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SUMMARY

Software is changed frequently during its life cycle. New requirements come, and bugs must be fixed.
To update an application, it usually must be stopped, patched, and restarted. This causes time periods of
unavailability, which is always a problem for highly available applications. Even for the development of
complex applications, restarts to test new program parts can be time consuming and annoying. Thus, we aim
at dynamic software updates to update programs at runtime. There is a large body of research on dynamic
software updates, but so far, existing approaches have shortcomings either in terms of flexibility or per-
formance. In addition, some of them depend on specific runtime environments and dictate the program’s
architecture. We present JAVADAPTOR, the first runtime update approach based on Java that (a) offers
flexible dynamic software updates, (b) is platform independent, (c) introduces only minimal performance
overhead, and (d) does not dictate the program architecture. JAVADAPTOR combines schema changing class
replacements by class renaming and caller updates with Java HotSwap using containers and proxies. It runs
on top of all major standard Java virtual machines. We evaluate our approach’s applicability and performance
in non-trivial case studies and compare it with existing dynamic software update approaches. Copyright
© 2012 John Wiley & Sons, Ltd.

Received 4 November 2010; Revised 13 December 2011; Accepted 19 December 2011

KEY WORDS: dynamic software updates; program evolution; state migration: tool support

1. INTRODUCTION

Once a program goes live and works in productive mode, its development is not completed. It has
to be changed because of bugs and new requirements. To maintain a program, it usually must be
stopped, patched, and restarted. This downtime is always a problem for applications that must
be highly available. But, also for the development of complex applications, restarts to test the
new program parts can be time consuming and annoying. This is also true for end-user desktop
applications that have to be restarted because patches must be applied [1]; end users prefer update
approaches that do not interrupt their tasks. For these reasons, we aim at dynamic software updates
(DSU), that is, program updates at runtime.

Even though dynamic languages such as SMALLTALK, PYTHON, or RUBY natively support
runtime program changes, we address Java for several reasons. First, Java is a programming
language commonly used to implement highly available applications. Examples are Apache Tomcat,
Java DB, or JBoss Application Server. Second, in most fields of application, Java programs execute
faster than programs based on dynamic languages [2]. Thus, developers often prefer Java over

*Correspondence to: Mario Pukall, School of Computer Science, University of Magdeburg, P.O. Box 4120, Magdeburg,
Sachsen-Anhalt, Germany.

†E-mail: mario.pukall@iti.cs.uni-magdeburg.de

Copyright © 2012 John Wiley & Sons, Ltd.



154 M. PUKALL ET AL.

dynamic languages in time-critical scenarios. Amongst others, one reason for the better perfor-
mance is that Java is a statically typed language. Unfortunately, compilation prevents Java and other
statically typed languages such as C or C++ from natively offering powerful instruments for runtime
program updates.

Literature suggests a wide range of DSU approaches for Java (see related work in Section 6).
The flexibility of an approach can be determined by answering the following three questions: Are
unanticipated changes allowed (i.e., can we apply requirements for which the running program was
not prepared)? Can already loaded classes (including their schema) be changed, and is the program
state kept beyond the update? Other quality criteria for a DSU approach are the caused performance
overhead, the influence on the program architecture, and the platform independency. We believe that
it is impossible to prepare an application for all potential upcoming requirements. Furthermore, only
offering modifications of not previously executed program parts while disregarding the executed
parts (e.g., already loaded classes) restricts the application of program changes. In addition, state
loss and major performance overhead are unacceptable in many scenarios as well. Next, we argue
that DSU approaches should not dictate the program’s architecture, that is, they should be capable of
being integrated into the program’s natural architecture (different application domains might require
different architectures). Last but not least, runtime update approaches should not force the customer
to use a specific platform for program execution, for example, to use a Linux-based Java virtual
machine even though the customer only runs Windows-based machines. For all these reasons, we
aim at (a) flexible, (b) platform independent, and (c) performant runtime update approaches that
(d) do not affect the program’s natural architecture. However, we do not (yet) aim at a solution that
fully supports reliable (immediate) and consistent runtime updates (which, to our best knowledge,
is not supported by any existing DSU approach, which is applicable in real-world scenarios). In
other words, our goal is to provide Java with the same runtime update capabilities known from
dynamic languages.

Researchers spent much time to overcome Java’s shortcomings regarding runtime program
adaptation. Approaches such as Javassist [3, 4] and BCEL [5] allow to apply some unanticipated
changes, but only to program parts that have not been executed yet. In contrast, Steamloom [6],
Reflex [7], PROSE [8], DUSC [9], AspectWerkz [10], Wool [11], or JAsCo [12] allow unantici-
pated changes even of executed program parts; however, Steamloom, Reflex, PROSE, AspectWerkz,
Wool, and JAsCo do not support class schema changing runtime updates. Although DUSC allows
class schema changes, the program loses its state. Another dynamic software update approach is
JRebel [13], which puts abstraction layers between the executed code and the JVM. It enables class
schema changes except from modifications of the inheritance hierarchy. Kim presents in [14], a
DSU approach based on proxies, which, similar to JRebel, only enables schema changes that do not
affect the inheritance hierarchy.

We present JAVADAPTOR, the first (to our best knowledge) dynamic software update approach
that fulfills all our quality criteria postulated earlier: it is flexible, platform independent, performant,
and it does not affect the architecture of the program to be updated. To meet the criteria, we utilize
Java HotSwap in an innovative way and combine it with class replacement mechanisms. Technically,
we update all classes with a changed schema via class replacements and update their callers with the
help of Java HotSwap. The key concepts of our solution are class renamings (to replace classes) and
containers, respectively, proxies (to avoid caller class replacements). Furthermore, we contribute a
discussion of desired properties for DSU approaches and a detailed survey of related approaches and
their trade offs. In addition, we demonstrate the practicability of our approach with non-trivial case
studies and show that the performance drops are minimal. We, last but not least, discuss ongoing
and future work to improve JAVADAPTOR.

2. MOTIVATING EXAMPLE

Program maintenance is not a trivial task, which usually affects many parts of a program.
Depending on the requirements, it ranges from single statement modifications to complex structural
modifications, that is, it might affect all language constructs of Java as listed in Table I.
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Table I. Language constructs of Java [15].

Construct to be changed Related elements

Classes
(1) Class declaration Modifiers, generic, inner classes, superclass, subclasses, superinterfaces,

class body, member declarations
(2) Class members Fields, methods
(3) Field declarations Modifiers, field initialization, field type
(4) Method declarations Modifiers, signature (name, parameters), return type, throws,

method body
(5) Constructor declarations Modifiers, signature (name, parameter), throws, constructor body
(6) Blocks Statements
Interfaces
(7) Enums Enum declaration, enum body
(8) Interface declaration Modifiers, generic, superinterface, subinterface, interface body,

member declarations
(9) Interface members Fields, method declarations
(10) Field (Constant) declarations Field initialization, field type
(11) Abstract method declarations Signature (name, parameters), return type, throws
(12) Blocks Statements
(13) Annotations Annotation type, annotation element

Figure 1. Weather station. The example spans updates, which replace methods, remove fields, and change
inheritance hierarchies.

The weather station program depicted in Figure 1 exemplifies that even simple program changes
can affect many parts of a program. The weather station program consists of two classes. One
class (TempSensor) measures the air temperature whereas the other class (TempDisplay) is
responsible for displaying the temperature. Consider a maintenance task: the actual measuring
algorithm (average temperature) must be replaced by another measuring algorithm (current tem-
perature). Because the service provided by the weather station must be non-stop available, stopping
the program to apply the necessary changes is no option; we want to change it at runtime. The appli-
cation of the new functionality requires to change different parts of the program. First, method
averageTemp of class TempSensor must be replaced by method currentTemp, which
requires to change the class schema. Second, to execute the new algorithm, method displayTemp
of class TempDisplay must be reimplemented. Short time after applying the new measuring
algorithm, it was also decided to let TempSensor inherit from class Sensor to add new func-
tions to TempSensor while avoiding to implement them again. Therefore, statement extends
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Sensor has to be applied to class TempSensor. Additionally, member s of original class
TempSensor has to be removed because superclass Sensor let it become useless. However,
changing the program code is only the first step toward an updated application. In addition, all
objects that exist in the program must be also updated to let them access the new program parts as
well as to keep the program state.

Even if the required program changes seem to be simple, they affect many different parts of the
program (i.e., points 1–6 of Table I). Therefore, we search for a new mechanism in Java that allows
to change every part of a program at runtime without anticipating the changes.

3. THE JAVA VIRTUAL MACHINE

To understand what is provided or possible in Java and what challenges remain regarding runtime
adaptation, it is necessary to understand the standard design of Java’s runtime environment—the
Java virtual machine (JVM) [16]. As shown in Figure 2, a Java program is stored in the heap, in
the method area, as well as on the stacks of the JVM. Within the heap, the runtime data of all
class instances are stored [17]. In case a new class instance has to be created, the JVM explicitly
allocates heap memory for the instance, whereas the garbage collector cleans the heap from data
bound to class instances no longer used by the program. Unlike the heap, the method area stores all
class (type) specific data such as runtime constant pool, static field information and method data,
and the code of methods (including constructors) [17]. The stacks contain the currently executed
program parts.

Changing a program during its execution in the JVM requires to modify the data within the heap,
the method area, and on the stacks. For instance, program changes such as those depicted in Figure 1,
which also include method replacements require to extensively change the data of a class. In general,
they require to modify the class schema. Unfortunately, the JVM does not permit class schema
changes, because class schema changes may let the data on the stack, on the heap, and the class
data stored in the method area become inconsistent whereas the JVM does not provide functions to
synchronize them. To disallow the developer class schema changing updates, the JVM enforces a
strict class loading concept. To load a class, the JVM requests the following basic class loaders
(in this order): (a) the bootstrap class loader (root class loader—loads system classes), (b) the
extension class loader (loads classes of the extension library), and (c) the application class loader
(loads classes from classpath). The first class loader in this hierarchy that is able to load the requested

Figure 2. Program representation—HotSpot JVM [16].
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class will be finally bounded to this class, that is, none of the other class loaders is allowed to load
or reload this class. The only way (besides customized class loaders that we will discuss in later
sections) to reload (update) a class with a changed schema is to unload the old class version, which
is only possible if the owning class loader can be garbage collected. Unfortunately, a class loader
can only be garbage collected if all classes (even the unchanged ones) loaded by this class loader
are dereferenced, which is equivalent to a (partial) application stop.

Java HotSwap. Despite the insufficient native runtime adaptation support of the JVM, there is
one feature that provides some simple runtime update capabilities—called Java HotSwap [18]. It is
provided by the Java virtual machine tool interface (JVMTI) [19] and allows to replace the body of
a method (which partly covers points 4–6 of Table I) while the program is running. Even if HotSwap
is not a standard feature, it is implemented by all major Java virtual machines commonly used in
production, that is, the HotSpot JVM, the JRockit JVM, and IBM’s JVM.

The class data restructuring via Java HotSwap consists of the following steps: First, an updated
version of a class is loaded into the JVM. It contains the new method bodies. Second, it is checked if
old and new class versions share the same class schema. Third, the references to the constant pool,
method array, and method objects of the old class are successively (in the given order) redirected to
their (up-to-date) counterparts within the updated class. After this is done, all corresponding method
calls refer to the redefined methods. Unfortunately, Java HotSwap (and other features of JVMTI)
neither allows to swap the complete class data nor remove or add methods, that is, it does not allow
class schema changes.

4. DYNAMIC SOFTWARE UPDATES VIA JAVADAPTOR

Having described the shortcomings of Java’s runtime environment, that is, the JVM, regarding
flexible runtime program updates, we present JAVADAPTOR, which overcomes the limitations
of the Java VM and adds flexible DSU to Java while not causing platform dependencies,
architecture dependencies, and significant performance drops. It combines Java HotSwap and class
replacements, which are implemented via containers and proxies.

4.1. Tool description and demonstration

Before we describe the concepts of our DSU approach, let us illustrate the general architecture and
update process of JAVADAPTOR.

Tool description. Figure 3 describes JAVADAPTOR from the developers point of view. The
current implementation of our tool comes as a plug-in, which smoothly integrates into the Eclipse
IDE‡ (conceptually, JAVADAPTOR could be integrated into any other IDE or even used without
an IDE). The implementation of the required program updates conforms to the usual static software
development process, that is, the developer implements the required functions using the Eclipse
IDE and compiles the sources. This ensures type safety because of the static type checking done by
the compiler.

When the developer decides to update the running application, JAVADAPTOR establishes a
connection to the JVM executing the application (see Figure 4). In more detail, it connects to the
JVM’s JVMTI, which is used to control the JVM [19] (accessible from outside the JVM through
the Java debug interface, which is part of the Java platform debugger architecture [20]). Once the
update process is triggered, JAVADAPTOR prepares the classes changed within Eclipse so that they
can be applied to the running application. The required bytecode modifications are performed by
Javassist.§ To load and instantiate new class versions, a special update thread is added to the target
application. This thread is only active when the running program is updated and thus causes no per-
formance penalties during normal program execution. After the update, JAVADAPTOR disconnects
from the application. The described process can be repeated as often as required.

‡http://www.eclipse.org/
§http://www.csg.is.titech.ac.jp/chiba/javassist/
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Figure 3. Update process.

Figure 4. Dynamic software update architecture.

Tool demonstration. Because abstract descriptions on the usage of tools are sometimes hard
to understand and do not reflect the reality well, we created a tool demonstration showing
JAVADAPTOR in action. Concretely, we used JAVADAPTOR to update the well-known arcade game
Snake at runtime. The update consists of four different steps, each adding new functions to the
(at startup) very basic game. It required to redefine existing methods, to add new methods and
fields, and even to update inheritance hierarchies. That is, the demonstration covers all kinds of
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Figure 5. Class renaming.

updates essential to flexibly update running applications. For more information about our tool demo,
see [21]. The corresponding demo video is available on YouTube.¶

In the following, we describe the basic mechanisms on how JAVADAPTOR changes applications
running in the target JVM, namely class replacements using containers and proxies.

4.2. Class reloading

As stated in Section 3, the JVM disallows updating an already loaded class when the update alters
the class schema. To circumvent these restrictions, we perform class replacements (updates) through
class renaming. As exemplified in Figure 5, the key idea is that, although we cannot load a new class
version with the same name, we rename the new version and load it under a fresh name. Because
the resulting class name is not registered in any class loader, the updated class can be loaded by the
same class loader that also loaded the original class.

Listing 1 sketches how class loading based on class renaming is implemented in JAVADAPTOR.
The renamed and updated class (class TempSensor_v2 from our motivating example depicted in
Figure 1) is created by our adaptation tool (using the source level API of Javassist to manipulate
the bytecode in Lines 7 and 8, Listing 1 ). In the next step, the adaptation tool invokes method
loadClass (Line 12) of class UpdateHelper (Lines 16–22, Listing 1), which resides in the
update thread added to the target application on application start. By invoking loadClass within
the target application, the new class version is loaded by the same class loader that loaded the
original class (Listing 2, Line 20), which ensures that our DSU approach is compatible with any
application employing multiple class loaders (e.g., component-based applications).

¶http://www.youtube.com/watch?v=jZm0hvlhC-E
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4.3. Caller-side updates

As demonstrated earlier, our class reloading mechanism allows us to load a new version of an
already loaded class even if the class schema has changed. However, the mechanism only triggers
the loading of the updated class. To let the class become part of program execution, all references
to the original class have to be changed to point to the new class version. For the sake of clarity,
we will name the classes, which hold references to classes to be reloaded (updated) callers and the
classes subject to updates callees. In addition, the terms caller side and callee side cover the class
itself as well as all its instances.

In case of short-lived objects, such as local variable local of class TempDisplay (Figure 6),
only method body redefinitions are required to refer to the new class version. This is, because with
each method execution, the local variables are newly created. Thus, after redefining a method, such
as depicted in Figure 6, the local variables created during method execution will be of the type of
the updated class (TempSensor_v2). Those updates can be easily located and applied using the
source level API of Javassist and Java HotSwap.

A snippet of the corresponding update code is depicted in Listing 3. For each application class,
JAVADAPTOR checks whether the class references the class to be updated. Technically, all classes
referenced by the caller side are requested using Javassist method getRefClasses (Line 4). If
references of the old callee class (TempSensor) are found, we update them method by method
to the updated class (Lines 17–24). After this is done, the updated caller method is redefined using
Java HotSwap (Line 26).

Different from references to short-lived objects, references to long-lived objects (such as class
or instance field references) are vital beyond method executions, that is, they are inherent parts of
the caller side. Thus, caller-side updates because of references to long-lived objects of type of the
callee must be handled in a different way. Those updates require four steps: (1) caller detection, (2)
instantiation of the updated callee class, (3) callee-side state mapping, and (4) reference updates.

4.3.1. Caller detection. To replace the references to instances of the original callee class by
instances of the new callee class version (as required for class TempSensor from our motivating
example), we have to detect all callers and their instances that refer to long-lived objects of
the original callee class. The JVMTI supports this operation. A snippet of the caller detection
implementation is depicted in Listing 4. First, the class object of the old callee class is retrieved from
the target JVM (Line 4). This object is used to get all instances of the old callee class via reflection
(Line 5). Again, using the instances all callers are retrieved (Line 7). This includes even callers
whose global fields are of type of a super class the old class extends, which is possible because
the function requests the objects runtime type and not the static type. In addition, JAVADAPTOR

searches all application classes for class and instance fields of type of the old callee class (using
Javassist method getRefClasses). This is necessary to detect even caller classes which are not

Figure 6. Caller side updates in case of short-lived objects.
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yet loaded, instantiated, or whose instances do not refer to the callee side because the corresponding
class or instance fields are not yet initialized.

4.3.2. Callee class instantiation. In the next update step, JAVADAPTOR creates for each instance
of the original callee class an instance of the new class version (TempSensor_v2 from our
motivation). The new instances will be used later on to replace the instances of the old class and
thus to update the caller side (i.e., class TempDisplay).

Again, the instantiation is triggered by our adaptation tool. The corresponding code is depicted in
Listing 5. Method createInstance of our update tool takes as argument the name of the new
class version and invokes method newInst of class UpdateHelper in the target application,
which creates an instance of the new class. Listing 6 shows a code snippet of method newInst of
the helper class at application side. Via method forName, we retrieve the class object of the updated
class (Line 14). Then, we call method allocateInstance of class sun.misc.Unsafe,
which performs the instantiation. One reason why we use sun.misc.Unsafe instead of method
newInstance of class Class for instantiation is that it prevents us from initializing the objects
twice, that is, it would require to initialize the objects when they are created and again when they
get the state from their outdated counterparts, which would be inefficient. Furthermore, method
allocateInstance eases the instantiation of classes that do not provide a default constructor.
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4.3.3. Callee-side state mapping. Having finished the instantiation step, JAVADAPTOR has to map
the state from old to corresponding new instances. In our example, this means to map the state from
instances of old class TempSensor to instances of class update TempSensor_v2. Because of
the simplicity of one-to-one mappings (mappings of values from fields that exist in both class ver-
sions) and mappings where either fields are removed or added, they can be executed automatically.
However, for more complex (indefinite) mappings, for example, mappings where the type of a field
differs between old and new class, but the field name remains the same, a mapping function must
be manually defined by the user.

4.3.4. Reference updates. Finally, once for each instance of the original callee class an instance
of the new class version has been created and initialized with the state of its outdated counterpart,
JAVADAPTOR updates the caller side. That is, all instances of the original callee class (according our
motivation class TempSensor) have to be replaced by the instances of the new callee class (class
TempSensor_v2). Unfortunately, updated and outdated callee class are not type compatible, thus,
objects of the updated class cannot be assigned to fields of the type of the outdated class (such as
required to update field ts of caller class TempDisplay).

Containers. To solve the type-incompatibility problem while avoiding to change the caller
class schema, we use containers whose usage is exemplified in Figure 7. Before program start,
JAVADAPTOR prepares the program for the container approach, that is, it adds field cont (Line 17)
to each class in the program. The container field does not affect program execution as long as no
callee of the caller class has to be replaced. To replace a callee instance referenced by the caller
class, the program has to be changed as depicted in the right part of Figure 7. First, JAVADAPTOR

creates a container class (see Figure 7, Lines 48–52) used to store instances of the new callee
class (TempSensor_v2). Second, our tool assigns the up-to-date counterpart of an outdated
object (such as referenced by field ts in Figure 7) to an instance of the container. The container
instance containing the up-to-date object is then assigned to field cont within the caller class (class
TempDisplay). Third, the tool redirects all accesses of the old callee instance to the updated
callee instance located in the container (see Figure 7, Lines 36–38 and Lines 43–44), that is, the
tool redefines all method bodies in which the old callee instance is accessed and swaps the resulting
method bodies via Java HotSwap. Note that we, for clarity reasons, will remove the necessary down-
casts to the specific container type (as shown in Lines 37 and 43 of Figure 7) from the following
code examples.

Proxies. The basic container approach described in Figure 7 is sufficient in many cases. However,
it fails when the caller class to be updated contains methods whose parameters or returned objects are
of the type of the old callee class (such as shown in Figure 8, Line 5 and 9). One workaround would
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Figure 7. Caller-side updates through containers.

Figure 8. Caller-side updates using proxies.

be to replace the caller class as well. But, this strategy may result in additional class replacements,
which at the worst require to essentially replace all classes of the system and thus let our DSU
approach become inefficient. To avoid cascading class replacements, we extend our approach by
proxies (see Figure 8). Caller updates work in the same manner as described earlier. Only difference
is that, in addition to the container class, a proxy class is generated.

The idea of proxies is to guide objects of an updated callee class through the caller methods that
require or return objects of the type of the old callee class. The usage of proxies is exemplified on
the basis of method getSensor of class TempDisplay, which returns an instance of callee class

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:153–185
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TempSensor (Line 6). After replacing callee class TempSensor by class TempSensor_v2,
method getSensor has to return an instance of the new callee class, which is not possible because
TempSensor and TempSensor_v2 are not type compatible. To achieve type compatibility, we
wrap the instance of TempSensor_v2 with an instance of class Proxy (Line 18). Because the
proxy extends class TempSensor, it can be returned by method getSensor. Technically, we
use method allocateInstance from class sun.misc.Unsafe for the proxy instantiation because
it eases the creation of proxy instances even if the proxy’s super class has no default constructor.
To use the returned object wrapped by the proxy at receiver side (i.e., within the class that called
method getSensor), the object is unwrapped. That is, the proxy is only used to guide instances
of the new callee class through type incompatible methods. The receiver will finally work with the
new callee object and not with the proxy object, which avoids the self-problem [22]. How to prop-
agate instances of the updated callee class back to the caller (more precisely to the container) is
exemplarily shown in Figure 8 (Line 22). Before method setSensor is called, its parameter (i.e,
an instance of TempSensor_v2) is wrapped by a proxy. To unwrap and use the received instance
of class TempSensor_v2, proxy ts must be cast to type Proxy.

Proxy bytecode modifications. Up to this point, most of the required bytecode modifications
described earlier could be processed using the source level API of Javassist, which makes byte-
code modifications easy to handle. However, the modifications required to apply proxies exceed
the power of Javassist’s source level API. The source level API cannot terminate the type of local
variables referenced through the method’s local variable table. Because parameters are stored in
local variables by default, it is not possible to apply the code to unwrap them using the source
level API. The same problem occurs when locally stored objects that have to be returned must be
wrapped by a proxy. For that reasons, we manage the application of proxies manually, that is, with
the bytecode level API of Javassist.

Listing 7 shows the bytecode modifications (getSensor of example class TempDisplay)
required to wrap returned objects (Lines 12 and 13). First, we call method newInst (Line 12) of
the Proxy class, which takes as parameter an object of the updated callee class (TempSensor_v2),
wraps the object by a newly created proxy instance, and returns the proxy. Second, the returned
proxy is casted to the type of the old callee class (TempSensor, Line 13).

How to modify the bytecode to unwrap proxy-based parameters (setSensor of example class
TempDisplay) is depicted in Listing 8 (Lines 2–5). First, we load the parameter stored in a local
variable (Line 2). Second, we cast the parameter to the related proxy type (Line 3). Third, we unwrap
the updated class instance (TempSensor_v2) stored in field call of the proxy object (Line 4).
Fourth, to avoid recurring unwrappings, the unwrapped instance is stored in the local variable that
previously stored the proxy (Line 5).

4.3.5. Concurrent updates of multiple classes. So far, we described the mechanisms and concepts
of JAVADAPTOR on the basis of the very simple weather station example given in Section 2. This
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example only consists of one single class update and the corresponding caller-side update. However,
JAVADAPTOR does not only allow the developer to update a single class, but multiple classes in one
step, which is essential to update complex real-world applications. On the one hand, this is because
updates of real-world applications normally span many different classes. On the other hand, con-
current updates of multiple classes is essential for inheritance hierarchy updates, because superclass
updates implicitly require to update and reload corresponding subclasses, too (note that we have to
reload the subclasses to let them extend the new superclass version).

Figure 9 sketches how JAVADAPTOR handles concurrent updates of multiple classes. At first,
JAVADAPTOR reloads all classes with changed schemas (as described in Section 4.2). Afterwards,
it identifies all classes (callers) with references to the classes to be reloaded (see Section 4.3.1).
This information is gained in one atomic step for efficiency reasons. That is, having an overview
about all changes required to update the running program allows us to create possible containers
and proxies in one single step. In addition, we only have to touch each class one-time to modify its
bytecode. However, in the next two steps, JAVADAPTOR creates the new callee instances and maps
the state (as we described in Sections 4.3.2 and 4.3.3). If this is carried out, JAVADAPTOR updates
all references conforming to the workflow described in Section 4.3.4. Because we already gained
information about all dependencies between callers and callees, this can be efficiently carried out in
one atomic step, too. In the last update step, we update all modified and hotswapable classes at once
using Java HotSwap. This includes not only all callers of reloaded classes, but also classes that are
explicitly changed by the developer.

Class Reloading

Caller-Side Updates

Class 1 Class 3Class 2 Class n...

Class 1
State 

Mapping

Reference Updates

HotSwap

Class 2 
State 

Mapping

Class 3 
State 

Mapping

Class n 
State 

Mapping

Caller-Side Detection

...

Figure 9. Concurrent multiple class updates.
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In summary, JAVADAPTOR allows us to flexibly change applications during their runtime. The
update granularity can vary from minor changes (i.e., of single classes) to system wide changes
(i.e., of multiple classes). In addition, JAVADAPTOR will only update the changed classes and the
corresponding caller classes. All other classes remain untouched, which minimizes the influence of
the update on the running program.

5. EVALUATION

Our goal was to develop an update approach which allows running Java applications to be updated
in every possible way (a feature only known from dynamic languages). In addition, the approach
should not introduce performance drops. To check whether JAVADAPTOR meets the goals, we
applied it to different non-trivial case studies.

5.1. HyperSQL

To simulate a real-world scenario, which requires flexible runtime updates, we proceeded as follows.
We chose a reasonable application to update, which was HyperSQL|| amongst others used by
OpenOffice (we chose HyperSQL because it is a database management system for which runtime
adaptation promises benefits of no-downtime, it is entirely written in Java, and an open source appli-
cation whose source code is available for the latest program version and earlier versions). We started
version 1.8.0.9 of it downloaded from the HyperSQL website and applied all changes to evolve it to
the next version 1.8.0.10 without shutting down the application. After the program starts, we ran the
open source database benchmark PolePosition** to generate and query some data, which ensured
that HyperSQL was fully activated and deployed.

The new version of HyperSQL (released 9 months after version 1.8.0.9 came out) comes with
a bunch of changes. It fixes major bugs that cause null-pointer exceptions, problems with views,
timing issues, corrupted data files, and deadlocks. Additionally, new and improved functionality
such as new lock-file implementations and performance improvements to the web server are
included. To lift the running program from version 1.8.0.9 to the new version 1.8.0.10, we had
to update 33 of 353 classes. The updates affected many language constructs (Points 1–7 of Table I).
In case of 21 out of 33 classes, the changes did not affect the class schema, that is, the changes
could be applied by our tool solely using Java HotSwap. Apart from that, 12 classes were affected
by schema-changing program modifications. JAVADAPTOR replaced them using class replacements.
The state mappings that came along with the replacements span one-to-one mappings, added, and
removed fields, that is, they were automated by JAVADAPTOR. Table II lists all classes that had
to be replaced. Note that updating class NIOLockFile also included changes to the inheritance
hierarchy. In addition, with class LockFile$HeartbeatRunner, we had to update even a
nested class. Inheritance hierarchy updates as well as updates that involve nested classes are sup-
ported by JAVADAPTOR. However, Table II provides also information about the required caller
updates, that is, how many caller classes are updated in the context of short-lived objects, containers,
or proxies. The number of references within method bodies that have to be changed to update the
caller classes is given as well (in brackets). In 148 out of 197 cases (75.1%), updates because of
references to short-lived callee objects (via Java HotSwap) were required to update the callers.
21 caller classes (10.7%) had to be updated through containers. 28 caller class updates (14.2%)
required proxies.

To verify that HyperSQL was still correctly working (in a consistent state) after the update,
we reran the PolePosition benchmark. In the result, HyperSQL passed the benchmark without
errors, that is, all database operations were correctly executed after the update. In a second test
we checked whether the updates were applied and active. Therefore, we hooked the JVM profiler
VisualVM†† into the running application and checked what classes/methods were executed during

||http://hsqldb.org/
**http://polepos.sourceforge.net/
††https://visualvm.dev.java.net/

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:153–185
DOI: 10.1002/spe



DESCRIPTION AND COMPARISON 167

Table II. HyperSQL: required class reloadings because of schema changes.

Replaced class Caller updates

Kind of update Short-lived objects (# Ref.) Container (# Ref.) Proxy (# Ref.)

FontDialogSwing 8 (9) 0 (�) 0 (�)
structural
HsqlDatabaseProperties 11 (98) 2 (25) 11 (23)
functional
LockFile 1 (9) 10 (5) 11 (47)
functional
LockFile$HeartbeatRunner 2 (2) 0 (�) 0 (�)
functional
Logger 22 (93) 3 (93) 3 (4)
structural
NIOLockFile 0 (-) 0 (�) 0 (�)
changed inheritance hierarchy
ScriptReaderZipped 3 (3) 0 (�) 0 (�)
functional
SimpleLog 9 (105) 3 (27) 0 (�)
structural
Token 5 (671) 0 (�) 0 (�)
structural
Trace 80 (1306) 0 (�) 0 (�)
structural
Transfer 4 (6) 0 (�) 0 (�)
structural
View 3 (37) 3 (13) 3 (16)
functional

The table lists all classes to be reloaded. It furthermore provides information on the required caller updates, that is,
how many referring classes are updated in the context of short-lived objects, containers, or proxies. The number
of updated references is given as well (in brackets).

the PolePosition benchmark. We found out that 5 of the 12 replaced classes were active and cen-
tral part of program execution during the PolePosition benchmark which confirms that they were
updated correctly. The remaining 7 classes were correctly loaded into the JVM, but inactive during
the benchmark. Thus, we could not verify their correct execution.

5.2. Refactorings

With the HyperSQL case study we, demonstrated the flexibility and practicability of JAVADAPTOR

on the basis of a real-world application. However, we could continue indefinitely updating specific
real-world applications, which demonstrate the capabilities of our tool and would end up each time
with just another case study. The problem with case studies such as HyperSQL is that they present
specific update scenarios, which may not cover all eventualities and thus do not allow us to draw
conclusions on the general applicability of JAVADAPTOR.

To get a better understanding of JAVADAPTOR’s general applicability, we followed a different
path and checked if the tool would be able to dynamically apply to common program updates,
that is, updates that frequently occur in practice and do not rely on certain application scenarios.
But, what are common program updates and how could we unbiased test if JAVADAPTOR is able to
apply them to running applications? We found Refactorings [23] to be appropriate for our analysis.
Actually, Dig and Johnson [24] found out that:

Refactorings cause more than 80% of API changes that were not backwards-compatible.

Once we decided to prove the general applicability of JAVADAPTOR on the basis of refactorings,
we had to reason about a test setup, which ensures the tests to be unbiased. Our tests based on the
refactorings presented by Fowler [25], which is the standard reference regarding refactorings. To
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achieve an unbiased test setup, we simply took the example programs from Fowler and refactored
them at runtime. JAVADAPTOR was able to process all refactorings including possible state map-
pings. Out of the 72 refactorings, 61 (ca. 84%) required class reloadings. Reference updates because
of class reloadings required containers in 57 out of 61 cases (ca. 93%) and proxies in three out of
61 cases (ca. 5%). State mappings could be automatically processed in 41 out of 61 cases (ca. 67%),
whereas mapping methods were required in 20 out of 61 cases (ca. 33%).

To sum up, the results of our refactoring case study show that JAVADAPTOR covers a large band-
width of different update scenarios, and chances are high that the tool performs well when it must
update concrete real-world applications.

5.3. Performance

Having demonstrated JAVADAPTOR’s capabilities regarding flexible updates, it is time to take a
look at the performance penalties induced by our tool, that is, the execution speed of the changed
program parts.

Because we were primarily interested in getting to know how JAVADAPTOR affects the perfor-
mance of a real-world application, we chose our HyperSQL case study and proceeded as follows. We
ran the PolePosition benchmark (mentioned earlier) immediately after runtime updating HyperSQL
to version 1.8.0.10 and compared the results with the benchmark results of HyperSQL version
1.8.0.10 not updated at runtime. We could not measure any statistically significant difference, that
is, the benchmark results of the HyperSQL instance updated at runtime were as good as the results
of the HyperSQL instance not updated at runtime. In other words, the runtime updates we performed
did not affect the performance of HyperSQL in a measurable way.

However, even if we did not measure performance penalties because of our runtime update
approach in a real-world scenario, we assumed that our approach does not come entirely without
performance overhead in some borderline cases. To get evidence about this assumption, we addi-
tionally implemented a micro benchmark that is able to detect even minimal performance penalties.
It measures the costs of crossing the version barrier from old program parts (i.e., callers) to the new
ones (i.e., updated callees).

To get reliable results, we ran 10 samples of one million invocations of all major invocation types
and for each calculated the average access time in nanoseconds. For containers and local updates,
no statistically significant performance overhead was measurable (calculated through a one-way
analysis of variance), that is, programs updated using containers and local updates perform as fast
as the original program. One reason for the good results is the just-in-time compiler of the JVM that
is able to optimize the code used to instrument the containers.

In Section 4.3.4, we described the need for proxies to avoid implicit caller replacements in case
the callee appears to be an argument of a caller method, returned by a caller method, or both. To
figure out possible execution speed penalties owing to our proxy approach, we again ran 10 samples
of one million (get, set, and set&get)-method invocations and recorded the method access times.
The boxplots of the recorded access times are shown in Figure 10. The average access times with
no update (left part of Figure 10) range from 13,73 ns to 13,93 ns, with a median access time value
of 0 ns and only 2,7% to 3% outliers. When we reload the Callee and thus have to use proxies,
the average method access times increase (middle of Figure 10) now ranging from 38 ns to 53,5 ns,
whereas the median is still at 0 ns (7,3%–9,4% outliers). That is, dynamic updates involving proxies
introduce slight execution speed penalties.

To get to know how the results scale, we put some workload on the methods and let them pro-
cess statement System.out.println(‘Hello JAVADAPTOR’). The results are shown in
Figure 11. As one can see, the times to execute the method bodies are much higher than the method
access times, which results in similar overall method execution times with and without proxies,
ranging from 8892 ns to 11,210 ns on average. That is, workload on methods (which should be
the common case) renders the performance overhead introduced by proxies negligible. In addition,
reloading the referring class (i.e., the Caller) as well, almost recovers the original method access
times (right part of Figure 10). The average access times after reloading the caller, range from
12,79 ns to 19,79 ns, with a median access time value of 0 ns (2,9%–4,2% outliers).
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All in all, the results of our HyperSQL case study and the micro benchmark confirm that runtime
program changes by JAVADAPTOR produce only minimal performance overhead. Only proxies pro-
duce a measurable overhead. Caller updates through local changes and containers do not cause
measurable performance drops.

5.4. Update speed

Even if the contributions of our current JAVADAPTOR implementation are others than applying
updates the fastest way, we evaluated how well JAVADAPTOR performs in this regard. That is, we
measured the time JAVADAPTOR pauses the application during the update process to avoid program
inconsistencies. Our measurements were based on two different programs representing different
application scenarios.

At first, we measured the time required to update our HyperSQL case study under different con-
ditions. With our first test, we measured the time period required to update HyperSQL with an
empty database (i.e., without any data object stored), which was 1407 ms. In further tests, we ran
the PolePosition benchmark creating hundreds, thousands, ten thousands, and hundred thousands of
data objects before the update. The corresponding update times ranged from 1518 ms to 5346 ms,
which seems to be not outstanding fast, but sufficient in many scenarios. By contrast, restarts and
reinitializations of HyperSQL (e.g., filling caches, reloading data objects, creating views, creating
users, etc.), as we simulated them using PolePosition, took more time.

The other application for which we measured the update times was the Snake demo we briefly
described in Section 4.1 and presented in [21]. Compared with the update of HyperSQL, which
affects wide parts of the system (the update spans changes made during 9 months of development),
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each Snake update step consists only of small changes to few classes. Thus, the Snake updates rep-
resent scenarios common to the software development process, that is, frequent minor changes and
immediate application of the changes. As our demo video (available on YouTube‡‡) suggests, the
update times are rather short ranging from 28 ms to 142 ms.

All in all, the update times we measured suggest that our current JAVADAPTOR implementation
could be beneficial in many different scenarios (even if currently other DSU approaches such as
presented in [26] and [27] may offer shorter update times). The bottleneck of our current JAVADAP-
TOR implementation is JDI method referringObjects, which JAVADAPTOR uses during state
mapping to identify the callers of an outdated object. The execution times of this method notably
increase the more objects are present in the JVM, even if the number of objects to be updated
remains unchanged. However, high speed updates were not yet in our scope. Therefore, our current
JAVADAPTOR implementation is not optimized for them. But of course, optimizations to the update
speed are subject to new versions of the JAVADAPTOR we are working on (we will discuss possible
improvements of JAVADAPTOR and first benchmark results in Section 7).

6. RELATED WORK AND COMPARISON

In this section, we provide an overview of recent work to overcome Java’s limitations regarding
dynamic software updates. For better comparability and because of the broad range of related
work ranging from theoretical to practical solutions, we focus on practice-oriented approaches
such as JAVADAPTOR, which can be directly applied in real-world scenarios. We group the
related work into three groups based on their main strategies: customized Java virtual machines,

‡‡http://www.youtube.com/watch?v=jZm0hvlhC-E
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customized class loaders, and wrappers. For each group, we discuss the general mechanism and
some representative approaches.

In addition, we evaluate the quality of JAVADAPTOR and of the related work based on the criteria
given in Section 1. That is, we analyze an approach’s flexibility, platform dependency, performance
and its influence on the program architecture. We chose the criteria because they let us describe
the differences between the approaches. For instance, considering support for reliable (immediate)
consistent program updates would be irrelevant, because no approach fulfills this criterion. Further-
more, the criteria align with our goals presented in Section 1. We derived the criterion flexibility
from the fact that static software development allows the developer to change a program in any
way, no matter when and where the changes must be applied. Runtime update approaches should
provide the same flexibility to cover all update scenarios. We further choose platform dependency
because platform independence is one of the reasons for the success of Java, that is, DSU approaches
should not cause dependencies to specific JVM implementations. In Section 1, we argued that Java’s
performance in terms of program execution speed is better than the performance of dynamic lan-
guages, which natively provide flexible runtime updates. Ending up with an updated Java program
whose execution speed is worse than the execution speed of the same updated program based on
a dynamic language might be a good reason to prefer dynamic languages. Users virtually always
prefer a good performing approach over a comparable, but worse performing one (particularly when
the program is supposed to be used in production). Finally, we pick up the program architecture cri-
terion because in software development, there is no such thing as ‘one architecture fits all scenarios’.
As already mentioned in Section 1, different scenarios require different architectures. Thus, DSU
approaches should not restrict the usage of different architectures. However, different criteria might
be of different importance to different stakeholders. For instance, users might emphasize flexibility
whereas administrators might attach great importance to platform independence. That is, to satisfy
the stakeholders, a DSU approach must fulfill all mentioned criteria.

6.1. Customized Java virtual machines

As mentioned in Section 3, the JVM disallows the developer to reload a class whose schema has
changed and thus forbids flexible dynamic software updates.

Therefore, researchers suggest virtual machine patches that enable to reload classes with changed
schemas. For instance, Malabarba et al. [28] added dynamic class loaders to their dynamic virtual
machine (DVM) for this purpose. JDrums [29] is a JVM that uses handles to decouple classes and
objects from each other to reload classes. The Jvolve VM [30] decouples classes using meta-objects
that can be easily changed to refer to updated classes. In addition to Java HotSwap, which allows the
developer to redefine methods bodies of already loaded classes, Dmitriev [18] patched the Hotspot
JVM in such way that it supports even class schema changes. Unfortunately, unlike Java HotSwap,
this feature never made it into a standard JVM.

Flexibility. All in all, customized Java virtual machines perform well when it comes to flexibility.
They allow unanticipated changes of virtually all parts of a program. Furthermore, they all provide
mechanisms to keep the program state beyond the update. Customized JVMs provide this flexibility
because the update mechanism is implemented within the JVM itself and not at application level
which otherwise would complicate or prevent flexible updates.

Platform dependency. Even if virtual machine customization seems to be the most natural way
to enhance Java’s runtime update capabilities (because it does not require to operate at application
level to apply the update approach), different problems arise from it. First of all, there is a stan-
dard, which precisely defines the functionality and structure of a JVM [17]. Changing the standard
to add dynamic software updates is difficult because it would require to change all existing JVM
implementations. Thus, there are only slight chances that DSU becomes a standard. However, as
long as DSU is not part of the JVM specification, it must be added via patches. One problem with
JVM patches is that they are based on a specific JVM implementation and might not be applicable
to other JVMs. In addition, each new release of the JVM must be patched again. This might be
difficult (eventually impossible) in case the JVM implementation has largely changed in the new
JVM version. Last but not least, companies rather prefer standard (certified) JVMs over customized
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ones to run their applications in productive mode. This is why dynamic software update approaches
are needed that operate on top of different standard virtual machines.

Performance. First of all, we point out that it is virtually impossible to exactly measure and com-
pare the performance of the referred approaches. Some JVMs are not available for download, and
those that are available do (partly) support only outdated Java versions (e.g., JDRUMS only executes
programs based on Java version 1.2). Thus, we were not able to benchmark them and get meaningful
benchmark results. Instead, we searched the literature for information regarding the performance.
We found that the four patched JVMs significantly differ in terms of performance (see [30] and
[26]). DVM [28] executes programs in interpreted mode only, which is commonly known to be
slow. JDrums [29] aims at lazy updates and uses transformer functions to migrate the state from old
objects to their updated counterparts, which introduces noticeable constant performance overhead.
Jvolve [30] immediately updates applications, that is, it applies the updates in one step and thus
avoids considerable performance penalties. Würthinger et al. presented in [26] a new and improved
version of Dmitriev’s JVM patch [18] that comes without any performance overhead.

Program architecture. As previously described, JVM customization aims at integrating the update
mechanisms with the JVM which makes changes to the application architecture unnecessary.

6.2. Customized class loaders

As mentioned earlier, the basic idea of JVM patches is to enhance the JVM with capabilities to
reload and thus update classes. In addition to the basic class loaders required to load and run a
program, the class loading capabilities of a program can be extended even at application level by
customized class loaders [31], which is common technique to load updated versions of already
loaded classes or components. For instance, the OSGi Service Platform [32] or Oracles FastSwap
[33] utilize customized class loaders to update components. Javeleon [27] allows to flexibly update
NetBeans-based applications and thus uses customized class loaders, too. Zhang and Huang [34]
presented dynamic update transactions (DUT), which also make use of customized class loaders.

Flexibility. Customized class loaders serve the flexibility required to largely update running
programs, that is, they allow to update virtually all parts of a running program in an unanticipated
way while preserving the program state. This is true for Javeleon [27] and also for DUT [34]. In
case of the OSGi service platform [32], the state of a bundle is lost when it is refreshed, although.

Platform dependency. Because customization of class loaders is a standard feature in Java, it
can be applied to all standard Java runtime environments. Javeleon additionally requires NetBeans
components for execution.

Performance. One issue with customized class loaders is that they reduce the application per-
formance when applied to JVMs older than version 1.6. This is because old and updated program
parts are loaded by different class loaders, which requires poor performing reflection-based version-
barrier crossings. Cazzola [35] found out that even simple reflective method invocations (as required
for crossing the version barrier) slow down method invocations with a factor of up to 6.5 compared
with direct method invocations. More complex version-barrier crossings might cause even higher
performance penalties. However, with Java 1.6, this situation relaxed because the related JVM is
able to optimize reflective calls.

Program architecture. Generally, the application of customized class loaders largely affects the
application architecture. More precisely, customized class loaders dictate how an application must
be designed and thus disallow alternative (tailor-made) designs. DUT requires methods that main-
tain the updates to be present in each class. Javeleon, FastSwap as well as the OSGi service platform
require the applications to run on top of their infrastructure to be refactored into components
(if not already done). This does not only alter the application architecture, it might be also inefficient
because even small changes require to replace whole components.

6.3. Wrappers

Another frequently used approach to provide Java with enhanced runtime update capabilities are
wrappers (also known as decorators [36]). Wrappers aim at wrapping old program parts to update
them [37–39].
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To apply the updates introduced by a wrapper, all clients (callers) of the changed program parts
must be updated, too. That is, all references to the original callee must be redirected to the cor-
responding wrapper instance that wraps the callee. To update the caller side, Gamma et al. [36]
suggest that wrapper and wrappee extend the same superclass or (even more flexible) implement the
same interface. The application of the wrapping can be either statically predefined before program
start or triggered at runtime using method body redefinitions based on Java HotSwap (as we did it
in [37]). However, the big conceptual drawback compared with JAVADAPTOR, JVM patches, and
customized class loaders is that wrappers never really update (reload) classes, but put them in a new
context from which several limitations (particularly regarding our criteria) arise.

Flexibility. Wrappers do not provide the same flexibility as JAVADAPTOR, customized JVMs and
customized class loaders do. Lasagne [39] and JAC [38] only allow anticipated runtime program
updates because the wrappings must be predefined before application start. Nevertheless, wrappers
can be also used in an unanticipated way, as we demonstrated in prior work[37]. The big issue is
that conceptually, wrappers cannot remove fields or methods defined in classes they wrap.

Platform dependency. The wrapper approach is a well-known design pattern [36], which is fully
implemented at application level and thus does not require specific platforms to act. However, to
enlarge its flexibility, it must be combined with techniques, which allow to (re-)define wrappings
at runtime.

Performance. There is one point with wrappers that cause significant performance penalties:
indirections owing to object wrappings. In [40], we measured the performance penalties caused
by long wrapping chains, which was raised by up to 50% compared with the same program
without wrappers.

Program architecture. The principle drawback of wrappers is that an application must be com-
pletely refactored to prepare it for wrapper-based dynamic software updates. If the developer aims at
avoiding poor performing reflective field accesses, she has to allow read and write access to all fields
of the old program part, namely the object to be wrapped. Furthermore, all classes have to be forced
to implement unique interfaces. In addition, all fields have to be of the type of the interface their
classes implement. That is, similar to customized class loaders, the wrapper approach dictates the
design of an application and thus, restricts user-defined application designs. In addition, the forced
design has serious drawbacks because it violates encapsulation and causes the self-problem [22].
Another problem with the design of several wrapper approaches is decreased reliability caused by
frequent type casts.

6.4. JAVADAPTOR

So far, all considered approaches have their strengths and weaknesses regarding the given criteria,
that is, no approach fulfills them all. But, as we described earlier, there is a need for approaches
that cover all criteria. In the following, we compare JAVADAPTOR with the previously described
approaches and discuss whether JAVADAPTOR fulfills all criteria or not. An overview of the
comparison results can be found in Table III.

Flexibility. As demonstrated in Section 5, the flexibility of our runtime update approach
JAVADAPTOR is as good as the flexibility that could be achieved by patched JVMs and customized
class loaders. More precisely, it is at par with Jvolve, JDrums, DVM, the HotSpot VM patch of
Dmitriev and Würthinger [18, 26], Javeleon, and DUT.

Platform dependency. When it comes to platform independence, JAVADAPTOR clearly outper-
forms many competitors. Without any JVM patches, it runs on top of all standard JVMs that provide
Java HotSwap, which amongst others is a standard feature in the HotSpot VM, the JRockit VM, and
IBM’s JVM. Furthermore, it does not require any library or framework to act.

Performance. Another strength of JAVADAPTOR is its performance. As our benchmark
results in Section 5 show, container-based updates come along without performance penalties,
and proxy-based updates only cause slight performance drops. JAVADAPTOR neither requires
performance-dropping JVM patches nor reflection-based version-barrier crossings (which may be
slow particularly on older JVMs) caused by customized class loaders. It also does not depend on a
component framework, such as Javeleon, FastSwap or OSGi, whose execution causes additional

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:153–185
DOI: 10.1002/spe



174 M. PUKALL ET AL.

Table III. Overview comparison.

DSU approach Flexibility Platform independency Performance Architecture independency

JAVADAPTOR � � � �
JVM Jvolve � � � �

HotSpot � � � �
JDrums � � � �
DVM � � � �

CCL Javeleon � � �� �
DUT � � �� �
FastSwap �� � �� �
OSGi � � �� �

Wrapper [37] �� � � �
JAC � � � �
Lasagne � � � �

performance overhead. Furthermore, JAVADAPTOR causes no wrapping chains and thus comes
without the related performance issues.

Program architecture. Unlike customized JVMs, JAVADAPTOR requires to add a container field
to each class. However, the container field is transparent to the user and can be easily integrated with
the application to be updated without any changes to the architecture. By contrast, customized class
loaders particularly in conjunction with component frameworks dictate the application design and
thus render alternative (tailor-made) application designs impossible. This is also true for wrappers
where the forced application design additionally causes serious drawbacks (for further details
see Section 6.3).

7. ENHANCEMENTS AND OPTIMIZATIONS

In Section 4, we described the basic concepts of our DSU approach and evaluated its practicability
under real-world conditions in Section 5. Even if the results of our evaluation confirm the prac-
ticability and usefulness of JAVADAPTOR, there is still space for improvements. In this section,
we summarize work in progress to improve JAVADAPTOR. We point out that most of the dis-
cussed improvements here are inspired by existing work such as presented in [14,25,27]. However,
we do not simply discuss the related work, but describe how to combine it with the existing
JAVADAPTOR concept.

7.1. Update-speed improvements

In Section 5.4, we evaluated the update speed of JAVADAPTOR on the basis of our HyperSQL
and Snake case studies. We found the current JAVADAPTOR implementation acceptably fast in this
regard, but stated that it could be further improved. From what we found out, the bottleneck of our
current JAVADAPTOR implementation is JVMTI method referringObjects, which helps us to
identify all objects referring to outdated objects. The problem with method referringObjects
is that it performs a full heap search every time we request the referring objects of an outdated object,
which causes long program update times and thus long time periods of program unavailability if the
program heap is large and/or many requests must be processed.

An appropriate solution to the described problem are lazy state mappings as Kim [14] and
Gregersen [27] use them in their DSU approaches. Different from our current implementation, in
which we map the state and update the referring program parts in one atomic step, lazy state map-
pings operate on a per access basis. That is, the state transfer between the outdated and up-to-date
object and the update of the referring program parts is carried out from within the program if and
only if an outdated object is accessed.
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Figure 12 exemplifies how lazy state mappings work and how we are going to integrate them into
JAVADAPTOR. To dynamically change our small weather station program such that it computes and
displays current instead of the average temperatures, JAVADAPTOR updates the running program
as follows. It processes all update steps we described in Section 4, but applies additional code to
the program, which carries out the state mapping and updates the referring program parts without
the need of method referringObjects. More precisely, JAVADAPTOR modifies the program
code in such a way that before each access to a potentially outdated object, it will be checked,
whether the object must be updated or not. In the example depicted in Figure 12, this applies to all
references to field ts, which we must update using our container approach because we replaced
class TempSensor with class version TempSensor_v2 add new method currentTemp. Con-
cretely, before we access the up-to-date object (TempSensor_v2) stored in the container, we
check whether the container object already exists and is up-to-date or not (see Figure 12, Line 27).
In the latter case, a mapping method (in our example method mapState) of the container class will
be called (Figure 12, Line 28). This method maps the state from outdated object (TempSensor)
to the up-to-date object (i.e., of type TempSensor_v2), applies the newly created object to a con-
tainer instance, and returns the container instance (see Figure 12, Lines 36–44). After the state
mapping, the newly created object can be accessed as usual, that is, via the container instance
(see Line 30).

Figure 12. Lazy state mapping.
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After we described how we could provide our tool with lazy state mappings, let us present
some update-speed numbers confirming that lazily mapping the state and thus avoiding to use
method referringObjects could significantly improve the update speed of JAVADAPTOR. In
Section 5.4, we measured the update times of JAVADAPTOR regarding our HyperSQL case study
with zero, hundreds, thousands, ten thousands, and hundred thousands of data objects. The numbers
ranged from 1407 to 5346 ms. With a JAVADAPTOR prototype that provides lazy state mappings
as we sketched them in Figure 12, we were able to significantly reduce the update-speed times.
Figure 13 contrasts the old update-speed times with the new ones based on lazy state mappings.
What can be seen is, that the update-speed numbers remain somewhat comparable as long as only
few objects are on the heap of the JVM. But, in case of many objects on the heap (here, hundred
thousands of data objects), JAVADAPTOR based on lazy state mappings clearly outperforms our cur-
rent (i.e., busy) state mapping implementation, that is,the prototype requires to pause the application
only 916 ms, whereas current JAVADAPTOR causes an application pause time of 5346 ms.

The numbers presented in Figure 14 further underpin the benefit of lazy state mappings. Different
from our HyperSQL case study, where the number of objects to be updated remained unchanged
with each benchmark configuration, the results presented here outline how the application pause
times develop depending on the number of objects scheduled for an update. As shown in Figure 14,
the application pause times caused by our current JAVADAPTOR implementation further increase
depending on the number of objects to be updated, which is because with each object update,
JAVADAPTOR must call method referringObjects. By contrast, the application pause times
of our JAVADAPTOR prototype based on lazy state mappings are significantly shorter and moreover,
remain virtually unchanged regardless of the number of objects that require an update.
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Because the tests with our prototype show significant update-speed improvements, we are
currently working to complete the integration of lazy state mappings into JAVADAPTOR. What is
still missing is support for lazy state mappings within the Java system classes. Nevertheless, we are
optimistic to provide a fully working JAVADAPTOR version with lazy state mappings soon.

7.2. Solutions towards consistent program updates

The HyperSQL as well as the Snake case study show that JAVADAPTOR could update programs
without compromising their correctness, that is, the programs consistency. This is, because
JAVADAPTOR already includes mechanisms aiming at consistent program updates. For instance,
JAVADAPTOR permits updates only if the program sources compile without errors. Another
example is, that JAVADAPTOR pauses the application during the update to ensure that all changed
program parts are present within the JVM. However, similar to other DSU approaches, the current
JAVADAPTOR implementation does not ensure program consistency at all beyond the update.
Therefore, we discuss how to improve our tool in this regard.

7.2.1. Thread-safe updates. One issue we plan to tackle with future JAVADAPTOR versions is the
lack of support for thread-safe updates of multi-threaded applications. Currently, updates of mul-
tithreaded applications may cause deadlocks and thus inconsistencies under certain conditions.
Such a scenario is depicted in Figure 15. In the example, two different threads alternately access
TempSensor ts of class TempDisplay of our small weather station. The first thread peri-
odically instructs ts to measure the temperature (by calling method measureTemp), whereas
the second thread is responsible for displaying the measured temperature (by calling method
displayTemp). Because measuring and displaying the temperature at the same time would cause
unexpected program behavior, access to TempSensor ts must be synchronized (see Figure 15,
Lines 6–10 and Lines 14–17).

What could happen when JAVADAPTOR updates a multi-threaded application such as shown in
Figure 15 (note that for clarity reasons, the lazy state mapping related code is hidden) is that, for
some methods, the necessary method body redefinitions already took effect, whereas other methods

Figure 15. Deadlocks because of dynamic software updates.
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remain unaffected, which is due to the principles of Java HotSwap (remember that method body
redefinitions would not affect methods active on the stack at the moment of redefinition). In our
example (see right side of Figure 15), method measureTemp (Lines 32–37) is already rede-
fined and thus refers to an object of up-to-date class version TempSensor_v2, whereas method
displayTemp (Lines 24–30) is still active on the stack with the old method body referring to out-
dated TempSensor ts. What appears to be the problem here is that method notify (Figure 15,
Line 35) would not activate the thread executing method displayTemp because method notify
is executed on a different object. In other words, we have a deadlock.

To prevent deadlocks in multi-threaded applications such as sketched earlier, Gregersen proposes
the usage of special synchronization objects, which could be shared beyond different class versions
[27]. Figure 16 shows how those synchronization objects could be applied to JAVADAPTOR. Here,
class TempSensor gets an additional field syncObj of type Object, which, instead of the
TempSensor object itself, is used for synchronization (see Figure 16, Lines 6 and 14). If the
application must be updated and again the necessary method body redefinitions take effect for one
method (in our example for method measureTemp, see Figure 16, Lines 32–37), but not for the
other (i.e., method displayTemp, Figure 16, Lines 24–30), no deadlock occurs. This is because
the outdated object (here of type TempSensor) and its up-to-date counterpart (in our example an
object of type TempSensor_v2) share the same synchronization object (i.e., object syncObj).

7.2.2. State-loss prevention. Another shortcoming of our current JAVADAPTOR implementation is
that it may cause program inconsistencies because of state losses. To illustrate the problem, we
use a slightly different version of our small weather station program to be updated at runtime
(see Figure 17). Here, we again have the situation that for one method (i.e., method measureTemp)
the necessary method body redefinition through Java HotSwap took effect, whereas the other method
(in our example method displayTemp) is still active on the stack with the old method body. Now
it could be the case that the outdated method remains active on the stack whereas the state of the
referred outdated object (in our case the TempSensor object referred by ts) is already mapped

Figure 16. Deadlock prevention through shared synchronization objects.
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Figure 17. State losses because of dynamic software updates.

to an object of the new class version (here of type TempSensor_v2), because another thread
executed the redefined method including the state mapping related code (see Figure 17, method
measureTemp, Lines 31–33). The problem is, that the still active outdated method may change
the state of the outdated referred object (such as sketched in Line 25 of Figure 17) and because the
state transfer already happened, those state changes would be lost on the new object.

What solves the problem depicted in Figure 17 is to intercept the access to an outdated object and
to redirect this access to the corresponding up-to-date object. The challenge is, that the interception
and redirection of direct object accesses (such as depicted in Line 25 of Figure 17) is not possible,
because of the missing indirection between caller and callee required to hook into the access path.
The solution for this problem is delivered by Fowler [25] who argues that, compared with direct
accesses, getter and setter methods allow us to flexibly manage accesses to objects.

Figure 18 shows how we plan to use getter and setter methods to prevent state losses because
of redefinitions of active methods. Here, again method displayTemp scheduled for redefini-
tion is active on the stack (see Lines 43–48 of Figure 18), whereas the redefinition of method
measureTemp already took effect (Lines 50–56). Only difference to the example depicted in
Figure 17 is, that we now access all objects, especially the outdated object of type TempSensor
referenced by field ts, via getter and setter methods (e.g., see Line 45 of Figure 18). To redi-
rect object accesses from within outdated active methods to the up-to-date object, we redefine
all methods of old class versions (in our example method setTempUnit of old class version
TempSensor, Line 45) referenced by the outdated method as follows (see Lines 75–81, Figure 18).
First of all, we check whether the state mapping already took place (Line 76), for example, because
of the execution of an up-to-date method (such as in our example method measureTemp, see
Lines 51–54). In case the state mapping is pending, we process the state mapping (Line 77). Next,
we couple the outdated and the up-to-date object by assigning the up-to-date object to a field of
the outdated object (Line 78). Note that the field refers to the same object as the applied container,
which ensures that outdated active method as well as up-to-date method access the same object.
Finally, we forward the method call to the method of the up-to-date object (Line 80). After this
is done, every access to a field of an outdated object from within an active outdated method (e.g.,
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Figure 18. State-loss prevention.

see Access 1, Figure 18) will be redirected to the corresponding up-to-date object (such as through
Access 2 shown in Figure 18), and no state will be lost.

7.2.3. Handling of binary-incompatible updates. So far, we discussed how getter and setter meth-
ods in conjunction with redefinitions of methods of outdated class version can help us to prevent
state losses because of active methods scheduled for redefinition. But, getters, setters, and redefi-
nitions of old methods could do a lot more for us. Coming back to our motivating example, where
we are going to remove method averageTemp by method currentTemp and therefore have to

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:153–185
DOI: 10.1002/spe



DESCRIPTION AND COMPARISON 181

replace class TempSensor and update calling class TempDisplay, conflicts such as depicted in
Figure 19 can occur. As in the previous examples, method displayTemp to be redefined is active
on the stack with the old method body. The problem here is that the method continues to call method
averageTemp even if this method is removed in new class version TempSensor_v2, which is
referred to as a binary-incompatible update [15].

Currently, we allow caller related methods such as method displayTemp to refer to removed
methods, fields, or super types, which is no big deal as long as those accesses are read only and
thus do not result in program state changes. However, read only accesses may be the exception
and methods such as removed method averageTemp may alter the program state, which possibly
results in wrong program behavior (e.g., method averageTemp could overwrite the temperature
computed by up-to-date method currentTemp with average temperatures). To avoid inconsis-
tencies because of binary-incompatible updates, we must somehow invalidate accesses to removed
methods, fields, and super types.

Figure 20 shows how we intend to invalidate accesses to the removed elements. Similar to state-
loss prevention purposes, we redefine the methods within the old class versions. What is different
is that we do not add state mapping code and forward the calls to the up-to-date class version. We
simply remove the original method bodies and corresponding to whether the removed element is a
field or a method, throw NoSuchMethodError (such as in our example depicted in Figure 20,
Line 57) or NoSuchFieldError, which does not cause unwanted program state changes and
thus has no influence on the program’s consistency.

7.2.4. Reflection support. We do not only focus on improved update speeds, thread-safe updates,
state-loss prevention, and the handling of binary-incompatible updates. Additionally, we are work-
ing on solutions to overcome several problems the different versions of a class present in the JVM
may cause. The main issue to overcome is the limited support of our current JAVADAPTOR imple-
mentation for reflective calls of reloaded (updated) classes. Under certain conditions, those calls
may address old versions of a reloaded class and not the latest class version, which may result in
wrong program behavior. This would be, for instance, the case when the class object of the class
to be reloaded was cached before the update. Each reflective call based on this cached class object
would access the old class version.

With our solutions for state-loss prevention and binary-incompatible updates, which basically
forward all requests (including the reflective ones) to the most recent version of a class/instance,
we already cover many different kinds of reflective requests. What the approaches do not yet fully
cover are string-based reflective calls in combination with type checks (e.g., via instanceof).

Figure 19. Binary-incompatible updates.
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Figure 20. Support for binary-incompatible updates.

Those calls could be supported with two different strategies. First, we could modify the Reflection
API in such a way that it redirects even string-based reflective calls to the most recent class version.
Second, we could parse the class files for occurrences of string-based reflective calls and change the
strings representing a class name to the up-to-date class name. However, further investigations are
necessary to find an optimal solution for the described problem.

7.3. Long-term objectives

So far, we discussed solutions for issues already solved by other DSU approaches such as Kim’s
proxy-based DSU approach [14] and Javeleon [27]. What remains an open question to the whole
research community is, how to reliably (immediately) apply updates and fully ensure program
consistency beyond the updates. Gupta et al. stated in [41] that the consistency problem is
undecidable. Nevertheless, many related work exists facing the problem (see [26, 42–49]). But, to
our best knowledge, some approaches provide approximated solutions only, whereas others are not
applicable in real-world scenarios (e.g., owing to the lack of tool support, etc.) or may reject the
scheduled update. That is, our big goal with JAVADAPTOR to provide an update mechanism, which
fully ensures program consistency, is useful in practice, and reliably applies updates.

7.4. Discussion

When looking at the enhancements, we are going to integrate into JAVADAPTOR, one may won-
der if those enhancements would compromise one of the contributions of JAVADAPTOR claimed
in this paper, for example, its performance. Particularly, the system-wide usage of getter and setter
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methods (note that the getters and setters have to be created for all class and instance fields of all
classes including the system classes of Java) would probably cause significant performance penal-
ties. But, contrary to expectations, first benchmark results show that this is virtually not the case,
which is because of the excellent optimization capabilities of the JVM and its just-in-time compiler
(we found that the JVM is able to optimize getter-and-setter-based field accesses to such an extent,
that they are as fast as direct field accesses). In addition, other DSU approaches such as Kim’s
proxy-based DSU approach [14] and Javeleon [27], which are based on lazy state mappings and use
system-wide getter and setter methods for similar purposes as we will do, show that those kinds of
enhancements must not cause significant performance drops. For instance Gregersen estimates in
[50] the performance overhead of Javeleon at moderate 15 %.

All in all, we are optimistic to provide a stable version of JAVADAPTOR with fast and thread-safe
updates, improved state-loss prevention, optimized handling of binary-incompatible updates, and
better support for reflective calls, soon. As already mentioned, preliminary results of experiments
with JAVADAPTOR prototypes suggest that the planned enhancements must not heavily compromise
the performance of the updated program. Another fact that makes us confident to fit JAVADAPTOR

with high quality solutions for the mentioned issues is, that we can (to some extent) build on
solutions of related DSU approaches (such as presented in [14] and [27]) facing similar problems.

8. CONCLUSION

Dynamic software updates are an often requested approach to update applications while improving
the user experience and avoiding down times. Furthermore, DSU supports the software developers
because they do not need to restart their applications to test the changed program parts.

However, different from dynamic languages, native DSU support for Java is severely limited.
Thus, approaches are needed that overcome Java’s limitations regarding dynamic software updates.
In Section 1 and 6, we argue that a DSU approach should provide flexible runtime program updates
without serious performance drops. Additionally, it should be platform independent and should not
dictate the program architecture. With JAVADAPTOR, we overcome Java’s limited runtime update
support and add the runtime update capabilities known from dynamic languages to Java. Further-
more, JAVADAPTOR is (to our best knowledge) the first approach that fulfills all proposed quality
criteria: it is flexible, runs on every major (unmodified) JVM, performs well, and does not dictate
the architecture of the program. Conceptually, it combines schema changing class replacements with
class renaming and caller updates based on Java HotSwap with the help of containers and proxies.

With different non-trivial case studies, we have demonstrated that JAVADAPTOR fits runtime
updates of real-world applications executed under real-world conditions. Nevertheless, there is
still space for improvements. Currently we are working on the integration of the improvements to
JAVADAPTOR described in Section 7, which tackle some issues of the current JAVADAPTOR imple-
mentation. However, in the long run, we will focus on the development of solutions to be integrated
into JAVADAPTOR that fully ensure the program consistency in the presence of immediate runtime
updates, which is still not possible with any existing DSU approach applicable in practice.

ACKNOWLEDGEMENT

We would like to thank Shigeru Chiba for providing the invaluable bytecode modification tool Javassist.
Furthermore, we thank Janet Feigenspan for calculating the statistical significance of our benchmark results.
Mario Pukall’s work is part of the RAMSES project§§, which is funded by DFG (Project SA 465/31-2).
Kästner’s work is supported in part by the European Union (ERC grant ScalPL #203099).

REFERENCES

1. Bracha G. Objects as software services, 2005. Invited talk at the International Conference on Object-Oriented
Programming, Systems, Languages, and Applications.

§§http://wwwiti.cs.uni-magdeburg.de/iti_db/forschung/ramses/index.htm

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:153–185
DOI: 10.1002/spe



184 M. PUKALL ET AL.

2. Fulgham B, Gouy I. The computer language benchmarks game, December 2011. Available at: http://shootout.alioth.
debian.org/.

3. Chiba S, Nishizawa M. An easy-to-use toolkit for efficient Java bytecode translators. In Proceedings of the
International Conference on Generative Programming and Component Engineering. Springer: Berlin, Germany,
2003; 364–376.

4. Chiba S. Load-time structural reflection in Java. In Proceedings of the European Conference on Object-Oriented
Programming. Springer: Berlin, Germany, 2000; 313–336.

5. Dahm M. Byte code engineering. In Java-informations-tage. Springer-Verlag: Berlin, Germany, 1999; 1–11.
6. Haupt M. Virtual machine support for aspect-oriented programming languages. PhD Thesis, Software Technology

Group, Darmstadt University of Technology, 2006.
7. Tanter É, Noyé J, Caromel D, Cointe P. Partial behavioral reflection: spatial and temporal selection of reification.

Proceedings of the Conference on Object-Oriented Programming Systems, Languages and Applications (OOPSLA),
Nantes, France, 2003; 27–46.

8. Nicoara A, Alonso G, Roscoe T. Controlled, systematic, and efficient code replacement for running Java programs.
Proceedings of the EuroSys Conference, Glasgow, Scotland, 2008; 233–246.

9. Orso A, Rao A, Harrold M. A technique for dynamic updating of Java software. In Proceedings of the International
Conference on Software Maintenance. IEEE: New York, USA, 2002; 649–658.

10. Bonér J. What are the key issues for commercial AOP use: how does AspectWerkz address them? Proceedings of the
International Conference on Aspect-Oriented Software Development, Potsdam, Germany, 2004; 1–2.

11. Sato Y, Chiba S, Tatsubori M. A selective, just-in-time aspect weaver. Proceedings of the International Conference
on Generative Programming and Component Engineering, Dresden, Germany, 2003; 189–208.

12. Vanderperren W, Suvee D. Optimizing JAsCo dynamic AOP through HotSwap and Jutta. Proceedings of the AOSD
Workshop on Dynamic Aspects, Potsdam, Germany, 2004; 120–134.

13. Kabanov J. JRebel tool demo. Proceedings of the Workshop on Bytecode Semantics, Paphos, Cyprus, 2010; 1–6.
14. Kim DK. Applying dynamic software updates to computationally-intensive applications. PhD Thesis, Virginia

Polytechnic Institute and State University, 2009.
15. Gosling J, Joy B, Steele G, Bracha G. Java(TM) Language Specification, (3rd Edition). Addison-Wesley: Munich,

Germany, 2005.
16. Venners B. Inside the Java 2 Virtual Machine. Computing McGraw-Hill: New York, USA, 2000.
17. Lindholm T, Yellin F. The Java Virtual Machine Specification—Second Edition. Prentice Hall: New Jersey, USA,

1999.
18. Dmitriev M. Safe class and data evolution in large and long-lived Java applications. Ph.D. Thesis, University of

Glasgow, 2001.
19. Oracle. Java virtual machine tool interface version 1.2, December 2011. Available at: http://download.oracle.com/

javase/6/docs/platform/jvmti/jvmti.html.
20. Oracle. Java platform debugger architecture, December 2011. Available at: http://download.oracle.com/javase/6/

docs/technotes/guides/jpda/.
21. Pukall M, Grebhahn A, Schröter R, Kästner C, Cazzola W, Götz S. JavAdaptor: unrestricted dynamic software

updates for java. In Proceedings of the International Conference on Software Engineering. ACM: New York, USA,
2011; 989–991.

22. Lieberman H. Using prototypical objects to implement shared behavior in object-oriented systems. In Proceedings
of the Conference on Object-Oriented Programming Systems, Languages, and Applications. ACM, 1986; 214–223.

23. Opdyke WF, Johnson RE. Refactoring: an aid in designing application frameworks and evolving object-oriented
systems. In Proceedings of the Symposium on Object-Oriented Programming Emphasizing Practical Applications.
ACM: New York, USA, 1990; 145–161.

24. Dig D, Johnson R. How do APIs evolve? A story of refactoring. Journal of Software Maintenance and Evolution:
Research and Practice 2006; 18:83–107.

25. Fowler M. Refactoring: Improving the Design of Existing Code. Addison-Wesley: Munich, Germany, 2006.
26. Würthinger T. Dynamic code evolution for Java. PhD Thesis, Johannes Kepler University Linz, 2011.
27. Gregersen AR. Extending netbeans with dynamic update of active modules. PhD Thesis, University of Southern

Denmark, 2010.
28. Malabarba S, Pandey R, Gragg J, Barr E, Barnes JF. Runtime support for type-safe dynamic Java classes. In

Proceedings of the European Conference on Object-Oriented Programming. Springer: Berlin, Germany, 2000;
337–361.

29. Ritzau T, Andersson J. Dynamic deployment of Java applications. Proceedings of Java for Embedded Systems
Workshop, New York, USA, 2000; 1–9.

30. Subramanian S, Hicks M, McKinley KS. Dynamic software updates: a VM-centric approach. In Proceedings of the
Conference on Programming Language Design and Implementation. ACM: New York, USA, 2009; 1–12.

31. Liang S, Bracha G. Dynamic class loading in the Java virtual machine. In Proceedings of the Conference on
Object-Oriented Programming, Systems, Languages, and Applications. ACM: New York, USA, 1998; 36–44.

32. The OSGi Alliance. OSGi service platform core specification, December 2011. Available at: http://www.osgi.org/
Download/File?url=/download/r4v42/r4.core.pdf.

33. Oracle. BEA weblogic server using fastswap to minimize redeployment, December 2011. Available at: http:
//download.oracle.com/docs/cd/E13222_01/wls/essex/TechPreview/pdf/FastSwap.pdf.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:153–185
DOI: 10.1002/spe



DESCRIPTION AND COMPARISON 185

34. Zhang S, Huang L. Type-safe dynamic update transaction. In Proceedings of the Computer Software and Applications
Conference. IEEE: New York, USA, 2007; 335–340.

35. Cazzola W. SmartReflection: efficient introspection in Java. Journal of Object Technology 2004; 3(11):117–132.
36. Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns: Abstraction and Reuse of Object-Oriented Design.

Addison-Wesley: Munich, Germany, 2004.
37. Pukall M, Kästner C, Saake G. Towards unanticipated runtime adaptation of Java applications. In Proceedings of the

Asia-Pacific Software Engineering Conference. IEEE: New York, USA, 2008; 85–92.
38. Pawlak R, Duchien L, Florin G, Seinturier L. Dynamic wrappers: handling the composition issue with JAC.

In Proceedings of the Conference on Technology of Object-Oriented Languages and Systems. IEEE: New York,
USA, 2001; 56–65.

39. Truyen E, Vanhaute B, Joosen W, Verbaeten P, Jørgensen BN. Dynamic and selective combination of extensions
in component-based applications. In Proceedings of the International Conference on Software Engineering. IEEE:
New York, USA, 2001; 233–242.

40. Götz S, Pukall M. On performance of delegation in Java. In Proceedings of the International Workshop on Hot Topics
in Software Upgrades. ACM: New York, USA, 2009; 1–6.

41. Gupta D, Jalote P, Barua G. A formal framework for on-line software version change. IEEE Transactions on Software
Engineering 1996; 22(2):120–131.

42. Vandewoude Y, Ebraert P, Berbers Y, D’Hondt T. Tranquility: a low disruptive alternative to quiescence for ensuring
safe dynamic updates. IEEE Transactions on Software Engineering 2007; 33(12):856 –868.

43. Kramer J, Magee J. The evolving philosophers problem: dynamic change management. IEEE Transactions on
Software Engineering 1990; 16(11):1293 –1306.

44. Stoyle G, Hicks M, Bierman G, Sewell P, Neamtiu I. Mutatis Mutandis: safe and flexible dynamic software updating.
In Proceedings of the ACM Conference on Principles of Programming Languages. ACM: New York, USA, 2005;
183–194.

45. Hicks M, Nettles S. Dynamic software updating. ACM Transactions on Programming Languages and Systems 2005;
27(6):1049–1096.

46. Murarka Y, Bellur U, Joshi RK. Safety analysis for dynamic update of object oriented programs. In Proceedings of
the Asia Pacific Software Engineering Conference. IEEE, 2006; 225–232.

47. Bazzi RA, Makris K, Nayeri P, Shen J. Dynamic software updates: the state mapping problem. In Proceedings of the
International Workshop on Hot Topics in Software Upgrades. ACM: New York, USA, 2009; 7:1–7:2.

48. Karablieh F, Bazzi RA. Heterogeneous checkpointing for multithreaded applications. In Proceedings of the
Symposium on Reliable Distributed Systems. IEEE: New York, USA, 2002; 140–149.

49. Makris K. Whole-program dynamic software updating. PhD Thesis, Arizona State University, 2009.
50. Gregersen AR, Jørgensen BN. Run-time phenomena in dynamic software updating: causes and effects. In Proceed-

ings of the Workshop on Principles of Software Evolution and ERCIM Workshop on Software Evolution. ACM:
New York, USA, 2011; 6–15.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:153–185
DOI: 10.1002/spe


