It looks like the risk is half in the second case, but intuitively the risk in fact
remains the same.

8.3. Comparison based on model size

The third approach consists of using model size as a parameter to characterize the risk of deadlock.
Model size can be defined as the number of building elements present in the model. The underlying
idea is assuming that the higher the size of a model, the higher its deadlock risk. This approach is
clearly refuted according to the results shown in Table VIL In CS1 the number of elements is 21 and
the number of risky elements is 11. The valué for the parameter based on size is therefore 52% (half
of the elements are risky). In the CS2, this ratio is only 18%. This result can be consistent with the
idea that bigger size involves higher risk, but it is in contradiction with the fact that the CS1 contains
less risky cycles (5) than CS2 (6).

Alternative to the model size, the model complexity could be considered as a potential candidate
to characterize the deadlock risk, with the same idea of higher complexity involving higher risk. The
model complexity can be defined as the number of dependencies among building elements present
in the model. However, for similar reasons, this characterization also fails. The model complexity
valué of CS1 is 1.1 and for CS2 it is 0.9. Once again, a lower complexity should involve lower risk,
but this is in contradiction with the risky cycle parameter.

8.4. Final considerations

According to the previous observations, the main conclusión extracted is that the better parameter
representing the intrinsic risk of deadlock present in a model is the number of risky cycles [14,31],
This parameter can be defined as the number of dependency cycles containing two or more tasks
and at least one of the static deadlock patterns described in Section 4.

As discussed in Section 2, the number of dependency cycles was the main parameter used by the
authors in [4,17], but standalone was considered not precise enough to characterize deadlock. The
refinements proposed in this paper involve, first, the consideration of static deadlock patterns within

the risky cycles, and second, the contribution of the behavioral part of an architecture to the overall
deadlock risk present in a model. This refinement is described in detail in Section 4.

This approach is based on a refinement process, which reduces the number of cycles succes-
sively based on the model information with increasingly specific criteria to characterize the risk of
deadlock. The approach provides a decreasing sequence of three numbers: number of dependency
cycles, static deadlock risk and dynamic deadlock risk (e.g. 7, 5 and 2), where the really significant
concerning deadlock are the last two.

Those models holding higher intrinsic risks (SDR) are more risky with respect to deadlock than
others with lower valúes. Those models in which the intrinsic risk is similar should be compared
according to the dynamic part of the risk (DDR), which is always equal to or lower than the static
risk. This process permits the comprehensive comparison of models with respect to deadlock (as
highlighted in Table VII).

9. CONCLUSIONS AND FUTURE WORK

This paper proposes a complementary approach to deadlock prevention, avoidance and detection
techniques. The automated analysis of the basic properties of an architectural model allows for the
characterization of complex problems, such as the overall deadlock risk of an RTS architecture with
preliminary design information. The model information used in this characterization was:

• Cyclic dependency of tasks and resources.
• Structural patterns in architectural diagrams.
• Behavioral patterns in activity diagrams.

The appropriate combination of these three inputs provides two factors (SDR and behavioral dead­
lock risk), which can be used to compute the potential risk of a design to have deadlocks and, in
addition, to compare alternative designs to choose the most appropriate with respect to deadlock.

This analysis has been validated by the application of DREAM to several case studies, some
presented in this paper.

Although DREAM was developed as an add-on on top of PPOOA-Visio, the analysis proposed in
this paper can be extended to architectural designs created with any other architectural description
language representing concurrency. The conclusions obtained are of general applicability and were
considered relevant in practice to make architectural decisions at early stages of the development of
an avionics system.

The results of this research activity are the core of a doctoral thesis [14] presented with honors in
2010 at the Technical University of Madrid. The prototype of the tool DREAM was developed as
part of an engineering degree thesis presented in 2009 at the same university.

Finally, it should be mentioned that the approach proposed in this paper can be considered as a
partial view of a more complete architecture assessment tool. Additional concurrency and architec­
tural problems in general (e.g. race conditions) could also be addressed with similar approaches.
Ideally, an engineering dashboard with different indicators of system properties could be created to
support architectural decisions and trade-offs (Figure 15).

ACRONYMS

CASE: Computer Aided Software Engineering
CFA: Causal Flow of Activities
COTS: Component of the Shelf
DREAM: Deadlock Risk Evaluation of Architectural Models (tool)
FIFO: First-In First-Out
HLP: Highest Locker Protocol
HMI: Human Machine Interface
MBSE: Model Based Systems Engineering
MDA: Model Driven Architecture
PCP: Priority Ceiling Protocol

Conci/rrency pTitilcm^

•eaítlock Risk

j ^ J I Race Condiiksn o

[I 111| Priflritv Inwnskín i

SCnjGlurill Prodlflm^

I T i l Lúw COhfrSiOíi It%

[r m j H l 9 h Cojpting S0"i

| H M | Wtotig Híerarcíiy a\

Nufnbsr oí Elmieül;

Hunilisi o(A ICÍ

Nurnbei of Cydoí

SDR

Numbei of Rlsky Elemenls.

Numbet of Sratlc Paflems

U
34

:6

7
6
6
B

Numbsr of Dynarnlt Patterní -

DEADLOCK RIJ

£*

í
551 V"»™".»

"i*

1

I
c

i : : . , - r ,V- r . :v í - ;

n i f w \ DfjdlMfc Snuchj f ^ Oe-rfmÉLfA ^ nc4Vitj <

Figure 15. Architectural dashboard.

OMG: Object Management Group
PPOOA: Pipelines of Processes in Object Oriented Architectures
RMA: Rate Monotonic Analysis
RTOS: Real-Time Operating System
RTS: Real-Time System
UML: Unified Modeling Language
XML: Extensible Mark-up Language

ACKNOWLEDGEMENTS

We would like to send our special thanks to Agatha Puigdueta for her contribution in the description of the
avionics problem domain. She works as SW Architect in the SW Avionics Department of Systems Center of
Competency of Airbus Military.

For confidentiality reasons no express references have been made to specific project information. All the
documentation is under both industrial confidentiality and military security constraints.

None of the figures or tables contained in this document is under Airbus Military copyright. All the figures,
tables and data shown in this paper were created specifically for the purposes of this paper.

REFERENCES

1. Fernandez JL. An Architectural Style for Object-Oriented Real-Time Systems. Fifth International Conference on
Software Reuse, IEEE, 1998.

2. OMG MBSE Methodology. www.omgwiki.org/MBSE/doku.php?id=mbse:methodology.
3. Adve SV. Data Races are Evil with No Exceptions. Communications ACM 2010; 53(11):84.
4. Agarwal R, Bensalem S, Farchi E, Havelund K, Nir-Buchbinder Y, Stoller SD, Ur S, Wang L. Detection of deadlock

potentials in multithreaded programs. IBM Journal of Research and Development 2010; 54(5):3.
5. Bensalem S, Bozga M, Nguyen T, Sifakis J. D-Finder: A Tool for Compositional Deadlock Detection and

Verification, 21st ICCAV. LNCS, Vol. 5643. Springer-Verlag, Grenoble: France, 2009. 614-619.
6. Chaki S, Sinha N. Assume-Guarantee Reasoning for Deadlock. SEI Technical Note, 2006. CMU/SEI-2006-TN-028.
7. Sutter H. The Many Faces of Deadlock. Dr. Dobbs Journal 2008; 33(8):53-54.
8. Clarke E, Grumberg O, Peled D. Model Checking. MIT Press: Cambridge, MA, USA, 1999.
9. Sha L, Rajkumar R, Lehoczky J. Priority Inheritance Protocols: An Approach to Real-Time Synchronization. IEEE

Transactions on Computers 1990; 39(9):1175-1185.

http://www.omgwiki.org/MBSE/doku.php?id=mbse:methodology

10. Briand L, Roy D. Meeting Deadlines in Hard Real-Time Systems - The Rate Monotonic Approach. IEEE Computer
Society Press: Los Alamitos, CA, USA, 1999.

11. ARTiSAN Software Tools, Inc., Real-Time Studio. http://www.artisansw.com.
12. IBM Rational, Rhapsody System Designer. http://www-01.ibm.com/software/awdtools/rhapsody.
13. Emanuelsson P, Nilsson U. A Comparative Study of Industrial Static Analysis Tools. Technical Reports in Computer

and Information Science. Report number 2008:3, 2008. Linkóping University.
14. Monzón A. Técnicas para el Análisis de la Consistencia de Modelos en el Desarrollo de Software Embarcado (Eval­

uación del Riesgo de Interbloqueo). Doctoral Thesis, ETSI de Telecomunicación, Universidad Politécnica de Madrid
(UPM), 2010.

15. Cheung SC, Kramer J. Checking Safety Properties using Compositional Reachability Analysis. ACM Transactions
on Software Engineering and Methodology 1999; 8(l):49-78.

16. Magee J, Kramer J. Concurrency: State Models & Java Programs. John Wiley & Sons, 1999.
17. Balarin F, Watanabe Y, Hsieh H, Lavagno L, Passerone C, Sangiovanni-Vincentelli A. Metrópolis: An Integrated

Electronic System Design Environment. IEEE Computer Society Press: Los Alamitos, CA, USA, 2003; 36(4):45-52.
18. Chen X, Davare A, Hsieh H, Sangiovanni-Vincentelli A, Watanabe Y. Simulation based deadlock analysis for sys-

tem level designs. Proceedings ofthe 42nd Design Automation Conference, DAC 2005, San Diego, CA, USA, June
13-17, 2005; 260-265.

19. Monzón A, Fernandez-Sánchez JL. An Ontological Representation of the Characteristic Problems of Real-Time
Systems. Embedded Real-Time Software International Conference, Toulouse, 2008.

20. Fernandez JL, Monzón A. Extending UML for Real-Time Component Based Architectures. International Conference
on Software & Systems Engineering, Paris, 2001.

21. Coffman EG, Elphick MJ, Shoshani A. System deadlocks. Computing Surveys 1971; 3(2):67-78.
22. Fernandez JL, Marmol G. Modeiling and Evaluating Real-Time Software Architectures. In Ada-Europe 2009. LNCS,

Vol. 5570. Springer-Verlag, Brest: France, 2009. 164-176.
23. Monzón A, Fernandez JL. Deadlock Risk Assessment in Architectural Models of Real-Time Systems. In IEEE Sym-

posium on Industrial Embedded Systems (SÍES 2009). IEEE Computer Society Press: Lausanne, Switzerland, 2009;
181-190. (July 8-10, 2009).

24. PPOOA-Visio. http://www.ppooa.com.es.
25. Singhoff F, Legrand J, Nana L, Mareé L. Cheddar: A flexible real-time scheduling framework. ACM SIGAda Ada

Letters 2004; 24(4): 1-8.
26. Ovaska E, Balogh A, Campos S, Noguero A, Pataricza A, Tiensyrjá K, Vicedo J. Model and Quality Driven Embed­

ded Systems Engineering, VTT Publications 705, GENESYS (GENeric Embedded SYStem platform, FP7-213322)
Project Report, 2009.

27. Giannakopoulou D, Pasareanu CS, Lowry M, Washington R. Lifecycle Verification ofthe NASA Ames K9 Rover
Executive. ICAPS'05 Workshop on Verification and Validation of Model-Based Planning and Scheduling Systems,
Monterey, California, 2005.

28. Bresina JL, Bualat M, Fair M, Washington R, Wright A. The K9 On-Board Rover Architecture. European Space
Agency (ESA) Workshop on On-Board Autonomy, 2001.

29. Volpe R, Nesnas IAD, Estlin T, Mutz D, Petras R, Das H. The CLARAty Architecture for Robotic Autonomy.
Proceedings ofthe 2001 IEEE Aerospace Conference, Big Sky Montana, 2001.

30. Washington R, Golden K, Bresina J, Smith DE, Anderson C, Smith T. Autonomous rovers for Mars exploration.
Proc. ofthe 1999 IEEE Aerospace Conference.

31. Monzón A, Fernandez-Sánchez JL, Ruiz-de-Castañeda J. Applying Deadlock Risk Assessment in Architectural
Models of Real-Time Systems Embedded Real-Time Software International Conference, Toulouse, 2010.

http://www.artisansw.com
http://www-01.ibm.com/software/awdtools/rhapsody
http://www.ppooa.com.es

