

An Evaluation Framework for Cross-Platform Mobile Application

Development Tools

by

Sanjeet Dhillon

A Thesis
Presented to

The University of Guelph

In partial fulfillment of requirements
for the degree of

Master of Science
in

Computer Science

Guelph, Ontario, Canada

 Sanjeet Dhillon, December, 2012

ABSTRACT

AN EVALUATION FRAMEWORK FOR CROSS-PLATFORM DEVELOPMENT

TOOLS

Sanjeet Dhillon Advisor:

University of Guelph, 2012 Professor Qusay H. Mahmoud

The mobile application market is becoming increasingly fragmented with the

availability of multiple mobile platforms that differ in development procedures.

Developers are forced to choose to support only some platforms and specific devices

due to limited development resources. To address these challenges, numerous tools

have been created to aid developers in building cross-platform applications, however,

there is no metric to evaluate the quality of these tools. This thesis introduces a

framework for evaluating the features, performance and discuss development

experience of existing and future cross-platform development tools. The framework is

implemented by benchmarking several tools and the results identify a disparity in the

features and performance. This research is carried out in collaboration with industrial

partner Desire2Learn, through an NSERC Engage Grant.

Acknowledgements

I would like to thank all those individuals that assisted me in the process of

completing this thesis. There are many staff, faculty and others who have contributed

to bringing me to the point of completing this degree.

I would like to first thank those who provided me personal support, my friends

and family. In particular, I would like to thank my friends Nicholas and Samaneh who

have been a constant force of encouragement and motivation. The staff at the Centre

for Students with Disabilities office has gone above and beyond providing guidance

in completing my degree and I am most appreciative of them.

Development contributions for some applications described in this thesis were

provided by Undergraduate Research Assistants at the Centre for Mobile Education

and Research (CMER) who I would like to thank for their hard work, in particular

Sacha Bagasan, Domenico Commisso and Justin Carvalho.

 Dr. Fangju Wang has been very receptive and helpful in providing guidance in my

seminar and in finalizing this thesis.

I would like to thank my advisor, Dr. Qusay H. Mahmoud for the assistance and

support during the duration of this research and for the funding I received in the form

of Research Assistantships through CMER which is partially funded by Research In

Motion. Additional funding was provided through an NSERC Engage grant with

industry partner Desire2Learn. The staff from Desire2Learn have contributed ideas

and provided real-world questions to be answered by this research. Their development

queries have proven invaluable in shaping the framework to what is needed by the

market.

 iii

TABLE OF CONTENTS

Chapter 1 Introduction .. 1

1.1 Motivation .. 2

1.2 Thesis Statement ... 4

1.3 Research Approach ... 5

1.4 Organization of Thesis ... 6

Chapter 2 Background and Related Work ... 8

2.1 Current State of the Mobile Platform Landscape .. 8

2.2 History of Cross-Platform Development .. 9

2.3 CPDTs for Mobile Development .. 10

2.3.1 Mobile Web .. 12

2.3.2 Adobe PhoneGap ... 13

2.3.3 Appcelerator Titanium ... 15

2.3.4 Rhomobile Rhodes ... 16

2.3.5 Adobe Air ... 17

2.3.6 MoSync .. 18

2.3.7 Tool Analysis and Comparison ... 19

2.4 Related Work .. 20

2.5 Summary .. 23

Chapter 3 An Evaluation Framework for CPDTs .. 25

3.1 Framework ... 25

3.2 Phase I: CPDT Capabilities .. 26

3.2.1 CPDT Basic Elements ... 27

3.2.2 Development Environment ... 27

3.2.3 User Experience .. 27

3.2.4 Device Access ... 28

3.2.5 Sensors .. 28

3.2.6 Geolocation ... 28

3.2.7 Notifications ... 28

 iv

3.2.8 Monetization ... 29

3.2.9 Security ... 29

3.3 Phase II: Performance Benchmarks .. 29

3.3.1 Processor Intensive Benchmarks ... 30

3.3.2 Data Driven Benchmarks .. 31

3.3.3 Device Access Benchmarks .. 31

3.3.4 User Experience Benchmarks ... 32

3.3.5 Test Procedure .. 32

3.4 Phase III: Development Experience Discussion ... 33

3.4.1 Tool Related Discussion ... 34

3.4.2 Development Experience Discussion .. 34

3.5 Summary .. 34

Chapter 4 Implementation and Experiments ... 36

4.1 Experiment Parameters ... 36

4.1.1 CPDTs and Native Development Kits ... 36

4.1.2 Devices ... 37

4.1.3 Assumptions.. 38

4.2 Phase I: CPDT Capabilities .. 39

4.3 Phase II: Performance Benchmarks .. 39

4.3.1 Application Skeleton ... 40

4.3.1.1 Interface .. 40

4.3.1.2 Test Modules ... 41

4.3.1.3 Log .. 41

4.3.1.4 Iterations ... 43

4.3.2 Processor Intensive Benchmark Tests ... 43

4.3.2.1 AES Encryption and Decryption ... 43

4.3.2.2 Input Validation... 44

4.3.3 Data Intensive Benchmark Tests ... 45

4.3.3.1 Local PIM Access ... 45

4.3.3.2 Remote Service Access ... 46

4.3.3.3 Sorting ... 47

 v

4.3.4 Device Access Benchmark Test .. 48

4.3.4.1 Microphone Usage ... 48

4.3.5 User Experience Benchmark Tests .. 49

4.3.5.1 UI Elements ... 49

4.3.5.2 Screen Transition ... 51

4.3.6 Test Implementation ... 52

4.4 Phase III: Development Experience Discussion ... 53

4.4.1 Tool Related Discussion ... 54

4.4.2 Development Experience Discussion .. 54

4.5 Summary .. 56

Chapter 5 Results and Evaluation ... 57

5.1 Phase I: CPDT Capabilities .. 57

5.2 Phase II: Performance Benchmarks .. 58

5.2.1 Processor Intensive: AES Encryption ... 59

5.2.2 Processor Intensive: Input Validation ... 59

5.2.3 Data Driven: Local PIM Access .. 64

5.2.4 Data Driven: Remote Service Access .. 64

5.2.5 Data Driven: Sorting ... 65

5.2.6 Device Access: Microphone Usage ... 68

5.2.7 User Experience: UI Elements .. 69

5.2.8 User Experience: Screen Transition .. 70

5.2.9 Overall Result ... 71

5.3 Phase III: Development Experience Discussion ... 72

5.3.1 PhoneGap .. 72

5.3.2 Appcelerator Titanium .. 73

5.3.3 Adobe Air ... 74

5.3.4 MoSync ... 74

5.3.5 Native Tools .. 75

5.4 Analysis .. 76

5.5 Summary .. 78

Chapter 6 Conclusion and Future Work .. 79

 vi

6.1 Conclusion .. 79

6.2 Future Work ... 80

Bibliography .. 82

Appendix A: CPDT Features to be Evaluated ... 90

Appendix B: Benchmark Application Skeleton .. 92

Appendix C: Benchmark Application UI Elements Test 99

Appendix D: AES Encryption Data .. 105

Appendix E: Contact Data .. 106

Appendix F: Remote Data Script ... 109

Appendix G: Benchmark Application Sorting Algorithm 110

Appendix H: Images for UI Testing .. 112

Appendix I: Results of Phase I Evaluation ... 114

 vii

Acronyms and Abbreviations

API Application Programming Interface

CMER Centre for Mobile Education and Research

CSV Comma Separated Value

CPDT Cross-Platform Development Tool

CSS Cascading Style Sheet

GPS Global Positioning System

GUI Graphical User Interface

HTML Hypertext Markup Language

IDE Integrated Development Environment

JVM Java Virtual Machine

MFLOPS Millions of Floating Point Operations Per Second

MVC Model View Controller

NDK Native Development Kit

PIM Personal Information Manager

SDK Software Development Kit

UI User Interface

UX User Experience

 viii

List of Figures

Figure 1.1: BioChem Euchre Deck Application on BlackBerry, Android and iOS 3

Figure 2.1: Developer Interests in Mobile Platforms .. 9

Figure 2.2: IBM Worklight Architecture .. 14

Figure 2.3: Performance Characteristics of Various CPDTs 21

Figure 3.1: CPDT Evaluation Framework ... 26

Figure 3.2: Benchmarking Procedure .. 33

Figure 4.1: Native Implementation on iOS, Titanium implementation on iOS 41

Figure 4.2: Input Validation Test Procedure .. 45

Figure 4.3: Remote Access Test Procedure ... 47

Figure 4.4: Sorting Test Procedure .. 48

Figure 4.5: Screens for UI Elements Test .. 49

Figure 4.6: Screen A, Screen B and Screen C for Transition Test 51

Figure 4.7: Control Structure for Transition Test .. 52

Figure 5.1: Input Validation Test Results on Android Platform 61

Figure H.1: image1.png ... 112

Figure H.2: image2.png ... 112

Figure H.3: Icons for Menu ... 113

 ix

List of Tables

Table 2.1: Programming Environments for Mobile Platforms 8

Table 2.2: Tools for Cross-Platform Application Development 10

Table 2.3: CPDT Features ... 11

Table 4.1: Compatibility Matrix for Tools Included in Study 37

Table 4.2: Devices Used for Testing .. 38

Table 4.3: Tests Implemented in the Study .. 53

Table 5.1: Number of Supported Features ... 57

Table 5.2: AES Encryption Test Result Matrix .. 59

Table 5.3: Input Validation Test Result Matrix .. 60

Table 5.4: Test Variability Statistics for Input Validation on Android 61

Table 5.5: T-test Calculations for Android Native and PhoneGap Mean on Android 62

Table 5.6: T-test Calculations for iOS Native and Titanium Means on iOS 62

Table 5.7: T-test Calculations for BlackBerry 7 WebWorks and PhoneGap Means on

BB7 ... 63

Table 5.8: T-test Calculations for BB10 Native and WebWorks Means on BB10 63

Table 5.9: T-test Calculations for PhoneGap and Titanium Means on Android 63

Table 5.10: Local PIM Access Test Result Matrix ... 64

Table 5.11: Remote Service Access Test Result Matrix ... 65

Table 5.12: Sorting Test Result Matrix ... 66

Table 5.13: Summary Statistics for ANOVA Calculations on Android 67

Table 5.14: ANOVA Calculations for Android using data from Table 5.13 67

Table 5.15: Summary Statistics for ANOVA Calculations on iOS 68

Table 5.16: ANOVA Calculations for iOS using data from Table 5.15 68

Table 5.17: Microphone Usage Test Result Matrix ... 68

Table 5.18: UI Elements Test Result Matrix ... 70

Table 5.19: Screen Transition Test Result Matrix ... 71

Table 5.20: Overall Results of Performance Evaluation .. 71

Table A.1: CPDT Features in Evaluation ... 91

Table I.1: Phase I Evaluation of CPDT Features ... 115

 x

Chapter 1

Introduction

The world of mobile operating systems has been becoming increasingly fragmented in

recent years. Each company or consortium has developed their own non-standard

method of developing applications for their devices using a variety of programming

languages and Software Development Kits (SDKs). This means that an application

built for Google’s Android operating system will not run on the rival Apple iOS

platform. There is further fragmentation inside platforms with some applications not

being able to be run on different versions or devices of the same platform making

development far more challenging.

Fragmentation of the market is caused by many factors. Aside from software

platform diversity, hardware variations create difficulty porting a User Experience

(UX), including interaction method and User Interface (UI) from one device to the

next [3]. With over 20 million tablet devices sold in 2011, it has been difficult to

enable applications to maximize the larger screens of these devices [64]. Many

developers are forced to choose to support only some platforms and versions due to

limited financial resources or knowledge of coding techniques for each platform.

Without wide developer support, platforms are seen as weak and have difficulties in

marketing products. This is true for new operating systems and new releases that

break compatibility with the legacy software. An example of this is Research in

Motion moving to the BB10 platform breaking compatibility with natively developed

BlackBerry OS applications [57].

With the number of languages used, developers must be very versatile and

businesses need to expend significant resources to have their software available on

more than one platform. Even with the added expense, an August 2012 Appcelerator

and IDC survey shows companies continue to be very interested in multiple platforms

1

despite the difficulties [7]. In 2011, developers have shown interest in running on

twice as many platforms as a similar survey in the previous year and now averaging

an incredible four operating systems [4] [6]. This trend has continued to increase in

2012 [7].

With so much interest in availability of applications for many platforms, there is

an apparent problem facing developers in requiring the ability to have their

applications available to the widest possible audience, but lack resources to build

natively for each platform. In order to further the reach of applications, without

expending the considerable time needed to learn the quirks of each platform, using

Cross-Platform Development Tools (CPDTs) may be the answer. The CEO of

InRuntime has said using CPDTs has reduced the time to market by 70% [68]. This

shows that using cross-platform tools can be very helpful in many ways. However,

there is no adequate measure to ensure these CPDTs are as capable as native

development tools. This leaves developers unsure if they can make use of these tools

to create strong applications with native like functionality and performance.

This chapter will present a discussion of the motivation for research in this area. It

then will go on to introduce the thesis statement and outline the structure of this

thesis.

1.1 Motivation

Prior to the start of the research in this thesis, as part of the work at CMER, we

developed the BioChem Euchre Deck application for the BlackBerry platform [19].

This application provides a learning interface for students using flash cards created by

Professor John Dawson of the University of Guelph. Following initial development,

we were left wondering how to best provide the application to students on all

platforms. While choosing a cross-platform solution and developing the application,

several shortcomings were noted. The lack of adequate comparison of these tools

2

made the task of finding which tool would best meet our requirements very difficult

and highlighted the need for an evaluation method.

PhoneGap was seen in our unstructured evaluation to be an ideal candidate for

simple, widely deployed applications. The application shown in Figure 1.1, was

built and deployed. The wider reach from using a CPDT allowed for over 6000

downloads on Android and 2000 on each of iOS and BlackBerry showing the

benefits of going cross-platform.

Figure 1.1: BioChem Euchre Deck Application on BlackBerry (left), Android (center) and iOS (right)

Unfortunately, with the lack of evaluation available, we did not know if the tool

met the needs of our application prior to the start of development. Some limitations

were apparent with the PhoneGap Build service such as the inability to use focused

view on the BlackBerry platform, thus creating applications that have a mouse

cursor. This is expected to be resolved in a subsequent release of PhoneGap but left

us with the need to compile the BlackBerry version of the application using the

standard WebWorks SDK and a different config.xml file which provides information

about the application. The application itself did not need to be modified, however.

Had we had an evaluation of the PhoneGap tool available to us prior to developing

3

this application, we would have known that this limitation made it not ideally suited

to our purpose.

Some CPDTs have been developed and numerous features are implemented to

work across many devices but it is difficult to ascertain which features are missing.

Much of the information available for these tools comes from the vendors and there is

little independent analysis available to developers. Additionally, there is a lack of

comparison between these frameworks and their native development counterparts.

How well do they perform? Do you lose functionality? Which are the best?

With no current benchmarks available, a process for testing the frameworks

against one another and their native counterparts is required in order to provide

guidance and answer the central question of finding a cross-platform development

solution without trade-offs. Benchmarking protocols and tools will need to be

developed in order to test the many frameworks as well as a study to be conducted

into features and shortcomings of each.

1.2 Thesis Statement

This thesis focuses on exploring the viability of using CPDTs for mobile smartphone

development in detail. Although cross-platform tools on mobile devices have come

far from early incarnations, perceived trade-offs and inefficiency still hampers their

use. The goal of this thesis is to create a framework to provide thorough comparison

of CPDTs to one another and native development tools to determine if they can be

used as an efficient development method in place of native tools. Through

development of a feature and benchmark intensive evaluation framework for CPDTs,

developers will gain the knowledge needed to determine which tool to use for their

application.

4

 In order to determine if CPDTs can be as capable as native development tools, a

set of evaluation criteria for development tools has been created. A CPDT should be

evaluated on the basis of features, performance and developer experience.

By creating an evaluation framework and applying it to select CPDTs, developers

will gain useful knowledge of which tool best suits their purpose and if a cross-

platform solution is a viable, cost-effective alternative to traditional native

development.

1.3 Research Approach

The main focus of this research was the development of the evaluation framework.

This includes the benchmarking tools and the discussion of the obtained quantitative

results for several CPDTs in the marketplace.

In order to determine whether the central thesis has sound basis, numerous steps

were taken:

1. Survey the tools available for both native and cross-platform development,

2. Discover prior research into evaluation of such development tools,

3. Create a high level evaluation framework using real-world development

questions,

4. Develop benchmarks to achieve quantitative results and apply it to several

CPDTs and native tools,

5. Analyze results, and make conclusions.

Although CPDTs do currently exist, it is still unknown whether or not these tools

meet the performance and feature requirements to be comparable with their native

counterparts.

5

Very little research has been conducted on this subject as these CPDTs are all

quite new with most performance analysis being anecdotal, not scientific. It is

believed that mobile web-based CPDTs may suffer from performance issues but it is

unknown if it is true with the recent advancements in JavaScript performance [4]. A

benchmarking framework must be developed in order to test these CPDTs against one

another and native code. The development questions will be obtained by surveying

current research, developer surveys, discussions with our industry partner and by

discovering the capabilities of native tools.

During the development of this evaluation framework, certain assumptions had to

be taken into account. The tools are expected to have the ability to run similarly

developed benchmark tests while remaining cross-platform. The tests are developed

using technologies that while tablet and smartphone friendly, only focus on

smartphone testing. Testing for tablets is left for future work. It is understood that

certain background processes cannot be stopped and may impact testing so care

should be taken to reduce their influence on the results.

This research is conducted as part of an NSERC Engage project with the industry

partner, Desire2Learn, a leader in development of e-learning software. Desire2Learn

has provided real-world questions and feedback on how this framework can best

benefit mobile developers. The development expertise and knowledge of development

issues of the staff at Desire2Learn has been incorporated into development of each

step of this research.

1.4 Organization of Thesis

In Chapter 1, we provided an introduction to the subject area, discussed the

motivation behind conducting this research and described the thesis statement. The

following chapters will describe an evaluation approach for mobile development

tools. The thesis is structured as follows:

6

Chapter 2: Discusses the topic in more detail to provide necessary background

information and details on some select CPDTs. It then discusses limited the prior

work in this area.

Chapter 3: Describes the proposed solution, an evaluation framework that can be

used for any CPDT.

Chapter 4: Introduces an implementation of the framework in more detail and the

experiments used to test its viability.

Chapter 5: Presents the results of the testing of various CPDTs and native

development tools using our evaluation framework.

Chapter 6: Provides concluding remarks and future work that can be used to extend

this framework.

7

Chapter 2

Background and Related Work

It is important to understand each of the mobile platforms and development languages

before being able to understand the scope of the problem solved by CPDTs. This

chapter will provide background on the mobile landscape and an overview of various

CPDTs. This overview is necessary to understand which aspects are most important

and should be addressed in any evaluation framework. This will be followed by

discussion of related work for evaluating CPDTs.

2.1 Current State of the Mobile Platform Landscape

The current landscape has eight major smartphone platforms listed in Table 2.1.

However, many of these are losing importance with iOS, Android, BlackBerry 10 and

Windows Phone becoming the major remaining players for the foreseeable future [7].

Table 2.1: Programming Environments for Mobile Platforms

Operating Environment Preferred Programming Language
RIM BlackBerry OS Java ME, HTML, JavaScript
RIM BlackBerry 10 C/C++, HTML, JavaScript, Java
Apple iOS Objective-C
Google Android Java (Harmony Flavored), C and C++
HP WebOS HTML, JavaScript
Windows Phone C#, .NET
Symbian C,C++
Samsung Bada C++, HTML, JavaScript

With the number of languages listed, developers must be very versatile and

businesses need to expend significant resources to have their software available on

more than one platform. Comscore, a leader in measuring digital market share,

estimates that in the United States, Android has over 52% market share with the rest

being split between Apple, RIM, Microsoft and Symbian [23]. Figure 2.1 shows the

8

level of developer interests in mobile platforms. This figure includes mention of both

tablet and smartphone editions of each platform.

Figure 2.1: Developer Interests in Mobile Platforms [7]

With so much interest in availability for many platforms, there is an apparent

problem facing developers in requiring the ability to have their application available

to the widest possible audience, but lack resources to build natively for each platform.

In order to further the reach of applications, without expending the considerable time

needed to master each platform; using a CPDT may be the answer.

2.2 History of Cross-Platform Development

Java was believed to be marvelous for PC development for allowing a program to be

written once and translated into an intermediary language before being run on a Java

Virtual Machine (JVM) on a user’s system. This allowed a single program to be run

on Windows, Mac and Linux with no platform dependency. Java Micro Edition (Java

ME) came to mobile devices but never went mainstream often thought to be due to its

limited capabilities, perceived performance issues, and device fragmentation [16]

[24]. Java was soon abandoned by some handset makers or forked into customized

9

versions with added functionality. Cross-platform tools that extended the Java Mobile

architecture had gained some ground with Bedrock, Celsius, NeoMAD and alcheMo

entering the market [54]. These tools allowed applications to run on a significant

number of devices that supported Java, but the tools were outpaced by significant

leaps in technology for native platform SDKs. These tools seemed to lose relevance

with the advent of the new era of highly versatile smartphones.

Since 2011, a new set of CPDTs has been coming to market with new features

being added rapidly over time. This latest generation of tools, will be discussed in the

next section.

2.3 CPDTs for Mobile Development

There are several tools for cross-platform mobile application development available

on the market today with various levels of functionality and compatibility. This new

generation of CPDT allows more control, functionality and diversity than the previous

generation of Java based tools [24] [37] [54]. The Cabana tool in [27], helps bridge

the gap between the older and newer generation in terms of features. We have

researched five tools as shown in Table 2.2. These tools were chosen due to their

flexibility, feature support and popularity amongst developers. The chosen tools

provide samples of different approaches to cross-platform development with cross-

compiled, runtime and web wrapper styles. They were also required to support only a

minimum of two distinct platforms allowing for a wider array of analysis of emerging

CPDTs. Mobile web browser based applications are included for comparative

purposes.

Table 2.2: Tools for Cross-Platform Application Development

CPDT BlackBerry OS BlackBerry 10 iOS Android Windows Phone 7 Bada
Mobile Web
Adobe PhoneGap
Appcelerator Titanium Beta
Rhomobile Rhodes 3.0+ 1.6+
Adobe Air
MoSync

10

The CPDTs described in Table 2.2 vary greatly in capabilities, language and

platform support. They can be split into categories based on the method used to

compile and run the applications built using the tools. While some CPDTs such as

MoSync can cross-compile the application into native code, others use a web

wrapper, essentially running the application in an HTML5 compatible browser

object. Traditional runtimes and extensions such as those used in Adobe Flash are

widespread on desktops and notebooks but have limited support on mobile platforms

and are being phased out. The alternative is using a similar approach to bridge the

divide which is found in Adobe Air [72]. Each of these methods has distinct

advantages over purely web-based applications adding possible performance, user-

interface and notification enhancements not available to web developers. These

added capabilities can quickly become an interesting proposition for a developer

wishing to have more fully featured applications.

Some of these tools are already in use by the likes of NBC Universal, eBay and

The New York State Senate allowing them to provide the application to as many

customers as possible at a low cost [8].

Table 2.3: CPDT Features

CPDT Development
Language

Compilation
Type

Native
UI

Elements

Access to
Sensors *

File
System
Access

User &
System

Notifications

App
store

Support
Mobile Web HTML5 +

JavaScript
Runs in
Browser

 Limited Limited

Adobe
PhoneGap

HTML5 +
JavaScript

Native Web
App

Appcelerator
Titanium

HTML5 +
JavaScript /

Python / Ruby
/ PHP

Native Code
and Runtime

Rhomobile
Rhodes

Ruby Runtime

Adobe Air ActionScript/
HTML/AJAX

Runtime

MoSync C / C++ /
HTML5 +
JavaScript

Native Code

*Camera, GPS, Accelerometer

11

The tools presented in Table 2.2 use different scripting languages and provide

various features that are not compatible across all mobile platforms. In Table 2.3 we

show many features provided by each tool, including the development language of

choice.

2.3.1 Mobile Web

The promise of the mobile web as a standard based architecture is that it will display

applications similarly despite being on different platforms and devices. Rich web

applications can be written using HTML5 and JavaScript. These provide a high

degree of functionality like in Google’s GMail web application. This idea is not a new

approach and although it does solve many issues for developers it does add a few new

concerns. Mobile web applications that run through a phone’s browser often do not

match the phones native UI which can be quite confusing. However, these

applications can leverage JavaScript and CSS (Cascading Style Sheets) frameworks

such as JQuery Mobile [65], Zepto [30] and Sencha Touch [60] to provide much

needed UI enhancement with little work on the developer’s part. Many such

frameworks exist to enhance the web development experience and these are only three

of them that have been optimized for mobile handsets.

Browser security historically has not allowed storage of local data or access to

device sensors such as an accelerometer. The webinos framework proposed in [42],

provides an alternative to allow more functionality but does not have widespread

adoption. Additionally, the browsers themselves have been fragmented with different

implementations of JavaScript and rendering engines which can make functionality

and interface behave inconsistently on different devices [59]. The largest concern is

often offline access where there cannot be any access to the application when there is

no connectivity.

Are these problems a deal breaker in using this as a development environment?

The answer is quite subjective but the downsides are growing to be less and less as

12

the technology progresses. HTML5 has allowed for deeper integration with the

handset and with WebKit being nearly ubiquitous across handsets, the rendering

issues of the past are becoming less of a major consideration [20]. Unfortunately,

living in the browser still blocks these programs from the application markets which

are useful in helping end users find the developers work.

While mobile widgets add some features, it is still largely limited to the browser

[40]. An approach taken by many CPDT developers is taking the concept and ideals

of widgets and the mobile web and enhancing it with the features that were missing.

The next sections will discuss tools that take an integrated approach to cross-platform

development.

2.3.2 Adobe PhoneGap

PhoneGap [1] is an implementation of the recently renamed Apache Cordova open

source project. Cordova and PhoneGap are tightly linked and will be discussed as

one tool. PhoneGap is one of the most popular mobile web based approaches to

cross-platform development. The tool takes advantage of the standardized web

technologies used for mobile web development and brings them to native web

applications. Much like the W3C’s Widget standard; PhoneGap uses HTML, CSS

and JavaScript to write applications that are then encapsulated in a browser object to

look like applications built using native code. With this approach, the developer can

submit the application to the application store to enable purchase and high visibility.

Along with deep integration with the phone operating system and hardware,

applications can make use of local storage and are fully available when there is no

network connectivity. Many of these advantages are not present in standard mobile

web applications.

In Table 2.2 and Table 2.3 we see the wide support for devices and features with

PhoneGap. Through an API, developers can make use of various JavaScript

functions use underlying native device capabilities. Most notably missing is native

13

UI elements, however this trade-off was made in order for the ability of having it

available on so many platforms.

Many 3rd party tools are available to be used with PhoneGap, along with the

already mentioned JavaScript libraries; the appMobi XDK for PhoneGap [12]

provides an IDE and testing environment to aid developers significantly. This comes

with tools to emulate the look of the mobile application on a variety of devices.

appMobi additionally provides an analytics platform and their own build service

similar to that provided by PhoneGap directly [11]. This service allows compilation

of applications without the need to install an SDK for each mobile platform. With

the addition of this XDK, the PhoneGap development lifecycle begins to resemble

that of native applications much more closely.

Another tool that enhances PhoneGap is IBM Worklight [36]. It provides

additional APIs and server side integration frameworks for enterprise level

applications. The architecture of Worklight, seen in Figure 2.2, makes heavy use of

PhoneGap to bridge the JavaScript code to the native device. It adds the Worklight

API to enhance security, add analytics and access to their middleware, Worklight

Server. This server provides the connection to the enterprise backend systems for the

mobile application [37].

Figure 2.2: IBM Worklight Architecture [35]

14

Rather than using the Chrome browser frame based approach as in the appMobi

XDK, Worklight has an IDE called Worklight Studio that is based on Eclipse. Once

applications are deployed, all analytics and push notifications are handled through

the Worklight console [37].

Whether using the PhoneGap directly, appMobi XDK or the suite of Worklight

tools, PhoneGap provides an incredibly flexible approach for mobile application

development. For small scale applications that need to be completed quickly to large

enterprise level applications, there is a variant of this tool suitable for many use

cases.

2.3.3 Appcelerator Titanium

Appcelerator Titanium [8] shares many traits with PhoneGap and the mobile web.

Development for all three use standard web development languages, however

Titanium differs in some important areas.

Running on an open source core, Appcelerator products allow for applications to

run natively on devices without embedding a browser object as we have seen in

PhoneGap. Instead, their approach uses a runtime object and compilation method to

optimize and compile code. Options are provided to compile and run using a

runtime; build into a web application, or a hybrid application similar to PhoneGap.

The claim is that performance levels are increased to match those of native

applications when using the runtime based approach [10] [68]. This assertion by the

vendor requires independent analysis through a standard benchmarking architecture

to determine accuracy. The UI approach also differs greatly with the use of native

UI elements rather than focusing on a purely web-like interface. This is seen as a

major advantage by many people as the application will not cause confusion by

having a different look and feel than those built using native tools. Others,

especially those transitioning mobile web applications, may find this as a negative

and find this handcuffs the customizability of the interface [6].

15

Like the IBM Worklight extension to the PhoneGap core, Titanium provides a

host of services for analytics and server side hosting. Similar to Worklight, server

side features such as data storage and push notifications are available. The

Appcelerator team does not provide the application the same level of end to end

security guarantees found with Worklight and is more of a consumer, rather than

enterprise focused architecture [10] [37]. Titanium includes Titanium Studio, an

Eclipse based IDE and a set of testing tools and emulators.

Appcelerator Titanium lacks in platform support with only iOS and Android

being fully supported with BlackBerry OS support being put into beta release one

year ago [9]. This beta was discontinued and replaced with an upcoming BlackBerry

10 OS beta. Supporting only two of the major mobile platforms provides only the

minimum required for being called cross-platform and large segments of the market

are left out when developing applications using this tool.

2.3.4 Rhomobile Rhodes

Rather than using web standards, a different approach has been taken by Motorola

Solutions in Rhodes [45]. Rhodes is developed by Rhomobile which has been

acquired by Motorola Solutions, the enterprise and government focused division of

Motorola. This part of the company was not acquired by Google and is independent

of the Google Android project [68].

 This method is based on the Ruby programming language which allows current

Ruby developers to have an easy transition. Not all Ruby gems are translated to

work inside Rhodes; however, more can be added as needed [50]. The tool provides

strong UI tools including access to native UI elements for Android and iOS. Unlike

many other tools, Rhodes has full Model View Controller (MVC) support, negating

the need to have business logic in the view as JavaScript may have in other CPDTs

16

[63]. This separation can have major positive impact within the development process

for various screen dimensions.

Rhodes uses a runtime based approach that has a runtime built using the C++

NDK for Android, which interprets the Ruby bytecode for the platform. The Rhodes

vendor considers this to be more efficient than using Java on Android [68]. Rhodes

offers the RhoStudio IDE with build tools, debuggers and simulators. Application

hosting and enterprise data connection is a strong push for Rhodes with RhoConnect

and RhoSync server. This positions RhoSync to compete for the enterprise market

and Worklight. The final piece, RhoHub puts the services together into an interface

with Git-powered source control and an online build service similar to PhoneGap

Build. While open sourced under an MIT Licence, much of the functionality is only

available through paid subscription for services from RhoMobile [68].

2.3.5 Adobe Air

Adobe Air is aimed at building rich internet applications that can be run on many

platforms. It uses Adobe Flash, Adobe Flex, HTML, ActionScript and Ajax for

development scripting. Flash skills are easily found in the industry and that is

perceived as a major advantage for Adobe Air. Existing Flash applications can often

be translated to run as native applications using Air instead of them being run

through a browser extension. Air applications, unlike Flash, require installation of

the runtime as well as each application. Mobile support on Android and iOS is

present with an independent runtime available on Android and necessary elements

being packaged with the application in iOS. As of version 2.6, most features are on

par for the Android and iOS versions of the platform. It is suggested that runtimes

like these can be an effective way of battling the cross-platform question however;

there has been a mixed reception from device manufacturers [18] [20].

Air developer tools are some of the most robust and supported in the industry.

Since the tool stems from the popular Flash tool, the same tools used like Flash

17

Builder and Dreamweaver can be used for development. When combined with

Adobe Flex technologies, enterprise applications are possible with rich UI

capabilities that may surpass those of other platforms. Adobe does not provide the

integrated experience and the end to end functionality, tools and services provided

by some CPDTs previously discussed.

These runtime based approaches found in Appcelerator Titanium, Rhomobile

Rhodes and Adobe Air do have significant drawbacks in some areas. The main one

is the dependence on the runtime environment itself. The mobile OS makers may at

some point block these from their stores and the included runtime can cause larger

file size. The features may also lag behind what is released natively as it is

integrated into the runtime. As execution often uses just in time compilation,

performance may be impacted when using any of these runtimes [43].

2.3.6 MoSync

MoSync is much like Air, however, the major differentiator with MoSync to other

CPDTs is that it uses cross-compilation where the code is translated into native

Objective C and Java code depending on the platform. The C++ compiler used in

MoSync outputs an intermediary language that is then optimized and outputted as a

binary for the desired platform. This is a different approach that may lead to

increased performance of applications. MoSync also offers MoSync Wormhole a

PhoneGap like CPDT that uses a browser object to display the application. C and

C++ code can be translated using their wormhole technology to be used in these web

based applications.

MoSync offers compatibility with OpenGL ES, which allows 3D graphics for

game development therefore unlike many other CPDTs, this is suitable for cross-

platform gaming [68]. It additionally is quite extensible allowing the addition of C

and C++ libraries to your applications. Cross-compilation can be a very useful

18

technique allowing the ability to deal with compiled native code in the end for

increased optimization.

2.3.7 Tool Analysis and Comparison

Choosing one CPDT over another can be a daunting task, available skills and project

requirements will often dictate which to use when comparing the capabilities of the

CPDTs. The choices are significantly narrowed when special features such as native

UI’s and the ability for 3D graphics are needed in a CPDT.

The runtime based CPDTs, must include the runtime with the application and in

many instances create larger file sizes [34]. Cross compilation may be an effective

way of completing the task; however, these approaches discussed still have limited

APIs. Web based CPDTs like Appcelerator Titanium and PhoneGap offer many

features however have limited platform support in some cases. The lack of native UI

elements can be problematic but also provides freedom for custom designed layouts.

With all of the tools studied, compatibility to use device functions such as the

accelerometer, camera and notifications are present. These provide a much more

integrated experience as opposed to mobile web apps where there is still little in the

way of integration, particularly with notifications to users.

These CPDTs come with a variety of costs and licenses involved that are rapidly

being adjusted. Some such as PhoneGap are free and open source and others like

Appcelerator have free and paid tiers. The tiered model with support options in higher

tiers is typical and also used by PhoneGap. As the tools have evolved, so have these

pricing models which are a moving target.

With each of the cross-platform methods, adequate debugging functionality and

documentation was still seen to be lacking or outdated [49]. Currently, many

resources are restricted to documentation provided by the tool makers themselves so

19

full objective comparison is difficult to establish in these early days and requires

personal experience with each CPDT.

2.4 Related Work

Little research is available comparing CPDTs. Some comparison of features has been

done in [32] and [68] although they lack some depth. The CPDT evaluators used a 13

item chart in [32] to allow comparison of tool features. Many important items like

storage and camera access are covered in the survey. However, neither of these

reports includes performance evaluation or discussion of development practices and

detailed costs.

In [47], the authors discuss many CPDTs and provide partial comparison. Their

work includes discussion of native versus web-based user interface elements and the

importance of well performing applications. However, the authors state that they are

not concerned with the internal workings of the tools and only if the applications will

be approved for the application stores as the main development need. The article

discusses the lack of debugging tools in many current CPDTs and provides an 8 point

feature comparison. The authors develop a simple application that creates a screen

with a text label and measured the RAM usage and start time for nine CPDTs. The

results are found in Figure 2.3.

The results show the quick launch time for the application built using the native

Android SDK but a much slower start for other tools such as Titanium and PhoneGap.

Runtime based CPDTs seem to fare the worst and have large RAM footprints. This

information provides useful understanding of the possible performance differences

with developing applications on the Android platform using CPDTs but does not

include other platforms or more extensive tests beyond initialization. It is possible

with further testing that an application may perform poorly for initialization but run

remarkably well afterwards but this cannot be determined by this test.

20

Figure 2.3: Performance Characteristics of Various CPDTs [47]

Mobile devices have been benchmarked before using a variety of approaches.

Benchmarking has been around for a long time and can be applied to many forms of

computational tasks where the overall capability of a processor or system is calculated

and compared using complex benchmarking tools. These consist of a set of intensive

tasks that measure the time it takes to complete. Currently, the PCMark suite is the

most prominent desktop PC benchmarking software and uses several open source and

commercial applications [61]. Using the contained test suites allow CPU, memory,

graphics and hard disk performance analysis. There is no equivalent gold standard of

these test suites in the mobile arena [66], although work is being completed on native

benchmarks for various platforms. Some currently available are Quadrant [13] and

AnTuTu [5]. Current published work in mobile benchmarking is extremely limited.

This is non-existent in comparing these mobile CPDTs to their native counterparts

outside of a simple test on Android.

21

Rather than running through pre-selected algorithms as with the aforementioned

tools, the TMAPP project running on a Meebo OS based netbook used applications

such as Firefox and Open Office to run through a script of tasks. The authors suggest

that this method is superior to preselected algorithms as these are real world use cases

[38]. However, this may be difficult to replicate with the security models on some

mobile platforms. Many benchmarks available for PCs cannot be translated over to

mobile devices due to restrictions from the operating system, such as running a script

of opening and closing multiple applications as done in TMAPP [38].

The Rodinia Benchmark Suite [21], outlines the creation of a benchmark suite for

heterogeneous systems. Included in their testing are neural networks and breadth-first

search in trees. Rodinia makes use of GPU accelerators using OpenMP, OpenCL and

Cuda as design elements. While not applicable to mobile uses, this is an interesting

use of an application of a comparable benchmark across many devices that was shown

to be successful.

A similar benchmark approach is used to compare algorithms written using

various programming languages in [17], [25], [46], and [51]. Each builds a

benchmark using standard algorithms that are implemented independently in each

language. The resulting tests show language and compiler efficiencies much in the

same way that we seek to find CPDT application performance. In [17] the author uses

the Linpack benchmark suite as a guideline for the algorithms due to their long study

over decades. Various sorting and complex scientific calculations are used in each of

these papers to test each language and provide a common line of comparison.

A positive UX is important for all applications. Creating a consistent UX when

using cross-platform development can be difficult. In [67], metrics for strong cross-

platform UX are discussed. The authors find that the common themes of usability,

performance, social integration and context-aware services were important for users

when they are using a similar service on both mobile and desktop terminals. A CPDT

22

that wishes to work across device categories should ensure they have this

functionality built in.

The Swerve Studio and X-forge CPDTs are discussed in [73]. These tools are

focussed on cross-platform game development which is shown to have its own set of

requirements that differ from those discussed in previous papers.

Current research in this area has particular limitations. When comparing CPDTs,

research has focussed on narrow scales that only incorporate very few features and

will not provide the required breadth necessary for decision making. Furthermore,

performance benchmarks are limited to opening an application and do not provide

further processing. These evaluation criteria are inadequate to draw conclusions on if

there are differences in performance depending on which tool is used. More advanced

testing and a larger picture of development tools is necessary to answer the greater

questions of if these tools can replace native development for certain tasks.

2.5 Summary

In this chapter we have discussed the many mobile platforms that currently exist in

the marketplace and the confusion and difficulties this may bring. A new generation

of CPDTs have been outlined with some comparison provided.

 Benchmarking procedures for mobile devices and applications are still in their

infancy, however, some work has been done in [38] as well as some generally

available applications. Investigation of several programming languages and how to

adequately compare them are found in literature in [17] and [33].

 It can be seen from an overview of previous work in this area that only surface

evaluation of comparing CPDTs is available. As these tools are fairly new,

benchmarks comparing them are not available at this time; however, comparable

23

benchmarking procedures used for other purposes have similarity and can be adapted

for this purpose.

 In the next chapter we will present an evaluation framework for CPDTs. The

phases of evaluation and components of the framework will be outlined at a high

level.

24

Chapter 3

An Evaluation Framework for CPDTs

The emergence of the many CPDTs in the market leave an important question

unanswered; does using a CPDT to build and deploy your application impact the

quality of the application? Furthermore, do the costs for development decrease with

usage of a CPDT instead of building an application natively multiple times? The

ability for a CPDT to have all of the features and performance, as well as decreasing

costs in both monetary amounts and time for development when compared to native

development are currently still open questions. This chapter presents a framework for

evaluating CPDTs in order to provide recommendations to developers and determine

if any trade-offs must be made when using a CPDT.

3.1 Framework

Evaluating a CPDT must be done using a variety of methods. Since there is currently

little research available comparing the capabilities of CPDTs to one another and

against native platforms, this framework uses standard practices adapted from other

frameworks in similar domains to solve this problem.

The aim of this framework is to ensure a scientific and equitable basis can be used

to determine the current state of performance for CPDTs. The scope of the framework

is limited to applications that are not graphically intensive therefore it should not be

applied to game development. Game development is a special case that requires

different tools that are dissimilar to those used in standard application development

and therefore would require different evaluation methods. Gaming uses different

engines and 3D graphics where frame rates are an important factor rather than the

items discussed in this framework. Similarly, this research focuses on the smartphone

but is extensible to tablets in future work.

25

Figure 3.1: CPDT Evaluation Framework

The evaluation framework consists of three phases as shown in Figure 3.1. The

first phase focuses on determining the capabilities of the framework using a large set

of features some tools offer. The second phase provides a set of benchmarks that must

be implemented using the CPDT and tested for completion time. This is followed by

the final phase where more subjective development experience items are discussed in

order to provide context and additional information to understand the result.

Completing each of these phases will allow for a full view of the capabilities of the

studied tool and the results should be summarized in an evaluation report.

3.2 Phase I: CPDT Capabilities

Phase I, provides an evaluation of CPDT capabilities and features, when tested

against a large set of features that development platforms can potentially allow. The

evaluation is checklist-based and will require the evaluator to go through the

documentation and SDK of the CPDT to see if the features are supported and create a

chart showing compatibility. The columns in this chart are grouped into various

overarching categories of development such as access to sensors and security. Future

iterations of native platforms and CPDTs may have new features included that are not

currently listed. The framework is designed such that overarching categories will

remain consistent while the sub-elements may need to be updated.

26

Some features can be considered as supported, not supported or partially

supported. Within an evaluation, an overview of the features that comprise this should

be included to summarize the result.

3.2.1 CPDT Basic Elements

All CPDT evaluation will bring some common basic questions such as which mobile

platforms are supported and what license CPDT is under. This first section should

outline these basics that must be known to understand a CPDT and include features

found in current native SDKs that simply cannot be otherwise categorized. This

section also includes initial and ongoing costs for using the CPDT which may be

substantial in some cases.

3.2.2 Development Environment

Learning about the development environment is important when choosing which

CPDT best suits one’s needs. This category will include the robustness of the IDE and

the type, development languages available to be used with the CPDT and debug

environment. These make it easier to gauge the time required to learn new tools. Also

important is finding the type of compilation used by the CPDT, many varieties exist

and may yield different performance.

From a development environment, the developers need the tools to build

applications that are of the same quality of native development tools. They should

allow for quick debugging and may provide simple integrated methods of compiling

applications. The basic characteristics of this environment must be listed and made

available and any integration with specialized APIs documented.

3.2.3 User Experience

In order to create a compelling application, an appealing user interface must be

created. Within this section, we will discuss the ability to have user interfaces that
27

meets interface guidelines provided by each platform vendor. Since these guidelines

often change, the framework will be focused on confirming the available flexibility of

the CPDT to be able to meet such guidelines.

3.2.4 Device Access

Devices have many internal OS information storage locations that contain device files

and application data or user information. In order for some applications to best

function, access to information repositories must be an available option in CPDTs.

Additionally, having hooks into the lower level device functions and hardware

features may enhance performance in specific networking and graphically intense

applications.

3.2.5 Sensors

Mobile devices have a multitude of sensors that can gather data to feed into

applications for an unlimited number of purposes. New sensors are quickly being

added which native SDKs quickly adopt, however CPDTs may not have access to

each of these. This section should outline what sensors are available.

3.2.6 Geolocation

Some specific sensors can be used in combination with the mobile OS to enable

geolocation of the device. Even though GPS may seem like the only feature needed

for adequate positioning capabilities, there are many other possibilities for finding

locations. Some tools may not allow usage of each of these methods or may not have

the ability to choose which method is used, this should be outlined here.

3.2.7 Notifications

Important information often must be sent to the device from external services in order

to notify the application or the user of some information or to perform an action. The

availability of a method to perform these actions with reliability is necessary for many

28

applications. Platform vendors may provide their own method of sending device

notifications and integration with these or the ability to use a 3rd party solution

should be specified.

3.2.8 Monetization

In order to enable monetization of an application, the CPDT must support a variety of

features to give developers the freedom to make use of the pricing scheme they

choose. Many free applications may want to use an advertisement platform, which can

be provided by the platform vendors or a 3rd party, where paid application developers

may be most interested in the ability for their users to make an in-app purchase with

ease. Other monetization models may become common and could be further included.

The ability to get the application in users’ hands with high visibility through various

outlets such as application stores should be included.

3.2.9 Security

Security is of concern for most service providers to ensure the user data is not

mishandled and the application source code is not made available to those who should

not have it. Methods to securely store information and retrieve it through network

connections must be included in CPDTs. Additionally, the CPDT should ensure that

when deployed, users do not have the ability to read application source code.

3.3 Phase II: Performance Benchmarks

Performance metrics are an important part of testing the ability of these CPDTs to

perform tasks as well as natively built applications. For this phase, the benchmark

tests will be developed as a suite and deployed for each CPDT by the evaluator and

compared to similarly developed native tests. The difference in the result on the same

device from one implementation to another is the important factor being investigated.

When a new CPDT becomes available, the framework would require development of

29

the testing suite using the new tool, while adhering to the requirements set out in the

framework.

 The performance of the underlying technology and compilation optimizations of

each CPDT will be tested by benchmarking an application developed using that tool.

The results of this benchmark will show if the CPDT is able to create high performing

applications.

As much as possible, tests will follow well-evaluated algorithms that have

previously been included in other benchmarking suites for mobile devices or PCs

mentioned in 2.4. Some tests may not be able to be implemented on every CPDT or

on every platform due to restrictions within the mobile operating system or in the tool

itself.

3.3.1 Processor Intensive Benchmarks

First we will evaluate processor intensive applications and look to the SunSpider

JavaScript Benchmark version 0.9.1 for AES encryption and input validation

algorithms [71]. These are two often used items on mobile devices and will be

completed constantly by mobile applications. Using the SunSpider JavaScript code as

a guideline for the algorithm, both the AES and input validation benchmarks will

produce an output in milliseconds. The tag cloud test can also be used from SunSpider

in order to process a large amount of text and determine the frequency of word usage.

This can be useful when adding indexed search functionality to an application.

Another testing suite to be used for benchmarks is the Linpack for Android

application based on Linpack Java [55]. This is an open source Java application that

provides many tests studied over the past 40 years and used in comparison in [17].

Linpack benchmarks measure how fast the system can solve linear equations with

Gaussian elimination. This will provide a score rated in Millions of Floating-point

Operations Per Second (MFLOPS). This test has been shown to improve in later

30

versions of Java on the same hardware due to new efficiencies in the virtual machine

and will provide useful insight into how the other tools perform [55].

The aim of using any of these well-studied tests is to stress test the CPU to see if

code from cross-platform tools is as efficient as lower level native code.

3.3.2 Data Driven Benchmarks

Mobile applications must make use of many data sources, and often combine them

into a digestible form for users. In order to simulate testing for this, local and remote

databases using the CMER APIs will be accessed, data extracted and sorting

algorithms used to sort large arrays of data. Potential tests can be found in [17] and

[46] using the heap sort algorithm. Some tests should also use the internal sorting

functions provided by the CPDT API.

The CMER APIs are provided to allow for a set of data to be pulled from our

CMER server using a local connection. This is important for any remote testing to

remove the irregularities based on communication through the cellular network. The

implementation of these APIs can vary based on the tests that are implemented in the

specific evaluation. This can be very limited or broad based on the framework

implementation.

3.3.3 Device Access Benchmarks

Mobile applications have the ability to capture information from multiple sensors and

save the information or use it within the application. Tests will be conducted polling

the microphone and recording audio clips of random length. The time taken for

recording initialization will be documented. A similar test can be conducted for the

initialization and shot to shot time for the camera. Since the tests using both native

SDKs and CPDTs are conducted on the same device, the characteristics of the device

will not affect the result.

31

3.3.4 User Experience Benchmarks

One of the most important aspects for user experience with an application is

responsiveness. These tests will add and remove UI components in quick succession

and render new application screens and items. This will be done to perform evaluation

of the ability of the CPDT to render interface components and transition quickly from

one screen to the next. If a CPDT suffers in UI rendering, it will provide a poor

experience for users of applications built using it.

3.3.5 Test Procedure

When ready to move into the testing phase, a set of actions should be completed.

Before testing on any device, certain actions should be taken to ensure the tests are as

accurate as possible. First update the device system software to the latest version

including any bug fixes and patches that are available. Then a factory wipe should be

performed to remove any user applications and customizations that may take CPU

cycles away from the test.

After installing the benchmark application, perform a full device reset to clear any

programs in memory. Furthermore, close any running background tasks that are able

to be closed. Run the benchmark with the full 3 external iterations with averaged

results showing on the screen and sent to the logging server. A visual description of

the test procedure can be found in Figure 3.2.

When testing with multiple CPDTs, each application should be run separately and

the results compiled for Phase II of the evaluation report. Once testing is complete,

the evaluation report can be compiled using the development experience from

developing the benchmarks, to answer the questions posed in Phase III.

32

Figure 3.2: Benchmarking Procedure

Following these test procedures should ensure outliers are removed from testing

for unforeseen delays when completing the test. It is important in all benchmarking to

complete all tests on an equitable basis and to repeat them to find average results [21].

3.4 Phase III: Development Experience Discussion

In Phase III, the evaluator will investigate criteria that you are unable to put a

measurement on in any simple way. Due to the nature of these CPDTs, not everything

can be put into a measure or checklist, they instead need to use the experience

gathered while completing Phase I and II to discuss parts of the tool in more depth.

This section will lead discussion of some features to enable the reader to make

meaningful judgments of the level of functionality provided. The discussion will be

led in such a way to limit possible bias from the evaluator and should be used to

provide the context to understand the results in Phase I and Phase II.

33

3.4.1 Tool Related Discussion

Some characteristics of CPDTs can be difficult to speak of in a chart form and require

lengthy explanation. Characteristics of the tools discussing how well maintained the

CPDT is for updates, new features and bug fixes should be discussed here.

Additionally, further discussion of costs associated with using the tool and any

ongoing costs can be included. This would include costs associated and features

available for any cloud or analytics services offered.

The discussion should also revolve around the development IDE and features

supported. Answer if the features and debugging methods included provide the

expected level of functionality.

3.4.2 Development Experience Discussion

This section aims to use the development experience gained by completing the other

phases of this evaluation framework to discuss items such as relative application size

and the strength of the UI toolkit. Flexibility of interface construction can be

important and should be noted.

The evaluator should attempt to discuss whether the tool allows for write once,

run anywhere development or the level of customization required for different

platforms. Additionally discuss the overall robustness of the development experience

and provide specific examples of where using the tool is helpful and any drawbacks.

Lastly, speak about the learning curve for using this CPDT in this section of the

report.

3.5 Summary

Choice of which development tools to use for mobile application creation has never

been greater. While building natively for each platform may provide the quickest

access to new features, CPDTs have their place in the market. Through

34

implementation of each phase of this framework, CPDTs available today or new tools

released in the future can be evaluated based on the criteria discussed in this chapter.

This will provide a balanced look at the features, performance and development

experience for any CPDT. Armed with this information, developers are provided with

a detailed and unbiased view of tool capabilities and will be able to best decide which

meets their criteria for their applications.

This framework requires one to take the overarching themes and apply them in

more detail to create adequate tests for not only today’s CPDTs, but future tools. The

capabilities, performance metrics and experience discussion in this chapter provide

the subject matter applicable to further testing.

In order to test the framework for its suitability it was applied to various CPDTs.

This will not only show the strength and usefulness of the framework, it allowed for

evaluation of current top tier tools in order to provide immediate guidance on the

suitability of each for different applications.

In the next chapter, we will implement this framework to create specific tests that

are relevant to the CPDTs on the market today. The experiments that were conducted

will be outlined and discussed.

35

Chapter 4

Implementation and Experiments

Using the framework developed in Chapter 3, we will discuss how this framework has

been implemented, in order to evaluate today’s CPDTs. As the framework is designed

to outline only the overarching principles, the first step is to break down each phase in

detail in order to create a fair set of tests that are relevant to the development tools

being chosen for evaluation.

 This chapter outlines the tools and devices used for this evaluation. This provides

an overview to readers of the evaluation results of the scope of this study. Following

this, a detailed outline and specifications for each phase of evaluation is provided.

 The implementation presented in this chapter, should satisfy the criteria outlined

in Chapter 3, while implementing it and focussing on today’s environment of CPDTs.

The scope of the evaluation need not encompass all aspects but should provide a

thorough basis of comparison for the CPDTs included in the study.

4.1 Experiment Parameters

In order to provide structure for the experiment, the following subsections will outline

the tools included as part of the study, the devices used for testing and any

assumptions factored into the results.

4.1.1 CPDTs and Native Development Kits

This study has been conducted using many development tools. Both cross-platform

and native development kits will be included to provide a basis for comparison. The

tools included and platforms supported can be found in Table 4.1. Entries marked

with a dash are incompatible.

36

Table 4.1: Compatibility Matrix for Tools Included in Study

 Android iOS BlackBerry 10 BlackBerry 7

WebWorks - - Compatible Compatible

BB10 Native

SDK
- - Compatible -

Android Java

SDK
Compatible - - -

iOS Native - Compatible - -

PhoneGap Compatible Compatible - Compatible

Appcelerator

Titanium
Compatible Compatible - -

Adobe Air Compatible Compatible Compatible -

MoSync Compatible Compatible - -

While Adobe Air is compatible with BlackBerry 10, it is excluded from our

testing due to many issues with the beta software. This can be included in later testing

once the platform has stabilized. Appcelerator Titanium’s BlackBerry 7 Beta software

was unavailable for testing as its development has now been discontinued. The

performance benchmarks in Phase II will be developed for each of the compatible

tools and platform combinations. This selection of tools, allows for a wide variety of

comparisons to take place with multiple tools running on each platform.

Some CPDTs offer a variety of methods for development. The Titanium

development focused on application built and run using their runtime technology

while MoSync applications focus on cross-compilation only. Adobe Air applications

use the ActionScript, cross-platform development approach.

4.1.2 Devices

Each platform has all tests conducted on a single device using both native and cross-

platform tools. The devices to be used are found in Table 4.2.

37

Table 4.2: Devices Used for Testing

Platform Device Model Software Version

Android Samsung Galaxy S II

(i9100)

4.0.3

iOS Apple iPhone 4s 5.1.1

BlackBerry 7 BlackBerry Bold 9900 7.0.0.579

Blackberry 10 BlackBerry 10 Dev Alpha 10.0.4.197

4.1.3 Assumptions

In order to test the CPDTs, certain assumptions must be taken into account. It has

been deemed adequate to test on a single device for each CPDT. The comparison

completed in this framework is not on device performance, but the difference in

native to CPDT performance. This factor will be little affected by the device the tests

are run on as long as all testing is done on the same device. There is a small chance of

a device specific bug that may affect the results of one CPDT and not the others,

however, we have assumed that this is highly unlikely and completing all tests on a

single device will provide the necessary results. The testing has been conducted on

only the devices shown in Section 4.1.2 after completing the procedures outlined in

Section 3.3.5. These procedures are sufficient to close necessary background

applications and clear enough memory to complete the test fairly with minimal

disturbance by other processes.

 It is expected that there may be some variability to tests based on the version of

the CPDT used. The version used for testing should be shown during Phase I of the

evaluation and stay consistent throughout each phase. Furthermore, as different

developers may implement the algorithms in slightly different ways, they should be

written in a way to conform to the norms and best practices laid out for that particular

CPDT. Each test implementation has the same result and steps regardless of the tool

or language used.

38

4.2 Phase I: CPDT Capabilities

Phase I of testing evaluates the CPDT based on its feature set when compared to a set

of features often found in mobile development tools. The overarching categories in

Section 3.2 have been broken down into the current set of features available for each

category.

In Table A.1 you will find the list of criteria that this framework will seek for a

CPDT. Currently, 53 elements available in various native development tools are

included to evaluate the CPDTs against. The features were selected through

discussions with our industry partner and surveying the available features in each of

the native tools. When evaluating a CPDT, the elements would be presented in a chart

form and supported or not supported would be written in each column for that

particular CPDT. Often support will only be available on certain versions of the

device operating system or not fully supported. Where more information is required,

context can be provided and therefore the values for the evaluation do not necessarily

need to be binary.

Of the 53 elements in Table A.1, 46 can be considered as supported, not

supported or partially supported. These features are indicated as belonging to this

quantifiable group in the table to be classified in the results.

4.3 Phase II: Performance Benchmarks

Performance evaluation is a key aspect of evaluating CPDTs. At this point, it is

unknown how well web based CPDTs perform compared to native with only

anecdotal evidence available. Furthermore, similar tools using the same compilation

methods may have performance enhancements from the vendor that are often touted

as a reason to choose one tool over another. Not everything can be included in the

performance benchmarks but tests are developed to simulate common tasks and

actions. Each test is designed to allow a wide variety of tools to be able to implement

39

the test with an overarching skeleton program to handle the administrative tasks of

running a benchmark.

 The benchmark algorithms and specifications will be outlined in the following

subsections. Implementation of each of these tests will occur using the standard

development language for each of the CPDTs. In all cases, plugins or 3rd party

additions to the tools are avoided and some code is provided.

4.3.1 Application Skeleton

This application should provide the basic features needed in order for performance

evaluation tests to be completed. The skeleton refers to a simple GUI that allows a

selection of a set of tests and a button to begin testing. Once all tests are completed, a

summary screen is displayed with average results for the iterations of the test. All

tests should be completed once and then the cycle begins again until the specified

number of iterations has been reached. The detailed results are contained in a log file.

These tests should be modular and can be added and deleted at will. This skeleton

and the following tests can be implemented on each CPDT with the number of

iterations specified by the framework in Section 4.3.1.4. Debug functionality should

be provided where only one iteration is completed of each selected test to speed up

development.

4.3.1.1 Interface

The interface is a simple list of tests with a run button as seen in Figure 4.1. Some

changes may be necessary depending on the tool capabilities such as moving the

buttons to the left on the Titanium version. During test completion, a progress

indicator is displayed. This progress indicator should be for total testing progress and

only updated between tests to ensure it does not interfere with results. As some tests

include usage of user interface components, the user sees those before being returned

to the progress screen during those tests.

40

Figure 4.1: Native Implementation on iOS (left), Titanium implementation on iOS (right)

4.3.1.2 Test Modules

Each module should be self-contained with a start function called “test” that is called

by the skeleton application. At the end of a test run, a set of values is passed to a

function called addResult in the skeleton that handles the data. It takes three

parameters: a String for the testname, a long for the starttime, and a long for the

endtime. This function will save the information to be sent to the server once all tests

have completed. When all iterations of all selected test cases have finished, another

function is called to organize the saved data, calculate averages, add the organized

and complete data to a string, and send that string to the log server. The string is sent

via HTTP POST, with a parameter called “data” which equals the generated string.

4.3.1.3 Log

Two files are saved during each evaluation. These files should include a date and time

prefix to not delete any previous results. These files should be saved as a Comma-

Separated Value (CSV) file.

The first log file includes the raw results for each test. If a test is run with 5

iterations, the ‘testname’ will have 5 identical entries with different duration values.
41

The filename should be CPDTTYPE-DEVICE-DATE-TIME.csv with CPDTTYPE,

DEVICE, DATE and TIME replaced at the time of creation by the server script. If the

developer of the benchmark would like to save the CSV files locally, that would not

affect test results and may be done. Due to device restrictions, this may not always be

possible and logging on a server could be necessary. The data structure is [testname,

starttime, endtime, duration]. These column names should appear in the first line

followed by entries for each test. All durations are in milliseconds with one decimal

place.

The second file uses the name CPDTTYPE-DEVICE-DATETIME.csv. This

should only contain the header showing the structure and the average duration result

for each of the tests. The structure is [testname,average]. Therefore, regardless of the

number of iterations a test has in the skeleton, the final result will be the mean of

those tests saved in this file.

Data is sent to the server in the following format:

DEVICE,CPDTTYPE,OSVERSION,DATE,TIME;

testname,AVERAGE;

testname,AVERAGE; ….;

testname,starttime,endtime,value;

testname,starttime,endtime, value; …;

The server will parse this information and create the log files as follows.

In folder “Raw logs”, Filename “CPDTTYPE-DEVICE-DATE-TIME.csv”

DEVICE,CPDTTYPE,OSVERSION,DATE,TIME (test information header)

testname,starttime,endtime,value (category header)

testname,starttime,endtime,value (data)

testname,starttime,endtime,value (data)

42

In folder “Averages/CPDTYPE”, Filename “CPDTTYPE-DEVICE-

OSVERSION.csv” append the following:

DEVICE,CPDTTYPE,OSVERSION (test info header)

testname,datetime,AVERAGE (category header)

testname,datetime,AVERAGE (data)

testname,datetime,AVERAGE (data)

Implementation of the application skeleton can be found in Appendix B for the

WebWorks implementation. A similar implementation is used on all other platforms.

For WebWorks, all logic is in the JavaScript files and for each plugin usage is

avoided.

4.3.1.4 Iterations

The tests are completed sequentially and then iterated through until the total number

of iterations has been reached. For the CPDT evaluation, each test was completed 5

times with the results averaged to be displayed to the user and saved in the averages

log file. Some tests may have sections that are internally repeated thus creating a large

number of total iterations when the benchmark application is externally run 3 times

for final results. All tests return a single value and therefore, internal iterations are

either averaged, or a total duration value is taken before being returned to the

skeleton.

4.3.2 Processor Intensive Benchmark Tests

In order to complete testing described in Section 3.3, processor, data intensive, device

access and user experience testing will be conducted. This section will detail the test

algorithms.

4.3.2.1 AES Encryption and Decryption

The objective of this test is to encrypt and decrypt a passage of text. The duration

between start and finish will be provided to the test skeleton. The algorithm to be
43

used is the Rijndael algorithm which is the same standard AES technique used in the

SunSpider JavaScript benchmark version 0.9.

To enable the quick implementation of this algorithm, the code in the SunSpider

Crypto-AES test [71] can be used as a guideline to port to other platforms. The

algorithm has also been implemented in Java, C and C++ with much documentation

provided on the National Institute of Science and Technology website [58]. The text,

encryption keys and algorithm can be found in Appendix D.

This test returns a result of the total time taken for one encryption and decryption

cycle.

4.3.2.2 Input Validation

The objective of this test is to attempt to simulate testing for valid user inputs for

items such as email addresses and US zip codes. The algorithm documented in the

string-validate-input test which be used as a guideline from the SunSpider JavaScript

benchmark version 0.9 [71].

In order to complete this test, 4000 email addresses will be generated and verified

followed by 4000 zip codes. The test will look for length, illegal characters and

correct structure. Completing it this many times will provide insight on if any CPDTs

have difficulty comparing strings.

This test returns the total duration to complete the 4000 email verifications and

4000 zip verifications. The process for this test is outlined in Figure 4.2.

44

Figure 4.2: Input Validation Test Procedure

4.3.3 Data Intensive Benchmark Tests

The data intensive benchmarks are focussed on manipulation of large amounts of data

in structured formats and access to the device databases. The next sections will

outline these tests.

4.3.3.1 Local PIM Access

This benchmark test aims to read locally stored user data and write to the PIM

(Personal Information Manager) address book. It will comprise of operations with the

device contacts database. A series of steps should be taken to test the efficiency of

writing data to the address book and retrieving it.

A CSV file containing 100 entries of first name, last name, phone number and

email will be used that is randomly generated using the tools found in [29] and

included as Appendix E.

45

Procedure:

1. Read local CSV file with stored contact information into memory,
2. Enter all 100 contacts to the empty PIM database,
3. Retrieve 100 contacts from the PIM database including first name, last name,

phone number and email,
4. Delete all contacts from the PIM database.

This test returns the total duration for completing the above algorithm.

4.3.3.2 Remote Service Access

The aim of this test is to query a remote web service on a server and retrieve

information that can be used within an application. This information will be sent to

the device and response time will be measured. All testing is done via local network

to reduce any network latency irregularities.

This test allows for creation of a CMER API in the form of a script that will be

housed on a server running Ubuntu Server 11.04 on a machine connected to a 100

Mbps network with 802.11g Wi-Fi connecting the devices. The machine consists of

an Intel Core 2 Duo E6550 2.33GHz with 2GB of RAM. A line of PHP will be used

to return the text via HTTP. The text is a hardcoded string and the PHP code is found

in Appendix F. The code has been simplified to an echo response but in other

implementations of the evaluation, an advanced API may be required.

The benchmark test will consist of establishing a connection to this script, retrieve

the string and repeating the process 100 times. The total duration for all 100 internal

iterations is the returned value. This process can be seen in Figure 4.3.

46

Figure 4.3: Remote Access Test Procedure

4.3.3.3 Sorting

This test comprises of generation of 2500 random integers between 0 – 2500,

allowing duplicates and sorting them. A simple bubble sort will sort these numbers

from lowest to highest. This is conducted using loops to compare neighbouring nodes.

While not the most efficient sorting method, the high number of comparative

operations makes it a good candidate to see how well different CPDTs perform. This

process will then be repeated 5 times internally. The test duration should include

number generation and sorting. This test is loosely designed to follow sorting

benchmarks in [17] and [46]. The total duration for all 5 internal iterations is the

returned value.

Excerpts of the sorting algorithm can be found in Appendix G. They show the

same algorithm implemented on two CPDTs. The procedure for the test is described

in Figure 4.4.

47

Figure 4.4: Sorting Test Procedure

4.3.4 Device Access Benchmark Test

Device access tests are focused on making use of device features through the API of

the CPDT. The following test will use the microphone sensor to test the API.

4.3.4.1 Microphone Usage

This test will focus on gathering information using the microphone and any lag

between the time it takes from request to result using different CPDTs.

The protocol will initialize the microphone, record 0.5 seconds of audio, which

does not need to be saved and record the time taken for this process. This will be

repeated and an average returned.

The procedure is as follows:

1. Record time,

2. Initialize microphone,

3. Record 0.5 seconds of audio,

48

4. Record end time for a result ,

5. Repeat steps 1-4 a total of 25 times,

6. Find the average of 25 internal iterations and return it as the final result.

The logged result in the test is an average of the 25 initialization durations. A start

and end time are not required and can be left as 0.

4.3.5 User Experience Benchmark Tests

The user experience tests aim to provide manipulations for front facing features and

UI to ensure highly performing applications. The two tests in this section provide

manipulation and transition benchmarks.

4.3.5.1 UI Elements

This test will try to manage the modification of the user screen elements quickly in a

sequential test and record completion time. The elements to be added include images,

text boxes, labels, buttons and radio buttons. A simple interface will be created and

then modified in specific steps.

 Figure 4.5: Screens for UI Elements Test

49

An accordion style interface layout will be used with 3 sections. The first will

consist of form elements including 5 checkboxes, a text field, switch and 2 buttons.

The second will have two images, one at the native resolution of the image and one

that has been shrunken to fit a 20% x 20% of the screen size. These images are

included with this document in Appendix G. The third screen will consist of text

found in the Appendix D and is the same passage from Romeo and Juliet used for

AES encryption testing.

After rendering the initial accordion style screen, we flip through the sections and

add and remove elements as follows:

1. Record time,

2. Start in form elements section,

3. Switch to images section,

4. Switch to text section,

5. Delete all text and add it back, loop 20 times,

6. Switch to Form elements section,

7. Randomly select and deselect checkbox elements 500 times,

8. Delete Button 2 and re-add it with the top left pixel position being randomly

selected, repeat 50 times,

9. Switch to the images section. Remove both images and add them back switching

which is at its normal size and which is scaled to 20% of the screen, repeat 20

times,

10. Record completion time.

Completing these steps will be considered a single run of the test. Duration will be

from before the initial screen render to the final change of the image. An

implementation of this algorithm for WebWorks can be found in Appendix C.

50

4.3.5.2 Screen Transition

This test will flip through a series of application screens and measure the time it takes

to complete the render and transition to the next screen.

The screens will look like the 3 shown in Figure 4.6. The transitions will be as

follows:

A→B→A→C→A→C→B→A→B→A→B→C→C→A→B→B→A→A→A→A→B

→A→B→B→B→A→B→C→C→A→C→B→C→A→A→B→C→A→B→C→A

Figure 4.6: Screen A, Screen B and Screen C for Transition Test

Screen A consists of two buttons and 9 icons as seen in most application menus.

The icons are enclosed in Appendix G as is the image for Screen B. Screen B contains

a single image stretched to the entire screen. The final screen, Screen C, has a title

and text from the AES Encryption test found in Appendix D.

If possible, the CPDT should cache the screen so it does not incur extra loading.

If there is no option for this, the default is used. A controller object will control the

screen transitions according to the diagram in Figure 4.7. This object will also

measure the time.

51

Figure 4.7: Control Structure for Transition Test

For a full completion of the test, all 40 transitions must be completed and duration

recorded.

4.3.6 Test Implementation

Due to a variety of factors, for the purposes of this evaluation, not every test was

implemented using each CPDT. The tests that are included in this evaluation are

shown in Table 4.3. Enough tests are included in the evaluation to show the strength

of the framework to provide a basis of comparison of CPDTs and draw conclusions

about the framework and strength of certain tools. Larger studies can be completed

and are discussed as part of future work in Section 6.2.

52

Table 4.3: Tests Implemented in the Study

 Android iOS
BlackBerry

10
BlackBerry 7

WebWorks - -

Input

Validation,

Sorting

AES, Input

Validation,

Remote, Sorting,

UI Elements,

BB10 Native

SDK
- -

Input

Validation,

Sorting

-

Android Java

SDK

Input Validation, PIM,

Remote, Sorting,

Microphone, Transition

- - -

iOS Native -

Input Validation,

PIM, Remote,

Sorting, UI Elements,

- -

PhoneGap

AES, Input Validation,

PIM, Remote, Sorting,

UI Elements,

Transition

AES, Input

Validation, PIM,

Remote, Sorting, UI

Elements, Transition

-

AES, Input

Validation, Remote,

Sorting, UI

Elements,

Appcelerator

Titanium

AES, Input Validation,

Sorting, Transition

AES, Input

Validation, PIM,

Sorting, UI Elements,

Transition

- -

Adobe Air

Input Validation,

Remote, Sorting,

Microphone, UI

Elements, Transition

Input Validation,

Remote, Sorting, UI

Elements, Transition

- -

MoSync
Sorting, UI Elements,

Transition

Sorting, UI Elements,

Transition
- -

4.4 Phase III: Development Experience Discussion

Phase III consists of discussion over key features and how well implemented they are

in accordance to the framework in Section 3.4.

53

4.4.1 Tool Related Discussion

Each CPDT has its own unique characteristics that may be difficult to speak of in

short. It has been thought in the past that using CPDTs over native development slows

the adoption of new features into applications. This can be a problem for developers

when choosing a tool. An evaluator must discuss in this section the lag time between

major SDK enhancements for any of the mobile platforms and when these new

features were incorporated into the CPDT API.

Furthermore, current tools vary wildly in their monetization models. Some tools

are free to use but charge for support, some do not offer any forms of support and

others charge for development, support and continuous deployment. Phase I required

information to be gathered about the costs of the tools and the ongoing cost for using

the CPDT. In this section, the evaluator is to expand on one-time or subscription costs

and current support options. Questions that should be answered are if there are free

options, if push service or analytics is provided and at what cost, build service costs

and miscellaneous costs such as developer accounts with platform vendors.

Lastly, using the information gathered about the IDE and languages the tool uses

for development, the evaluator will discuss the flexibility and popularity of these

development languages and tools. The focus should be on if they are full featured and

flexible as well as if the skills for development using them are readily available

amongst current developers. New tools can be extremely useful, however, there may

be trade-offs given the amount of time it takes to first learn them which will be

discussed as part of the development experience.

4.4.2 Development Experience Discussion

The aim of this section is to use the developers personal experience implementing this

framework in Phases I and II to further discuss the development experience one

would face while using the CPDT selected for study. First, discuss the relative

application size using the CPDT; does this tool package a large runtime with the
54

application? An item that can vary greatly between platforms is UI construction. The

UI tools provided for use of the CPDT should provide a level of flexibility where

devices with very low and very high resolution displays should all display the

application in a usable form. Having the interface resemble and perform as well as the

native UI for the platform and follow design guidelines will not only help the user

have a more intuitive experience, but may be a requirement for submission to

application stores. The UI tools should allow for some form of simple language

customization for easy deployment in foreign languages and have the ability to look

compelling and well designed. Some devices do not have a touch interface, also

discuss if the CPDT allows for a cursor or touchpad rather than touchscreen

implementation.

Furthering the discussion from above, many CPDTs simply do not have a write

once, run anywhere structure and are more akin to write once, customize everywhere.

What level of customization is required to have applications run well on all supported

platforms? This is a key question as it may take an overhaul of the UI for each

platform and without MVC design ability; this may cause other problems with the

application. Outlining this is a vital element to know for any developer looking to go

cross platform.

After developing the benchmarks and looking extensively into the features of the

studied CPDT, the evaluator should now have the experience to discuss the robustness

of the development tools provided for debugging and testing applications as well as

the overall ease and speed of development when compared to directly using native

SDKs. This piece should summarize experiences and use specific examples of where

each style of development excels. The evaluator should refrain from drawing

conclusions on other CPDTs and instead provide examples relating only to the tool

studied to allow other studies to draw conclusions when looking at the spectrum of

tools using the reports developed with this framework.

55

4.5 Summary

This chapter has described in detail the tests that will be conducted to evaluate the

CPDTs. It has outlined which CPDTs and native environments will be tested and the

exact test procedure. The structure of the skeleton application to produce the log files

has been discussed so it can be replicated.

 While the framework allows the tests to change over time according to

developments in the marketplace, the test parameters in this chapter are used to

conduct the testing of the outlined tools, of which the results will be found in the

following chapter.

56

Chapter 5

Results and Evaluation

By implementing the tests using various CPDTs, each phase of evaluation has

provided significant information regarding the tools strengths and weaknesses. These

results are presented in this chapter. The results will show the tool and platform used

for the test and the result. Following this, analysis is provided for each test and

overall analysis for the full evaluation in Section 5.4.

5.1 Phase I: CPDT Capabilities

As explained in Section 4.2, the first phase of evaluation is careful analysis of a

CPDTs documentation and APIs to discover its feature set. Table I.1 in Appendix I,

provides a summary of this feature evaluation for all native and cross-platform tools

in the study.

Much of the information contained in Table I.1 is binary and allows for simple

categorization. For example, does the tool provide a build service? Other features

have more complex explanations provided. Table 5.1 describes the number of

supported features for each CPDT out of the possible 46 that can be considered in

such a way.
Table 5.1: Number of Supported Features

 Supported
Partially

Supported
Not Supported Indeterminable

PhoneGap 16 5 21 4

Appcelerator

Titanium
31 0 12 3

Adobe Air 27 5 9 5

MoSync 15 9 7 15

57

Table 5.1 shows the feature set is diverse with only some tools covering the

majority of features. Appcelerator Titanium has the most support in our feature

evaluation with Adobe Air being a very close second with many partially

implemented features. In these respects, PhoneGap and MoSync lag behind the other

two CPDTs. It should be noted that no native development tools have all 46 features;

however each have a subset of them.

5.2 Phase II: Performance Benchmarks

Features do not tell the full story when it comes to evaluating these tools so while we

now know what each is capable of, it is important to test how well some of these

features work. Each of the performance tests in Section 4.3 have been implemented

on some or all platforms. Not every test was completed on each platform due to

security, feature or other restrictions. This is a barrier faced by cross-platform tools

that can be problematic when not choosing the tool fit to purpose explicitly.

Each of the following sections will provide results and some comment on each of

the tests. These tests consist of the specified test in Section 4.3 repeated 5 times and

averaged for a single run. Each test run is then repeated 3 times, for a final average

that is listed in the results. This means that at a minimum, tests are run 15 times for

each platform in order to find a baseline average result. All test results are shown in

result matrices for tools and platforms. Since not every tool supports all platforms,

some places will be intentionally left blank.

It is important to note that comparisons should only be made for different CPDTs

using the same platform and therefore, comparing PhoneGap on Android versus

Titanium on iOS is not a fair comparison. This is due to dissimilar hardware which

makes the comparison invalid.

58

5.2.1 Processor Intensive: AES Encryption

In order to test this with an exact version of the same algorithm, this test was only

completed using WebWorks, Titanium and PhoneGap to test their individual

optimization techniques. Testing was done on BlackBerry 7, iOS and Android.

The result matrix in Table 5.2 will show the average milliseconds taken to

complete the test.

Table 5.2: AES Encryption Test Result Matrix (milliseconds)

 Android iOS BlackBerry 7

WebWorks - - 108.5

PhoneGap 82.9 275.9 145.1

Appcelerator

Titanium
39.3 248.3 -

We can see from the results that Appcelerator is significantly faster on Android

and somewhat on iOS. In all tests, PhoneGap lags behind the others even with

identical code. WebWorks, being from the platform vendor itself, may have

performance enhancements but this is speculation. Appcelerator Titanium claims to

have a compilation engine that boosts JavaScript performance and from these results,

it may be true. It can be seen that the purported optimization techniques may hold

water in this case as Titanium leads the pack by a significant margin.

5.2.2 Processor Intensive: Input Validation

This test was developed using each CPDT included in the study with the exception of

MoSync because of its lack of regular expression comparators. The test has been

completed on BlackBerry 7, iOS, BlackBerry 10 and Android using both cross-

platform and native development tools. Table 5.3 shows the results of the input

validation benchmark with up to 4 comparisons for each platform.

59

Table 5.3: Input Validation Test Result Matrix (milliseconds)

 Android iOS BlackBerry 10 BlackBerry 7

WebWorks - - 104.2 172.5

BB10 Native

SDK
- - 141.8 -

Android Java

SDK
1463.5 - - -

iOS Native SDK - 311.9 - -

PhoneGap 128.2 257.9 - 339.8

Appcelerator

Titanium
55.3 213.6 - -

Adobe Air 549.3 1001 - -

The results show quite clearly that there is a correlation with performance and

using certain tools. The BlackBerry 10 results appear quite close but BlackBerry 7,

iOS and Android have an extremely large range. Adobe Air in this test seems to

perform fairly poorly. It is commonly expected that native tests perform best,

however it can be seen that Android’s Java SDK which is used for most development

on the platform, actually fairs worse than all CPDTs.

Along with the results in Table 5.3, we can look at the individual tests that make

up the averages in that chart. Figure 5.1 shows the 4 tools on the Android platform

graphed for each of the 15 test runs. Each produces fairly consistent results with some

variability.

60

Figure 5.1: Input Validation Test Results on Android Platform

The median values and standard deviation are found in Table 5.4, confirming the

relatively low variability between tests. The low variability confirms that the

consistency of the test, and that we are using an adequate number of averaged

iterations.

Table 5.4: Test Variability Statistics for Input Validation on Android

 Mean Median Standard Deviation

Android Java SDK 1463.5 1408 186.7

PhoneGap 128.2 119 38.7

Appcelerator

Titanium
55.3 36 43.2

Adobe Air 549.3 519 70.2

It is important to know the significance of the values and see if the difference in

the means is statistically significant. To do this, the T-test will be used where the raw

data for the 15 test runs are compared to see if it is possible that the difference in the

mean value is simply by chance.

0
200
400
600
800

1000
1200
1400
1600
1800
2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Du
ra

tio
n

(m
s)

Test Iteration

Input Validation Test on Android

Android

AIR

PhoneGap

Titanium

61

 In order to test this, we must choose our null hypothesis. For this we have

selected: H0: μTOOL1 = μTool2, i.e., that the two means are equal. Our alternate

hypothesis would be stated as HA: μTOOL1 ≠ μTool2. A high level of confidence in the

answer is required to prove the difference in mean is significant so a level of 99% is

used, therefore with a α of 0.01.

Table 5.5: T-test Calculations for Android Native and PhoneGap Means on Android

 Android Native PhoneGap
Mean 1463.47 128.2
Variance 34843.56 1495.89
Observations 15 15
Pooled Variance 18169.72 Hypothesized
Mean Difference 0
df 28
t Stat 27.13
P(T<=t) two-tail 1.20043E-21
t Critical two-tail 2.76

When observing the difference in the Android Native test data to the PhoneGap

tests, we can find a P value of 1.2 x 10-21 as seen in Table 5.5. This means that as this

number is less than 0.01, we are able to reject the null hypothesis and adopt the

alternative hypothesis. With a high degree of confidence we can see that the two tests

show a statistically verifiable difference in the time for completion. Similar tests are

shown in Table 5.6 to Table 5.9.

Table 5.6: T-test Calculations for iOS Native and Titanium Means on iOS

 iOS Native Titanium
Mean 311.85 213.6
Variance 3764.73 14.54
Observations 15 15
Pooled Variance 1889.64 Hypothesized Mean
Difference 0
df 28
t Stat 6.19
P(T<=t) two-tail 1.09978E-06
t Critical two-tail 2.76

62

Table 5.7: T-test Calculations for BlackBerry 7 WebWorks and PhoneGap Means on BB7

 WebWorks PhoneGap
Mean 172.5 339.8
Variance 118.37 1969.03
Observations 15 15
Pooled Variance 1011.79 Hypothesized Mean
Difference 0
df 29

t Stat -14.63
P(T<=t) two-tail 6.33709E-15
t Critical two-tail 2.76

Table 5.8: T-test Calculations for BB10 Native and WebWorks Means on BB10

 Native BB10 WebWorks
Mean 141.8 104.23
Variance 134.31 404.87
Observations 15 15
Pooled Variance 269.59 Hypothesized
Mean Difference 0
df 28
t Stat 6.27
P(T<=t) two-tail 8.96616E-07
t Critical two-tail 2.76

Table 5.9: T-test Calculations for PhoneGap and Titanium Means on Android

 PhoneGap Titanium
Mean 128.2 55.33
Variance 1495.89 1863.24
Observations 15 15
Pooled Variance 1679.56 Hypothesized
Mean Difference 0
df 28
t Stat 4.87
P(T<=t) two-tail 3.9653E-05
t Critical two-tail 2.76

Each of these tests shows the significant difference between the two tested values

of the native platform tools and the CPDTs. In Table 5.9 we additionally see that

there is a statistically significant difference in the PhoneGap and Titanium results on

Android as well. This shows that the values on various CPDTs are also very different.

63

Similar testing was conducted for the other combinations and showed similar

significance.

5.2.3 Data Driven: Local PIM Access

The test of access to local contact information posed some difficulties with some

APIs not being available or they did not allow interaction as we would like. On

Android, Appcelerator requires user interaction to be able to access any contact data

and therefore was unable to complete the test. BlackBerry WebWorks seemed to

produce errors when testing this feature and was subsequently dropped from the test.

Once again we are seeing the native Java on Android tests perform worse than the

CPDT, which is quite promising for the prospects of using cross-platform

development. This however, is only for Android; on iOS, the Objective C native

version continues to provide much quicker access to contact information by a very

large margin.

Table 5.10: Local PIM Access Test Result Matrix (milliseconds)

 Android iOS

WebWorks - -

Android Java SDK 33176 -

iOS Native SDK - 1154.6

PhoneGap 23396 9274.6

Appcelerator Titanium - 4574.3

5.2.4 Data Driven: Remote Service Access

With the remote access test, we aim to see if there is a lag in establishing connections

to our local server to download data. It does seem by the results in Table 5.11 that

there is variability based on platform for connecting to this server. All testing was

64

done via a local network on a server with zero utilization therefore removing those

factors.

As we’ve seen in other tests, Adobe Air seems to lag behind the competition and

iOS native tests continue to outperform all others. Similarly, WebWorks on

BlackBerry 7 has outperformed PhoneGap, once again using nearly identical code.

The delay between PhoneGap and native applications is less apparent in this test than

some others, showing that the network access lag may not be a large problem for a

developer who chooses to use PhoneGap.

Table 5.11: Remote Service Access Test Result Matrix (milliseconds)

5.2.5 Data Driven: Sorting

The sort test is another that can provide a wide view of many tools due to the

simplicity of the approach. With that said, this test introduced the largest range we

have seen in testing especially on iOS. This version had PhoneGap and Appcelerator

running upwards of 38 times slower than native. Both of these tools rely on a

JavaScript engine to complete computation, explaining why they both had similar

results in this test.

Testing on Android produced an interesting result with MoSync. While it

performed very quickly on iOS, it was by far the slowest on Android. This type of

variability and leaves the developer with a lack of confidence for the performance of

 Android iOS BlackBerry 7

WebWorks - - 685.5

Android Java SDK 1476.8 - -

iOS Native - 1156.3 -

PhoneGap 1141.6 1890.3 986

Adobe Air 4204 3485.3 -

65

their application across all platforms. Even with the cross-compiled code it provides,

MoSync’s Android performance is dissimilar to code from Android’s Java SDK. This

may suggest that cross-compilation may not be the best method of cross-platform

tool.

Table 5.12: Sorting Test Result Matrix (milliseconds)

 Android iOS BlackBerry 10 BlackBerry 7

WebWorks - - 536.8 629.7

BB10 Native

SDK
- - 850 -

Android Java

SDK
802.3 - - -

iOS Native - 624.3 - -

PhoneGap 1290.3 23048.8 - 3365.7

Appcelerator

Titanium
804.1 20550.2 - -

Adobe Air 3755.3 8991.7 - -

MoSync 12132.5 516.1 - -

 As seen in the Input Validation Test in Section 5.2.2, statistical analysis can be

conducted on the results to test if they are significantly different. In addition to the T-

test, the ANOVA can be used to compare the results of each CPDT for each platform.

The advantage of using this test is the ability to compare multiple means rather than

just two as in the T-test. As in the case from Section 5.2.2, we will be using an α of

0.01. The same null and alternative hypothesis applies. The calculations for the

ANOVA function are summarized for iOS and Android in Table 5.13 to

Table 5.16.

These tables show the summary statistics for the raw data and the variance based

on the 15 test runs. The second chart for each platform shows the calculations needed

for the ANOVA function. These are the sum of squares (SS), degrees of freedom (df),

66

mean square (MS), F value, P-value, F critical. The important value to look at at the

end of the calculation is the P-value.

Table 5.13: Summary Statistics for ANOVA Calculations on Android

Groups Count Sum Average Variance

Titanium 15 12062 804.13 1043.27

PhoneGap 15 19354 1290.27 77909.5

Native 15 12035 802.33 12863.81

Air 15 56330 3755.33 31042.81

MoSync 15 181987 12132.47 94741.12

Table 5.14: ANOVA Calculations for Android using data from Table 5.13

Source of

Variation
SS df MS F P-value F crit

Between

Groups
1405240419 4 351310104.8 8072.36

1.9221E-

92
3.60

Within

Groups
3046407.07 70 43520.10095

Total 1408286826 74

 We can see in Table 5.14 a P-value of 1.922x10-92, far smaller than our alpha of

0.01. This allows a rejection of the null hypothesis and strong support of the

alternative hypothesis. This means that the average difference in the Android time

taken for test completion using each tool is significantly different. Also of note is the

enormous difference of the F value and the critical similar to the P-Value and alpha

showing the strong support for the alternative hypothesis.

We can also see a P-value of 7.59x10-152 in Table 5.15 when looking at the iOS

results supporting the same alternative hypothesis. Similar results are expected for all

other tests and additional statistical analysis can be completed in future work.

67

Table 5.15: Summary Statistics for ANOVA Calculations on iOS

Groups Count Sum Average Variance

Titanium 15 308253 20550.2 6439.46

PhoneGap 15 345732 23048.8 8767.03

Native 15 9364 624.3 641.37

Air 15 134875 8991.7 5433.95

MoSync 15 7742 516.1 17.27

Table 5.16: ANOVA Calculations for iOS using data from Table 5.15

Source of

Variation
SS df MS F P-value F crit

Between

Groups
6864873598 4 1716218400 402885.58

7.5962E-

152
3.60

Within

Groups
298187.12 70 4259.82

Total 6865171785 74

5.2.6 Device Access: Microphone Usage

The microphone usage test was unable to be completed with most tools due to the

requirement for user interaction or lack of relevant APIs. The test was completed

natively for Android and using Adobe Air and showed once again Android’s Java

SDK being outperformed by a cross-platform rival.

Table 5.17: Microphone Usage Test Result Matrix (milliseconds)

 Android

Android Java SDK 1193.6

Adobe Air 520.3

Using the Android version, in order to complete the test, the MediaRecorder

function was used providing us the controls for recording with parameters seen here.

68

MediaRecorder recorder = new MediaRecorder();
recorder.setAudioSource(MediaRecorder.AudioSource.MIC);
recorder.setOutputFormat(MediaRecorder.OutputFormat.THREE_GPP);
recorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB);
recorder.setMaxDuration(500);

Unlike many other platforms, Android Native allowed the max duration to be set

so the recording can begin and stop programmatically, allowing the test to be

completed.

5.2.7 User Experience: UI Elements

The user interface tests are interesting because it can be difficult to ensure the actions

are being completed before moving on to the next. Table 5.18 shows the MoSync

tests with an asterisk because after approximately 250 checking and unchecking

cycles of the checkboxes, the application will throw a MoSync panic. It does not

provide any information on what the panic situation is and the test could only be

completed with the checkbox portion removed. Android’s Java version also ran into

issues with some UI elements forcing it to be dropped from testing.

All other tools that were able to complete the test had varied results again having

an enormous range. Adobe Air provides the most interesting data and some concern.

The test is so fast that it seems it may not have completed all steps however, it can be

programmatically paused at any point, and it shows the correct state. Air has a

different UI model than other platforms and it seems in manipulating that UI, Air

shines. PhoneGap once again fared the worst on all platforms.

69

Table 5.18: UI Elements Test Result Matrix (milliseconds)

 Android iOS BlackBerry 7

WebWorks - - 11388.7

iOS Native - 748 -

PhoneGap 9350.9 12161.8 17582.9

Appcelerator

Titanium
- 1571.7 -

Adobe Air 75.7 54 -

MoSync 5618.1* 1624.9* -

 With the major difference between the Titanium and PhoneGap CPDTs being

their UI approach, it seems from this test that using native UI components has

allowed for better performance. While still behind native and Adobe Air, on iOS,

Titanium took approximately half as much time to complete the actions as PhoneGap.

This begins to show that this method of blending cross-platform JavaScript with

native tools may be a strong solution to the cross-platform question.

5.2.8 User Experience: Screen Transition

The final test requires 40 screen transitions. Similar to what was seen in Section

5.2.7; Adobe Air was orders of magnitude faster than the others. Careful

considerations were taken to ensure the result was accurate and it seems to be so. The

result is so quick that nothing is seen on screen but again can be stopped midpoint to

see the completed actions.

On Android, PhoneGap with its HTML based UI seemed to provide the quickest

transitions giving the widely compatible UI strong indicator of performance. Titanium

uses much of the same components as PhoneGap but uses native UI tools; seems to

have been slowed quite a bit.

70

Table 5.19: Screen Transition Test Result Matrix (milliseconds)

 Android iOS

WebWorks - -

Android Java SDK 3814.2 -

PhoneGap 722.9 1395.5

Appcelerator

Titanium
5717.1 1767.8

Adobe Air 31 11.3

MoSync 735.5 922.9

5.2.9 Overall Result

The testing showed quite a varied result with many CPDTs being best at certain

actions. Table 5.20 shows in how many tests the development tool performed best or

second best. Since not all tools were available in the same number of tests, a

percentage is shown based on the total number of tests it competed in.

Table 5.20: Overall Results of Performance Evaluation

 Total Tests 1st 2nd Percent First

WebWorks 7 6 0 86%

BB10 Native SDK 2 0 2 0%

Android Java SDK 6 1 3 17%

iOS Native 5 3 1 60%

PhoneGap 19 2 12 11%

Appcelerator

Titanium
10 4 3 40%

Adobe Air 11 5 0 45%

MoSync 6 0 3 0%

71

5.3 Phase III: Development Experience Discussion

During the evaluation process, much experience has been gathered for developing

using these CPDTs. Many bugs, irregularities and promising features have been

uncovered in each tool that makes it useful for developers to use. Since we are

evaluating 4 such tools, the discussion will be broken into the respective subsections

and discuss topics mentioned in the framework.

5.3.1 PhoneGap

PhoneGap is a relatively useful development tool, however with no IDE with

debugging; it became difficult to test the applications. PhoneGap provides much core

functionality that more or less worked as expected for each of the platforms. The

Ripple emulator works to test some functionality, but as it is simply a chrome frame;

the UI of an application looks very different than what comes on the device. The

emulator is also only compatible with version 1.0 which is behind the latest 2.0

release currently.

PhoneGap Build was the major differentiator with this tool. However, using it

means that there are certain assumptions implied on applications and certain

limitations as well. PhoneGap Build currently has no support for plugins, meaning

that any missing functionality in PhoneGap cannot be implemented by developers.

Support for plugins is on PhoneGap Build’s roadmap, so developers may see this

available in the future.

The open source nature of PhoneGap allows others to make use of its core

functionality and build the missing components to make it a more robust tool. This is

beginning to happen with IBM Worklight and is promising for this CPDT.

PhoneGap is quickly adapted to the latest changes in mobile platforms through the

community support and its rapid development cycle. It was seen that all input types

72

were available and interface construction was limited to web technologies that were

not the best choice for mobile applications. Usage of the tools is free with charges for

support giving it an edge in that respect.

5.3.2 Appcelerator Titanium

Titanium shares many similarities with PhoneGap but from the start we noticed that

you cannot have one set of code for Android and iOS. Segments of code and UI

elements must be developed independently with only a central section of the code

being cross-platform. It is an interesting approach and seemed to work well even with

the extra work. The trade off to allow native UI components appears to be worth the

extra effort needed for a consistent UI with all of the features of native tools.

The Titanium SDK encountered quite a few bugs and issues on Windows and

Mac. It does not seem to be currently compatible with the latest release of Xcode but

when running, worked well. Some tests were not possible such as the Android version

of the PIM test from Section 4.3.3.1. The APIs do not provide direct access to

contacts without user interaction, limiting what can be done with them. Further, we

found they did not allow standard JavaScript HTTP requests and instead had their

own implementation that our server had some issues with.

Titanium is a good development tool with many developer debugging and other

tools available but many bugs and limitations in this early release of the product,

shows it lacks maturity. The Titanium developers have stated that they will update the

platform within 30 days of new features being released, however that cannot be

verified. Additionally, the costs of using Titanium can be substantial if you require

any of the enterprise level features. Costs are not generally available and are specific

to each application and the agreement between the developer and the sales team.

73

5.3.3 Adobe Air

Air is a fairly easy tool to learn for the many Flash developers in the industry. It is a

simple and natural progression of the Flash platform which allows for cross-platform

applications. It seems that some of the native Flex components performed very

slowly, but alternative Flash libraries were available to solve this. Similarly, the drag

and drop design view does not perform very well or consistently across platforms so

creating components programmatically may be the best option in many cases.

Using ActionScript to develop the UI provides very quick responsiveness for the

visual components and can be compiled into a SWC file, allowing them to be

rendered quickly. The UI tests showed that this was effective and Air showed a

commanding lead. The UI allows for multiple input methods and quite a bit of

flexibility.

Air is not updated as frequently as other platforms and it seems many of the

functions we required were missing from the ActionScript libraries. Development for

Adobe Air is free; however, some of the advanced tools come at a price. These tools

are well matured and assist with the development process.

The overall experience using Air was painless. Most APIs were available with

only a few tests not being possible. ActionScript is a powerful language and provides

very descriptive warnings to prevent issues. While the ActionScript component was

somewhat limited when compared to using Air with Flex, it provided a satisfactory

experience for cross-platform development. Air while adequate, relies heavily on

using platform specific code when not using ActionScript. This is somewhat limiting

in our aim for creating cross-platform tests and not everything was possible.

5.3.4 MoSync

MoSync while seeming great in the feature comparison did not live up to

expectations. The tool had many bugs with very little information provided to
74

describe what exactly had gone wrong so while it may be a developer issue, it is more

difficult to discover this than on other platforms. Issues with the lack of regular

expressions, using checkboxes and asynchronous methods prevented MoSync from

being included in many benchmark tests.

While a development environment is provided, installing on to the emulator

seemed to be much slower than directly using a device both with slow compilation.

The IDE provided is not very good for C and C++ coding and while its interface is

somewhat robust, code completion runs fairly inaccurately. The setup instructions

were often unclear and it seemed that the iOS compilation would fail arbitrarily where

if you try compiling the same code again, it may work.

 Overall, MoSync development environment is lacking ripeness and it seems that

the cross-compilation methods it provides did not offer any performance boost. The

interface components were robust and free tiers are available, but the stability of the

environment is main issue. MoSync offers many forms of application development

where we focussed solely on cross-compilation using C code. Other methods may fare

better.

5.3.5 Native Tools

When building the benchmarks some experience with native development tools was

also collected. Generally, native tools provided a better experience for development

with some CPDTs coming close like Adobe Air. Native tools on iOS and BlackBerry

also seemed to perform better in testing while being easier to develop for.

With Android, we had issues with it believing the application was unresponsive

while completing certain tasks that required long processing times and restricted

updating of the UI. The auto-building feature, debugging and integration of the

Android SDK saved quite a bit of time when compared to the CPDTs used. This made

it simple to find underlying errors and resolve them quickly.

75

With iOS, the native development environment uses Objective C, a fairly complex

language with unusual syntax. Performance and the speed of testing and debugging

were admirable with native tools however it had difficulty using regular expressions.

The interfaces that can be built are quite friendly, however; using the storyboard to

make them has a steep learning curve.

BlackBerry 10 development tools are still in their early stages which were shown

by it missing important things like a contacts API. During compilation, it often

mentioned unresolved inclusions when they were added according to the

specifications and the compiled file worked correctly. The IDE is useful but is not as

good at code completion and error location as Android’s IDE. Errors do not get

underlined until compile time and do not show if they have been resolved until a new

compile which can be misleading. The code completion was slow, but faster than

MoSync.

Developing with WebWorks was very similar to PhoneGap. For many tests, the

identical code was compiled with both tools but WebWorks performed better. The

same issues are apparent with the lack of an adequate IDE and emulator. The APIs are

limited but allow for additional customization through Java and community

extensions. Overall application performance was fairly good for this native-like tool.

For each of the native tools, they receive updates as soon as they are released,

since they come from the vendor themselves. This can help provide the latest features

to users and also allow for stability when new features and enhancements are added.

The costs of development very with most offering a free tier with the only exception

being iOS application publication.

5.4 Analysis

The results of the evaluation of these 4 CPDTs and corresponding native tools

provided an assortment of winners and losers. In some instances, the cross-platform

76

tools performed much better in the controlled experiments than the native, but in

others much worse. PhoneGap performed the worst on average and iOS Native was

the best on its platform.

Adobe Air and Appcelerator Titanium were shown to be the most feature rich and

best performing tools in testing, however, both still have some downsides discussed

previously. Adobe tools worked well but required more platform specific code to

complete certain action than the others. Titanium also required modification as the UI

must be independently developed for both Android and iOS. This however, was seen

to provide better performance in comparison to PhoneGap which provided the most

portable code of the group.

A clear winner is not apparent; however the tests show that depending on the

development required, different tools may be best used. UI intensive tasks would

favour Titanium or Air where simple applications would be best on PhoneGap to

reach the widest audience. MoSync was seen as a disappointment in features,

performance and development experience although this may change as the tool

matures. It will be vitally important for any developer considering using a CPDT to

look to evaluations such as this to find the matching features for their application

before beginning development.

The results show that CPDTs can rival their native counterparts in many respects

and should be strongly considered for development. The feature sets are becoming

more robust and time is saved by building the applications using the tools rather than

multiple native versions. The results show that native tools do not necessarily mean

the application will have the best performance but you must instead match your tool

to your application.

The framework itself lent quite well to providing a full view of the CPDT

capabilities and performance. The high level feature structure was able to be broken

into its various components and applied to evaluate these CPDTs providing the best

77

overview available. The performance benchmarks have shown the first testing of

apples to apples comparison of algorithm completion times using code compiled with

multiple CPDTs. This information has provided the necessary information for

developers to choose the correct CPDT for their application.

The results of this evaluation have also shown that the current set of CPDTs often

show weaknesses when compared to their native counterparts. To eliminate the issue,

optimization techniques must be developed to enable cross-platform developers to be

on a more level playing field to those using native tools.

5.5 Summary

In this chapter we saw the implementation of the evaluation framework applied to

PhoneGap, Appcelerator Titanium, Adobe Air, MoSync and a collection of native

tools. The tests were implemented for a variety of areas of study in the framework to

show the viability of each of the pieces. Each tool fared very differently in the feature

comparison. The number of features supported varied greatly and showed that it is

important to complete a feature audit before choosing a tool for development.

The results of this evaluation showed that the frameworks, even with nearly

identical code, perform very differently in performance testing. These differences are

sometimes very significant and may deter developers from using a tool such as

MoSync or PhoneGap that performed poorly in comparison. The native tools

performed quite well, especially on the iOS platform where it provided the best

performance in the majority of tests.

Aspects of the various tools showed where some have difficulties and others do

not. The development environment was seen to be lacking compared to most of the

native tools. We saw that the CPDTs did not score as highly on the evaluation as

some native tools. In the next chapter we will draw conclusions and discuss methods

for extending this research.

78

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Developing applications for today’s diverse mobile platform market is a time

consuming and difficult task. We have seen that developers have an open question

about whether CPDTs can be used to save development time, while keeping a certain

level of performance and functionality. Through developing a framework for

evaluating CPDTs in this thesis, we have produced a method of answering this and

applied it to numerous tools. This has shown that the framework provides the details

needed to answer this question through its benchmarking and evaluation.

 Our testing has shown that the clear differences in the tools chosen can have a

great impact both negatively and positively on development of a mobile application.

Some CPDTs were shown to have performance issues while others provided too little

functionality. The most attractive part of this framework is that it can be extended to

new functionality brought by future releases of CPDTs with the core concepts

remaining. We have seen that it is important for developers to choose the right tool

for their particular application and this evaluation framework provides enough detail

on the CPDT tested, to allow developers to choose which tool is fit to purpose for

them.

The contributions of this thesis are:

• A high level, extensible framework for evaluation of any CPDT,

• An implementation of the framework with specific test criteria that can be used

for in-market CPDTs,

• Specific testing procedures for mobile device benchmarks,

79

• A wide ranging evaluation of several popular cross-platform tools using standard

benchmarks and new specifically designed tests,

• Creation of reusable tests and scripts that can be translated into an API.

Through our own development and evaluation, we have seen that the usage of

CPDTs still has many downsides. Performance issues and a somewhat steep learning

curve remain while documentation is being improved. UI considerations must be

made for each platform and the evaluation has shown that write once, run anywhere

is currently not possible.

As mobile OS platform makers make their browsers more standards compliant,

web-based tools like PhoneGap will improve with HTML5 integration. Each of these

tools is still in their infancy and more APIs will be added and limitations removed as

time goes on. The development process is very fluid for mobile applications and it

seems that will continue to be true over the next few years. Using this evaluation

framework and consistently updating the results will help developers sort through the

difficult task of choosing a CPDT. With the number of platforms available,

developers must be very versatile and businesses need to expend significant resources

to have their applications available on more than one device so interest in the usage

of these tools is only set to grow.

6.2 Future Work

This thesis has been successful in providing a robust framework to evaluate cross-

platform tools from many angles, but there is room for evolution. Testing and the

number of CPDTs included were limited by the immense time and effort it takes to

complete one of these evaluations. Further testing can occur to provide guidance with

new CPDTs that was not currently necessary to prove the validity of this framework.

The framework can be extended to test other uses such as game development that

were out of scope.

80

 The scripts used for testing can in the future be turned into advanced APIs when

additional tests are implemented. Additionally, the same tests and concepts can be

extended to be tested with tablet devices. The larger screen and higher resolution of

tablets will allow for expanded UI testing. The same tests may incorporate other

aspects including memory usage and application size as well as further statistical

analysis.

 It is expected that the APIs used for remote database testing and logging can be

expanded for use by outside parties to complete their tests and report their results into

a larger system. These results can be verified and displayed in some usable form for a

developer to easily review evaluations for multiple CPDTs at a glance to choose the

features they require and fine the correct tool for their purpose.

81

Bibliography
[1] Adobe Systems Inc. (2012) PhoneGap. [Online]. http://www.phonegap.com/.

[2] Adobe Systems Inc. (2012, April) PhoneGap. [Online].

https://build.phonegap.com/docs/config-xml.

[3] V. Agarwal, S. Goyal, S. Mittal, and S. Mukherjea, "MobiVine: A Middleware

Layer to Gandle Fragmentation of Platform Interfaces for Mobile

Applications," in Middleware '09: Proceedings of the 10th ACM/IFIP/USENIX

International Conference on Middleware, 2009, pp. 24:1-24:10.

[4] S. Allen, V. Graupera, and L. Lundrigan, Pro Smartphone Cross-Platform

Development: iPhone, Blackberry, Windows Mobile and Android Development

and Distribution, 1st ed. Berkely, CA, USA: Apress, 2010.

[5] AnTuTu Hong Kong. (2012) AnTuTu. [Online]. http://www.antutu.com.

[6] Appcelerator Inc. / IDC, "Q1 2011 Mobile Developer Report," Tech. Rep.

2011. [Online].

http://assets.appcelerator.com.s3.amazonaws.com/docs/Appcelerator-IDC-Q1-

2011-Mobile-Developer-Report.pdf.

[7] Appcelerator Inc. / IDC, "Q3 2012 Mobile Developers Report," Tech. Rep.

2012. [Online].

http://www.appcelerator.com.s3.amazonaws.com/pdf/Appcelerator-Report-Q3-

2012-final.pdf.

[8] Appcelerator Inc. (2012) Appcelerator. [Online].

http://www.appcelerator.com/.

[9] Appcelerator Inc., "Appcelerator Announces Beta Support For Blackberry,"

Press Release 2010. [Online].

http://www.appcelerator.com/2010/04/appcelerator-announces-beta-support-

for-blackberry/.

[10] Appcelerator Inc. (2012) Appcelerator Titanium Mobile (SDK). [Online].

http://docs.appcelerator.com/titanium/2.0/#!/api.

82

[11] appMobi. (2012, February) HTML5 App School Webinar: Track your app's

usage using appMobi's statMobi analytics. Webinar. [Online].

http://www.youtube.com/watch?v=lU7NJY6RYQE.

[12] appMobi. (2012) The appMobi PhoneGap XDK turbocharges PhoneGap.

[Online]. http://dev.appmobi.com/?q=node/153.

[13] Aurora Softworks. (2012, May) Aurora Softworks Home. [Online].

http://www.aurorasoftworks.com/.

[14] J. Babb et al., "The RAW benchmark suite: computation structures for general

purpose computing," in IEEE Symposium on Field-Programmable Custom

Computing Machines, apr 1997, pp. 134-143.

[15] H. Behrens, "Cross-Platform App Development for iPhone, Android and Co.

— A Comparison," in MobileTechCon, Mainz, September 2010.

[16] M.D. Bloice, F. Wotawa, and A. Holzinger, "Java's alternatives and the

limitations of Java when writing cross-platform applications for mobile

devices in the medical domain," in ITI '09. Proceedings of the ITI 2009 31st

International Conference on Information Technology Interfaces, 2009., june

2009, pp. 47-54.

[17] J. M. Bull, L. A. Smith, L. Pottage, and R. Freeman, "Benchmarking Java

against C and Fortran for scientific applications," in Proceedings of the 2001

joint ACM-ISCOPE conference on Java Grande, 2001, pp. 97-105.

[18] C. Cantrell. (2011, March) iOS Features in Adobe Air. [Online].

http://www.adobe.com/devnet/air/articles/ios_features_in_air26.html.

[19] Centre for Mobile Education and Research. (2012, May) CMER Applications.

[Online]. http://cmer.uoguelph.ca/apps.html.

[20] A. Charland and B. LeRoux, "Mobile Application Development: Web vs.

Native," Queue, vol. 9, pp. 20:20--20:28, April 2011.

[21] S. Che et al., "Rodinia: A benchmark suite for heterogeneous computing," in

Proceedings of the 2009 IEEE International Symposium on Workload

Characterization (IISWC), Washington, oct. 2009, pp. 44-54.

83

[22] S. Che et al., "A characterization of the Rodinia benchmark suite with

comparison to contemporary CMP workloads," in IISWC '10 Proceedings of

the IEEE International Symposium on Workload Characterization (IISWC'10),

Washington, dec. 2010, pp. 1-11.

[23] comScore. (2012, October) comScore Reports August 2012 U.S. Mobile

Subscriber Market Share. Press Release. [Online].

http://www.comscore.com/Press_Events/Press_Releases/2012/10/comScore_R

eports_August_2012_U.S._Mobile_Subscriber_Market_Share.

[24] B. Cornelius, Understanding Java. Harlow, England: Addison-Wesley, 2001.

[25] C. Cowell-Shah. (2004, January) Nine Language Performance Round-up:

Benchmarking Math & File I/O. [Online]. http://www.osnews.com/story/5602.

[26] U. Dave and R. Samant, "Overview of smartphone application development

using cross-platform framework," in ICWET '11: Proceedings of the

International Conference & Workshop on Emerging Trends in Technology,

2011, pp. 1379-1379.

[27] P. Dickson, "Cabana: a cross-platform mobile development system," in

SIGCSE '12: Proceedings of the 43rd ACM technical symposium on Computer

Science Education, 2012, pp. 529-534.

[28] P. Fleming and J. Wallace, "How not to lie with statistics: the correct way to

summarize benchmark results," Communications of the ACM, vol. 29, no. 3,

pp. 218-221, March 1986.

[29] Form Tools. (2012) Generate Data. [Online]. http://www.generatedata.com/.

[30] T. Fuchs. (2012, April) Zepto.js. [Online]. http://zeptojs.com/.

[31] M. Gualtieri. (2012, June) Mike Gualtieri's Blog. [Online].

http://blogs.forrester.com/mike_gualtieri/12-06-02-

hey_developers_make_your_mobile_apps_blazing_fast.

[32] G. Hartmann, G. Stead, and A. DeGani, "Cross-platform mobile development,"

Tribal, Lincoln House, The Paddocks, Tech. Rep. March 2011. [Online].

http://www.mole-

84

project.net/images/documents/deliverables/WP4_crossplatform_mobile_develo

pment_March2011.pdf.

[33] K. Hoste et al., "Performance prediction based on inherent program

similarity," in PACT '06: Proceedings of the 15th international conference on

Parallel architectures and compilation techniques, 2006, pp. 114-122.

[34] G. Hu and A. Gadapa, "Compiling C++ programs to Java bytecode," in SNPD-

SAWN '05: Proceedings of the Sixth International Conference on Software

Engineering, Artificial Intelligence, Networking and Parallel/Distributed

Computing and First ACIS International Workshop on Self-Assembling

Wireless Networks (SNPD/SAWN'05), #May# 2005, pp. 56-61.

[35] IBM. (2012) IBM - Client Architecture - PhoneGap. [Online]. http://www-

01.ibm.com/software/mobile-solutions/worklight/features/phonegap/.

[36] IBM. (2012) IBM Worklight. [Online]. http://www-

01.ibm.com/software/mobile-solutions/worklight/.

[37] IBM, "Worklight and PhoneGap Comparison," Worklight Inc., Tech Brief

2012. [Online].

http://www.worklight.com/assets/pdf/Worklight%20vs%20PhoneGap%20-

%20Comparison.pdf.

[38] J. Issa et al., "TMAPP – Typical Mobile Applications Benchmark," in MoBS7

'11: Seventh Annual Workshop on Modeling, Benchmarking and Simulation,

2011.

[39] S. Kaltofen, M. Milrad, and A. Kurti, "A cross-platform software system to

create and deploy mobile mashups," in ICWE'10: Proceedings of the 10th

international conference on Web engineering, Berlin, Heidelberg, 2010, pp.

518-521.

[40] Y. Kao, C. Lin, K. Yang, and S. Yuan, "A Cross-Platform Runtime

Environment for Mobile Widget-Based Application," in CYBERC '11:

Proceedings of the 2011 International Conference on Cyber-Enabled

Distributed Computing and Knowledge Discovery, oct. 2011, pp. 68-71.

85

[41] U. Krishnaswamy and I. Scherson, "A framework for computer performance

evaluation using benchmark sets," IEEE Transactions on Computers, vol. 49,

no. 12, pp. 1325-1338, dec 2000.

[42] J. Lyle, S. Monteleone, S. Faily, D. Patti, and F. Ricciato, "Cross-Platform

Access Control for Mobile Web Applications," in POLICY '12: Proceedings of

the 2012 IEEE International Symposium on Policies for Distributed Systems

and Networks, july 2012, pp. 37-44.

[43] Macadamian, "Choosing A Cross-Platform Mobile Framework," Tech. rep.

2011. [Online].

http://www.macadamian.com/images/uploads/whitepapers/Macadamian_Mobil

e_Cross_Platform.pdf.

[44] MoSync. (2010, September) MoSync. [Online].

http://www.mosync.com/documentation/manualpages/optimizing-mobile-

applications.

[45] Motorola Solutions Inc. (2012) Rhodes. [Online].

http://www.motorola.com/Business/US-EN/RhoMobile+Suite/Rhodes.

[46] G. Nikishkov, Y. Nikishkov, and V. Savchenko, "Comparison of C and Java

performance in finite element computations," Computers & Structures, vol. 81,

no. 24–25, pp. 2401-2408, 2003.

[47] J. Ohrt and V. Turau, "Cross-Platform Development Tools for Smartphone

Applications," Computer, vol. 45, no. 9, pp. 72-79, September 2012.

[48] D. Olanoff. (2012, September) Tech Crunch. [Online].

http://techcrunch.com/2012/09/11/mark-zuckerberg-our-biggest-mistake-with-

mobile-was-betting-too-much-on-html5/.

[49] T. Paananen, "Smartphone Cross-Platform Frameworks," Jamk University of

Applied Sciences, Thesis 2011. [Online].

https://publications.theseus.fi/bitstream/handle/10024/30221/110510_Thesis_T

imo_Paananen.pdf.

[50] L. Paulson, "Materials Breakthrough Could Eliminate Bootups," Computer,

86

vol. 42, no. 6, pp. 23-25, June 2009.

[51] L. Prechelt, "An Empirical Comparison of Seven Programming Languages,"

Computer, vol. 33, no. 10, pp. 23-29, October 2000.

[52] A. Puder, "Cross-compiling Android applications to the iPhone," in PPPJ '10:

Proceedings of the 8th International Conference on the Principles and

Practice of Programming in Java, 2010, pp. 69-77.

[53] A. Puder and I. Yoon, "Smartphone Cross-Compilation Framework for

Multiplayer Online Games," in ELML '10: Proceedings of the 2010 Second

International Conference on Mobile, Hybrid, and On-Line Learning, #feb.#

2010, pp. 87-92.

[54] D. Rajapakse, "Techniques for Defragmenting Mobile Applications: A

Taxonomy," in SEKE, 2008, 2008, pp. 923-928.

[55] J. Reed and P. McMahan. (2000, June) Linpack Benchmark -- Java Version.

[Online]. http://www.netlib.org/benchmark/linpackjava/.

[56] Research in Motion, "BlackBerry WebWorks SDK: Development Guide,"

Tech. rep. ISBN: SWD-1214876-1129021640-001, 2010. [Online].

http://docs.blackberry.com/en/developers/deliverables/20772/BlackBerry_Wid

get_SDK-Development_Guide--1214876-0920094453-001-1.5-US.pdf.

[57] Research in Motion Inc. (2011, October) RIM Unveils BlackBerry BBX -

Combines the Best of BlackBerry and QNX to Provide a Next Generation

Platform for BlackBerry Smartphones and Tablets. Press Release. [Online].

http://press.rim.com/release.jsp?id=5230.

[58] V. Rijmen and J. Daemen. (2001, February) AES Algorithm (Rijndael)

Information. [Online]. http://csrc.nist.gov/archive/aes/rijndael/wsdindex.html.

[59] R. Rogers, "Developing Portable Mobile Web Applications," Linux J., vol.

2010, September 2010.

[60] Sencha Inc. (2012) Sencha Touch. [Online].

http://www.sencha.com/products/touch.

[61] F. Sibai, "Evaluating the Performance of Single and Multiple Core Processors

87

with PCMARK 05 and Benchmark Analysis," SIGMETRICS Perform. Eval.

Rev., vol. 35, pp. 62-71, March 2008.

[62] B. Siegfried, "Enhanced student technology support with cross-platform

mobile apps," in SIGUCCS '11: Proceeding of the 39th ACM annual

conference on SIGUCCS, 2011, pp. 31-34.

[63] I. Singh and M. Palmieri, "Comparison of Cross-Platform Mobile

Development Tools," in 2012 16th International Conference on Intelligence in

Next Generation Networks, Berlin, 2012.

[64] P. Smutny, "Mobile development tools and cross-platform solutions," in 2012

13th International Carpathian Control Conference (ICCC), may 2012, pp.

653-656.

[65] The jQuery Foundation. (2012) jQuery Mobile. [Online].

http://jquerymobile.com/.

[66] N. Uti and R. Fox, "Testing the Computational Capabilities of Mobile Device

Processors: Some Interesting Benchmark Results," in 2010 IEEE/ACIS 9th

International Conference on Computer and Information Science (ICIS),

Washington, DC, USA, 2010, pp. 477-481.

[67] K. Vaananen-Vainio-Mattila and M. Waljas, "Developing an Expert

Evaluation Method for User Experience of Cross-Platform Web Services," in

MindTrek '09 Proceedings of the 13th International MindTrek Conference:

Everyday Life in the Ubiquitous Era, 2009, pp. 162-169.

[68] Vision Mobile, "Cross-Platform Developer Tools 2012," London, Tech. rep.

2012. [Online]. http://www.visionmobile.com/product/cross-platform-

developer-tools-2012/.

[69] W3C. (2010, December) Mobile Web Application Best Practices. [Online].

http://www.w3.org/TR/mwabp/.

[70] A. Wasserman, "Software Engineering Issues for Mobile Application

Development," in FoSER '10: Proceedings of the FSE/SDP workshop on

Future of software engineering research, 2010, pp. 397-400.

88

[71] WebKit Open Source Project. (2010, April) SunSpider JavaScript Benchmark.

[Online]. http://www.webkit.org/perf/sunspider/sunspider.html.

[72] D. Winokur. (2011, November) Flash to Focus on PC Browsing and Mobile

Apps; Adobe to More Aggressively Contribute to HTML5. [Online].

http://blogs.adobe.com/conversations/2011/11/flash-focus.html.

[73] C. Xin, "Cross-Platform Mobile Phone Game Development Environment," in

IIS '09: Proceedings of the 2009 International Conference on Industrial and

Information Systems, april 2009, pp. 182-184.

89

Appendix A: CPDT Features to be Evaluated

Table A.1 shows the features that are included in this evaluation of the CPDTs chosen for study. These specific features each fall

under the categories mentioned in the framework discussed in Chapter 3. The features marked with an asterisk are able to be

categorized as supported, not supported and partially supported.

90

 Table A.1: CPDT Features in Evaluation
CPDT Basic

Elements

Development

Environment

User

Experience
Device Access Sensors Geolocation Notifications Monetization Security

Version Studied IDE type

Access Native

User Interface

Elements*

File System*
Camera (Video, still,

front and rear) *

Wi-Fi

Positioning*

User

Notifications*

Application Store

Support*

Access to

Secure

Storage*

Platforms Supported
Development

Language
Screen Rotation*

SMS*

Microphone*

Cellular

Positioning*

System

Notifications*

In App Purchases (Native

or 3rd party) *

Code

Obfuscation*

Ability to use

Background

processes*

Compilation

Type
Swipe* Call log*

Noise Cancellation

Microphone*
GPS*

Push

Notifications*

(Native or 3rd

Party)

Mobile Ad Platform

support (Native or 3rd

Party) *

Costs for

development (Free

tier Availability)*

Debug

Environment
Pinch* Contacts* Sensor Data Capture*

Native Map

Support*

Analytics Platform

Provided/ Compatibility*

License MVC Support*
Accessibility

Features*
Calendar* Proximity*

 Social APIs*
Ability to

playback media*

Low level

Networking*

NFC*

 Cloud APIs*
Ability to Choose

Data Path*
Accelerometer*

Build Service

Availability*
 GPU Acceleration*

Gyroscope*

 Bluetooth* Barometer*

 Voice Activation* Compass*

91

Appendix B: Benchmark Application Skeleton

Below is the code for the benchmark application skeleton for BlackBerry WebWorks.

The code will include the files index.html, Main.js and Skeleton.js. Index.html is the

initial file that is loaded for the benchmark application. It handles the UI elements and

the starting of the tests. Main.js handles the progress and display of the final results

while Skeleton.js handles the running and logging of test data.

index.html

<html>

 <head>
 <link rel="stylesheet" type="text/css" href="CPDT.css" />
 <!-- Add each test and script that is used within skeleton !-->
 <script type="text/javascript" src="./phonegap.js">

 </script>
 <script type="text/javascript" src="./scripts/zepto.min.js">

 </script>
 <script type="text/javascript" src="./scripts/UIElements.js">
 </script>
 <script type="text/javascript" src="./scripts/CryptoAES.js">
 </script>
 <script type="text/javascript" src="./scripts/RemoteAccess.js">
 </script>
 <script type="text/javascript" src="./scripts/Sorting.js">
 </script>
 <script type="text/javascript" src="./scripts/test.js">
 </script>
 <script type="text/javascript" src="./scripts/test2.js">
 </script>
 <script type="text/javascript"
 src="./scripts/InputValidation.js">
 </script>
 <script type="text/javascript"
 src="./scripts/LocalPIMAccess.js">
 </script>
 <script type="text/javascript" src="./scripts/Skeleton.js">
 </script>
 <script type="text/javascript" src="./scripts/Main.js">
 </script>
 </head>

 <!-- Inside the body of the document, create the table listing all
 tests and the run button !-->
 <body onload="drawTable();">

92

 <div id="main">
 <div id="debug-div">

Debug Mode
 <input type="checkbox" value=false id="debug-switch"
 />
 </div>
 <div id="table"></div>
 <div id="run-div">
 <input type="button" value="Run Selected Tests"
 onclick="runTests();"
 />
 </div>
 <div id="progress-div" style="display:none;">
 Running Tests...
 <div id="progress-bar">
 <div id="progress"> </div>
 </div>
 </div>
 </div>
 <div id="UITest" style="text-align:center;"></div>
 </body>

</html>

Main.js
var skeleton = new Skeleton();

/* Create the table to display the output */
function drawTable() {

$("#table").html("<table><tr><th>Enabled</th><th>TestName</th><th>Avg.
Time</th></tr></table>");
 for (var i = 0; i < skeleton.tests.length; i++) {
 $("#table table").append("<tr id=\"row" + i + "\"></tr>");

 $("#row" + i).append("<td><input type=\"checkbox\"
id=\"check" + i + "\" checked=\"true\"/></td>");

 $("#row" + i).append("<td>" + skeleton.tests[i].getName()
 + "</td>");
 $("#row" + i).append("<td class=\"time\" id=\"time-" +
 skeleton.tests[i].getName() + "\">" + "" + "</td>");
 }
}

/* update the progress window */
function updateProgress(outOfOne) {
 $("#progress").css("width", "" + (outOfOne * 100) + "%");
}

/* when tests are finished, run this function and calculate the
averages and show to the user */
function testsFinished() {
 var averages = skeleton.getAverages();
 $(".time").html("");
 for (var test in averages) {
 $("#time-" + test).html("" + averages[test]);

93

 }
 $("#debug-div").css("display", "block");
 $("#table").css("display", "block");
 $("#run-div").css("display", "block");
 $("#progress-div").css("display", "none");
 skeleton.logTestRemote();
}

/*run selected tests within the skeleton object*/
function runTests() {
 $("#debug-div").css("display", "none");
 $("#table").css("display", "none");
 $("#run-div").css("display", "none");
 $("#progress-div").css("display", "block");
 var debug = ($("#debug-switch").is(":checked") ? true : false);
 var enabled = new Object;
 for (var i = 0; i < skeleton.tests.length; i++) {
 enabled[skeleton.tests[i].getName()] =
 ($("#check" + i).is(":checked") ? true : false);
 }
 skeleton.runTests(enabled, debug, testsFinished);

}

Skeleton.js
var DEBUG_ITERATIONS = 1;
var ITERATIONS = 5;

/* location of logging server */
var LOG_URL = "http://apps.socs.uoguelph.ca/CPDTEvaluation/index.php";

function Skeleton() {
 /*Member Variables*/
 this.tests = new Array();
 this.results = new Array();
 this.debug = false;
 this.testFinished = false;
 this.callbackStack = new callbackStack();

 /* Create tests */
 this.tests.push(new InputValidation());
 this.tests.push(new AESEncryption());
 this.tests.push(new LocalPIMAccess());
 this.tests.push(new Sorting());
 this.tests.push(new RemoteAccess());
 this.tests.push(new UIElements());

 /*Methods*/
 this.addResults = function (testName, startTime, endTime) {
 this.results.push({
 'testName': testName,
 'startTime': startTime,
 'endTime': endTime
 });

94

 this.callbackStack.callback();
 };

 this.markTestFinished = function () {
 this.testFinished = true;
 };
 /* run tests with desired paramaters */
 this.runTests = function (enabled, debug, callback) {
 var obj = this;
 this.callbackStack.stackEmpty = callback;
 this.debug = debug;
 this.results = new Array();
 var iterations = (this.debug ? DEBUG_ITERATIONS : ITERATIONS);
 var priority = 0;
 for (var j = 0; j < iterations; j++) {
 for (var i = 0; i < this.tests.length; i++) {
 if (enabled[this.tests[i].getName()] == true) {
 this.testFinished = false;
 var currentTest = eval("new " +
 this.tests[i].getName() + "(" + priority + ");");
 priority++;
 this.callbackStack.put(
 currentTest.test,
 doNothing, [this],
 currentTest, this, priority);

 }
 }
 }

 this.callbackStack.callFirst();

 };

 /* retrieve the averages from the tests */
 this.getAverages = function () {
 var averages = new Object();
 for (var i = 0; i < this.results.length; i++) {
 if (averages[this.results[i].testName] == undefined) {
 averages[this.results[i].testName] = 0;
 }
 averages[this.results[i].testName] +=
 (this.results[i].endTime - this.results[i].startTime);
 }
 for (var index in averages) {
 averages[index] = averages[index] /
 (this.debug ? DEBUG_ITERATIONS : ITERATIONS);
 }
 return averages;
 };

 /* create the log string in long form */
 this.generateLongLog = function () {
 var delim = ';';
 var logString = ""; /*"TestName,StartTime,EndTime,Duration" +

95

 delim;*/
 for (var i = 0; i < this.results.length; i++) {
 logString += this.results[i].testName + ',' +
 this.results[i].startTime + ',' + this.results[i].endTime +
 ',' + (this.results[i].endTime - this.results[i].startTime)
 + delim;
 }
 return logString;
 };

 /* Create the short log string with averages only */
 this.generateShortLog = function () {
 var delim = ';';
 var logString = ""; //"TestName,AverageTime" + delim;
 var averages = this.getAverages();
 for (var index in averages) {
 logString += index + ',' + averages[index] + delim;
 }
 return logString;
 };

 /* Send information to logging server */
 this.logTestRemote = function () {
 var date = new Date();
 var data = "";
 data += device.platform + " " + device.name + ",";
 data += "WebWorks,";
 data += device.version + ",";
 data += date.getFullYear() + "-" +
 (date.getMonth() + 1) + "-" + date.getDate() + ",";
 data += date.getHours() + ":" +
 date.getMinutes() + ":" + date.getSeconds() + ";";
 data += this.generateShortLog();
 data += this.generateLongLog();
 $.post(
 LOG_URL, {
 'data': data
 },

 function (data, status, xhr) {
 //Do Nothing
 });
 };

}

function doNothing() {
 //DO NOTHING
}

/* Stack to hold commands for each function */
function callbackStack() {

 this.stackEmpty = null;
 this.executeStack = new Array();
 this.parameterStack = new Array();

96

 this.callbackStack = new Array();
 this.functionContextStack = new Array();
 this.callbackContextStack = new Array();
 this.priorityStack = new Array();
 this.put = function (func, callback, param,
 functionContext, callbackContext, priority) {
 //console.log("\ncallbackStack.put\n");
 var i = 0;
 while (this.priorityStack[i] < priority) {
 i++;
 }

 this.executeStack.splice(i, 0, func);
 this.callbackStack.splice(i, 0, callback);
 this.parameterStack.splice(i, 0, param);
 this.functionContextStack.splice(i, 0, functionContext);
 this.callbackContextStack.splice(i, 0, callbackContext);
 this.priorityStack.splice(i, 0, priority);
 }
 this.callFirst = function () {

 var func = this.executeStack.pop();
 var param = this.parameterStack.pop();
 var context = this.functionContextStack.pop();
 func.apply(context, param);
 }
 this.callback = function (data) {
 var callbackContext = this.callbackContextStack.pop();

 //execute the spesific callback
 var callback = this.callbackStack.pop();
 callback.call(callbackContext, data);
 //console.log(callback);
 //If there are more commands on the stack, we are going to call
 them too
 if (this.executeStack.length <= 0) {
 this.stackEmpty.call(null, null);
 return;
 }
 var functionContext = this.functionContextStack.pop();
 var func = this.executeStack.pop();
 var param = this.parameterStack.pop();
 this.priorityStack.pop();
 try {
 setTimeout(function () {
 func.apply(functionContext, param)
 }, 0);
 } catch (e) {
 console.log(e);
 }
 //console.log(func);
 }
}

/* functions for reading the file system */

97

function logTest() {
 window.requestFileSystem(LocalFileSystem.PERSISTENT, 0, gotFS,
fail);
}

/* create the file on the server */
function gotFS(fileSystem) {
 var date = new Date().getUTCDate();
 alert(fileSystem.root.fullPath);
 fileSystem.root.getFile("Documents/CPDT-Log-Short-" + date, {
 create: true,
 exclusive: false
 }, gotFileEntry_Short, fail);
 fileSystem.root.getFile("Documents/CPDT-Log-Long-" + date, {
 create: true,
 exclusive: false
 }, gotFileEntry_Long, fail);
}
/*
 * The functions below are for generating and
 * writing the log to the server
 */
function gotFileEntry_Short(fileEntry) {
 alert(fileEntry.fullPath);
 fileEntry.createWriter(gotFileWriter_Short, fail);
}

function gotFileEntry_Long(fileEntry) {
 alert(fileEntry.fullPath);
 fileEntry.createWriter(gotFileWriter_Long, fail);
}

function gotFileWriter_Short(writer) {
 alert("Writing Log");
 writer.write(skeleton.generateShortLog());
}

function gotFileWriter_Long(writer) {
 alert("Writing Log");
 writer.write(skeleton.generateLongLog());
}

function fail(error) {
 alert(error.code);
}

98

Appendix C: Benchmark Application UI Elements Test

A sample of the UI Elements test using the WebWorks tool for BlackBerry 7 devices

is shown here. This JavaScript file completes the test and returns the length of time

taken to the application skeleton.

/* UI Elements Test Module */
function UIElements(priority) {
 this.priority = priority;
 this.name = "UIElements";
 this.getName = function () {
 return this.name;
 }
 this.skeleton = null;
 this.startTime;
 /* Text used for data field */
this.testText = "ROMEO: But, soft! what light through yonder window
breaks? \n\
 It is the east, and Juliet is the sun. \n\
 Arise, fair sun, and kill the envious moon, \n\
 Who is already sick and pale with grief, \n\
 That thou her maid art far more fair than she: \n\
 Be not her maid, since she is envious; \n\
 Her vestal livery is but sick and green \n\
 And none but fools do wear it; cast it off. \n\
 It is my lady, O, it is my love! \n\
 O, that she knew she were! \n\
 She speaks yet she says nothing: what of that? \n\
 Her eye discourses; I will answer it. \n\
 I am too bold, 'tis not to me she speaks: \n\
 Two of the fairest stars in all the heaven, \n\
 Having some business, do entreat her eyes \n\
 To twinkle in their spheres till they return. \n\
 What if her eyes were there, they in her head? \n\

The brightness of her cheek would shame those stars,
\n\

 As daylight doth a lamp; her eyes in heaven \n\
 Would through the airy region stream so bright \n\
 That birds would sing and think it were not night. \n\
 See, how she leans her cheek upon her hand! \n\
 O, that I were a glove upon that hand, \n\
 That I might touch that cheek! \n\
 JULIET: Ay me! \n\
 ROMEO: She speaks: \n\
 O, speak again, bright angel! for thou art \n\
 As glorious to this night, being o'er my head \n\
 As is a winged messenger of heaven \n\
 Unto the white-upturned wondering eyes \n\
 Of mortals that fall back to gaze on him \n\
 When he bestrides the lazy-pacing clouds \n\

99

 And sails upon the bosom of the air.\n";

 /* The checkboxes and dropdown box for the first partition are
created in this statement */

this.partition1 = "<div id=\"elements-header\"
onclick=\"accordianSwap(1);\" style=\"border-style:solid;\">Form
Elements</div>\

 <div id=\"elements\">\
 <table>\
 \
 <tr>\
 <td>\
 \
 <input type=\"checkbox\"/>
\
 \
 <input type=\"checkbox\"/>
\
 \
 <input type=\"checkbox\"/>
\
 \
 <input type=\"checkbox\"/>
\
 \
 <input type=\"checkbox\"/>
\
 </td>\
 <td>\
 <input type=\"text\" id=\"text-field\">\
 <td/>\
 </tr>\
 <tr>\
 <td>\
 <!--<select>\
 <!-- Code truncated to remove

select for all 50 US states !-->\
 </select>!-->\
 </td>\
 <td>\
 \
 <input type=\"button\" class=\"switch-option \
 option-1\" value=\"ON\" onclick=\"toggleSwitch();\
 \" disabled=\"disabled\"/><input type=\"button\" \
 class=\"switch-option option-2\" value=\"OFF\" \
 onclick=\"toggleSwitch();\"/>\
 \
 </td>\
 </tr>\
 <tr id=\"button-cell\">\
 <td><input type=\"button\" value=\"Button 1\" \
 id=\"button-1\"/></td>\
 <td><input type=\"button\" value=\"Button 2\" \
 id=\"button-2\"/></td>\
 </tr>\
 </table>\
 </div>";
 /* Partition 2 contains images that are displayed at various sizes*/

this.partition2 = "<div id=\"images-header\"
onclick=\"accordianSwap(2);\" \

 style=\"border-style:solid;\">Images</div>\

100

 <div id=\"images\">\

\
 <img src=\"image2.png\" alt=\"Image 2\" style=\"width:20%; \
 height:20%\"/>\
 </div>";

 /* The third partition includes a text text area
 containing a verse from Romeo and Juliette */
 this.partition3 = "<div id=\"text-header\" onclick=\
 "accordianSwap(3);\" style=\"border-style:solid;\">Text</div>\
 <div id=\"text\"><textarea rows=\"5\" style=\
 "width:100%;\" id=\"textarea\">"
 + this.testText + "\
 </textarea></div>";

 /* The function below starts the test process */
 this.test = function (skeleton) {
 var obj = this;

 this.startTime = new Date();
 this.skeleton = skeleton;
 $("#UITest").html(this.partition1 + this.partition2
 + this.partition3);
 accordianSwap(1);

 /* Set call back stack for all elements of the test */
 this.skeleton.callbackStack.put(function () {
 $("#main").hide();
 obj.skeleton.callbackStack.callback();
 }, doNothing, [], null, null, this.priority);

 this.skeleton.callbackStack.put(function () {
 $("#UITest").show();
 obj.skeleton.callbackStack.callback();
 }, doNothing, [], null, null, this.priority);

 this.skeleton.callbackStack.put(function () {
 accordianSwap(2);
 obj.skeleton.callbackStack.callback();
 }, doNothing, [], null, null, this.priority);

 this.skeleton.callbackStack.put(function () {
 accordianS
 wap(3);
 obj.skeleton.callbackStack.callback();
 }, doNothing, [], null, null, this.priority);

 for (var i = 0; i < 20; i++) {

 this.skeleton.callbackStack.put(function () {
 $("#textarea").html("");
 obj.skeleton.callbackStack.callback();
 }, doNothing, [], null, null, this.priority);

101

 this.skeleton.callbackStack.put(function () {
 $("#textarea").html(obj.testText);
 obj.skeleton.callbackStack.callback();
 }, doNothing, [], null, null, this.priority);

 }

 this.skeleton.callbackStack.put(function () {
 accordianSwap(1);
 obj.skeleton.callbackStack.callback();
 }, doNothing, [], null, null, this.priority);

 for (var i = 0; i < 500; i++) {
 this.skeleton.callbackStack.put(

 function () {
 var index = Math.floor((Math.random() * 5) + 1);
 if ($("#check-group-" + index +
 " input").attr("checked") == 'checked')
 $("#check-group-" +
 index + " input").removeAttr("checked");
 else $("#check-group-" + index +
 " input").attr("checked", "checked");
 obj.skeleton.callbackStack.callback();
 }, doNothing, [], null, null, this.priority);

 }
 for (var i = 0; i < 50; i++) {
 this.skeleton.callbackStack.put(

 function () {

var x = Math.floor((Math.random() *
$(document).width()) + 1);
var y = Math.floor((Math.random() *
$(document).height()) + 1);

 $("#button-2").remove();
 $("#button-cell").append("<input type=\"button\"

value=\"Button 2\" id=\"button-2\"
style=\"position:absolute; top: "

 + y + "; left: " + x + ";\"/>");
 obj.skeleton.callbackStack.callback();
 }, doNothing, [], null, null, this.priority);

 }

 this.skeleton.callbackStack.put(function () {
 accordianSwap(2);
 obj.skeleton.callbackStack.callback();
 }, doNothing, [], null, null, this.priority);
 for (var i = 0; i < 20; i++) {
 this.skeleton.callbackStack.put(

 function () {
 $("#images").html("");
 if (whichIs20 == 2) {

102

 $("#images").html("<img src=\"image1.png\"
 alt=\"Image 1\" style=\"width:20%; height:20%\"/>

 ");
 whichIs20 = 1;
 } else if (whichIs20 == 1) {
 $("#images").html("<img src=\"image1.png\"

alt=\"Image 1\"/>
<img src=\"image2.png\"
alt=\"Image 2\"

 style=\"width:20%; height:20%\"/>");
 whichIs20 = 2
 }
 obj.skeleton.callbackStack.callback();
 }, doNothing, [], null, null, this.priority);
 }

 this.skeleton.callbackStack.put(function () {
 $("#main").show();
 obj.skeleton.callbackStack.callback();
 }, doNothing, [], null, null, this.priority);
 this.skeleton.callbackStack.put(function () {
 $("#UITest").hide();
 obj.skeleton.callbackStack.callback();
 }, doNothing, [], null, null, this.priority);

 this.skeleton.callbackStack.put(

 function () {
 var endTime = new Date();
 this.skeleton.callbackStack.put(this.skeleton.addResults,
 doNothing, [obj.name, obj.startTime, endTime],
 obj.skeleton, obj.skeleton, obj.priority);
 obj.skeleton.callbackStack.callback();
 }, doNothing, [], null, null, this.priority);
 this.skeleton.callbackStack.callback();

 }

}

var whichIs20 = 2;
/* Swaps the visible section in the accordian pane */
function accordianSwap(clicked) {
 if (clicked == 1) {
 $("#elements").show();
 $("#images").hide();
 $("#text").hide();
 } else if (clicked == 2) {
 $("#elements").hide();
 $("#images").show();
 $("#text").hide();
 } else if (clicked == 3) {
 $("#elements").hide();
 $("#images").hide();
 $("#text").show();
 }

103

}
/* changes the value of the option boxes */
function toggleSwitch() {
 if ($("#switch .option-1").attr("disabled") == "disabled") {
 $("#switch .option-1").removeAttr("disabled");
 $("#switch .option-2").attr("disabled", "disabled");
 } else {
 $("#switch .option-1").attr("disabled", "disabled");
 $("#switch .option-2").removeAttr("disabled");
 }
}

104

Appendix D: AES Encryption Data

For the AES encryption, decryption test a password and text to be encrypted must be

used. This data was first used in the SunSpider test that we intend to emulate [71].

The passage and password are passages from Shakespeare’s Romeo and Juliet. They

provide the length and complexity to allow for a measurable test.

Password: O Romeo, Romeo! wherefore art thou Romeo?

Text for encryption:
ROMEO: But, soft! what light through yonder window breaks?

It is the east, and Juliet is the sun.
Arise, fair sun, and kill the envious moon,
Who is already sick and pale with grief,

That thou her maid art far more fair than she:
Be not her maid, since she is envious;
Her vestal livery is but sick and green

And none but fools do wear it; cast it off.
It is my lady, O, it is my love!

O, that she knew she were!
She speaks yet she says nothing: what of that?

Her eye discourses; I will answer it.
I am too bold, 'tis not to me she speaks:

Two of the fairest stars in all the heaven,
Having some business, do entreat her eyes
To twinkle in their spheres till they return.

What if her eyes were there, they in her head?
The brightness of her cheek would shame those stars,

As daylight doth a lamp; her eyes in heaven
Would through the airy region stream so bright

That birds would sing and think it were not night.
See, how she leans her cheek upon her hand!

O, that I were a glove upon that hand,
That I might touch that cheek!

JULIET: Ay me!
ROMEO: She speaks:

O, speak again, bright angel! for thou art
As glorious to this night, being o'er my head

As is a winged messenger of heaven
Unto the white-upturned wondering eyes
Of mortals that fall back to gaze on him

When he bestrides the lazy-pacing clouds
And sails upon the bosom of the air.

105

Appendix E: Contact Data

The information contained below is from the file contactData.csv that is included in

the suite of resources used to create the benchmark. This data generated randomly

using the tools from [29], is used in the PIM testing to enter data into the device

address book and remove it.

contactData.csv

First Name,Last Name,Phone,Email
Maxwell,Norman,1-610-680-6136,lectus.convallis.est@eget.ca
Laith,Hull,1-994-274-6251,nibh.Phasellus@NuncmaurisMorbi.com
Zachary,Hall,1-283-707-3724,purus.gravida.sagittis@mauriseuelit.edu
Xantha,Morin,1-371-996-0558,lacus.Ut.nec@doloregestasrhoncus.edu
Pascale,Mercado,1-983-356-6376,Cras.interdum@idante.edu
Griffin,Ford,1-239-295-0759,Cum@iaculisquispede.org
John,Ball,1-806-534-1938,facilisis@Nullam.org
Kessie,Goodman,1-948-123-9206,turpis.nec.mauris@vulputate.com
Chadwick,Mckay,1-850-144-8500,Phasellus.fermentum.convallis@sitamet.org
Aurora,Carver,1-735-655-2404,Donec.felis@tinciduntpede.com
Cally,Blevins,1-365-215-2138,tincidunt.vehicula@etipsumcursus.org
Ella,Boone,1-486-737-1817,non.luctus.sit@CurabiturmassaVestibulum.ca
Jillian,Hoffman,1-969-373-1131,ipsum.non.arcu@egestasSed.org
Duncan,Horn,1-261-343-0279,Quisque@eutellus.org
Amethyst,Meadows,1-789-892-9733,commodo.tincidunt@posuereenimnisl.edu
Florence,Carpenter,1-474-502-3277,ipsum.primis.in@duilectusrutrum.ca
Lynn,Hinton,1-867-830-2899,eu.erat.semper@Cras.com
Alma,Jimenez,1-916-334-0268,amet.nulla.Donec@gravidasagittis.com
Alana,Spears,1-439-628-5197,ligula@metusurnaconvallis.com
Uma,Floyd,1-527-553-3297,Suspendisse.eleifend@risusDonecegestas.org
Breanna,Daniels,1-431-840-6644,velit@nibhvulputate.edu
Melvin,Delacruz,1-715-145-7895,ante@acrisusMorbi.edu
Alfreda,Jennings,1-855-519-9363,facilisis.Suspendisse.commodo@eu.org
Colt,Odonnell,1-661-550-0676,dolor.Nulla.semper@tempusscelerisquelorem.org
Cora,Acevedo,1-239-266-4555,egestas.a.dui@volutpatNulladignissim.ca
Hayfa,Marshall,1-396-354-9516,a@purussapiengravida.ca
Cullen,Wise,1-196-541-0128,sit.amet@nibh.edu
Bell,Rush,1-562-414-0229,Phasellus@semper.edu
Boris,Rush,1-869-881-6318,ridiculus.mus@ipsumDonecsollicitudin.ca
Logan,Lowe,1-379-391-2234,leo.in@mauriseu.com
Chelsea,Burks,1-392-933-8867,ornare@sagittisNullam.org

106

Cathleen,Pena,1-118-332-7783,ad.litora.torquent@magnaSed.org
Keegan,Graves,1-597-373-0084,interdum.ligula.eu@ametorci.org
Remedios,Haley,1-916-694-0975,at@risus.ca
Xena,Cantrell,1-175-274-5592,justo@Maecenas.org
Chloe,Austin,1-215-212-7157,ac.libero@dolorNullasemper.com
Kasimir,Fitzpatrick,1-526-286-3834,fringilla@molestieSed.ca
Petra,Rios,1-280-806-6694,metus.Vivamus@Donecatarcu.ca
Cooper,Hines,1-101-484-8124,facilisi.Sed@cursus.com
Amber,Conley,1-308-977-3112,Ut.nec.urna@etlacinia.edu
Kaseem,Hyde,1-548-351-7939,Ut@mollisvitaeposuere.ca
Audrey,Barton,1-887-209-4998,imperdiet@tristiquealiquet.com
Sacha,Murphy,1-837-621-5384,ligula.tortor@estac.org
Hiram,Hartman,1-842-342-1715,lacus.Etiam@Namtempor.com
Palmer,Turner,1-190-538-0865,augue.Sed@etnetuset.edu
Iola,Carlson,1-383-555-0014,ridiculus@et.org
Cally,Bowen,1-249-335-8778,ultrices.Duis@Suspendisse.edu
Azalia,Brown,1-666-768-0842,sem.vitae.aliquam@etlibero.com
Signe,Tanner,1-614-492-2504,orci@tinciduntneque.ca
Chaney,Barr,1-688-763-9543,Aliquam.fringilla@Maecenas.com
Herrod,Schroeder,1-830-181-5140,dapibus.ligula@amet.ca
Bertha,Jenkins,1-778-723-0713,Donec@sitametconsectetuer.com
Alisa,Becker,1-592-106-1604,sollicitudin@velquam.org
Donna,Leon,1-458-530-7564,aliquet.magna@anteNunc.org
Inga,Roman,1-754-814-2347,neque@tincidunt.org
Lee,Hunter,1-294-940-4919,sed.consequat@atvelit.com
Tasha,Rodgers,1-302-547-2592,mauris@cursusinhendrerit.org
Ramona,Barton,1-621-122-0704,dictum@Morbi.org
Gillian,Cantu,1-278-428-6335,mollis.non.cursus@erat.ca
Kerry,Cannon,1-873-854-2686,et.magnis@anteblanditviverra.org
Odysseus,Lee,1-193-737-3386,consectetuer.cursus@natoque.com
Teegan,Vance,1-343-501-1561,vitae@vulputateduinec.com
Russell,Bowman,1-328-556-1923,et.magnis@nisi.ca
Madaline,Pace,1-568-625-7495,Nulla@adipiscingMauris.org
Kylie,Britt,1-217-309-6568,egestas.nunc.sed@nonhendrerit.edu
Baxter,Hopkins,1-639-379-8922,libero@ultriciesdignissimlacus.edu
Thor,Brock,1-490-947-7321,Mauris.molestie.pharetra@egestas.ca
Lilah,Guerra,1-232-135-3540,ac.mattis.semper@sollicitudinamalesuada.ca
Wynter,Bullock,1-848-681-7740,volutpat@acmattis.org
Zenia,Reynolds,1-633-987-0720,metus.In.nec@dictummiac.ca
Holmes,Robbins,1-429-293-2068,cursus.Nunc@montesnasceturridiculus.ca
Candace,Moreno,1-703-786-7676,urna.convallis@lacinia.edu
Evangeline,Duke,1-325-532-3941,pede@Phasellus.ca
Glenna,Everett,1-619-486-0321,odio.tristique.pharetra@auctorvelit.org
Noble,Mayo,1-108-492-5148,rhoncus@et.ca
Hillary,Ellis,1-329-461-5359,magna.Sed@ornarelectusante.edu
Nomlanga,Potts,1-569-183-9971,rhoncus@ligulaNullam.edu

107

Reuben,Hunter,1-446-971-8135,sagittis@libero.edu
Thor,Puckett,1-171-168-2957,dignissim.tempor@arcuSed.ca
Zeus,Michael,1-878-781-2964,id.libero.Donec@maurisSuspendisse.org
Burton,Mcmillan,1-884-980-7353,nisl@commodoat.com
Brendan,Payne,1-108-394-7701,Cras@Duis.org
Brent,Duke,1-692-428-7530,ultrices.posuere@cursus.ca
Ciara,Watkins,1-213-984-0023,libero.lacus.varius@odioAliquam.com
Harper,Guzman,1-862-615-6528,nec.enim@Duis.edu
Chandler,White,1-204-217-5969,non@vitaesodales.ca
Xavier,Nielsen,1-502-255-9269,pede.sagittis.augue@vitae.ca
Colette,Clarke,1-239-635-6369,suscipit.est.ac@arcuSedeu.edu
Alexandra,Reese,1-362-388-2573,eu.neque@nibhenim.ca
Vance,Hewitt,1-529-165-0410,condimentum@elit.org
Melyssa,Beck,1-849-106-4430,Nulla.tempor.augue@metusVivamuseuismod.org
Coby,Franco,1-788-830-8349,purus@euelit.ca
Audra,Cash,1-918-451-3533,orci.lobortis.augue@felisNulla.ca
Idona,Boyd,1-771-515-4250,sed.leo@bibendum.com
Echo,Jordan,1-686-140-4209,ut.dolor@hendreritDonec.org
Cassady,Randolph,1-233-659-6037,Cras.dolor.dolor@primis.com
Tiger,Terry,1-439-760-7091,turpis.nec@sed.org
Madeline,Quinn,1-326-939-6066,ipsum@Maecenaslibero.edu
Theodore,Buckley,1-151-761-8262,ac.risus.Morbi@Nunclaoreetlectus.org
Angela,Bond,1-530-236-8654,a.feugiat.tellus@euismodac.ca

108

Appendix F: Remote Data Script

When activated, the PHP script below will respond to the request by sending a large

string that is a passage from Shakespeare’s Romeo and Juliet [71]. This is used in the

remote access test in order to establish a server connection, receive data and close the

connection multiple times.

<?php

 echo "ROMEO: But, soft! what light through yonder window breaks?

It is the east, and Juliet is the sun.

Arise, fair sun, and kill the envious moon,

Who is already sick and pale with grief,

That thou her maid art far more fair than she:

Be not her maid, since she is envious;

Her vestal livery is but sick and green

And none but fools do wear it; cast it off.

It is my lady, O, it is my love!

O, that she knew she were!

She speaks yet she says nothing: what of that?

Her eye discourses; I will answer it.

I am too bold, 'tis not to me she speaks:

Two of the fairest stars in all the heaven,

Having some business, do entreat her eyes

To twinkle in their spheres till they return.

What if her eyes were there, they in her head?

The brightness of her cheek would shame those stars,

As daylight doth a lamp; her eyes in heaven

Would through the airy region stream so bright

That birds would sing and think it were not night.

See, how she leans her cheek upon her hand!

O, that I were a glove upon that hand,

That I might touch that cheek!

JULIET: Ay me!

ROMEO: She speaks:

O, speak again, bright angel! for thou art

As glorious to this night, being o'er my head

As is a winged messenger of heaven

Unto the white-upturned wondering eyes

Of mortals that fall back to gaze on him

When he bestrides the lazy-pacing clouds

And sails upon the bosom of the air.0"

 ?>

109

Appendix G: Benchmark Application Sorting Algorithm

The sorting function was implemented on various platforms. Below you will find

code for the sort functions for WebWorks, PhoneGap, Android Native, iOS Native,

MoSync, Titanium and BB10 Native. This code is written using numerous platforms

but the algorithm is the same. The code is shown on each platform to demonstrate

this. These sort functions complete the test outlined in Section 4.3.3.3 with 2500

random integers. This size is set as the internalIterations or testSize variable.

Sort (WebWorks and PhoneGap)
do{
 swapped = false;
 for(var i = 1; i < this.internalIterations; i++){
 if(sortArray[i-1] > sortArray[i]){
 var temp = sortArray[i-1];
 sortArray[i-1] = sortArray[i];
 sortArray[i] = temp;
 swapped = true;
 }
 }
}while(swapped == true);

Sort (Android Native)

do {
 swapped = false;
 for(int i=1; i<testSize-1; i++){
 if(test[i-1] > test[i]){
 temp = test[i];
 test[i] = test[i-1];
 test[i-1] = temp;
 swapped = true;
 }
 }
} while(swapped);

Sort (iOS Native)

do{
 swapped = false;
 for(int i = 1; i < internalIteratons; i++){
 if(sortArray[i-1] > sortArray[i]){
 int temp = sortArray[i-1];
 sortArray[i-1] = sortArray[i];
 sortArray[i] = temp;

110

 swapped = true;
 }
 }
}while(swapped == true);

Sort (MoSync)
do {
 swapped = false;
 for(int i=1; i<testSize-1; i++){
 if(test[i-1] > test[i]){
 temp = test[i];
 test[i] = test[i-1];
 test[i-1] = temp;
 swapped = true;
 }
 }
} while(swapped == true);

Sort (Titanium)
do{
 swapped = false;
 for(var i = 1; i < this.internalIterations; i++){
 if(sortArray[i-1] > sortArray[i]){
 var temp = sortArray[i-1];
 sortArray[i-1] = sortArray[i];
 sortArray[i] = temp;
 swapped = true;
 }
 }
}while(swapped == true);

Sort(BB10)

do {
 swapped = false;
 for(int i=1; i<testSize; i++){
 if(test[i-1] > test[i]){
 temp = test[i];
 test[i] = test[i-1];
 test[i-1] = temp;
 swapped = true;
 }
 }
} while(swapped);

111

Appendix H: Images for UI Testing

The images contained in these figures are used in the UI testing section of the

performance benchmarks. The images in Figure H.1 and Figure H.2 were created by

Creative House for CMER. The icons in Figure H.3 were developed by Justin

Carvalho, an undergraduate student working for CMER. These images are used in

their current form to test the ability for the UI engine of each CPDT to render and

resize images quickly. In order to replicate these tests, the same images should be

used.

Figure H.1: image1.png

Figure H.2: image2.png

112

Figure H.3: Icons for Menu

113

Appendix I: Results of Phase I Evaluation

Table I.1 contains the data found as part of the Phase I evaluation of the CPDTs included in this study in Section 5.1. This table

provides the details of which features are supported by the various CPDTs and native tools.

114

Table I.1: Phase I Evaluation of CPDT Features

Tool

CPDT Basic Elements Development Environment

Version Studied Platforms Supported
Background Processes
(Options for running in

background)

Costs for
development (initial

and ongoing) Is
there a free tier?

License IDE type Development
 Language

Compilation
Type

Debug
Environment MVC Support Social API's Cloud API's

Mobile Web HTML5 Working
Draft All No Free Standard

Large variety of
options

HTML 5, CSS,
Javascript Interpreted

Web Browser
Developer tools No 3rd Party No

BlackBerry
WebWorks 2.3.1

Blackberry Tablet OS,
BlackBerry OS, BlackBerry

10 OS
Yes Free

Proprietary with
Open Source
Components

Large variety of
options

HTML 5, CSS,
Javascript Hybrid

Ripple Emulator,
BlackBerry
 Simulator

No No No

Blackberry
Cascades Native

SDK
Beta 1 BlackBerry 10 OS Yes Free

Proprietary with
Open Source
Components

QNX Momentics
Qt or QML and

JavaScript, or both Native QNX Momentics
You can separate UI
from logic using QML

Scoreloop gaming
APIs No

Android Java 1.0 - 4.0 Android Yes

Free *Other Google
services may have a
cost if you exceed

the free quota

*OS: Apache
License *SDK:

http://developer.andr
oid.com/sdk/terms.ht

ml *Google APIs
have additional

licensing

Eclipse plugin,
JBuilder plugin, or

IDE-less
development

Android's custom version
of Java, and XML Native

Eclipse with Dalvik
Debug Monitor

Server (DDMS), can
be run from Eclipse,

JBuilder, or
command line.

It can be done
depending on how
you want to define

the separation
between View and

Controller, but it has
been said that MVP

is a better fit for
Android

Native "Contacts"
API since Android

4.0; others
(Facebook, Twitter,

etc.) accessible
through their

respective 3rd party
web APIs

Data backup

iOS Native 5.1 iOS No $99/year Proprietary Complete (Xcode) Objective C Native Xcode Yes No Yes

Adobe
PhoneGap 1.8.1

iOS, Android, Windows
Phone, Blackberry OS,

WebOS, Symbian, Bada
No Free Apache

Large variety of
options

HTML 5, CSS,
Javascript Hybrid

Web Browser
Developer tools and
device specific tools

No Via Plugin No

Appcelerator
Titanium

Titanium Mobile SDK
2.0.1.GA2

iOS, Android, Mobile Web,
Blackberry OS (beta) Yes (non-guaranteed) Free + Support costs Apache, Proprietary Titanium Studio Javascript

Native with
interpreter for

dynamic
segments

Titanium Studio Yes Yes Yes

Adobe Air FLEX 4.6
Playbook, BB10, iOS,

Android
iOS: no. Android: yes, at a

reduced framerate.
SDK is free, Flash
Builder costs $699 Proprietary Flash Builder Actionscript 3.0, XML Runtime Air Debug Launcher

Information not
readily available

Accessible through
imported ActionScript

API's

Accessible
through

imported
ActionScript

API's

MoSync MoSync 3.0+

Android, iOS, Windows7
Phone, JavaME, Moblin,

Symbian, Windows Mobile,
BlackBerry

At least for Android

*Free - Community
version *Free - Free

version (requires
registration annually

renewed)
*199EUR/developer/

year - Basic Pro
*2999EUR/developer

/year - Gold Pro
*Custom price -

Platinum Pro

Dual Licensed:
GPL2 and various

commercial licenses

MoSync Eclipse
IDE

C/C++,
HTML5/JavaScript/CSS,

or a mix of both (a
technology called

Wormhole connects the
underlying C code to the

JavaScript)

Depends on the
platform. iOS is

native code.
WP7 is bundled

with a
recompiler.

Android likely
has a VM

interpreting the
MoSync
bytecode

MoSync Eclipse IDE,
with native

simulators or with
MoRE (MoSync

Reference
Environment), which
creates a general

emulator that bases
its properties off of

device data. *Testify
(replaced MATest) is
the test framework,
utilizing hooks and

functions.

Information not
readily available

Facebook (using
FacebookManager).
Wikipedia, Twitter,

etc. accessible
through their

respective 3rd party
web APIs

None
currently
apparent

115

http://developer.andr/
http://developer.andr/

Tool

 User Experience Device Access

Build service
availability

Access Native UI
Elements Screen Rotation Swipe Pinch

Accessibility
Features

Ability to playback
media

File System
Access SMS Access Call log access Contacts Calendar

Mobile Web N/A No No Yes Yes No Partial Compliance on
most devices

Draft. Partial
implementation in

Android, Blackberry
and Windows

Phone

Draft, unimplemented No Draft,
unimplemented No

BlackBerry
WebWorks No No Yes Yes

Enable/Disable pinch
to zoom only

Information not

readily available Yes Yes Yes Yes Yes Yes

Blackberry
Cascades Native

SDK
No Cascades

elements
API added
in Beta 2

Can be manually
handled

Can be manually
handled. API added

in Beta 2

Information not

readily available Yes Yes
Information not readily

available
Information not

readily available No No

Android Java No Yes Yes GestureDetector
ScaleGesture

Detector
TextToSpeech
(Android 1.6+) Yes Yes

Yes (using
SmsManager, since

Android 1.6)
Yes

Yes using
ContactsProvider

Android 4.0+, prior to
this there was only

the Google Calendar
APIs.

iOS Native No Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes

Adobe
PhoneGap

Yes, PhoneGap
Build No No No No No Yes Yes No No Yes No

Appcelerator
Titanium No Yes Yes Yes Yes No Yes Yes No No Yes Android only

Adobe Air No
Yes, libraries are

included in the
SDK's

Yes Yes
Information not

readily available No Yes
Yes, on Playbook,

BB10, and
Android.

Using SMS: URI
scheme, or possibly

imported ActionScript
APIs.

No Yes No

MoSync Information not
readily available Platform Dependent

Information not
readily available

Information not
readily available

Information not
readily available

Information not
readily available

HTML5: (video)
Devices that support

HTML5 video tag C++:
iOS, Android. C:

(audio) For Sound
class (play single file),

all platforms but
Windows7Phone

HTML5: iOS
Android. C++: All.

C: All
Yes No

For all supported
platforms except for

Windows Mobile,
Windows 7 Phone,

Moblin.

Information not
readily available

116

Tool

Device Access Sensor Access

Low level Network
Access

Ability to choose
data transport

method (Cellular or
Wi-Fi only)

GPU Acceleration Bluetooth Voice Activation
Notification Light

Activation Camera Microphone
Noise Cancellation

Microphone
Sensor Data

Capture Proximity NFC

Mobile Web No
Information not

readily available No No
Information not

readily available
Information not

readily available Draft Draft,
unimplemented No Draft,

unimplemented No No

BlackBerry
WebWorks No

Information not
readily available No No

Information not
readily available

Information not
readily available Yes Yes No Yes No Via RIM extension

Blackberry
Cascades Native

SDK

Information not

readily available Information not
readily available

Information not

readily available No APIs, but planned
for future release 3rd party libraries

Yes. Supports Red,
Green, Blue, Yellow,
Cyan, Magenta, and

White

Yes
Information not

readily available
Information not

readily available
Information not

readily available
Information not

readily available Added in Beta 2

Android Java Yes Yes

Hardware
acceleration for 2D
drawing added in

Android 3.0

Android 2.0+ Android 2.2+

Yes. Colors are
device-dependent

(though hardware will
try to estimate
closest color)

Single camera pre-
Android 2.3, multiple
camera support in

Android 2.3+

Yes No Yes
Since Android 1.5

(on devices with the
proper hardware)

Since Android 1.5
(on devices with the

proper hardware)

iOS Native Yes
Information not

readily available Yes Bluetooth 4.0 LE
Information not

readily available
Information not

readily available Yes Yes No Yes Yes No

Adobe
PhoneGap No No No No No No Yes Yes No Yes No Via Plugin

Appcelerator
Titanium Yes No No No Android Only Android Only Yes Yes No Yes Yes No

Adobe Air Yes, UDP not
supported on mobile

Information not
readily available Since AIR 3.2 No

Information not
readily available

Information not
readily available Yes Yes No Yes No Through Native

extensions

MoSync

Yes. No UDP
support, due to

mobile operators
feeling insecure
about it being

abused by p2p apps
and such (even

though it could be
used on WiFi

networks).

Information not
readily available

OpenGL ES for
Android and iOS.

Information not
readily available

Information not
readily available

Information not
readily available

Only supports one
camera for Android
currently. C: most
Android, most iOS,

few
Windows7Phone.

*According to IDE: all
but BlackBerry

No. Experimental
(i.e. may not work at
all) API available for

recording, but not
streaming

No.

HTML5:
(image/video)

Android iOS. C:
(images/video)
Android, iOS,

Windows7Phone,
Java2ME (some

features),
Moblin(some

features)

C: [using
sensorStart() with

SENSOR_TYPE_PR
OXIMITY] Android,

iOS

According to IDE,
only has support for

Android

117

Tool

Sensor Access Geolocation Notifications Monetization

Accelerometer Gyroscope Barometer Compass Wi-Fi
Positioning

Cellular
Positioning GPS Native Map

Support User Notifications
System

Notifications

Push Notifications
(Specify if using
Native server or

3rd Party)

App Store
Support

Mobile Web

Grouped as Device
Orientation.

Implemented on
latest Bada, Android,
iOS and Blackberry

devices

Grouped as Device
Orientation.

Implemented on
latest Bada, Android,
iOS and Blackberry

devices

No No
Grouped as

Geolocation. Widely
implemented

Grouped as
Geolocation. Widely

implemented

Grouped as
Geolocation.

Widely
implemented

No
Draft, Partial

implementation in latest
Blackberry

No

Draft, Implemented in
latest versions of

Bada, iOS,
Blackberry

No

BlackBerry
WebWorks

Only Playbook
supported, Grouped
as Device Motion

No No No
Grouped as
Geolocation

Grouped as
Geolocation

Grouped as
Geolocation Yes Yes Yes Yes Yes

Blackberry
Cascades Native

SDK

Information not
readily available

Information not
readily available

Information not
readily available

Information not
readily available No Grouped as Location Grouped as

Location No
Information not readily

available
Information not

readily available
Information not

readily available

Currently only for
those with the Dev

Alpha device.

Android Java
On devices that

have one, and are
running Android 1.5+

Since Android 2.3
(on devices with the

proper hardware)

Since Android 1.5
(on devices with the

proper hardware)

Since Android 1.5
(on devices with the

proper hardware)

Yes (grouped under
NETWORK

PROVIDER option)

Yes (grouped under
NETWORK

PROVIDER option)

Yes (grouped
under GPS
PROVIDER

option)

Yes Yes Yes

Native "PUSH", using
Google's Cloud To
Device Messaging
(C2DM) service,

which you have to
register with. Android

2.2+

Yes

iOS Native Yes Yes No No
Grouped as
Geolocation
framework

Grouped as
Geolocation framework

Grouped as
Geolocation
framework

Yes Yes Yes Yes Yes

Adobe
PhoneGap Yes No No Yes

Grouped as
Geolocation

Grouped as
Geolocation

Grouped as
Geolocation No Yes Yes 3rd Party Yes

Appcelerator
Titanium Yes No No Yes

Grouped as
Geolocation

Grouped as
Geolocation

Grouped as
Geolocation Yes Yes Yes Yes Yes

Adobe Air Yes Yes No Yes Yes Yes Yes No Yes
Through Native

extension, if
supported

Yes Yes

MoSync

Sensors currently
only supported on
Android and iOS.

Emulator does not
currently support

sensors. *According
to the IDE: iOS,

Android, and
Windows Phone

supported.

C: [using
sensorStart() with

SENSOR_TYPE_GY
ROSCOPE] Android,
iOS. *According to
IDE: Android, iOS,

and Windows Phone

No

HTML5: iOS,
Android,

Windows7Phone. C:
(using sensorStart())

Android, iOS

On Android devices
that support it, but

only in select
countries

Information not
readily available

HTML5: Android,
iOS,

Windows7Phone.
C: Android, iOS,

Windows7Phone.
*According to IDE:
(under Location)

all.

Information not
readily available

HTML5: (Beep) iOS
Android. (Vibrate) iOS,

Android, Windows Phone
7. C++: iOS and Android.
C: iOS and Android. *iOS
uses badge notifications,
Android uses StatusBar

notifications. You have to
handle both cases

manually

iOS and Android.
Eg. Calendar

events can open
your app

Native for Android
(using Google's

Cloud To Device
Messaging service)

and iOS

Yes (at least for
Android, iOS and

Windows 7 Phone).
Registering with the

respective sites,
obtaining signing
keys and passing

App inspections still
applies

118

Tool

Monetization Security

In App Purchases
(Native or 3rd party)

Mobile Ad
Platform support

(Native or 3rd
Party)

Analytics Platform
Provided/Compatibility

Access to Secure
Storage

Code
Obfuscation

Mobile Web 3rd Party
Normal advertising

services Traditional web analytics only No No

BlackBerry
WebWorks Yes Yes (Beta) Yes, RIM API No No

Blackberry
Cascades Native

SDK

Yes (FREE). Only
available for Apps
distributed through

BlackBerry App World,
requires a BlackBerry

App World vendor
account

Information not
readily available Information not readily available Restricted access

Information not
readily available

Android Java

Yes. Only available for
Apps distributed

through Google Play,
and requires a Google

Wallet Merchant
account. A 30% fee
will be taken from the

amount by Google

Yes
Yes, if published through Google Play

(for number of downloads and that kind
of information)

Access to App data restricted
to only that App. Data

encryption libraries included.
Note that a rooted device will

expose all saved files, and
thus encryption of sensitive

data is encouraged.

ProGuard tool
included with

SDK
automatically

obfuscates code
when App is built
in release mode

iOS Native Yes Yes 3rd Party available Encryption available Yes

Adobe
PhoneGap 3rd Party 3rd Party

Can make use of web analytics or third
party plug-ins No No

Appcelerator
Titanium

Via Module
(Official) Yes Yes No Yes

Adobe Air Yes Yes
Only through third-party tools/plugins

like appAnalytics

Encrypted Local Store (ELS),
which uses KeyChain on iOS,
but let’s Android's user-level
security handle it, which on a
rooted phone is not secure

Yes

MoSync

No (MoSync 3.1
added support for in-

app purchases for iOS
and Android).

Android and iOS
Native support (in
C and C++). Using

Google AdMob.
(InMobi support

added in MoSync
3.1 for

JavaScript/HTML5
apps).

MoRE has performance statistics. Other
analytics likely available through third-

party tools.

Partial implementation.
Developer enhancement

required

Information not
readily available

119

	Chapter 1 Introduction
	1.1 Motivation
	1.2 Thesis Statement
	1.3 Research Approach
	1.4 Organization of Thesis

	Chapter 2 Background and Related Work
	1
	2
	2.1 Current State of the Mobile Platform Landscape
	2.2 History of Cross-Platform Development
	2.3 CPDTs for Mobile Development
	2
	2.1
	2.2
	2.3
	2.3.1 Mobile Web
	2.3.2 Adobe PhoneGap
	2.3.3 Appcelerator Titanium
	2.3.4 Rhomobile Rhodes
	2.3.5 Adobe Air
	2.3.6 MoSync
	2.3.7 Tool Analysis and Comparison

	2.4 Related Work
	2.5 Summary

	Chapter 3 An Evaluation Framework for CPDTs
	3
	3.1 Framework
	3.2 Phase I: CPDT Capabilities
	1
	2
	2.1
	2.2
	3.2.1 CPDT Basic Elements
	3.2.2 Development Environment
	3
	3.1
	3.2
	3.2.1
	3.2.2
	3.2.3 User Experience
	3.2.4 Device Access
	3.2.5 Sensors
	3.2.6 Geolocation
	3.2.7 Notifications
	3.2.8 Monetization
	3.2.9 Security

	3.3 Phase II: Performance Benchmarks
	3.3
	3.4
	3.4.1
	3.4.2
	3.4.3
	3.4.4
	3.4.5
	3.4.6
	3.4.7
	3.4.8
	3.4.9
	3.3.1 Processor Intensive Benchmarks
	3.3.2 Data Driven Benchmarks
	3.3.3 Device Access Benchmarks
	3.3.4 User Experience Benchmarks
	3.3.5 Test Procedure

	3.4 Phase III: Development Experience Discussion
	3.4.1 Tool Related Discussion
	3.4.2 Development Experience Discussion

	3.5 Summary

	Chapter 4 Implementation and Experiments
	4
	4.1 Experiment Parameters
	4.1.1 CPDTs and Native Development Kits
	4.1.2 Devices
	4.1.3 Assumptions

	4.2 Phase I: CPDT Capabilities
	4.3 Phase II: Performance Benchmarks
	4.3.1 Application Skeleton
	4.3.1.1 Interface
	4.3.1.2 Test Modules
	4.3.1.3 Log
	4.3.1.4 Iterations

	4.3.2 Processor Intensive Benchmark Tests
	4.3.2.1 AES Encryption and Decryption
	4.3.2.2 Input Validation

	4.3.3 Data Intensive Benchmark Tests
	4.3.3.1 Local PIM Access
	4.3.3.2 Remote Service Access
	4.3.3.3 Sorting

	4.3.4 Device Access Benchmark Test
	4.3.4.1 Microphone Usage

	4.3.5 User Experience Benchmark Tests
	4.3.5.1 UI Elements
	4.3.5.2 Screen Transition

	4.3.6 Test Implementation

	4.4 Phase III: Development Experience Discussion
	4.4.1 Tool Related Discussion
	4.4.2 Development Experience Discussion

	4.5 Summary

	Chapter 5 Results and Evaluation
	5
	5.1 Phase I: CPDT Capabilities
	5.2 Phase II: Performance Benchmarks
	5.2.1 Processor Intensive: AES Encryption
	5.2.2 Processor Intensive: Input Validation
	5.2.3 Data Driven: Local PIM Access
	5.2.4 Data Driven: Remote Service Access
	5.2.5 Data Driven: Sorting
	5.2.6 Device Access: Microphone Usage
	5.2.7 User Experience: UI Elements
	5.2.8 User Experience: Screen Transition
	5.2.9 Overall Result

	5.3 Phase III: Development Experience Discussion
	5.3.1 PhoneGap
	5.3.2 Appcelerator Titanium
	5.3.3 Adobe Air
	5.3.4 MoSync
	5.3.5 Native Tools

	5.4 Analysis
	5.5 Summary

	Chapter 6 Conclusion and Future Work
	6
	6.1 Conclusion
	6.2 Future Work

	Bibliography
	Appendix A: CPDT Features to be Evaluated
	Appendix B: Benchmark Application Skeleton
	Appendix C: Benchmark Application UI Elements Test
	Appendix D: AES Encryption Data
	Appendix E: Contact Data
	Appendix F: Remote Data Script
	Appendix G: Benchmark Application Sorting Algorithm
	Appendix H: Images for UI Testing
	Appendix I: Results of Phase I Evaluation

