
HAL Id: hal-00711605
https://inria.hal.science/hal-00711605

Submitted on 25 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Review of Middleware Approaches for Energy
Management in Distributed Environments

Adel Noureddine, Romain Rouvoy, Lionel Seinturier

To cite this version:
Adel Noureddine, Romain Rouvoy, Lionel Seinturier. A Review of Middleware Approaches for Energy
Management in Distributed Environments. Software: Practice and Experience, 2013, 43 (9), pp.1071-
1100. �10.1002/spe.2139�. �hal-00711605�

https://inria.hal.science/hal-00711605
https://hal.archives-ouvertes.fr

SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper.2012;00:1–30
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe

A Review of Middleware Approaches for Energy Management in
Distributed Environments

Adel Noureddine1,2 and Romain Rouvoy1,2 and Lionel Seinturier1,2,3

1 Inria Lille – Nord Europe
2 University Lille 1 - LIFL CNRS UMR 8022, France
3 Institut Universitaire de France

SUMMARY

Energy management solutions and approaches for computer systems are becoming broadly available as
energy concerns is becoming mainstream. Many approaches have been proposed to manage the energy
consumption of the hardware, operating system, or softwarelayers. The widespread usage of ubiquitous
devices and the high coverage of networks (Wi-Fi, 3G) has ledto a new generation of communicating
and mobile devices that uses complex middleware platform functionalities. Therefore, energy management
has emerged as a topic of research interest in the middlewarelayer and solutions specific to this layer are
proposed along the more traditional ones existing at the other levels.
In this article, we report on a review of state-of-the art approaches for energy management middleware
platforms. This article defines also an architectural taxonomy and compares existing approaches based on
this taxonomy. In particular, we review middleware platforms and detail a number of approaches where
energy management is handled. Finally, we review application scenarios where the energy management
concepts at the middleware layer are applied in intelligentenvironments. Copyright © 2012 John Wiley &
Sons, Ltd.

Received 27 January 2012

KEY WORDS: Energy-Aware Middleware; Autonomic Computing;Distributed Environments; Energy
Management; Service-Oriented Architecture

1. INTRODUCTION

Reducing the energy consumption of connected devices and computers requires a comprehensive
view of the different layers of the system. Sensors and actuators, usedto monitor energy
consumption and modify devices’ options, need to be controlled by intelligent software.
Applications running on the devices and the hardware itself also need to be monitored and controlled
in order to achieve efficient energy savings. Many approaches havebeen proposed to manage the
energy consumption of the hardware, operating system, network or software layers. However, with
the widespread usage of ubiquitous devices and the high coverage of networks (Wi-Fi, 3G), a new
generation of communicating and mobile devices is emerging. The energy consumption of this
diversity of devices, and subsequently applications developed in different programming languages,
is better managed through a layer capable of monitoring and managing both the hardware, operating
system, network and application layers. Therefore, the middleware layer positions itself as a relevant
candidate for hosting energy-aware approaches and solutions.

Many middleware platforms, architectures, optimization techniques and algorithms already exist
for energy management of hardware and software. We therefore chose the reviewed approaches
based on the priority given to energy management in the proposed solution.Our review on
middleware approaches for energy management focuses on architectures and frameworks that
emphasize on energy management in distributed environments. Only references and recent works

Copyright © 2012 John Wiley & Sons, Ltd.

Prepared usingspeauth.cls [Version: 2010/05/13 v3.00]

2 A. NOUREDDINE, R. ROUVOY AND L. SEINTURIER

of the last years have been considered. Lots of efforts have been spent on energy management
and optimization. Other approaches, such as energy optimization strategies and power consumption
techniques, are not taken into consideration unless they target middlewareplatforms specifically or
are applied on the middleware layer. We neither considered approaches where energy adaptation is
limited to the hardware or software level without involving a middleware solution.Middleware
approaches can adapt their core modules and/or the environment (e.g., hardware, software)
following energy objectives and we considered both approaches in ourreview. As most of nowadays
distributed systems are connected with other applications and services, anyviable solution should
therefore incorporate solutions for energy awareness that emphasizeand take advantage of the
distributed nature of such systems. We selected the middleware approachesbased on this criterion.

In this article, we report on a review on middleware approaches for energy management. To our
knowledge, our review is the first to list and compare middleware approaches that specifically target
the energy concerns. In Section2 we review middleware approaches for energy management in
distributed environments, proposing a detailed overview of the energy management issues in each
approach. Section3 overviews a number of approaches where a middleware layer is used forenergy
management of applications and devices in an intelligent environment. We compare the reviewed
middleware approaches based on an energy taxonomy introduced in Section 4. Finally, we conclude
in Section5.

2. MIDDLEWARE APPROACHES FOR ENERGY MANAGEMENT

In this section, we review 12 middleware solutions targeted or specifically buildfor energy
management. Middleware platforms provide abstraction of the underlying hardware, network, and
operating system interfaces to the applications. S. Krakowiak defines middleware as [1]:

In a distributed computing system,middlewareis defined as the software layer that lies
between the operating system and the applications on each site of the system.

The main goal of architectures and platforms for energy management is to optimize or reduce
the energy consumption of hardware devices or software services. These approaches do not only
optimize the energy consumption of applications and devices, but also optimize the consumption of
the middleware platform itself. For a platform to manage energy efficiently, energy should not be
considered as a non-functional requirement. It should rather be the core of the approach, eventually
taking into account other requirements (quality of service, quality of context, user preferences,
usability).

Many approaches integrating energy awareness or energy optimizationsexist at the middleware
layer. From the wide range of approaches, we select 12 middleware platforms responding to the
following criteria:

1. Middleware architectures or frameworks emphasizing on energy management in distributed
environments.We skipped middleware approaches that do not integrate the distributed
dimension, or obviously energy or power management (thus excluding approaches limited
to just monitoring or observing the energy consumption). The reason for limiting the study
to distributed environments is that modern computer environments are massivelydistributed.
With the democratization of cloud-computing, the widespread usage of connected mobile
devices (e.g., smartphones, tablets, laptops), and with the reduction of network costs for end-
users, distributed usage scenarios are frequent. Managing energy of this rising usage is, thus,
crucial for their success and market adoption.

2. Recent work of the last years only.Energy-aware approaches applied at different system
layers have been proposed since the early days of computer science. Since 2005, more than
20,000 research papers related to energy management have been published [2]. Also, with
the progress of technologies and the evolutions in customers’ usages, approaches that were
valid a decade ago may not offer today the same level of accuracy or energy saving as they

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

MIDDLEWARE APPROACHES FOR ENERGY MANAGEMENT IN DISTRIBUTED ENVIRONMENTS 3

were offering. Many approaches and energy related technologies became deprecated. The
utilization of technologies and devices also change and evolve. This makes the need for new
solutions a necessity (e.g., the decline of the desktop PC and the rise of mobile devices and
servers). With the high number of available publications, we argue that limiting the study to
the most recent approaches and technologies allows us to provide a more representative view
of the usable energy management approaches at the middleware layer.

3. Limit review to approaches integrating the middleware layer.The distributed nature of our
environment requires energy management to be realized through aconnected layer, i.e.,
a layer capable to observe and control other layers involved in the distributed scenario.
We argue that the middleware layer is best suited for this task as it observesand
controls all software, operating system and hardware layers. We also limitour review
to middleware approaches managing energy consumption, therefore we exclude energy
monitoring approaches and energy measurement tools. Although monitoring the energy
consumption of devices and software is important for efficient energy management, our review
paper reports on middleware platforms where software or hardware adaptation is also achieved
(thus approaches not limited to only monitoring and observing the energy consumption).

We select 12 middleware platforms integrating energy management approaches: Transhu-
mance [3, 4, 5], Grace/2 [6, 7], CasCap [8], DYNAMO [9], PARM [10], ECOSystem [11],
SANDMAN [12, 13], SleepServer [14], GreenUp [15] and the approaches reported in [16, 17, 18].
Table I and II summarize the positive and negative points of the middleware approaches for
energy management. In addition, we overview 3 application middleware platforms where energy
management techniques are used. These platforms manage energy for ambient applications and
manage devices and software in intelligent environments (cf. Section3).

2.1. Transhumance

Overview.Transhumance [3, 4, 5] is a power-aware middleware platform for data sharing on
Mobile Ad hoc Networks(MANets). It supports collaborative applications and provides a set of
communication facilities such as a publish-subscribe event system. Transhumance targets small
networks (up to 20 nodes), moving at pedestrian speed (up to 5 km/h).

Architecture.The global architecture of Transhumance is composed of five functionalityblocks
(management components): energy, services, communications, groups and security.Groupsdefines
and maintains communities of users who share a common interest.Communicationsmanage
communications inside a single node and between different nodes.Servicesprovide advanced
services to applications, such as replication service, consistency, and access rights.Securitymanages
security of the previous three blocks. Finally,energy managementadapts all previous blocks
following the energy levels.

Energy Management.Each of Transhumance’s functionalities is adaptable to the energy level. The
energy management is policy driven with adaptation policies defining battery level thresholds at
which adaptations are triggered. It follows a monitoring-decision-adaptation power management
cycle. The energy management (cf. Figure1) consists of two main elements: amonitoring module
and aresource manager. The former monitors the local node and distant nodes for battery levels. The
latter receives monitoring information and decides—using an adaptation policy—which adaptations
to apply.

Adaptation policies (cf. Listing1) follow the conditions/actions paradigm. Actions are defined
as adaptations, which can be local on each node of the network, or globalto affect all the system
and multiple nodes. When the middleware platform adapts its behavior, the running applications
may stop functioning or malfunction. Because the applications are affected by the system, they also
need to be adapted to cope with the middleware platform adaptations. These adaptations are realized
through applications’ adaptation profiles (cf. Listing2) that are sent to the middleware platform on

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

4 A. NOUREDDINE, R. ROUVOY AND L. SEINTURIER

Applications

Monitoring

Network

Distant Nodes
Local System

Resource

Manager

Other blocks

of the

middleware

platform

Adaptation

Interface

Adaptation

Policy

Figure 1. Transhumance’s node energy management architecture. [5]

startup. When an energy level is triggered, the middleware platform notifies the applications, which
adapt their behavior based on their adaptation profile and following the current energy level.

Algorithm 1: Adaptation Policy

if (100> LOCAL−ENERGY> 75) then
No adaptation

end if
if (75> LOCAL−ENERGY> 45) then

Neighborhood :: maximum-discovery-
range = 4 hops
Advertisement :: maximum-response-per-
query = 25

end if
if (100> GLOBAL−ENERGY> 75) then

No adaptation
end if
if (75> GLOBAL−ENERGY> 45) then

Transport :: ciphering-enabled = FALSE
Data :: lazy-propagation = TRUE

end if

Algorithm 2: Application Profile

if (HIGH −ENERGY) then
No adaptation

end if
if (MEDIUM) then

File-Transfer :: max-file-size = 2048 kB
Transport :: ciphering-enabled = FALSE

end if
if (LOW) then

File-Transfer :: max-file-size = 512 kB
end if
if (VERY−LOW) then

Transport :: no-ack = TRUE
end if

Figure 2. An example of adaptation policy and application profile used in Transhumance.

Examples.The authors validated their middleware platform using the Team Exploration treasure
hunting game in a real life experiment. The game is played by a number of teams, composed of
several members. Each member has a handheld device equipped with a Wi-Ficard. Using this
device, players can access the map of the game area, and pictures that they must find from where
they were taken. When a player proposes a location, all other team players must approve the proposal
using the game interface on their device. When four images are located, teammembers must meet
at the final meeting location to win the game.

This experiment shows the adaptive and collaborative nature of Transhumance. On the energy
dimension, the authors compared the current consumption before and afteradapting the transport
protocol (specifically, with and without acknowledgments). As we can expect, energy consumption
is lower when no acknowledgment is sent in the transport protocol. However, results show that,
although acknowledgments represent 6% of the traffic, the energy consumption reduction is around
20%.

Discussion.Energy management in Transhumance focuses mostly on adapting the middleware
platform’s modules. Applications adaptations follow the middleware platform’s own adaptations.
As such, if the middleware platform does not adapt its modules in order to save energy (e.g.,

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

MIDDLEWARE APPROACHES FOR ENERGY MANAGEMENT IN DISTRIBUTED ENVIRONMENTS 5

Grace-OS

Applications

Monitor and

Predictor

Internal

Adaptor

Global Coordinator

Per-application

Coordinator

CPU/Network Scheduler with internal adaptor

N
et

w
o
rk

P
ro

cesso
r

M
o
n
it

o
r

an
d

P
re

d
ic

to
r

In
te

rn
al

A
d
ap

to
r In

tern
al

A
d
ap

to
r

M
o
n
ito

r an
d

P
red

icto
r

application

configurations

coordinated

configuration

global

optimization
global

decision
feedback

violationallocation

coordinated

configuration

coordinated

configuration

Status Status

query

minimal-energy

configuration

query

minimal-energy

configuration

Figure 3. GRACE architecture. [6]

enable/disable messages encryption), then applications will not be adaptedto the environment’s
changes.

Transhumance does not check for conflicts between applied actions. These is left for the user
or administrator to guarantee that adaptations actions are not in conflict anddoes not damage the
system integrity or are counterproductive (e.g., wasting energy instead of saving it).

2.2. GRACE and GRACE-2

Overview. Global Resource Adaptation through CoopEration(GRACE) [6, 7] is a hierarchical
adaptive framework for energy savings. It combines adaptations at different levels:seldom
and expensive global adaptation, frequent and cheap per-application adaptation, and internal
adaptation on a single system layer.

Architecture and Energy Management.GRACE uses a hierarchical approach (cf. Figure3) that
invokes expensive global adaptation (which considers all applications and all system layers), and
inexpensive scoped adaptations (per-application adaptation where onlyone application is considered
at a time), and internal adaptation where only a single system layer—but notnecessarily one
application—is considered. The global adaptation is applied occasionally and occurs at large
system changes (e.g., when an application enters or exits the system). The scoped adaptation is
applied frequently and invoked when each job of the application starts or ata finer granularity
(e.g., every packet in the network). All adaptation levels are coupled with eachother. This allows
coordinated adaptations where the scope adaptation respects the resource allocation made by the
global adaptation.

In the global adaptation, a global coordinator is responsible for resource allocation. For each
configuration of the different system layers and applications, the coordinator determines its
overall utility and resource usage. It then chooses the combination that maximizes the utility
without exceeding the available resources. The global adaptation uses predictions of demands and
availability when choosing the best configuration. These predictions are complex and therefore the
global adaptation is invoked infrequently, only in response to large changes in the system.

The per-application adaptation is applied when an application job starts. At thismoment, more
accurate information is available about the available resources and the resource demand of each
application’s job. The adaptation goal is to find the configuration that will provide the utility
expected by the global coordinator within its allocated CPU time and bandwidth while minimizing
energy consumption. Unlike CPU time and network bandwidth, energy is a resource that can be

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

6 A. NOUREDDINE, R. ROUVOY AND L. SEINTURIER

conserved. Thus, the per-application adaptation tries to minimize the energy consumption while
using up the time and bandwidth allocated.

Internal adaptation is used to redistribute the allocated time and bandwidth more optimally as
application jobs may under run or overrun. It is also useful in responseto variations in resource
usage and availability that occur within a given job. And a system layer may apply an internal
adaptation to determine its minimal energy configuration. This helps in reducing the configurations’
search space used for the global and per-application adaptations.

Examples.The authors assessed their framework on several video and audio encoding and decoding
workloads. The latter were run on four different scenarios of combination of CPU and network
constraints. The results identify an high overhead of the global adaptationin comparison to the
per-application adaptations (a factor up to 8).

The results also show that global adaptation achieves important energy savings compared to
the non-adaptive base system. In non-constrained network scenarios, savings are of 9%, 35%, and
56% on average for global CPU, application, and CPU + application adaptations, respectively. For
network-constrained scenarios, the average savings drops to 10%, 14%, and 27%.

Per-application adaptations (in both the CPU and the application itself), which represent the
GRACE-2 framework, allow an additional savings of 6% on average compared to the global
adaptation ones in non-constrained network scenarios, and an average of 27% in network-
constrained scenarios.

Discussion.GRACE uses a hierarchical framework for energy-aware adaptations. This approach
provides a flexible middleware platform that fits for distributed environments.The three layers
system allows different granularity adaptations, from global and expensive adaptations to local per-
application ones.

However, this approach requires a centralized global coordinator thatneeds resources-rich device
to run on. This limits the benefits of the framework in environments where a large,but resource-
poor, number of devices are present (e.g., wireless sensor networks). The use of predictions in the
global adaptation severely limits its frequency, thus limiting these adaptations to large changes in the
system. This approach has also a drawback when the framework is used ina volatile environment. As
applications and devices may appear or disappear frequently, the globaladaptation is also invoked
frequently, leading to more energy-consuming global adaptations (and ultimately to energy losses
instead of savings).

2.3. Middleware for Energy-awareness in Mobile Devices

Overview.The authors propose an energy-aware middleware platform for mobile devices that is
based on application classifications and power estimations to accomplish application-specific energy
optimizations [16]. The middleware platform uses a policy manager to chose adaptive policiesto
apply on the system.

Architecture and Energy Management.The middleware platform is composed of six components:

i) a resource managerfor handling multiple resource providers and requests for resources.This
component relies on the system monitor to collect the runtime system information (such as the
process list, processor frequency or the backlight luminance);

ii) a machine learning application classifierto support the recognition of new application types
by analyzing the activity of applications (memory access mode and traffic characteristics). The
classifier is first trained in order to be able to estimated application class using feature variables
as input;

iii) a power estimator to estimate the power consumption of specific hardware components
and applications during runtime. The estimator relies on hardware component-level power
modeling for system-wide power estimation, and on application-level power modeling for
application power estimation;

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

MIDDLEWARE APPROACHES FOR ENERGY MANAGEMENT IN DISTRIBUTED ENVIRONMENTS 7

iv) a policy manager that stores adaptive policies (written in semantic languages), and selecting
policies that match request data (such as the application class and environment settings) sent
by the processing engine;

v) a messaging serviceresponsible for formatting, sending, receiving and parsing messages
to/from remote entities;

vi) and aprocessing enginethat schedules power adaptations automatically. It receives events
from the resource manager and decides whether to request for application classification
information from the application classifier, or request estimated power consumption from the
power estimator, or request adaptive policies from the policy manager. Itthen applies the
adaptive policies by invoking the corresponding adapters.

Examples.The authors evaluate their framework by running an adaptive version ofmobile YouTube
on their prototype. The prototype classifies the application based on monitoringdata from the
resource manager. It then estimates the power consumption and applies the adaptive policies if
conditions are met (if the battery lifetime is low). Their experiments show an average of 8% energy
consumption reduction when applying power adaptations using their framework.

Discussion.The major weakness of the architecture is the absence of any conflict resolving
mechanism. Adaptation policies are added by the user/administrator and may conflict.

The approach also requires a training period for the application classifier tobe anywhere effective.
This may not fit very well in volatile environments where applications and hardware components
change frequently. The dual power estimation (component hardware level and application level)
may incur a non-negligible energy overhead in small sensor networks andvery low capacity devices
(embedded sensors and devices).

On the other hand, policy-based rules written in semantic languages allow very flexible
adaptations. The approach can cover different environments with only having to modify policy
rules.

2.4. CasCap

Overview.The authors propose CasCap [8], a framework for context-aware power management.
The framework is based on three concepts: crowd-sourcing of context monitoring, functionality
offloading and providing adaptations as services. Its architecture is composed of three components:
mobile devices, Internet services, and clones. Mobile adaptations are based on adaptation policies
that are also offered as services, while clones allow the mobile device to offload some processing to
them for energy savings.

Architecture and Energy Management.CasCap is composed of three components:

i) Mobile devicewhere energy savings take place. On mobile devices, the architecture of CasCap
includes five components:

a) a Resource Managerthat collects resource consumption and useful information from
sensors (such as the GPS receiver).

b) aContext Managerresponsible for generating (and download/uploading from/to the cloud)
context information from the collected information by the resource manager.

c) aSchedulerthat adapts the mobile device based on the context and using adaptation policies.

d) aPolicy Managerresponsible for installing, updating and sharing with other mobile devices
the adaptation policies.

e) and aCommunicatorfor managing the wireless networking functionalities on the mobile
devices.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

8 A. NOUREDDINE, R. ROUVOY AND L. SEINTURIER

ii) Internet services responsible for storing and sharing context information between mobile
devices and clones. These services also handle a crowd-sourced context monitoring service
that collect and process context information from mobile devices and handles context queries.
Finally, they offer adaptation services, such as transcoding or traffic shaping services for mobile
devices.

iii) Clonesare computer environment in the cloud that mobile devices can use to offload processing
tasks, policy sharing, or scheduling of adaptations. Requests from mobiledevices to internet
services are therefore routed through clones. The use of clones is optional in CasCap.

Examples.The authors implemented a subset of CasCap architecture on a mobile device.They
implemented a resource manager that monitors the WLAN interface (in particular, BSSID, signal
and noise level) and the GPS location information. A context manager was alsoimplemented
and sends the WLAN and GPS collected information to the cloud. Adaptation policies were
defined following the event-condition-action (ECA) principle. A TCP connection is used by the
communicator for exchanging information between the mobile device and its clone. Preliminary
results on a 4-minute YouTube video playback showed that when connecting through a WLAN
access point with less users (thus higher SNR), energy consumption of network transmission is
lower (at around 36% compared to another access point with higher numberof users).

Discussion.The proposed architecture uses the cloud in order to propose adaptationservices and
functionality offloading. Adaptation as a service fits well in a ubiquitous environment where several
devices may use a similar service. In this case, one implementation in the cloud is needed and
allows energy savings by offloading all the processing to the cloud. However, the extensive usage
of the cloud and internet services requires high usage of the network interface of mobile devices.
The latter is one of the most energy expensive component in a mobile device.Therefore, optimizing
the usage of the internet service by calculating processing/network coststradeoffs is a most needed
requirement for the architecture.

The weakness in the approach is more present in the experimentations rather then the theoretical
architecture. No full implementation, neither any cloud-based service, were evaluated. Only
minimal validations of trivial experiences were conducted (such as the WLAN energy consumption
on a YouTube video). However, the authors identify where the major pointsof the architecture fits
in the experiences. All what is left is now to validate these points with a global implementation of
the CasCap architecture.

2.5. DYNAMO

Overview.DYNAMO [9] is a cross-layer framework for energy optimizations based on quality
of service tradeoffs for video streaming in mobile devices. The frameworkuses a distributed
middleware layer in order to adapt all levels of the system (e.g., software, middleware, operating
system, network and hardware). Its architecture uses a proxy serverin order to performend-to-end
global and network adaptations with the mobile device (e.g., dynamic video transcoding).On-device
adaptations complement theend-to-endadaptions with local adaptations specific to the hardware
and software of the mobile device (e.g., LCD backlight intensity adaptation).

System model.DYNAMO’s system model is composed of the mobile device and the proxy. The
device’s model has four system levels:

i) a Hardware level including the energy consuming components (e.g., CPU, LCD, network
card).

ii) an Operating Systemlevel that have access to the hardware through driver interface.

iii) a Middleware level that is composed by three abstract components:

(a) asystemcomponent that resides within the OS.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

MIDDLEWARE APPROACHES FOR ENERGY MANAGEMENT IN DISTRIBUTED ENVIRONMENTS 9

Remote

Adaptation

Manager

Network Traffic

Shaping

Feedback From

Device

Global State

Information

Rule Base

Video

Transcoder
Original Video Transcoded Video

Global

Adaptor

System

Monitor

QoS

Negotiation

Multimedia Application

B/L

adapter

N/W

adapter

CPU

Scheduler

Local Coordination Modules

NIC CPUBacklight

Adapt

N
et

w
o

rk

N
etw

o
rk

OS + Hardware

Proxy Server

A
p

p
li

ca
ti

o
n

 L
ay

er
O

S
 L

ay
er

M
id

d
le

w
ar

e
L

ay
er

H
/W

 L
ay

er

M
o

b
il

e
D

ev
ic

e

M
id

d
le

w
ar

e

Figure 4. The End-to-end Cross-Layer Adaptation Frameworkof DYNAMO. [9]

(b) anetwork component for implementing communication protocols to talk with the proxy.

(c) and auser levelcomponent that performs adaptations using the information gathered from
the user, OS and the network.

iv) and anApplication level that provides user profiles and application context. It also dynamically
negotiates quality of context with the middleware platform.

The middleware platform’s modules installed on the mobile device can belocal state aware
(aware to local information such as CPU frequency or battery level) orglobal state aware(aware to
information not available on the local device, such as network congestion or bandwidth availability).
In the latter case, the middleware platform’s modules installed in the proxy are responsible for
determining these parameters. DYNAMO uses utility factors in order to achievetradeoffs between
performance and power consumption. On a video streaming example, the utility factor could be a
measure of user satisfaction.

Architecture and Energy Management.The architecture of DYNAMO is distributed between the
mobile device and the proxy (cf. Figure4). On the proxy, aremote adaptation manageris
responsible for providing quality parameters of the video stream (in orderto maintain the highest
system utility within the available energy in the device) using information collected from the
device, the rule base and the end-to-end state (e.g., network noise). It also informs the device about
the remote changes allowing the mobile to adapt accordingly. On the mobile device, two main
components manage adaptations:i) a global adaptorresponsible for the reception and application
of control information about remote adaptations; andii) a local coordinatorcontaining a set of OS
and hardware access modules. These modules use information from the global adaptor to adapt the
power consuming components.

Two main methods of adaptation are: end-to-end adaptations, and on-device cross-layer
adaptations. End-to-end adaptations determine, using global knowledge of the system, whether
the video request can be satisfied under the energy conditions of the mobile. In this case, the
proxy has two tasks: energy-aware video transcoding, and intelligent network traffic shaping. Local
adaptations, on the other hand, react to changes implemented by the proxy and to local application
changes. Information is therefore exchanged periodically with the proxy(e.g., LCD parameters,
network adapter sleep times). Local adaptations can also perform quality of service negotiations
with applications.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

10 A. NOUREDDINE, R. ROUVOY AND L. SEINTURIER

Examples.The middleware platform is targeted to manage video streaming scenarios with respect
to balance between power consumption and performance. A utility factorUF was therefore defined
for the system as the user satisfaction.UF is equal to -1 if the system cannot stream the video
while respecting the time, quality and power constraints. It is non-negative otherwise, following this
definition:

UF =







QPLAY−Qa IFF PVID ∗T < Eres &
QPLAY > Qa

−1 Otherwise







(1)

whereQPLAY is the streamed video quality,Qa the threshold video quality level,Eres the residual
energy on the device,T the duration of the video playback, andPVID the average power consumption
rate of the video playback.

The authors implement a prototype of DYNAMO running the video streaming scenario on a
mobile device (iPAQ). Results show that energy savings with joint adaptations(i.e. of the different
components, and cross-layers) can be up to 50% of the energy consumed by the three managed
components (e.g., CPU, network, display) without optimizations.

Discussion.The approach is built around the usage of a proxy in order to offload some energy-
consuming functionalities from the mobile device. This approach is adapted to anetwork intensive
scenario (such as video streaming) where the network overhead for communicating with a proxy
is leveraged with the intensive use of the network for the video stream. Adapting the video stream
on the proxy, thus allowing to reduce the streamed bandwidth and the requiredcomputation for
processing it on the device, provides energy savings (up to 50% in the author’s experimentation).

However, the proposed model and architecture will probably not perform as good as the paper’s
results in different scenarios. In a CPU intensive application, or a lighternetwork case (e.g., web
browsing), the energy gains are quickly overrun by the network overhead, and in particular in mobile
devices (where the network card is in the top 3 of the energy consuming components).

On the other hand, the approach is based on utility functions. The reasoning for adaptation is
based on the evaluation of this utility function, and the tradeoffs between energy consumption and
the allowed variations of the quality of service parameters.

2.6. PARM

Overview.PARM [10] is a Power-Aware Reconfigurable Middlewarefor low-power devices. It
dynamically reconfigures the component distribution on these devices and migrates components
to proxy servers in order to save energy on the mobile client.

Architecture.Figure5 depicts an example of a distributed system architecture in PARM. The system
is composed ofdistributed servers(service providers, such as streaming video or web services),
proxy servers(to host replicated data from servers),meta-data repositories(directory service, power
broker), andmobile clients. Thedirectory servicestores the overall system state information.

The power broker is the central piece of the architecture. On large-scalesystems, several power
brokers will be distributed throughout the environment. It applies the adaptation decisions on
the global system and/or on individual devices and determines the set of components to offload
from mobile devices onto a proxy. It is also responsible for determining a new configuration for
distributing middleware components between mobile devices and proxies. For that, it uses the
current system state information (sent by the devices) and PARM policies (which define when and
how often the broker reconfigures the devices).

Energy Management.The PARM framework is a flexible, reflective message oriented middleware
platform. In addition to typical middleware platform components, it provides a set of additional
independent components (e.g., encryption/decryption, caching, clock synchronization) that are used
for energy optimization.

Middleware services and components can be dynamically started/stopped/migrated. Components
are migrated to a proxy in order to save energy on the mobile client. A component stub is left on the

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

MIDDLEWARE APPROACHES FOR ENERGY MANAGEMENT IN DISTRIBUTED ENVIRONMENTS 11

Wired Network

Proxy

Server

Directory

Server

Broker

Wireless

Base Station

Handheld

PDA

Power

Optimization

Server

Proxy

Figure 5. Example of a system architecture in PARM. [10]

client device when the component is migrated. The stub provides transparency to the application and
handles communications with the remote migrated component. If a component cannot be migrated,
it is either stopped, or its services degraded in order to save power.

PARM defines an algorithm to determine which components to migrate, and policiesto determine
when and how often the algorithm is executed. For that, the algorithm uses a parametric flow graph
and determines the minimum-cut of the graph.

Examples.The authors simulated a model of the system and ran a serie of experimentationon it.
Three classes of applications were used:computation intensive(class 1),communication intensive
(class 2), andcomputation and communication intensive(class 3). Both sporadic-start and non-
sporadic applications were used in these classes. Results show energy and service time gains (of
about 15–45%) for class 1 applications when the reconfiguration took place every 5 minutes or
less. Service time gains were less for class 2 applications (7–30%), and even lesser for class 3
applications. These latter shows loss when the reconfiguration was less frequent (once every 8
minutes or more). The results show that gains due to the PARM algorithm were the highest for
computation intensive applications, but were moderate (and even negative) when communication
intensive workload was added.

Discussion.The PARM algorithm has a worst case execution time ofO(n3), which may lead to
higher energy consumption of brokers and longer execution decision timeswhen the environment
is composed of a large number of mobile clients. The algorithmic approach usinga flow graph is
not the most effective approach in frequently changing environments. PARM goal is also limited to
an environment where proxies, brokers and servers are abundant.It has one main core adaptation
technique: component migration from mobile clients to proxy servers.

2.7. Green Computing: Energy Consumption Optimized Service Hosting

Overview.The authors propose a dispatch algorithm for data centers [17] in order to consolidate
services dynamically into a subset of servers and temporarily shut down the remaining servers in
order to save energy. The approach’s goal is to minimize the number of running servers while still
being able to respond to clients’ requests and respect the QoS requirements described in SLAs.

Environment and Approach.The authors suppose that the environment includes three types of
machines:dispatchers(that manage services requests and consolidation, and also when and how to
shutdown and restart compute servers),file servers(that provide data sources) andcompute servers
(that host the services and a node manager responsible for monitoring theserver and managing its
shutdown). The environment offers differentService Types(ST) where each is uniquely identified
by a service interface and a SLA. Compute servers can then be turned off if the remaining servers
can meet the required QoS defined by all STs.

The dispatcher shuts down a server by sending a shutdown request to itsnode manager. The latter
prepares the shutdown by making the server idle (refusing new service requests, waiting until all

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

12 A. NOUREDDINE, R. ROUVOY AND L. SEINTURIER

current service processing ends or migrate active sessions to anothercompute server), then sending
the shutdown command to its operating system. Turning off the server can either be by a complete
shutdown, hibernation or by suspending the system. The dispatcher chooses the optimal shutdown
option based on the context of the environment.

Algorithm. The dispatcher has two main roles:i) selecting the compute server to handle incoming
requests andii) managing the pool of compute servers. In order to manage this pool and reduce the
overall energy consumption, the authors first considered an optimization algorithm that they deemed
not well suited. The search space for the algorithm can be large, thus being resource-hungry, and it
is based on very specific assumptions (such as service requests are independent). The authors then
proposed a probabilistic control algorithm. The principles of the algorithm are described as follows
(quoting from article):

1. If a running compute server si has idle time, the probability that service requests are
dispatched to si is increased. Conversely, the probability that service requests are dispatched
to the least energy-efficient compute server currently running sr is decreased by the same
amount. If the probability that service requests are dispatched to sr becomes zero, the
shutdown of sr is initiated.

2. In an overload situation, the algorithm first tries to better distribute the load amongst the
running compute servers, and restarts an extra machine only as a last remedy.

Discussion.The approach has the advantage of respecting the SLA and QoS of client’s requests
while still trying to minimize the energy consumption. Although not rule-based or policy-based
reasoning, the probabilistic algorithmic approach is not penalizing with regards to energy or time.
Data centers are a resource-rich environment and the overhead of thealgorithm should be minimal
compared to the energy consumption of the servers.

However, the proposed approach and algorithm poses many assumptions, thus being limited to a
small pool of case scenarios. It is also limited to data centers that host and handle services offered
to clients. The authors identify several limitations of their algorithm, such as limited optimization
criteria (only energy consumption and service response time are considered to date), centralized
algorithm which may become a performance bottleneck, absence of fault tolerance and management
of sudden fluctuations in service requests. These limitations are an ongoingresearch effort for the
authors.

2.8. ECOSystem

Overview. Energy Centric Operating System(ECOSystem) [11] is a framework that manages
energy consumption at the OS level. The framework is based on a new unit:currentcy, which is
an abstraction of energy currency.

Model and Energy Management.Currentcy is a unified abstraction for the energy a system can
spend on devices. A unit of currentcy represents the right to consume anamount of energy during a
fixed amount of time. Using the currentcy definition, the framework (cf. Figure 6) manages energy
following three orthogonal dimensions:

1. Time: a target lifetime is defined and divided into fixed-length epochs. At the beginning of
each epoch, the allocation module generates an amount of currentcy available for all tasks.
This amount depends on various parameters, such as the target lifetime or the remaining
energy in the battery.

2. Tasks: management of the sharing of currencty among tasks. The allocation and scheduling
modules cooperate to accomplish allocation of currentcy to tasks and providing opportunities
(e.g., access to devices) to spend the currentcy.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

MIDDLEWARE APPROACHES FOR ENERGY MANAGEMENT IN DISTRIBUTED ENVIRONMENTS 13

Application Application Application

Device Device Device

OS

Total currency

available

Allocation and

scheduling

Accounting and

Quota enforcement

1

2

3

Figure 6. The ECOSystem framework. [11]

3. Devices: the actual energy consumers. When devices consume energy, the accounting module
charges the tasks for the corresponding currentcy. If a task runs out of currentcy, then the
system will block the task from accessing devices or consuming energy.

During each epoch, currentcy is limited, thus currentcy is allocated to tasks based on their
importance. The latter is calculated using a proportional sharing approach. Tasks’ currentcy can be
accumulated form one epoch to another, however with a maximum cap. Withoutproper scheduling,
tasks cannot consume their allocated currentcy. This leads the system to reallocate the exceeding
currentcy to other tasks.

Examples.The advantages of the currentcy model and the energy management framework
are highlighted in a comparison of three scheduling policies:pay-as-you-go(standard device
schedulers),static-priority (scheduling priority is based on device’s share value), andcurrentcy-
centric (scheduler dynamically adjust scheduling priority based on the ratio of device’s consumed
currentcy to its entitled currentcy).

The authors ran gqview and ijpeg with equal shares. This experiment involves only the CPU
scheduler. Results show that currentcy-centric policy is the only one to allow gqview to consume its
allowed share of energy and to achieve its minimum delay.

Another experiment with both CPU and network schedulers showed similar results. With three
applications competing for resources (RealPlayer, Netscape and ijpeg),only the energy-centric CPU
and network schedulers allowed a proportional consumption of resources to the applications need.

Discussion.The authors propose an energy currency model,currentcy, and an OS framework for
managing energy using this model. The currentcy model is a step forward toward unified energy
management. The model, inspired from human’s financial transactions, allows a flexible and generic
approach to energy allocation.

However, the model and framework does not reduce or optimize energy consumption. It is
only limited to providing a modeling and architectural infrastructure for energy transactions and
allocation, but without reducing the energy utilizationper se. Nevertheless, proposing a currency
model for energy helps in raising awareness on the price of energy consumption, not only for the
end-user, but also for developers and system administrators.

2.9. SANDMAN

Overview.SANDMAN [12, 13] is an energy-efficient middleware platform built upon the BASE
middleware platform [19]. BASE is a minimal communication middleware platform for pervasive
computing based on peer-to-peer principles. It is structured as an extensible micro broker, and
plugins are used to support different communication protocols.

Architecture and Energy Management.SANDMAN is built as several extensions to BASE, and
rely on three main concepts:i) reducing data transfer energy consumption by selecting the most

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

14 A. NOUREDDINE, R. ROUVOY AND L. SEINTURIER

efficient communication protocol,ii) switching idle devices to low power mode (sleep) in order
to save devices’ energy during their idle time,iii) and allowing clients to select the most energy
efficient service.

In order to switch devices to idle mode while still being discoverable by users,SANDMAN
uses an self-adaptable discovery protocol that can handle deactivated devices. At startup time, each
device operates autonomously and answers users’ discovery requests directly. During the system
operation, neighbor devices, with the same mobility pattern, form a cluster andelect aCluster Head
(CH). The CH will be responsible for collecting information about all services in its cluster and
answers users’ discovery requests on behalf of the devices of its cluster. This will allow devices in
the cluster to switch to sleep mode while still being discoverable through the CH.

SANDMAN relies on a transition strategy with a fixed inactivity threshold in order to meet the
challenge in deciding if a device is unused and thus can be deactivated. Inaddition, SANDMAN
relies on several other techniques to help making this decision. Techniquesvary from middleware
platform interfaces to let applications specify that a device is in use; sessions to allow users to
specify that they are using a specific service, thus SANDMAN will not deactivate devices offering
this service; to synchronization times negotiations between a user and a server, allowing both to
temporarily sleep and communicate at given times.

Examples.The authors validate their approach by evaluating it with the Network Emulation
Toolkit ∗. They compared the impact of the variation of group sizes on the energy savings. When
the size is low (single device), the devices consume more energy than withoutSANDMAN’s
adaptations (devices are rarely clustered and the overhead of messages due to clustering is higher
than what is saved by the sleeping devices). However, for larger groups, SANDMAN adaptations
show high energy savings, up to 60% per device. With higher device speed, energy savings are
smaller than with slower speed. This is due to less stable clusters with higher mobility(and thus the
need for more frequent re-clustering).

Discussion.The SANDMAN approach targets energy consumption of idle devices in a
communicating network. It achieves this by grouping devices with similar mobility patterns in a
cluster and temporarily migrating nodes’ advertisement to the cluster head. The approach however,
have two weaknesses:i) the cluster head will have to answer discovery requests on behalf of devices
of its cluster, thus having to be awake all the time and consuming more energy. No energy-aware
approach is specified in the election of the CH. This may lead to small battery devices being elected
as a CH, which may also lead to a quicker failure of the CH.ii) the CHs act as bottlenecks in the
platform. The failure of a CH causes the devices of its cluster to be temporarilyindiscoverable.

On the other hand, SANDMAN manages energy when devices are idle. It does not optimize the
energy consumption of running applications, thus making the approach limited tosituations where
devices are used for short periods of time, and in non-critical environments.

2.10. SleepServer

Overview.The authors proposeSleepServer[14], a software approach allowing energy management
in desktop PCs. The approach allows machines to migrate to low power sleep states while still
allowing their network connectivity. This is done using virtual machine proxyservers and virtual
LANs.

Architecture and Energy Management.The architecture of SleepServer is network-proxy based.
One of or more SleepServers (SSR) are added to an enterprise networkand handles the host
computers (H). Each SSR can manage a subset of the computer hosts.

For each computer host, a virtual image is instantiated. The latter is responsiblefor maintaining
the network presence of the host when it is in a sleep mode. AnSSR Controllermanages the virtual

∗http://net.informatik.uni-stuttgart.de

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

MIDDLEWARE APPROACHES FOR ENERGY MANAGEMENT IN DISTRIBUTED ENVIRONMENTS 15

appliances (e.g., creation and configuration), the communications between the host images and an
SSR Clientsoftware installed on the computer hosts, and resource allocation and sharing among
the images. This controller and the images access the hardware resourcesthrough aResource
Multiplexer that can be the operating system itself or a hypervisor/virtual machine monitor.

On hosts, the SSR Client connects to the SleepServer machine and specifiesits networks
parameters (e.g., MAC and IP address, firewall configurations). It also sends the stateof running
applications on the host and open TCP/UDP ports to the SSR Controller. Thus, the controller can
mimic the host, in particular using the specifies network parameters and the firewall configuration.
When the host goes to sleep mode, the virtual image can therefore respondto incoming packets on
its behalf. If a request is received that requires the host itself, the SSRcontroller wakes up the host
and disable its virtual image.

In particular, when a host goes to sleep mode, its SSR Client sends a message to the SleepServer’s
SSR Controller with the stat transition information. The controller enables the virtual image for
the host and reconfigures the layer-2 switches in the network. For that, ituses a combination of
gratuitous ARPs and packets sent to the gateway in the subnet. When the host goes out of sleep
mode, the SSR Client informs the SSR Controller which disables the virtual image.The client
sends also gratuitous ARP messages and packets to the subnet gateway in order to reconfigure the
network’s switches.

Examples.The authors shows that their approach can help reducing the energy consumption of PCs
of about 68% compared with no SleepServer. In detail, they calculated the power consumption of
users’ PCs over a one month period, the first two weeks without SleepServer and the second two
weeks using SleepServer. They deployed their SleepServer prototypes in over thirty PCs (desktops
and laptops) in their university’s department, mixing new and older computersand Windows and
Linux operating systems. Powermeter were used to collect the energy consumed by the computers.
Results show that energy consumption dropped by 30% when using SleepServer and when users
had to manually put their PCs to sleep. This number grows up to 54% (or a total of 68% when
compared to no SleepServer at all) when PCs where automatically put to sleepafter one hour of
timeout.

Discussion.The approach of SleepServer is similar to SANDMAN’s approach. Both use additional
proxy machines (a cluster head in SANDMAN and a sleep server in SleepServer) to maintain
availability and network presence of the host while it is in sleep mode. Thus, ithas the same
weakness:i) the sleep server becoming a bottleneck for the platform. Its failure may causehost
machines to become unavailable until they are wake up again;ii) and the sleep server will have to
be awake all the time therefore consuming energy (albeit the energy consumed are compensated by
the energy saved of the system).

On the other hand, the usage of SleepServer still requires additional hardware investment (in the
form of the sleep servers themselves). It only manages energy for idle devices, allowing energy
savings if frequent or long periods of sleep time occurs. SleepServer itself does not offer energy
optimizations to applications or devices, but rather to the overall functioning of connected network
of computers.

The approach, nevertheless, allows a transparent and heterogeneous migration of hosts’
availability and network presence. Virtual images offer great flexibility forgrouping images into
a smaller number of sleep servers, or migrating them again to another sleep server (in particular in
case of a SSR failure). They also offer security and isolation between thedifferent virtual images.

2.11. Sleepless in Seattle No Longer

Overview.The authors present a system aimed to preserve the network accessibility of user
machines in an enterprise network while still allowing them to go to sleep, and therefore save
energy [18]. The system is based on two components: asleep proxyfor each subnet, and asleep
notifier program that runs on the user machine. The latter alerts the proxy when themachine goes

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

16 A. NOUREDDINE, R. ROUVOY AND L. SEINTURIER

to sleep. The proxy then sends out ARP probes to make sure all traffic to the sleeping machine are
redirected to it. It responds to some packets while ignoring the majority.

Architecture and Energy Management.The approach proposed requires a sleep proxy per subnet,
and that users install a sleep notifier daemon on their machines. The sleep notifier is responsible for
notifying the proxy when the machine is going to sleep. In particular, when themachine is about to
go to sleep, the notifier broadcastssleep notificationpackets with the list of the machine’s listening
TCP ports. The notifier program broadcast this message to all its subnet, as there is no need for it to
know the identity of the proxy.

The sleep proxy receives the broadcast and identifies machines that areabout to go to sleep.
It adds the machine to its list of sleeping clients and remaps the network router (by sending an
ARP probe) so that future packets for the sleeping machine are redirected to the proxy instead. The
proxy monitors incoming traffic to the sleeping machine, responding to ARP requests or neighbor
discovery packets while ignoring the rest. When it recognize a TCP SYN packet meant for the sleep
machine, it awakes it by sending a Wake-on-LAN [20] packet.

Examples.The implementation of the approach was deployed on 51 clients regrouped in 6wired
subnets (so, 6 sleep proxies were used), and for several months. Results show that ignoring most
of the packets by the proxy prevent unnecessary wake-ups (i.e., a TCP packet destined to posts on
which the sleeping machine was not listening). Power savings varies greatlybetween machines as
some were less solicited than others (thus allowing them to go to sleep more often and for longer
periods, which results in better energy savings). On average, the approach allowed a 20% power
savings, with some machines going up to 80% and others with just few percentages. A startup delay
was also observed for the first connection to a sleep server, this delay isnevertheless absent for
the following transactions. CPU load rarely exceeds 5%, while network bandwidth was also low
(around 250 Kbps in 90% of the cases).

Discussion.The main advantage of this approach (and other similar ones) is allowing machines to
go to sleep while still keeping them available for user requests. The only investment needed for user
machines is the installation of a sleep notifier daemon. The latter doesn’t need to know the address
of the proxy (it broadcast its notifications), thus making adding/removing machines easy to manage
for the proxy. The usage of an independent proxy frees the user machines from additional loads
incurred from managing sleeping machines.

However, the proxy is a single point of failure in the system. If it goes down, sleeping machines
can’t be woken up again because their network traffic is redirected to theproxy. In addition, the
sleeping policies are left for users or administrators to implement. A machine will go to sleep by its
own (or the user’s) initiative. Therefore, the proposed system can’tsave energy if machines (through
their OSs, applications or users) dont go to sleep at all.

2.12. GreenUp

Overview.The authors proposeGreenUp [15], a software-only approach for providing high-
availability to sleeping enterprise workstation machines. GreenUp allows any workstation machine
to act as a proxy for other machines so the latter can go to sleep while preserving their presence in
the network subnet. Therefore when a machine goes to sleep, another one starts acting as proxy for
it. It maintains its network presence by responding to ARP requests and IPv6 neighbor-solicitation
messages on behalf of the sleeping machine. The proxy wakes up the machine when a user tries to
connect to it (when a TCP SYN message is received).

Design and Energy Management.GreenUp allows machine to remain highly available while still
allowing them to go to sleep. Its design is based on three ideas:i) distributed managementthat
uses randomization to spread management load of machines evenly over proxies, ii) subnet state
coordinationto disseminate and broadcast the state of other machines (i.e. sleeping, awake) in the

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

MIDDLEWARE APPROACHES FOR ENERGY MANAGEMENT IN DISTRIBUTED ENVIRONMENTS 17

subnet, andiii) the usage ofguardiansto protect against having no machine awake to act as a proxy,
thus maintaining a minimum number of awake proxies.

In particular, distribute management techniques make every proxy periodically probes a random
subset of machines. If the machine is awake or if it is asleep but managed bya proxy, the probing
proxy receives a response (from the machine or its manager proxy). If it does not receive a response,
the proxy starts managing the machine itself. In order to avoid having multiple proxies managing
the same machine, a priority function is defined for a proxy to manage a machine(the hash of the
concatenation of the proxy and the machine’s MAC addresses). Each proxy broadcasts periodically a
message stating its managed machines. When a proxy receives this messages, its compare it priority
with the sender’s and decides to stop managing the machine or to respond to thesender (so the latter
can stop managing the machine). Finally, the proxy sends ARP probes to ensure that all packets
meant for the sleeping machine are delivered to the proxy instead. The proxy therefore monitors
both incoming TCP SYN’s and outgoing SYN’s (the proxy is still a workstation machine) destined
for the sleeping machine.

Subnet state coordination technique is based on three elements:i) each machine periodically
broadcasts its state,ii) if the machine is asleep, its proxy manager is responsible for the broadcasting,
and iii) periodically, all machines are awakened and proxies drop from their managed list any
machine that does not broadcast during a defined window of time (to detectif a machine has failed).

Finally, some machines are always kept awake. They are considered guardians, and ensure that at
any time a minimum number of machines are awake to act as a proxy for the sleeping ones.

Examples.The authors implemented GreenUp inC♯ and tested it on nearly a hundred machines
over a period of seven months. GreenUp was able to wake machines in 99.4%of cases with only
5 cases of failures due in part to Wake-on-LAN [20] failures (0.3% of WoL attempts are failures).
Therefore, the mechanism used in GreenUp to wake up machines (Wake-on-LAN) is considered a
reliable one. The implementation also uses less than 1% of CPU for parsing packets for one managed
machine, and it is estimated that it would be about 12-13% if managing 100 machines by a single
proxy (29% for 300 machines). And the network utilization (for managing 100 machines in 1000
node subnet) is less than 90 Kb/s of upload bandwidth and 60 Kb/s of download bandwidth, which
is negligible in enterprise LANs. Finally, GreenUp increases the sleep time of machines by 31% in
their experiments, which amounts to 175 kWh per machine per year of saved energy (assuming a
desktop PC idle power is 65 W).

Discussion.GreenUp offers a software-only approach where existing machine areused as proxies
to manage each other’s sleep and network presence. The advantage is the absence of any
hardware investment or modification of existing software (unlike for exampleSleepServer), making
deployment easy.

Another aspect is the absence of bottlenecks or central proxy servers. Because each machine can
act as a proxy, the failure of a machine or even a proxy is quickly remediatedby having another
machine act as a proxy for the newly unmanaged ones.Guardianmachines ensures that there is
always a minimum number of proxies available, thus limiting a complete blackout of the system.

However, although the approach manages the network presence of sleeping machines, it does not
include policies to determine when machines go to sleep. This is left for users or administrator.
Thus, GreenUp hopes toinduces users to choose more aggressive sleep policies and thereby save
energy, while still allowing machine availability.

3. APPLICATIONS

In this section, we outline a number of middleware solutions targeting applicationswhere
the approaches adopted are build specifically for the requirements and challenges of ambient

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

18 A. NOUREDDINE, R. ROUVOY AND L. SEINTURIER

Middleware Approach for
Energy Management

Pros Cons

Rule-based approaches

Transhumance Uses the intuitive conditions/ac-
tions paradigm

Focus on adapting the middle-
ware platform’s modules
No conflict management for
adaptation policies
Can only be applied on a limited
environment

CasCap Offloads functionalities to the
cloud to relieve the mobile
device

Network (energy consuming
component) usage required

No complete experimentation
yet

Middleware for Energy-
awareness in Mobile Devices

Usage of applications classifica-
tion

No conflict management

Based on semantic policy rules Requires training periods

DYNAMO Combines adaptations at differ-
ent system levels

Fits well only in a network
intensive scenario

Vision of the global and local
context for adaptations

Requires hardware investment in
a proxy

Proxy-based approaches

SANDMAN Usage of an auto-adaptable dis-
covery protocol

Cluster head consumes maxi-
mum energy

Nodes can go to sleep and still be
discoverable

Cluster heads act as bottlenecks

Usage of various techniques for
detecting if a device is unused or
not

SleepServer PCs can go to sleep and still
maintain network presence

Sleep servers act as bottlenecks

Virtual Images allows flexibility
and security

Sleep servers and state transi-
tions consume energy

Sleepless in Seattle No Longer PCs can go to sleep and still
maintain network presence

Proxy server acts as bottlenecks
and is a single point of failure

A proxy frees machines from
additional loads

Sleeping and energy policies left
for users to define

GreenUp PCs can go to sleep and still
maintain network presence

Sleeping and energy policies left
for users to define

Software-only approach
Absence of bottlenecks or cen-
tral server

Table I. Summary of rule-based and proxy-based approaches

applications and devices in intelligent environments. TableIII summarizes the positive and negative
points of the architectural-based approaches.

3.1. AIM

Overview.The authors present a framework architecture for modeling, visualizing and managing
energy consumption of home appliances [21]. The work is achieved under the AIM consortium [22].
The goal is to manage the energy consumption of appliances while providing this information to the
user using communication devices.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

MIDDLEWARE APPROACHES FOR ENERGY MANAGEMENT IN DISTRIBUTED ENVIRONMENTS 19

Middleware Approach for
Energy Management

Pros Cons

Other approaches

GRACE/2 Combines adaptations at differ-
ent system levels

Requires a centralized global
coordinator

Flexible approach: infrequent
and expensive global adapta-
tions, and frequent and cheap
local adaptations

Limited advantages in volatile
environments

PARM Efficient component migration
and redistribution for energy
optimization

Worst case execution time of
O(n3)

Necessity of proxies, brokers
and servers presence

Works well for computation
intensive applications

Moderate or negative gains in
communication intensive appli-
cations

Energy Consumption Optimized
Service Hosting

Energy savings while respecting
SLAs and QoS

Requires many assumptions,
limited to data centers

Minimizing the number of run-
ning servers

Centralized algorithm, limited
optimization criteria, no fault
tolerance

ECOSystem Proposes a currency model to
quantify energy management

No energy optimizationper se

Allocation and scheduling fol-
lowing Time, Tasks and Devices
dimensions

Table II. Summary of other middleware approaches

Architecture and Energy Management.AIM bridges the indoor and outdoor networks through the
AIM system logic (cf. Figure7), in order to provide control functions to users, network operators
and energy generation utilities. Gateways can host part or all of the system logic, and manage
communications, encryption and apply the centralized control logic.

Energy Management Devices(EMDs) manage the power logic and are controlled by the AIM
gateway. EMD provides two types of power management logic:i) a power monitoring to collect
energy consumption data from appliances and buffers them to the user and ii) and a power control
for managing external communication interfaces and applying the user commands on the given
appliances.

The AIM gateway is composed of three modules:i) a machine-to-machine interfaces module for
providing a common API for implementing gateway-based services,ii) an identify management
module for user authentication and identification, andiii) a services synthesis module for the
creation of new composite services.

The user can control all appliances and devices manually. He can also define a set of user
preferences that will enforce some specific behavior. However, AIMsystem uses user profiling
in order to self-adapt to user habits. The profiling records events of user interaction with the home
devices, then uses a learning algorithm to process the collected data and extract settings for the
energy management system that meet user requirements. The goal of the profiling is to provide
better system autonomy by replacing user manual interaction with automatic procedures performed
on request.

Examples.AIM’s functionality is intended to be used by three categories of users:utility providers,
operatorsand thelocal end-users.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

20 A. NOUREDDINE, R. ROUVOY AND L. SEINTURIER

White Goods &

Home Automation

Appliances

Sensors/Local

Context

Remote

Residential

User

EMD
AIM

Gateway
Service

Platform

Communication

Appliances Local

Home
Utility/3rd party

Service Provider

E

D' A

A'D

C B
F/G

H

AIM System Logic

Figure 7. AIM system logic interfaces. [21]

A local end-user example is related to the energy management of home devicesaccording to
user preferences. For example, the system adjusts the bedroom, bathroom, and kitchen temperatures
when the user wakes up in the morning. It lowers them during the day when heis outdoor.

Communication operators can provide services for users to access and monitor their energy
consumption. The user installs EMDs and an AIM gateway, and subscribesto the operator’s
services. After that, the user can monitor his consumption by accessing the operator web portal.
Advanced services are also offered, such as controlling devices or sending notifications to the user’s
mobile phone.

Utility providers can offer flexible cost model services to the user. The latter will receive each day
a pricing profile for the next day. This profile includes energy prices for the day, per hour. Thus, the
user’s system can adjust energy consumption based on the price.

Discussion.The AIM project proposes solutions for energy management in smart homes while
integrating services from network and communication operators and from power distribution
operators. The convergence of these three actors (users, operators and utility providers) into a single
approach, allows coordinated energy management based on multiple criteria(user preferences,
electricity prices).

However, the proposed approach requires multiple devices (one or moreEMDs, the AIM
gateway) that should be connected and running all the time, thus it can’t besized to resource-
poor environments (e.g., Wireless Sensor Networks). The approach also requires processingand
reasoning time, which is not always available on volatile or mobile pervasive environments.

3.2. Energy-awareness in the HYDRA middleware platform

Overview.The HYDRA middleware project [23, 24, 25] is co-funded under the Sixth Framework
Programme (FP6). Its goal is to develop a middleware platform for networkedembedded systems
that allow developers to create ambient intelligence applications. The middleware platform uses
the principles ofService-Oriented Architecture(SOA) andModel-Driven Architecture(MDA). One
application example is a smart home integrating energy efficiency features.

Architecture.The architecture of the HYDRA middelware platform hides device-dependent and
network-dependent details from the applications, and provide abstractions interfaces of the display,
communication ports, input and memory management of each device. It also uses peer-to-peer
technologies for identification and utilization of available services.

HYDRA considers each device,Ambient Intelligence(AmI) application or other subsystem as
a unique web service, thus allowing interoperability at a semantic level. Therefore, devices can

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

MIDDLEWARE APPROACHES FOR ENERGY MANAGEMENT IN DISTRIBUTED ENVIRONMENTS 21

Backend Server

Plogg

Manager

Energy

Manager

Device

Manager

Devices

Hydra Network

Manager

Hydra Event

Manager
publish device

publish energy

Monitoring Interface

GUI

Hydra Network

Manager

Washing Machine

Android G1

Hydra Network

Manager

Hydra Network

Manager

Washing

Machine

Android

GUI

publish device

subscribe

device

subscribe

energy

Figure 8. The energy-aware smart home system architecture.[24]

be controlled independently of the network protocol used (Wi-Fi, ZigBee,Bluetooth. . .). The
network layer interconnects devices and people while the SOA approach inthe service layer allows
interoperability at a syntactic level.

Energy Management Example.An example of energy management using the HYDRA middleware
platform is an energy-aware smart home [24]. The example application objective is to integrate
energy efficiency into a smart home infrastructure, with the user having aninterface for monitoring
and controlling the environment. Wireless ploggs are attached to devices andused to monitor the
energy consumption of these devices. The system uses five main managers(cf. Figure8):

i) Device and Plogg Management, which administers information about devices and which plogg
is connected to which device. It also regularly polls all ploggs for their current values of
devices’ energy consumption.

ii) Energy Management. This manager is an interface between the electricity producer and clients.
It can, for example, manages the variation and changes of the electricity price.

iii) Network Managementthat abstracts the communication protocols.

iv) Event Management. This manager uses a publish/subscribe approach for event management.
Two categories of events are implemented: device-related (e.g., unplugged devices or ploggs
does not deliver any more data) and energy-related (e.g., changes in electricity price).

User interaction is also considered as an important factor. The authors used a mobile phone as a
magic lens to offer an augmented reality experience. Users can use their phone’s camera to point on
a device and get information (e.g., energy consumption in watt or in currency, such as in euro) and
control options, in form of a video overlay.

Discussion.HYDRA is a generic middleware platform for heterogeneous devices. It facilitates
communications between these devices and provides an architectural infrastructure for network
abstraction, event management and services communications. It is not builtfor energy efficiency,
nor it includes energy management techniques. It does, however, provide the infrastructure for
construction energy-aware solutions. Thus, it relies solely on developers and constructors initiatives
to propose energy-aware solutions.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

22 A. NOUREDDINE, R. ROUVOY AND L. SEINTURIER

Intelligent Power

Switch (IPS)

Host Load

Energy

Storage
Power

Generation

IPS

Energy Network

IPS IPS

Energy

flows

Information

flows

PowerComm

Interface

Figure 9. LoCal architecture schematic. [26]

3.3. LoCal

Overview.LoCal grid [26] is an intelligent and autonomous power system for local energy
generation, distribution and sharing. It is a complementary architecture to thetraditional electrical
grid with objective of reducing the grid load. It allows the use of renewableenergy sources and
energy storage transparently by using anIntelligent Power Switch(IPS). This switch standardizes the
electrical flow coming from different sources (with different characteristics,e.g., voltage, frequency)
and manages communications between the nodes of the grid. LoCal grid is developed by the LoCal
research team [27] at the University of California, Berkeley.

Architecture and Energy Management.The global architecture of the LoCal grid is presented in
Figure 9. The architecture is a distributed architecture following a peer-to-peer communication
model. A communication system exists in parallel to the power system. Each node of the network is
composed of an IPS, energy storage and power generation capabilities.The LoCal grid can operate
independently or as an incremental overlay over the traditional grid.

The IPS is the core block of the grid. It provides abstraction of the underlying implementations
to the nodes, and standardizes energy interaction characteristics (e.g., voltage or power levels). The
power management system (responsible for monitoring and moderating power loads, generation and
external power flows) can be integrated in an IPS (or can be a separatecomponent).

Discussion.The architecture solidifies the traditional grid by providing local power generation and
storage capabilities. It also allows a more resistant grid as a failure in one LoCal node will not affect
the overall grid. However, the architecture does not include any energy optimization or reduction
approaches. The IPS could be an ideal candidate for integrating energy-aware power distribution,
generation and storage, with a goal of reducing the overall energy consumption of the connected
clients. It could also add strategies for advantaging green power generation or storage components.

4. COMPARISON AND DISCUSSIONS

In order to compare the solutions reported in this review, we defined a taxonomy to describe the
various properties of each middleware platform solution. Figure10 summarizes this taxonomy,
while table IV synthesizes a general comparison of the middleware approaches for energy
management presented in this review.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

MIDDLEWARE APPROACHES FOR ENERGY MANAGEMENT IN DISTRIBUTED ENVIRONMENTS 23

Applications’ Middleware Pros Cons

AIM Converges users, operators and
utility provides together for
coordinated energy management

Difficult to apply on resource
constrained environments

Usage of context learning and
user profiling for self-adaptation

HYDRA Provides infrastructure for con-
structing energy-aware scenarios

No energy optimizationsper se

Follows SOA principles and
considers devices and applica-
tions as web services

LoCal Solidifies the traditional power
grid

No energy optimizationsper se

Table III. Summary of smart home approaches

Taxonomy

Type
Degree of

Autonomy

Applied

Environments

System

Levels
Sizing

Hardware

Operating

System

Middleware

Software

WSN

Mobile

Networks

Data Centers

Smart Homes

Architecture

Protocol

Algorithm

Modeling

Language

None

Predefined

Rule based

Event based

Context

Learning

Limited

Environments

Environment

specific

Domain

specific

Configuration

specific

Generic

Figure 10. The comparison taxonomy.

System Levels

By this term, we refer to the level of the system where the energy adaptation takes place.
We take into account the following system levels: Hardware, Operating System, Middleware,
and Software. Most proposed solutions manage the software, hardware, or operating system
levels in addition to the middleware level. Several solutions apply energy adaptations at the
software level. Transhumance focuses on adapting the middleware platform, but the software
is also adapted when the middleware platform adapts itself. GRACE applies multi-layer
adaptations including per-application adaptations. Application-specific energy optimizations based
on application classification are used in [16]. While CasCap adapts software and services in mobile
devices. DYNAMO targets video streaming scenarios (e.g., software) while trying to perform quality
of service tradeoffs. The approach in [17] uses a dispatch algorithm to consolidate services in
data centers. SANDMAN integrates several middleware platform techniques (middleware platform
interfaces, service sessions or protocol choosing), however it alsomanages the hardware level by
techniques such as switching devices’ power mode or grouping devices inclusters based on similar
mobility patterns. SleepServer targets also the hardware and software levels by managing energy
through the creation of virtual images in order to keep the network availability of computers. The
approach in [18] and GreenUp both target the hardware and software levels by managingthe sleep of
machines and their network presence through the usage of hardware and software proxies. GRACE

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

24 A. NOUREDDINE, R. ROUVOY AND L. SEINTURIER

and ECOSystem manage energy consumption and adaptations also on the operating system level.
GRACE can apply adaptations at an OS level granularity, while ECOSystem isbuilt on thecurrentcy
model and used in OS scheduling and allocation. Other approaches presented in this review adapt
the system mainly on the middleware level, without major energy oriented adaptations in other
levels of the system.

Applied Environments

This refers to the main user environments that the proposed middleware platform approach targets.
Environments range fromWireless Sensor networks(WSN) to other mobile networks, to large-
scale systems, and to data centers. Because we limited our study to distributed environments, the
approaches presented in this paper involve mobile networks or large-scale systems. Transhumance
targetsMobile Ad Hoc Networks(MANETs). SANDMAN, on the other hand, targets larger
environments: pervasive mobile networks and Wireless Sensor Networks(WSN). It seeks to reduce
the energy consumption of idle devices in communicating networks. SleepServer, GreenUp and
the approach in [18] are applied on computers in an enterprise environment (networked PCs,
server availability). PARM also applies to mobile networks but its architecture and algorithmic
approach are fit for large-scale systems. The approach in [17] is built for data centers. GRACE
adopts a hierarchical approach for energy saving in different levelsof computers (applications all
system layers). The principle of the approach can be applied to distributedsystems in general.
DYNAMO’s approach follows some of GRACE’s ones. In particular the usage of different layer
information to perform end-to-end adaptations. DYNAMO is targeted, however, to mobile devices.
ECOSystem manages energy at the Operating System (OS) level, particularly managing computer
tasks using a new energy abstraction mixing energy with currency:currentcy. CasCap and [16]
targets applications in mobile devices running using network services or devices.

Type

This defines the type of the energy management approach. Types can bearchitectural, protocol,
algorithm, or a modeling based. Architectural approaches are middleware platforms or frameworks
that propose energy optimization techniques as architectural solutions Protocol approaches are
where an energy efficient protocol is proposed in the middleware layer.Algorithmic approaches
are where the latter is constructed around an energy-aware algorithm in the middleware layer.
Modeling approaches are when a model is proposed for energy-awareness in the middleware layer.
Most approaches presented in this review are architectural-based, withfew exceptions: SANDMAN
and PARM, in addition, propose protocol-based and algorithmic approaches, respectively. In
SANDMAN, a self-adaptive discovery protocol is used as the basis of the energy management
approach. PARM uses an algorithm to determine the components to migrate. Thisalgorithm is
crucial for the PARM framework. For the other approaches, [17] is a dispatch algorithm for data
centers, and ECOSystem’s approach is based on a new modeling definition:currentcy.

Degree of Autonomy

This indicates the degree of autonomy of the energy management approach(and not the overall
degree of autonomy of the middleware platform itself). Autonomic computing refers to “computing
systems that can manage themselves given high-level objectives from administrators” [28]. These
systems are self-manageable where thisself-managementencompasses four main aspects:self-
configuration, self-optimization, self-healing, andself-protection. They are formed byautonomic
elements, which contain resources and deliver services. We choose severalkeyword expressions
to describe the degree of autonomy. The expressions are:i) None, where the approach is not
autonomous at all. This can be a system that applies energy adaptations through question/answer
interactions with the user.ii) Predefined. In this case, the system uses predefined strategies, such
as an algorithm, a protocol, static rules or a finite-state automaton.iii) Rule-based. Here, energy
management adaptation is based on rules (or adaptive policies) that can beadded and modified
by an external entity (user, administrator).iv) Event-based. Systems that use an (complex) event

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

MIDDLEWARE APPROACHES FOR ENERGY MANAGEMENT IN DISTRIBUTED ENVIRONMENTS 25

processing engine falls in this category. The system collects data (contextor energy data) and takes
an adaptation decision as a result of events processing. Andv) Context Learning. Here, energy
management evolves by learning from context and energy information, and from the user habits. A
level of artificial intelligence is also required for systems to be considered in this category.

Transhumance uses adaptation policies for middleware platform energy adaptations, and
adaptation profiles for applications. Both techniques are based on a rule-based approach with
conditions on the energy levels (local to one node or global to the network)and adaptation
actions. Listing1 presents an example of adaptation rules used in Transhumance. The solutions
proposed in [16] and in [8] (CasCap) uses also adaptive policies for energy management. DYNAMO
is also based on rules and on policies that can take the shape of utility factors. ECOSystem
proposes a modeling definition,currentcy, and allocation and scheduling approaches that are
predefined. PARM and [17] are based on algorithms that are defined prior to the execution of the
system. SANDMAN uses an adaptable protocol and different predefined approaches for its energy
awareness. SleepServer, GreenUp and [18] use a predefined approach allowing computers to go to
sleep while preserving their network presence. GRACE is build around a multi-layer architecture.
It is based on global and per-application algorithms to apply adaptations, and profiling for resource
usage predictions, all of which are predefined prior to the execution of the system.

Sizing or Scalability

This describes the scale of the proposed approach. This means, how well can we apply the approach
on different environments other than the ones that were presumably defined for. We use several
keyword expressions for this taxonomy:i) Limited Environment, where the approach can be applied
to an environment with very specific conditions.ii) Environment-specific. The approach is limited
to one or few environments (such as approaches limited to WSN). This taxonomyis a subset of the
wider domain-specific taxonomy.iii) Domain-specific. Here, the scope is wider than environment-
specific. For example, an approach that can be applied on WSN and othermobile networks, fits in
this taxonomy.iv) Configuration-specific, where the approach can be sized if a specific configuration
is met, regardless of the applied environments or domains. Andv) Generic. Here, the approach can
be scaled on different domains, and thus can be considered as genericenough for a high degree of
sizing.

Most of the reviewed approaches are environment-specific or domain-specific, with two more
specific solutions: Transhumance, which requires additional preconditions, and PARM that has
a wide domain scope but requires a specific configuration. Transhumance targets MANets with
a maximum of 20 nodes and moving at a pedestrian speed (up to 5 km/h), which makes this a
limited environment. ECOSystem emphasizes on the various computer tasks and networks. Thus,
these approaches are domain-specific, same for SANDMAN, GRACE and[16]. SANDMAN targets
pervasive networks in general, including WSN. SleepServer, GreenUpand [18] are specific to
computer network within an enterprise environment (where servers are available to host virtual
images for desktop PCs). The approach in [16], CasCap and DYNAMO are applied on mobile
networks, while GRACE targets the very wide scope of distributed environments. Finally, PARM
can be applied on different domains, from mobile networks to large-scale systems. However, it
requires a specific configuration with the presence of proxies, brokers and servers.

Discussions

Based on our comparison we discuss how well the reviewed solutions fit in two main areas of
research where contributions are still needed for a fully autonomous andeasily sized energy-aware
middleware platform.

Based on our comparison we discuss how well the reviewed solutions fit in an area of research
where contributions are still needed for a fully autonomous middleware for energy management.
Most of the solutions presented in this review follow two main approaches of autonomy:rule-based
andproxy-basedapproaches, while the others usepredefinedtechniques.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

26
A

.N
O

U
R

E
D

D
IN

E
,R

.R
O

U
V

O
Y

A
N

D
L.S

E
IN

T
U

R
IE

R

Name System Levels (+ Mid-
dleware)

Applied Environments Type Degree of Autonomy Sizing (Scalability)

Transhumance Software MANets Architecture Rule-based Limited Environment
SANDMAN Hardware Pervasive Mobile

Networks, WSN
Architecture, Protocol Predefined Domain-specific

PARM – Mobile Networks,
Large Scale Systems

Architecture,
Algorithm

Predefined Configuration-specific

GRACE/2 Operating System,
Software

Distributed Systems Architecture Predefined Domain-specific

Middleware
for Energy-
awareness in Mobile
Devices

Software Mobile Networks Architecture Rule-based Domain-specific

Energy Consumption
Optimized Service
Hosting

Software Data Centers Algorithm Predefined Environment-specific

ECOSystem Operating System Computer Tasks Modeling Predefined Domain-specific
CasCap Software Mobile Networks Architecture Rule-based Domain-specific
DYNAMO Software Mobile Networks Architecture Rule-based Domain-specific
SleepServer Hardware, Software Desktop PCs, Enter-

prise Networks
Architecture Predefined Domain-specific

Sleepless in Seattle No
Longer

Hardware, Software Desktop PCs, Enter-
prise Networks

Architecture Predefined Domain-specific

GreenUp Hardware, Software Desktop PCs, Enter-
prise Networks

Architecture Predefined Domain-specific

Table IV. Comparative table of middleware platform solutions for energy management

C
opyright©

2012
John

W
iley

&
S

ons,Ltd.
S

o
ftw

.
P

ra
ct.

E
xp

e
r.(2012)

P
re

p
a

re
d

u
sin

gspeauth.cls
D

O
I:10.1002/spe

MIDDLEWARE APPROACHES FOR ENERGY MANAGEMENT IN DISTRIBUTED ENVIRONMENTS 27

Rule-based approaches offer an high degree of architectural autonomy, but with a limited
decisional autonomy. The architecture of the middleware platform is flexible and evolutive, and
can easily cope with changes in the environment. These architectures are based on autonomic
control loop design [28], with subsystems designed to monitor, analyze, plan and execute energy-
aware adaptations. Rules, on the other hand, need to be predefined andupdated on environment’s
evolutions. None of the rule-based middleware platform approaches [3, 4, 5, 16, 8, 9] incorporate
conflict management strategies. Transhumance [3, 4, 5], CasCap [8] and the approach in [16]
all useEvent-Condition-Actionrules. The rule selection strategy is therefore simply a condition
checked when an event occurs, and actions are applied regardless of their impact on the system
or the conflicts that they may produce. The creation and the update process of these rules are
left to the user, administrator or another application. The latters are responsible for verifying the
coherence of the rules and the inexistance of rules conflicts and incompatibilites. DYNAMO [9]
follows a similar process, although the usage of utility functions in complementaryto ECA rules.
This allows better modularity and flexibility in rule creation and evolution, but alsoallows the rule
selection process to alleviate some of the conflicts. Conflicts may be preventedby using different
rule selection strategies, such as fuzzy logic [29]. Or they can be dealt with a conflict management
process based on system knowledge (through, for example, machine learning techniques), crowd-
sourcing or modeling of the impact of applied actions. The distributed nature of the environment
gives developers the opportunity to utilize the processing power and knowledge repositories that lies
in the cloud. Finally, Transhumance is the only approach here where rule actions are applied on the
middleware platform’s modules only. The other approaches apply their rule actions on the managed
system (software, system or hardware parameters).

Proxy-based approaches have the main advantage of keeping a deviceavailable for the user
(or for other devices), while the device is in sleep mode. Therefore, this approach achieves both
energy savings and limited disruption of the availability of the device. The reviewed proxy-based
approaches [12, 13, 14, 18, 15], although sharing a similar proxy functioning, they differ in a key
aspect : the proxy. In SANDMAN [12, 13], nodes regroup in clusters following similar criteria, then
elect one of their own as a cluster head (or proxy). The cluster head is then responsible, not just for
maintaining the presence of its nodes in the network, but also in deciding whena node is unused and
thus can be put to sleep. On the contrary, the proxy in SleepServer [14], GreenUp [15] and in [18],
are only responsible for keeping the availability of their sleeping machines in the network. They
do not incorporate autonomic or intelligent functioning in relation to deciding when a machine
should go to sleep. The nature of the proxy in the previous 3 approachesis different: i) a virtual
machine image for SleepServer and unique to its original machine. Therefore, proxies are not
shared as each machine have a unique proxy in the form of its virtual image.ii) an independent
hardware proxy responsible for managing all machines in [14]. And iii) in GreenUp [18], a proxy is
a normal machine that is elected using a distributed management technique. Although not similar,
the selection process share some principles with SANDMAN’s selection process.

The other approaches reviewed in this paper [6, 7, 10, 17, 11] have little autonomic functioning.
They all use predefined techniques to manage energy, such as algorithmicadaptations and prediction
algorithms (PARM [10], GRACE [6, 7] and [17]) or energy models (ECOSystem [11]).

Although these approaches offer a certain degree of autonomic management of energy
consumption, a full autonomous energy management is yet to be defined. Autonomous context
learning approaches for energy management at the middleware are missing. An energy management
autonomous approach should therefore imitate the human body metabolism: the platform needs to
be transparent to the user and to devices and applications, but without limitingusers’ high-level
decisions. In the human body, when energy becomes low, the system startsby using its reserves
and notifying the human about the situation (e.g., the human feels hunger). Therefore, the human
could apply high-level decisions, such as eating (to recharge his energy and reserves), or reduce his
activity, or go to sleep (low power mode). We therefore believe that middleware platform approaches
should take inspiration from biologic systems and provide a similar autonomous functioning for
energy-awareness because the complexity of systems is rapidly increasing. Autonomous functioning
means that users, in particular home users, do not need to do the job of a system administrator

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

28 A. NOUREDDINE, R. ROUVOY AND L. SEINTURIER

in managing the energy consumption of their software and devices. The absence of a system
administrator, albeit for managing energy, is a challenge for ubiquitous computing, in particular
in smart homes [30]. Energy, as a nun-functional requirement, needs more to be less disruptive for
users than other business logic, thus the need for autonomous energy management.

In addition to autonomic functioning, all the reviewed approaches are specific to a specific domain
or to a specific environment. Transhumance requires very specific conditions on the environment
(small networks of up to 20 nodes and moving at pedestrian speed of up to 5km/h). The platform
focus mainly on adapting the middleware platform itself with limited adaptability for applications.
On the contrary, PARM requires a specific configuration (the presenceof proxies, brokers or
directory services), but with a wider domain scope (e.g., mobile networks, large scale systems).
The algorithm presented in [17] can only be applied on data centers, thus is environment-specific.
Similar to the previous approach, ECOSystem proposes a currency definition and a framework that
targets the energy consumption at the OS level. SANDMAN targets energy consumption of idle
devices in a communicating network, SleepServer, GreenUp and [18] manage energy consumption
of idle devices in an enterprise network, while the architecture in [16] is valid for mobile networks.
Finally, GRACE combines adaptations at different levels of the system in order to optimize the
energy and resource utilization in a distributed environment. We believe that middleware platform
approaches should allow some degree of scaling, not just inside a specific domain (such as the
proxy-based approaches in enterprise networks [14, 18, 15]), but to a wider scope of applications.
In the diversity of devices, networks and environments, an ideal middelware platform for energy
management should be able to manage energy for multiple domains, ranging frommobile devices
and desktop machines to distributed software in data center.

5. CONCLUSION

In this survey, we defined a comparative taxonomy for middleware approaches targeted at managing
energy. We compared a number of existing approaches and identified two major research fields
where contributions are lacking for energy management middleware:autonomic approachesand
generic approachesfor energy management middleware platforms.

Autonomic approaches are a crucial step in order to cope with the widespread usage of software
services and the multiplication of available digital devices. The complexity of these distributed and
pervasive environments and the diversity of its energy requirements andcharacteristics can only be
efficiently challenged by autonomic solutions. The reviewed rule-based solutions offer some degree
of autonomous functioning but they lack autonomous management (creation,evolution) of rules
and applied actions. They also lack the integration of more coherent and non-conflicting selection
processes. Proxy-based approaches either use predefined protocols for energy management, or leave
the intelligence part up to the user.

Genericity is also an important aspect, although less crucial compared to autonomic model.
The fast evolution of technologies and energy specifications in hardware and software, implies
that non-adaptable or context-specific approaches are quickly becoming outdated. Generic energy
solutions or models should therefore set the basics of evolving architectures that can cope with these
challenges.

Finally, the impact on user experience of the energy management platform (i.e., energy
measurements, analysis, and adaptations) should be reduced. Ideally, themiddleware platform for
energy management should be invisible, both to the user (in terms of impact of usability), to the
system (in terms of impact on computational time and resources utilization), and tothe energy
domain itself (in term of its own energy consumption).

Energy management middleware approaches is an ongoing research, andis becoming more
crucial as energy is a limited and scarce resource. Developing autonomic middleware platforms
and software architecture for energy-awareness, with levels of genericity, is therefore an open and
important research area.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

MIDDLEWARE APPROACHES FOR ENERGY MANAGEMENT IN DISTRIBUTED ENVIRONMENTS 29

FUNDING

This work is partially funded by the French Ministry of Higher Education andResearch, Nord-
Pas de Calais Regional Council and FEDER through theContrat de Projets Etat Region Campus
Intelligence Ambiante(CPER-CIA) 2007-2013.

REFERENCES

1. Krakowiak S. Middleware Architecture with Patterns and Frameworks. Sacha Krakowiak,
http://sardes.inrialpes.fr/ ˜ krakowia/MW-Book/ , 2007.

2. Lu YH, Qiu Q, Butt AR, Cameron KW. End-to-end energy management. Computer 2011; 44:75–77, doi:
10.1109/MC.2011.342.

3. Paroux G, Martin L, Nowalczyk J, Demeure I. Transhumance: A powersensitive middleware for data sharing on
mobile ad hoc networks.Proceedings of the 7th international Workshop on Applicationsand Services in Wireless
Networks (ASWN’07), Spain, 2007.

4. Paroux G, lsabelle Demeure, Reynaud L. A Power-aware Middleware for Mobile Ad-hoc Networks.Proceedings
of the 8th International Conference on New Technologies in Distributed Systems (NOTERE’08), ACM, 2008; 1–7,
doi:10.1145/1416729.1416757.

5. Demeure I, Paroux G, Hernando-ureta J, Khakpour AR, Nowalczyk J. An energy-aware middleware for
collaboration on small scale manets.Proceedings of the Autonomous and Spontaneous Networks Symposium
(ASN’08), Paris, France, 2008.

6. Sachs DG, Yuan W, Hughes CJ, Harris A, Adve SV, Jones DL, Kravets RH, Nahrstedt K. Grace: A hierarchical
adaptation framework for saving energy 2004.

7. Vardhan V, Yuan W, III AFH, Adve SV, Kravets R, Nahrstedt K, Sachs DG, Jones DL. Grace-2: integrating fine-
grained application adaptation with global adaptation forsaving energy.International Journal of Engineering
Science2009;4(2):152–169, doi:10.1504/IJES.2009.027939.

8. Xiao Y, Hui P, Savolainen P, Ylä-J̈aäski A. Cascap: cloud-assisted context-aware power management formobile
devices.Proceedings of the 2nd international workshop on Mobile cloud computing and services, MCS ’11, ACM:
New York, NY, USA, 2011; 13–18, doi:10.1145/1999732.1999736.

9. Mohapatra S, Dutt N, Nicolau A, Venkatasubramanian N. Dynamo: A cross-layer framework for end-to-end qos
and energy optimization in mobile handheld devices.Selected Areas in Communications, IEEE Journal onmay
2007;25(4):722 –737, doi:10.1109/JSAC.2007.070509.

10. Mohapatra S, Venkatasubramanian N. Parm: Power aware reconfigurable middleware.Proceedings of the 23rd
International Conference on Distributed Computing Systems (ICDCS’03), IEEE Computer Society: Washington,
DC, USA, 2003; 312.

11. Zeng H, Ellis CS, Lebeck AR. Experiences in managing energy with ecosystem.IEEE Pervasive Computing
January 2005;4:62–68, doi:10.1109/MPRV.2005.10.

12. Schiele G, Becker C. SANDMAN: an Energy-Efficient Middleware for Pervasive Computing.Technical Report,
University of Mannheim, Karlsruhe, Germany october 2007.

13. Schiele G, Handte M, Becker C. Experiences in designing anenergy-aware middleware for pervasive computing.
Proceedings of the 6th Annual IEEE International Conferenceon Pervasive Computing and Communications
(PERCOM’08), IEEE Computer Society: Washington, DC, USA, 2008; 504–508, doi:10.1109/PERCOM.2008.92.

14. Agarwal Y, Savage S, Gupta R. Sleepserver: a software-onlyapproach for reducing the energy consumption of
pcs within enterprise environments.Proceedings of the 2010 conference on USENIX annual technical conference,
USENIX Association: Berkeley, CA, USA, 2010; 22–22.

15. Sen SS, Lorch JR, Hughes R, Garcia Jurado Suarez C, Zill B, Cordeiro W, Padhye J. Dont lose sleep over
availability: The greenup decentralized wakeup service.Proceedings of the 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI’12), 2012.

16. Xiao Y, Kalyanaraman RS, Ylä-J̈aäski A. Middleware for energy-awareness in mobile devices.Proceedings of the
4th International ICST Conference on Communication System software and middleware (COMSWARE’09), ACM:
New York, NY, USA, 2009; 1–6, doi:10.1145/1621890.1621907.

17. Binder W, Suri N. Green Computing: Energy Consumption Optimized Service Hosting.Proceedings of the 35th
Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM ’09), Springer-Verlag: Berlin,
Heidelberg, 2009; 117–128, doi:10.1007/978-3-540-95891-8-14.

18. Reich J, Goraczko M, Kansal A, Padhye J. Sleepless in seattle nolonger.Proceedings of the 2010 conference on
USENIX annual technical conference, USENIX Association: Berkeley, CA, USA, 2010; 17–17.

19. Becker C, Schiele G, Gubbels H, Rothermel K. Base - a micro-broker-based middleware for pervasive computing.
Proceedings of the 1st IEEE International Conference on Pervasive Computing and Communications, 2003
(PerCom’03), 2003; 443–451, doi:10.1109/PERCOM.2003.1192769.

20. AMD. Magic Packet Technology.Technical Report, AMD White Paper 1995.
21. Capone A, Barros M, Hrasnica H, Tompros S. A new architecture for reduction of energy consumption of home

appliances.Towards eEnvironment, European conference of the Czech Presidency of the Council of the EU (e-
Envi’2009), Prague, Czech Republic, 2009.

22. The AIM consortium. http://www.ict-aim.eu.
23. Eisenhauer M, Rosengren P, Antolin P. A development platform for integrating wireless devices and sensors into

ambient intelligence systems.Proceedings of the 6th Annual IEEE Communications Society Conference on Sensor,
Mesh and Ad Hoc Communications and Networks Workshops (SECON’09)., 2009; 1–3, doi:10.1109/SAHCNW.
2009.5172913.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

http://sardes.inrialpes.fr/~krakowia/MW-Book/

30 A. NOUREDDINE, R. ROUVOY AND L. SEINTURIER

24. Jahn M, Jentsch M, Prause C, Pramudianto F, Al-Akkad A, ReinersR. The energy aware smart home.Proceedings
of the 5th International Conference on Future Information Technology (FutureTech’10), 2010; 1–8, doi:10.1109/
FUTURETECH.2010.5482712.

25. The Hydra Middleware. http://www.hydramiddleware.eu.
26. Mike M H, Evan M R, Xiaofan J, Randy HK, Seth R S, David E C, KenL. An Architecture for Local Energy

Generation, Distribution, and Sharing.Proceedings of the IEEE Energy 2030 Conference, IEEE, 2008; 1–6, doi:
10.1109/ENERGY.2008.4781028.

27. The LoCal research team. http://local.cs.berkeley.edu.
28. Kephart JO, Chess DM. The Vision of Autonomic Computing.IEEE Computer2003;36(1):41–50, doi:10.1109/

MC.2003.1160055.
29. Zadeh L. Fuzzy sets.Information and Control1965;8(3):338 – 353, doi:10.1016/S0019-9958(65)90241-X.
30. Edwards WK, Grinter RE. At home with ubiquitous computing:Seven challenges.Proceedings of the 3rd

international conference on Ubiquitous Computing, UbiComp ’01, Springer-Verlag: London, UK, UK, 2001; 256–
272.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

	1 Introduction
	2 Middleware Approaches for Energy Management
	2.1 Transhumance
	2.2 GRACE and GRACE-2
	2.3 Middleware for Energy-awareness in Mobile Devices
	2.4 CasCap
	2.5 DYNAMO
	2.6 PARM
	2.7 Green Computing: Energy Consumption Optimized Service Hosting
	2.8 ECOSystem
	2.9 SANDMAN
	2.10 SleepServer
	2.11 Sleepless in Seattle No Longer
	2.12 GreenUp

	3 Applications
	3.1 AIM
	3.2 Energy-awareness in the HYDRA middleware platform
	3.3 LoCal

	4 Comparison and Discussions
	5 Conclusion

