Downloaded from orbit.dtu.dk on: Apr 28, 2024

DTU DTU Library

i

AVOCLOUDY: a simulator of volunteer clouds

Sebastio, Stefano; Amoretti, Michele; Lluch Lafuente, Alberto

Published in:
Software: Practice & Experience

Link to article, DOI:
10.1002/spe.2345

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Sebastio, S., Amoretti, M., & Lluch Lafuente, A. (2015). AVOCLOUDY: a simulator of volunteer clouds. Software:
Practice & Experience, 46(1), 3-30. https://doi.org/10.1002/spe.2345

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

https://doi.org/10.1002/spe.2345
https://orbit.dtu.dk/en/publications/fb4d93a3-7ccc-433d-8c5d-169053fea347
https://doi.org/10.1002/spe.2345

SOFTWARE: PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2016; 46:3-30
Published online 30 July 2015 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/spe.2345

AVOCLOUDY: a simulator of volunteer clouds

Stefano Sebastio!** T, Michele Amoretti? and Alberto Lluch Lafuente*

LLIMS, London Institute of Mathematical Sciences, London, UK
2Dipartimento di Ingegneria dell’Informazione, University of Parma, Italy
3DTU Compute, Technical University of Denmark, Kgs. Lyngby, Denmark

4IMT Institute for Advanced Studies, Lucca, Italy

SUMMARY

The increasing demand of computational and storage resources is shifting users toward the adoption of cloud
technologies. Cloud computing is based on the vision of computing as utility, where users no more need
to buy machines but simply access remote resources made available on-demand by cloud providers. The
relationship between users and providers is defined by a service-level agreement, where the non-fulfillment
of its terms is regulated by the associated penalty fees. Therefore, it is important that the providers adopt
proper monitoring and managing strategies. Despite their reduced application, intelligent agents constitute
a feasible technology to add autonomic features to cloud operations. Furthermore, the volunteer computing
paradigm—one of the Information and Communications Technology (ICT) trends of the last decade—can
be pulled alongside traditional cloud approaches, with the purpose to ‘green’ them. Indeed, the combination
of data center and volunteer resources, managed by agents, allows one to obtain a more robust and scalable
cloud computing platform. The increased challenges in designing such a complex system can benefit from a
simulation-based approach, to test autonomic management solutions before their deployment in the produc-
tion environment. However, currently available simulators of cloud platforms are not suitable to model and
analyze such heterogeneous, large-scale, and highly dynamic systems. We propose the AVOCLOUDY simu-
lator to fill this gap. This paper presents the internal architecture of the simulator, provides implementation
details, summarizes several notable applications, and provides experimental results that measure the simu-
lator performance and its accuracy. The latter experiments are based on real-world worldwide distributed
computations on top of the PlanetLab platform. Copyright © 2015 John Wiley & Sons, Ltd.

Received 3 September 2014; Revised 22 May 2015; Accepted 21 June 2015

KEY WORDS: cloud computing; volunteer computing; autonomic computing; distributed computing;
discrete event simulation

1. INTRODUCTION

Provisioning, using, and maintaining computational resources as services are hard challenges. On
the one hand, there is an increasing demand of such services due to the increasing role of software in
our society, while on the other hand, the amount and variety of computational resources are growing
due to the pervasiveness of computational devices in our lives.

The complexity of such a problem can only be mastered by resorting to suitable technologies
based on well-studied paradigms. Three prominent examples and ICT trends of the last decade,
which can be fruitfully combined, are cloud computing, autonomic computing, and volunteer
computing.

Cloud Computing. Cloud computing is a recent ICT technology based on the concept of comput-
ing as utility. In this vision, users do not buy nor maintain their own computational resources but

*Correspondence to: Stefano Sebastio, LIMS, London Institute of Mathematical Sciences, 22 South Audley St. Mayfair,
London W1K 2NY, UK.

TE-mail: stefano.sebastio@alumni.imtlucca.it

Copyright © 2015 John Wiley & Sons, Ltd.

4 S. SEBASTIO, M. AMORETTI AND A. LLUCH LAFUENTE

Application Layer

Saas Saas Software as a Service

Paas$ Platform as a Service

laa$ Infrastructure as a Service
Daas$ Data as a Service

CaaS Communication as a Service
Naa$S Network as a Service

Software Environment
Paas

Computational Storage Communication Network
Resources

laas A DaaS A Caa$s A Naa$s

Hardware

Figure 1. Cloud computing stack architecture.

rather use services based on their requirements, regardless of where the resources are hosted or how
they are deployed. In the cloud, resources are managed with a multi-tenancy approach, where each
request is bound to a contract between the service provider and the consumer. Such a contract is
specified in terms of service-level agreements (SLAs) and associated to penalty fees, in case of vio-
lation of the required quality of service (QoS). Thus, it is necessary that the cloud is provided with
performance monitoring functions. Another important feature of cloud computing is its ability to
provide elastic high-performance services, adapting to user and application needs.

Cloud services can be of different nature, from high-level services such as applications to low-
level services such as hardware resources. The reference model of cloud services is illustrated
in Figure 1.

Autonomic Computing and Clouds. One of the greatest challenges of cloud computing is the
efficient use of resources, while guaranteeing the fulfillment of SLAs. To this aim, particular atten-
tion is given to autonomic computing techniques, which support the development of clouds as
self-managing systems. Cloud features should automatically adapt to their internal status and the
dynamically changing environment, without human intervention. Self-management may involve
system maintenance, awareness, evolution, configuration, healing, tuning, and optimization.

Grid Computing and Clouds. Before the advent of the cloud, grid computing has been one
of the most important technologies adopted by researchers to obtain high-performance comput-
ing capabilities at low cost. The grid paradigm assumes the presence of machines deployed in
different domains, running specialized middleware for the aggregation and provision of compu-
tational resources to participants of the same virtual organization (e.g., researchers working in
the same field). Grid users are required to have a high level of expertise. For instance, to suit-
ably coordinate the workflow of a distributed application, a programmer has to be aware of
low-level details such the heterogeneity of computational resources such as processors or net-
work channels. Instead, with the cloud paradigm, all the shared resources are virtualized by
the ‘cloud’ and offered in a homogenous means that hides unnecessary low-level technicali-
ties. A typical example would be resource-as-a-service offering a unique super-computer to the
programmer that does not need to know if such a service is built upon a cluster or a grid or
something else.

Volunteer Computing and Clouds. The aforementioned proliferation of computational resources
in our society (e.g., in smartphones, in vehicles, and in homes) can be turned into an opportunity.
Indeed, the traditional cloud technology can be combined with mechanisms adopted from another
paradigm that has gained popularity and research attention in the last decades: volunteer comput-
ing. The volunteer paradigm considers the willingness of users to donate their spare and unused
computational resources.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:3-30
DOI: 10.1002/spe

AVOCLOUDY: A VOLUNTEER CLOUD SIMULATOR 5

Volunteer cloud computing [1] (i.e., the combination of Peer-to-Peer (P2P) and cloud computing
technologies, also referred as P2P cloud) should be considered as a companion force to enhance tra-
ditional clouds in specific domains. For example, it is the case of academic institutions and industrial
research centers that share the spared resources of their labs (not used 24 h a day or underused for
browsing and word processing activities) with other sites, to run complex large-scale simulations.

It is worth noting that grid computing envisages volunteer participation as well. However, to
participate in a grid, an institution has to provide machines that must be configured and fully
devoted to the purposes of the specific virtual organization. A paradigmatic example is the World-
wide LHC Computing Grid [2], whose machines are distributed worldwide, provided by different
research institutes. Conversely, volunteer cloud computing leverages on idle resources of participant
machines.

The volunteer cloud supports both computing- and storage-oriented cloud-based applications.
Thus, Map-Reduce and streaming applications can be successfully implemented in a volunteer cloud
fashion [1]. Instead, service-oriented applications (such as multi-tier Web applications) are not suit-
able for being executed in a volunteer cloud environment, because of the volatile presence of the
nodes participating in the network.

Opportunities for volunteer cloud computing. The benefits of combining the cloud and volun-
teer paradigms are the reduction of economic costs and consumed power at data centers [3—6]. The
reduction of economic costs comes from better exploitation of available and unused computational
resources, for the use of those made available free of charge from the volunteer community. More-
over, harnessing the distributed computing power, maintenance costs of massive data centers are
reduced in terms of power supplies and heat dissipation, thus embracing the green computing ini-
tiative. Last but not least, volunteer cloud computing is beneficial in case of natural catastrophes
that damage data centers, or when governments place restrictions on the location of sensitive data.
Indeed, volunteer cloud computing prevents the presence of a single entity that owns and controls
the cloud, with less risk in the vendor lock-in problem.

To foster the participation of volunteers while respecting the SLAs, it is possible to contemplate
the registration of each volunteer (e.g., through a system of signed certificates) and the assignment of
credits for their participation. For example, the PlanetLab platform [7] fosters the participation to the
P2P network, requiring to share a minimum number of machines (with specified minimum system
requirements) to gain access to all other shared machines. We have precisely used this platform in
our experiments aimed at validating the confidence of our simulator, as we shall discuss later.

In recent years, the volunteer cloud paradigm is gaining attention, alongside to the increased
diffusion of cloud technologies [8]. For example, in France at INRIA (Clouds@Home), in Italy
at the universities of Bologna (peer-to-peer cloud system) and Messina (Cloud@Home), and in
general within the European Community (NaDa—NanoDatacenter [9], EDGI—European Desktop
Grid initiative [10]), the CERN’s volunteer cloud [11], in the USA within the National Science
Foundation, which supports the BOINC project (to date with five research grants [12]), HTCondor
(to date with four grants [13]), Seattle (to date with three grants [14]), SETI@home (with support
from the National Science Foundation and NASA [15]), and the Federal University of Campina
Grande in Brasil with the OurGrid initiative [16]. Other works have modeled resource discovery
algorithms in volunteer clouds relying on queueing theory [17, 18] and explored the opportunity for
distributing Matlab simulations in a university volunteer infrastructure [19].

One of the major drawbacks of volunteer cloud computing is the challenge posed by the increas-
ing complexity in the management of heterogeneous and distributed computing resources. Despite
the mentioned considerable amount of research and implementation effort, the current landscape
lacks of a simulator targeting the peculiarities of the volunteer cloud environment, which would
be beneficial to prototype and analyze new solutions to the management of resources in volunteer
clouds. Our work aims at filling this gap.

Contribution. Our vision advocates for the realization of a volunteer cloud computing architecture
relying on the autonomic computing approach, realized through intelligent agents. The increased
complexity of such a paradigm demands more attention to the design phase. A simulation-based

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:3-30
DOI: 10.1002/spe

6 S. SEBASTIO, M. AMORETTI AND A. LLUCH LAFUENTE

approach can alleviate the deployment risk, giving confidence on the expected performance. To the
best of our knowledge, the most used and affordable cloud simulators [20—22] only consider the
presence of few interconnected data centers and thus cannot scale to the size of a typical volun-
teer network and model the associated challenges. The proposed AVOCLOUDY simulator allows
one to consider richer scenarios with data centers, volunteers, or both types of nodes together.
It is worth to remark that its layered architecture and the use of agents simplify the transition
from the simulator to the production environment. This has facilitated, for instance, the porting of
some case studies from the simulator to the PlanetLab platform used to validate the confidence of
the simulator.

AVOCLOUDY is a simulator of volunteer clouds targeted for the evaluation of task distribution
and network management protocols. We do not focus here on the details of such protocols (we refer
to our previous research, summarized in Section 5). Instead, we provide a detailed description of the
simulator, using a tutorial form, as much as possible.

Synopsis. The paper is structured as follows. Section 2 introduces the reference platforms for AVO-
CLOUDY, and in particular the SCIENCE CLOUD. Section 3 presents the AVOCLOUDY architecture,
whose implementation details are provided in Section 4. Some works that have already benefit from
AVOCLOUDY are briefly described in Section 5, while Section 6 presents a simple experiment and
a performance evaluation. A confidence validation based on a worldwide distributed application
running on top of the PlanetLab network is presented in Section 7. Finally, Sections 8 and 9 con-
clude the work respectively with an overview of the other available cloud simulators and some
final remarks.

2. EXISTING PLATFORMS

The proposed solution has its roots on the architecture of the SCIENCE CLOUD [23], an auto-
nomic and cooperative volunteer cloud computing platform developed within the European project
ASCENS [24]. The SCIENCE CLOUD is a decentralized platform whose goal is the sharing of com-
putational resources among scientific communities. Differently from the traditional definition of
cloud, the volunteer cloud is characterized by the following: (i) openness and dynamism (i.e., par-
ticipants can join and leave the network at any moment) and (ii) lack of a centralized control
(i.e., participants directly interact in a peer-to-peer fashion). Shared resources are mainly used to
execute distributed applications or services.

In this work, we refer to the abstract entity that shares its resources as node, volunteer, or par-
ticipant interchangeably. The different types of agent are the autonomic components that act in the
network at different layers of the architecture to fulfill certain goals. The physical resources shared
by a volunteer constitute a device.

There are different types of devices participating to the volunteer network. They can be grouped
into three main categories: (i) dedicated servers and data centers; (ii) desktops and laptops; and (iii)
mobile devices. The groups are characterized by a different amount of available resources (CPU,
memory, and energy) and online presence. Anyhow, also in the same category, nodes are hetero-
geneous (i.e., they may offer different virtual resources) and highly dynamic (i.e., they may enter
or leave the system at any time). Furthermore, load and resources may change during the nodes
execution.

Devices. Dedicated servers and data centers are made available by universities or research centers
to the research community and, except for update or malfunctioning, are always online. Moreover,
generally, they are made of multisocket—multiprocessor architectures, connected to high-bandwidth
network and to power source.

Desktops and laptops are devices willing to share a quote of their resources when not needed
locally. Their online presence is discontinuous and unknown a priori; they are usually connected
to residential networks and have a limited amount of resources that prevent (or make less attrac-
tive) the execution of multiple virtual machines (VMs) at the same time. Mobile devices are

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:3-30
DOI: 10.1002/spe

AVOCLOUDY: A VOLUNTEER CLOUD SIMULATOR 7

nalyze Plan

Monitor Knowledge Execute

Figure 2. Agent layer according to the MAPE-K model.

characterized by limited power capacity that affects their online presence duration. Energy con-
straints and limited resources make mobile devices nothing more than generators of service requests
(just like the cloudlets proposed by Microsoft [25]), leaving the network once such requests have
been satisfied. Examples where mobile devices can benefit to request the cloud execution are com-
putational intensive applications in which also the latency affects the user-perceived quality of
experience, like in the augmented reality domain.

Volunteer implementations. Nowadays, many concrete implementations of volunteer computing
are available, such as BOINC [26], HTCondor [27], OurGrid [28], Seattle [29], and SETI@home
[30]. These architectures rely on a central server, the node manager, that is in charge of
receiving presence messages from new nodes in the network. The node manager collects sub-
mitted task execution requests (often in batch mode) and finds the most promising nodes to
execute them. The centralized control approach presents different kinds of weakness such as
the central point of failure, and it can constitute a bottleneck when many nodes are con-
nected (as it happens in a typical volunteer network). Moreover, a (sub-)optimal decision about
which nodes to involve in the execution of a given distributed application cannot be realized
in practice because it requires a global knowledge of characteristics and load for each node.
The only operations that can be performed in a complete distributed manner are data stor-
age and location in the network, for example, via a distributed hash table implemented in the
P2P network.

Autonomicity. One of the main differences among the mentioned implementations and the SCI-
ENCE CLOUD regards the autonomic aspects. The autonomic behavior of each node can be under
the control of commercial or academic entities. Each entity can have its goal and policies accord-
ing to which its machines must share and use the resources available in the network. Internally, all
the layers are structured according to the IBM’s reference architecture MAPE-K for autonomic sys-
tems [31], as illustrated in Figure 2. Briefly, the agent in each of the node’s layer monitors itself and
the ones closer (upper, lower, and the corresponding agent layer of other nodes) for applications,
resources, and environment, analyzes its status, devises plans to improve its behavior (e.g., appli-
cation execution, resources usage), and enacts those plans. A knowledge base supports this
cycle of activities.

3. AVOCLOUDY ARCHITECTURE

This section illustrates the architecture of AVOCLOUDY. It starts with a description of the underly-
ing tools then continues with an overall picture of its volunteer network and the main interactions
occurring among its autonomic entities. Finally, a layer-by-layer bottom-up architectural description
is provided.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:3-30
DOI: 10.1002/spe

8 S. SEBASTIO, M. AMORETTI AND A. LLUCH LAFUENTE

Output:

AVoCloudy < ¢ MultiVeSt,ﬁ

0000

Figure 3. Toolchain: DEUS + MultiVeStA + AVOCLOUDY.

Property
specification
(MultiQuaTEx)

AVOCLOUDY? is built on top of a Discrete Event Universal Simulator (DEUS) [32, 33], a general-
purpose, multi-platform, open-source, Java-based, discrete event simulation tool. Despite there are
many free or commercial simulator tools, the flexibility of DEUS to support the analysis of every
kind and size of complex system, such as the one considered in our scenario, have led us to choose
it. There are three main classes in DEUS: (i) nodes, the entities that interact in the system; (ii)
events, that define internal actions and interactions among the nodes, or with the environment; and
(iii) processes, either stochastic or deterministic ones (many already implemented in the common
processes library), that define the timeliness of the events.

DEUS has been enriched with the distributed statistical analysis capabilities offered by Multi-
VeStA [34, 35]. The latter tool provides a language (MultiQuaTEx) to express system properties of
interest in a compact fashion. Such properties are evaluated by performing independent distributed
simulation runs, until the required accuracy is met.

The obtained toolchain is depicted in Figure 3. The cloud model and its scenario are specified
by means of AVOCLOUDY, which in turn relies on DEUS to manage the basic discrete event simu-
lation functionalities (e.g., process generation and events queue). The system properties of interest
are formally specified by means of MultiQuaTEx. Examples of such properties are mean number
of tasks on queue, applications executed successfully, execution requests spread in the network,
and variance of executed tasks per node. MultiVeStA takes the MultiQuaTEx specification as input,
together with the desired accuracy for each property expressed as the size of the CI at a given per-
centage, evaluated according to the Student’s ¢-test. Independent simulation runs are distributed on
different cores or machines and are performed until the required accuracy is met. Finally, Multi-
VeStA provides in output, for each property, the expected value, the CI (which can be larger than
required, if the maximum number of simulation runs is reached) and the variance. If these properties
concern the evaluation of the system at different points in time, a tab-separated output file is gener-
ated together with a GnuPlot script and the corresponding plot. As the description of the integration
of DEUS with MultiVeStA is out of the scope of this work, we refer to the recent work by Sebastio
and Vandin [34] for a deeper discussion.

The internal architecture of an AVOCLOUDY node is depicted in Figure 4, where the arrows
represent the interactions among agents. It has many similarities with the architecture pro-
posed in the SCIENCE CLOUD. The main architectural difference between SCIENCE CLOUD and
AVOCLOUDY is that the latter has a modularized structure, where each layer is constituted by an
agent that autonomously cooperates with other agents in the same and in other nodes. Each layer in
the proposed stack corresponds to one of the packages according to which the simulator is organized.

It is worth to note that the considered architecture (Figure 4) significantly differs from the one
of a typical cloud (Figure 1). This is due to the different purpose for which they are made: the
volunteer computing is mainly oriented to resource sharing for on-the-fly application remote relo-
cation and execution, while the typical cloud hosts persistent services. In particular, the topmost
layer agent (the ACaas) is in charge to provide autonomicity for the execution of applications in
the volunteer cloud.

*https://github.com/distributedResearch/avocloudy/wiki

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:3-30
DOI: 10.1002/spe

https://github.com/distributedResearch/avocloudy/wiki

AVOCLOUDY: A VOLUNTEER CLOUD SIMULATOR 9

>
—
—

Figure 4. The AVOCLOUDY architecture.

reserve\release resources

Start\Resize\Shutdown VM —

Taas\pC_Agent
1aas_Agefit (on DO)

Monitoring Net & Resources Usage

/ 1aas | genl\ gl

Info for nodes' presence in the net

—— Appexecution & contract —

lAgent App
Abstraction Of Physical Resources

Overlay Net Managing Nodes for Workflow

Figure 5. Use case diagram of the AVOCLOUDY simulator. VM, virtual machine.

Agent interactions. The UML use case diagram in Figure 5 describes how agents interact
in the system, providing functions and services. Physical resources (Hw) are managed by the
IaaS_DC Agent or, in its absence, directly by the TaaS Agent. If the TaaS DC Agent is
present, it is in charge to interact with its TaaS_ Agents to monitor and act on them for VMs
resizing, shutdown, and start. Each TaaS Agent, cooperating with the other agents of the same
layer, is in charge of managing the P2P overlay network. Load info and nodes knowledge present
in the TaaS_Agent are exchanged with the ACaaS Agent to contact the other agents of the
same layer. Once the App is generated, it contracts its execution requirements with the respon-
sible ACaaS_Agent. The ACaaS_Agents organize themselves in ensembles to orchestrate the
application execution. AVOCLOUDY users define how agents interact to fulfill the goal of the
designed scenario.

Network. Figure 6 illustrates the architecture of the volunteer cloud, representing with squares and
circles, respectively, data centers and personal devices, and where, for sake of simplicity, only two
nodes are represented with their internal layer architecture. The nodes are arranged in different
cloud sites. Each site can be composed by only data centers (the left site in the figure), only personal
devices (the right site), or both types together (the bottom center site). Regardless from the nodes
participating to the site, the connection is realized with an arbitrary P2P overlay network. With
AVOCLOUDY, it is possible to define scenarios with one or more types of volunteer nodes, by
properly editing the simulator configuration file.

Each TaaS Agent resides on exactly one site. The general organization is a semi-structured
P2P overlay network, where each sife is organized in an unstructured overlay network and one
IaaS_Agent for each site is the supernode, in charge of ‘mediating’ the communication between
sites. Every node entering/leaving the network, being it fixed or mobile, signals its action to the
supernode, as usually happens in the protocols used by layered P2P networks. Despite this simple
signaling protocol, it is still possible that a node abruptly leaves the network (e.g., because of a
connection failure). To solve this issue, nodes should periodically ping the peers they know, in order
to check for their aliveness and, if it is the case, to replace them with new contacts, provided by

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:3-30
DOI: 10.1002/spe

10 S. SEBASTIO, M. AMORETTI AND A. LLUCH LAFUENTE

. Data center node
’ Desktop/laptop node

Figure 6. Network architecture.

a bootstrap server or by other known nodes. Several strategies can be used to select supernodes
of such sites: from classical leader election strategies [36—39] to more specific ones. For example,
it is possible to choose the data center and most stable nodes, with the rationale that these nodes
should experience better uptime and resources. Because the mobile devices are either handhelds,
smartphones, or tablets, with limited power and computing capabilities, they will act only as tasks
producers and will never be considered as supernodes. AVOCLOUDY users can easily implement
more sophisticated leader selection strategies [40—43], as described in Section 4.

Infrastructure layers. Data center machines have an TaaS_DC_Agent that is in charge of mon-
itoring its TaaS_Agents and, according to its policies and available resources, decides when it is
needed to start (instantiate a new one), resize (scaling-up or down), or shutdown the TaaS_ Agents
that are running on top of it. The knowledge of dynamic information (e.g., CPU load and mem-
ory consumption) and static information (e.g., processor speed and number of cores) on each
TaaS Agent is used by the TaaS DC Agent, where present, to support its decision process.
According to the load monitoring information, it is possible to trigger a request to expand the
resources available on a node, or to start another TaaS_Agent if a distributed App can take advan-
tage from the presence of another node instead that of a single powerful one. When a node is
underloaded for a certain amount of time, it can also perform the reverse action (i.e., reducing the
available resources or shutdown a node), to spare energy.

Differently from the data centers, volunteer devices do not have the chance to run multiple VM
instances if not by consuming many resources. Taking into account that these machines should be
available also for local use, the amount of shared resources is defined a priori and no resize policy
is considered.

Regardless of the underlying layer (physical or IaaS_DC), the TaaS_ Agent has in charge the
communication with the other nodes to realize the P2P overlay network. Moreover, in addition to
the typical duty of an IaaS cloud layer, the TaaS_ Agent is in charge of assigning and sharing the
resources available in its VM (i.e., CPU, memory, and bandwidth). The P2P overlay ensures that
each TaaS Agent is able to find agents of the same layer and establish connections with them
relying on the underlying network, such as the local area network or the Internet. Moreover, this
layer provides the support for the exchange of the data needed by upper layers (e.g., exchange of
data and applications).

Each volunteer data center node can be modeled as a G/ G/m /K queue, where G means that task
arrivals and service times have generic distributions, m is the number of TaaS_Agents in each,
and K is the maximum number of tasks in the system (1 being executed, K — 1 waiting in a first
come first served, queue) [44]. Personal devices are modeled as G/G/1/K queues, because they
cannot resize their resources nor run multiple TaaS_Agent instances.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:3-30
DOI: 10.1002/spe

AVOCLOUDY: A VOLUNTEER CLOUD SIMULATOR 11

Definition 1 (IaaS_Agent resources)
The resources available to the TaaS_Agent are described by a tuple (k, ¢, v), where k € N7 is
the number of processors, ¢ € N7 is their clock frequency, and v € N is the amount of memory.

Autonomic layer. The ACaaS Agent is the topmost layer, charged to autonomously coordi-
nate with the other nodes of the same layer, forming aggregations (called ensembles) in order to
orchestrate the application executions and manage their workflows in a robust and optimized way,
according to the node’s policies and the application’s requirements (e.g., the associated QoS con-
straints). For each application, an isolated execution environment is assigned (like a sandbox or a
VM), to ensure a basic level of security for the user data and the application. Such a layer should
be defined by the AVOCLOUDY user to test the designed application distribution protocol. A few
example protocols we implemented in AVOCLOUDY are described in Section 5.

Application layer. The volunteer cloud provides distributed application execution as its main func-
tionality. Applications may range from batch tasks to interactive applications to persistent services,
which may have different requirements in terms of resources (e.g., CPU and memory needed) and
QoS (e.g., deadline). The application (App) can be generated by any node participating to the
network. The node that generates the App makes use of its own responsible ACaaS Agent to
autonomously find the most promising nodes to distribute and execute the application, while respect-
ing its resources and QoS requirements. When an ACaaS_Agent receives a task execution request,
it autonomously responds, according to its policies, specifications, and load, with a task execution
bid containing the requirements (both functional and non-functional) that it is able to satisfy. Several
mechanisms have been investigated in [45-47], but in general, the AVOCLOUDY user is in charge
to define his/her own application dispatch mechanism.

The App can be defined as a single task, a set of independent tasks, or arranged in a work-
flow, with an associate QoS specified by an SLA. The App definition is taken into account by the
ACaaS_Agent responsible. The App typology changes the goal that must be fulfilled; for exam-
ple, when an application is a set of tasks, usually the goal is to minimize, or respect a constraint,
on the makespan (defined as the time difference among the task that completes first and the one
that completes last in the given set). A simple example of SLA specification can impose a certain
deadline for the execution of each task.

Every task belonging to an App is defined by and carries a description with its duration, required
amount of memory, and maximum degree of parallelism (with the size of the parallelizable fraction)
that it is able to exploit. The declared task execution duration is defined on a ‘reference’ architecture,
but its actual duration can be reduced according to the CPU architecture and frequency available on
the executing node. Moreover, the task’s parallelism and the available CPU cores affect the task’s
duration. It is also worth to consider that, when an ACaaS_Agent evaluates the task completion
time, in general, it is not able to accurately predict the tasks duration.

Definition 2 (task)

A task is a tuple (8, p, f. i, o), where § € R is its duration (expressed in cycles), p € N7 is its
degree of parallelism, f € [0, 1] is the parallelizable section, u € N is its memory requirement,
and 0 € R is its size on secondary (auxiliary) storage.

From the previous definition, it follows that 1 — f is the task section that needs to be executed
sequentially and f" is the fraction that can exploit the maximum machine parallelism.

The execution time e(7, M) required to complete a task T = (8, p, f, 4, o) on a machine M =
(k, ¢, v) is computed according to some recent extensions of Amdhal’s law [48-50].

Definition 3 (task execution time)
A task 7" with degree of parallelism p and parallelizable section f, executed on a machine M whose
cores frequency ¢, has the following execution time:
1—f)-6 -6
e(T,M) = =7 + f ey
¢ ¢ - min(p, k)

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:3-30
DOI: 10.1002/spe

12 S. SEBASTIO, M. AMORETTI AND A. LLUCH LAFUENTE

That is, for the parallelizable section f, we divide the duration on one single CPU (§/¢) by the
maximum degree of parallelism that can be exploited, which is bounded by both the amount of
available CPUs (k) and the parallelism degree of the task (p). Instead, the task’s sequential section
can only exploit the cores frequency.

Atask T = (6, p, f, u,0) can be executed on a machine M = (k, ¢, V) only if the memory
requirement constraint is satisfied:

w< 2)

We considered this constraint in our model, assuming that memory-swapping operations could
seriously degrade performance. In Section 4, it is described how to customize or change this
behavior by sub-classing.

A machine M should accept a task T in its queue only if it can respect the task’s deadline.

The ACaaS_ Agent should take care of the App’s SLA until its execution completes, even in
presence of unforeseen conditions or events that can compromise its execution, such as node dis-
connection, failure, or completion time estimation error. In general, nodes can also be malicious;
that is, they accept tasks even if they know that are not able to satisfy the App’s requirements. In
these events, the autonomic adaptive logic should act migrating or restarting the App on another
ACaaS_Agent that is able to execute it satisfying its requirements.

The ACaaS Agent generates execution requests, based on functional and non-functional
requirements of the App.

Definition 4 (task execution request)
A task execution request is a tuple (8, p, f. 1,0, T4, T4), Where (8, p, f. i, o) is a task, 7, € RT is
the task arrival date, and t; € R7 is its termination deadline.

Task execution requests can be generated by any node participating to the network. As any other
event in AVOCLOUDY, these requests can be generated with an arbitrary time distribution (we refer
the reader to Section 4 for more details).

Requests handling. Application execution requests can be submitted by any node participating to
the network. Figure 7 is a generalization of the centralized control server approach that dispatches
the task load, considered in the concrete implementations mentioned in Section 2. To each App is
assigned an ACaaS_ Agent responsible to process it, but not necessarily execute it (Figure 7, step
1). The responsible agent considers its resources and knowledge (Figure 7, step 2) and, if neces-
sary, contacts other nodes that can satisfy the application requirements (Figure 7, step 3). Among
the nodes that can satisfy the requests, the choice falls on the most promising one, according to
the specified optimization Policy. Once the ACaaS_Agents able to satisfy the request have
been found, the underlying TaaS_ Agent sends the App to the executor nodes (Figure 7, step 4),
waits until they complete the execution, and receives their response. The workflow depicted in
Figure 7 describes the main steps to manage execution requests. The definition of how each step is
accomplished must be defined by the AVOCLOUDY user.

In our completely distributed architecture, there is not a single dispatcher (Figure 7). Every node
that generates a task request (task producer) acts according the defined task distribution algorithm
(e.g., Ant Colony Optimization algorithm (ACO), reputation, and others).

It is worth noting that all task transfers incur in a transmission cost, which depends on where
destination nodes are located.

Definition 5 (Link delay &)
Nodes a and b, whose geographical position are respectively (x4, ¥4) and (xp, yp), are affected by
a communication delay & [51].

link_length = v/ (xa — x3)? + (Va — Vb)? (€)

link_length
£ = “4)

" propagation speed in the medium

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:3-30
DOI: 10.1002/spe

AVOCLOUDY: A VOLUNTEER CLOUD SIMULATOR 13

Figure 7. Execution request handling (without central dispatcher).

The transmission cost is evaluated according to the minimum data rate among the two end-points.

Definition 6 (Transmission cost V)
The transmission of a task T (with size o) between nodes a and b, which have, respectively, data
rate r, and rp, is affected by a data overhead :

r =min(rg, rp)

5

AND iflan, # lany : r = min(Finermer, 1) ®)
o

V= (6)
r

The overall delay that affects task 7', when it is transmitted among two nodes, is thus & + .

Link length and connection type are required only during the simulation of task transmission, and
this is true even for the mobile device. It is assumed that during a task’s transmission, the mobile
device does not significantly change its position or connection type (e.g., switching from cellular to
WiFi network—although DEUS has been used to simulate also this scenario [52]). All other node
displacements do not affect the communication or the volunteer network, which is a logical network.

4. AVOCLOUDY IMPLEMENTATION

AVOCLOUDY is based on DEUS, enriched with MultiVeStA capabilities. For each layer of the
architecture described in Section 3, there is a corresponding Java package.

In addition to the Java classes, as for all DEUS projects, there is an associated XML configuration
file. It is parsed before the simulation, and it is used to parametrize the simulation itself. For many
of the classes described in this section, a concrete implementation is provided. Each class can be
used ‘as is’, just parameterizing its behavior via the XML file.

Package organization. The root package containing the basic classes for the volun-
teer nodes is it.imtlucca.avocloudy. The root class for the node instantiation is
AbstractCloudyNode. It has been already instantiated in two different versions to discern
among data center nodes (DataCenterNode) and volunteers (VolunteerNode). Furthermore,
the same package contains the corresponding birth events.

The sub-packages are as follows:

e physical (Section 4.1),
e infrastructure (Section 4.2),
e autonomic (Section 4.3),

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:3-30
DOI: 10.1002/spe

14 S. SEBASTIO, M. AMORETTI AND A. LLUCH LAFUENTE

infrastructure.dc (Section 4.4),
application (Section 4.5),

util (Section 4.6), and

log (Section 4.6).

The following sections describe the main features of each package.

The flexibility of the AVOCLOUDY architecture allows users to implement the desired behaviors
by means of sub-classing, very simply.

Given that all the layers are constituted by autonomous entities/agents that cooperate (with other
nodes in the same layer and with the ones in upper and lower layer on the same node), the main
class for each layer is represented by an agent. This approach (i.e., layers’ independence) allows
for modularity, which eases the implementation of high-level protocols (e.g., infrastructure, auto-
nomic behavior, and application logic), while several low-level protocols are already provided by
AVoCLOUDY.

4.1. The physical layer package

The Feature class represents the physical characteristics of the underlying node resources, that is,
core number, clock frequency, amount of memory, machine identifier, type of device (data center,
volunteer, or mobile), network connection, and geo-location.

Because AVOCLOUDY focuses on application-level performance evaluation, considering reason-
able task durations and arrival times, a deep modeling of the network layer is not strictly required
and may constitute a bottleneck for the simulation process. Anyway, despite DEUS is not provided
with a communication package, it does enable the simulation of delays and packet losses, for exam-
ple, leveraging on statistical models obtained with specific network simulation tools (such as ns-3,
as experimented by Amoretti et al. [32]).

In AVOCLOUDY, every node is assumed to be linked with each other through a local area or
an Internet connection (customizable through the simulation configuration file). Each type of con-
nection is characterized by a data rate, which in turn affects the transmission time of application
messages from task producers to task consumers. We have modeled the most common types of con-
nections (both wired and wireless), but AVOCLOUDY users can specify and add their own ones
(e.g., Fibre Channel and Wi-Max), according to their specific needs.

The network connection is specified by AbstractConnection, which provides methods to
obtain lan_id, min/max range (expressed in meters), and effective data rate (expressed in Mbit/s).
Currently, there are a range of implementations already provided for both wired and wireless
connections, that is, LAN, Giga-LAN, 10-Giga-LAN, WiFi, WiFi-g, and WiFi-n. For wired con-
nections, the communication overhead is assumed to be 25% [53-56]; for wireless connections, it
is assumed to be 50% [57, 58]. The Internet data rate has been obtained from the measurement per-
formed by Lee et al. [59]. Other network connection specifications can be obtained implementing
the AbstractConnection class.

The node’s geographical position is expressed as x and y coordinates, and it is used
by the evaluateOverheadTime () method. If source and destination lan_id differ, or
they are out of the other node’s range, the model evaluates the time needed to trans-
mit the application among the two nodes in the network also considering their geographi-
cal position. The evaluateOverheadTime () method calls delayToOtherPoint () and
taskTransmissionOvehead () and sums their returned values. The former function follows
the communication cost computed by the simple yet realistic network model described by Saino
et al. [51], which assigns link delays proportionally to the estimated link length, evaluated as the
Euclidean distance between the geographical position of the two nodes. We assume a geographical
position expressed in meters, if needed, after an approximate conversion from degrees.

We are currently working to improve the communication model allowing to import, in the ini-
tial stage of the simulation, a description of the underlying network. Loading a network model
(which can be generated by means of other tools [51]) can make the node communication model
more realistic.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:3-30
DOI: 10.1002/spe

AVOCLOUDY: A VOLUNTEER CLOUD SIMULATOR 15

4.2. The infrastructure layer package

The TaaS_Agent is the ‘logical node’ and it is in charge to interact with the other nodes of the
same layer, to manage the P2P overlay network, and to execute the applications taken in charge by
the previous layer agent, using Hw or ITaaS_DC_Agent resources.

In this layer, the Behavior class provides the methods to manage the overlay network:
connect (), join (), signalPresenceToOtherNode (), disconnect (), death (),
and getNodesInZone (). Besides the basic signaling messages mentioned in the previous
text, and used in any P2P overlay network, AVOCLOUDY users can specify how the nodes
interact and how their knowledge of the network is kept updated, for example, adopting
heartbeat messages. For what concerns hardware resource management, it provides informa-
tion about the time needed to execute a given application (evaluateTaskDuration())
and to estimate the network overhead that must be taken into account during the applica-
tion transmission (estimateNetOverhead()). According to the estimated network over-
head, execution time, memory, and QoS requirements of the application, it is possible to
estimateTaskAcceptance ().

The current implementation takes the time estimation obtained when the executing machine fol-
lows the Rough Set technique proposed by Selvi et al. [60]. Assuming that, because of the boot,
the node has a database to start the Rough Set techniques, and thus, it can estimate the exact run-
time execution with a uniform error committed (e.g., of =13%). From the XML configuration file,
it is possible to set a different percentage error. Different estimation techniques can be obtained by
sub-classing the est imateAppExit () function.

Policy refers tothe VmCriteria and NetworkCriteria mentioned in the Taas_DC layer,
for example, to specify the node connection and the cloud site assignment.

Knowledge maintains the information about neighbors, supernodes, and the presence of other
cloud sites.

The IaaS Features are specified as VM resources (i.e., core number and clock frequency, main
and local memory, and network bandwidth) and overlay network (i.e., online status, cloud site
identifier, node identifier, and if it is acting as a supernode).

Moreover, all the events that allow the basic overlay network operations (i.e., join, reconnection,
death, and disconnection) are implemented.

As for the Hw layer, in the future, we will add an option to load a pre-generated overlay network. In
addition, we are evaluating the implementation of an option allowing users to express the messages
exchanged in the network. This feature will be optional, because, despite it does improve the model’s
realism, at the same time, it inevitably brings to a great simulation performance decay.

4.3. The autonomic layer package

An ACaaS Agent interacts with the other nodes of the same layer to manage the application
workflow (askFinishEstimation ()), and it is charged by the App to manage the application
(setNewApp ()).

When a local or a remote ACaaS_Agent accepts to execute the application, the
SendTaskToExec event is added in the DEUS event queue, to submit the application in the corre-
sponding node’s queue. The time at which the event will be triggered is defined according to the time
needed to transmit the application on the network. When the application execution is completed, the
ExecutionEndEvent is triggered, the notifyAppExecutionEnded () is called, and the
performance statistics (e.g., hit, miss, and sojourn time) are updated accordingly.

Also, this package has a Behavior class, which is in charge to manage the application once
a node is made responsible (manageApplication ()). The main logic according to which an
agent looks for other volunteers is defined by the searchExecutingNodes (). In the recent
past, our research has focused on self-* algorithms for distributed tasks execution in the volunteer
cloud [45-47]. Thus, it has been sufficient to re-implement that function to specify different node
behaviors. In some scenarios, it may be necessary to specify the order according to which other
nodes must be asked for the execution of the application, through the askExecToNodeList ()
method, which takes as argument the list of all the nodes that must be contacted.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:3-30
DOI: 10.1002/spe

16 S. SEBASTIO, M. AMORETTI AND A. LLUCH LAFUENTE

The interaction with the other node agents that can execute the application takes place through
the methods reqFinishEstimation (), appExecReq (), and sendTaskForExec ().

The Policy class defines the AppCriteria according to which a node should look for
collaborations with other nodes and should accept remote requests; for example, the maximum
number of attempts (maxNumOfAttempt ()) that must be performed before marking the task
as missed; the miss rate tolerance, over which no more external requests should be considered
(missRateTolerance ()); and whether the cooperation of other nodes should be considered
(askToVolunteer ()).

The Knowledge class is to collect historical information about application executions and inter-
actions with other nodes.
AppTypeStatistics stores, by application type, the information on hit, miss, received/unmet
requests, and queue statistics (waiting and sojourn times). Wor1dHistory is in charge to record
a summary of the interactions with other nodes, during an application’s execution: ack, nack, and
total number of requests.

The Feature class maintains the information on the applications on the node’s queue to allow
the node to compute the actual load and respond to the external requests accordingly.

The AVOCLOUDY user is encouraged to design and evaluate its own application distribution
protocols. In our previous works, we have designed some protocols that have been briefly described
in Section 5 and that can be freely downloaded, studied, and modified.

4.4. The infrastructure.dc layer package

Data center nodes differ from volunteer nodes, as they are, in general, more powerful in terms of
CPU, memory, and storage, which makes them able to host much more VMs. Thus, functionalities
to monitor and manage such VMs are provided in this layer.

IaaS _DC Agent is the main class that refers to its components (i.e., Knowledge,
Behavior, and Policy), to the underlying Hw layer and to all the TaaS Agents instantiated
on the same node.

This layer’s Behavior class manages all the previous IaaS_ Agents using the avail-
able hardware resources, via the methods: manageStartup (), manageShutdown (), and
manageResize (). In the same package are also provided the events that check if it is needed to
call the aforementioned functions. These abstract class events can be sub-classed to customize the
check functions, for example, to implement more sophisticated VMs management strategies [61].

The Knowledge class collects load history information using LoadRecoxrds. If needed (e.g., to
personalize the behavior of data center nodes), it records information about execution time, RAM
utilization, number of cores, and clock frequency.

The Policy class is used to manage the available resources in response to the environ-
ment. It refers to the NetworkCriteria and VmCriteria classes, which specify the policies
used to manage the network and the VM resources assigned to the TaaS Agent. In particular,
VmCriteria defines the quote of resources that must be assigned to each VM, if its resources
can be changed during the operation and optionally a ‘stability factor’. The latter can be a measure
to define possible causes that bring a node down. VmCriteria can be instantiated with resource
usage values, to trigger the startup, shutdown, or resize of one of the managed IaaS Agent’s
resources. A flag that allows the VM to be re-sizable is provided. Moreover, it is possible to spec-
ify the percentage of hardware resources that should be assigned or increased during the startup or
resize of one of the previous TaaS_Agent’s resources.

4.5. The application layer package

The application layer defines the application characteristics, requirements, and execution
details.

An application (App) is generated when the AppBirthEvent is triggered, and as first action,
it assigns itself to the node that has generated the application (setReferringAgent ()).

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:3-30
DOI: 10.1002/spe

AVOCLOUDY: A VOLUNTEER CLOUD SIMULATOR 17

sd: TaskExecutiopJ

App | ACaaS_AgentX | | laaS_AgentX | | ACaaS_AgentY | | laaS_AgentY | | ACaaS_AgentZ | | laaS_AgentZ
T T

L:setReferringAgent0 !

i
2:manageApplication0

|
3:estimalteAcceptance0

1
4:askExecToNodeList0
<

SireqFinishEstimation0
6:estimateAcceptance0
SiregFinishEstimationQ
H 6:estimateAcceptance(
<_ _______ 1
i
T
1 1
| i
L I
= 1
|
< !
[J‘ 7:contract() !
i
|
i
|
8:appExecReq(1

P 9:executionQ)
d

Figure 8. Sequence diagram of the AVOCLOUDY simulator for task execution.

The Behavior class is used to ask the execution of the whole application (using
askWorkflowExecution()) and, if needed, negotiates (contract()) with the
ACaaS_Agent before assigning the execution.

A Policy specifies the QoS and non-functional requirements. The non-functional requirements
can be used, for example, to restrict the geographical zone in which an App can be executed.

The Knowledge class provides information about the nodes that are currently executing the
application and some statistics about the application’s performance (e.g., a counter for the remote
requests that have been performed or the nodes on which it is being executed).

The Feature class allows to describe the application’s characteristics (generation, start and end
times, fraction and degree of parallelism, and type). Moreover, it maintains the status [62] for each
of the tasks that compose the application.

Figure 8 shows the UML sequence diagram for a task’s execution. The application is generated
(setReferringAgent ())bythe ACaaS Agent X. Eventually, agent X checks if it can locally
satisfy its execution (estimateAcceptance () on step 3) and then, according to its applica-
tion distribution algorithm, cooperates with other ACaaS Agents (e.g., Y and Z) to satisfy the
request. It is worth to note that, within the application management (manageApplication ()),
the responsible agent (X) checks its own and its peers’ (Y and Z) availability
(regFinishEstimation ()), considering the resources that are available on the TaaS Agent
node (estimateAcceptance()). Once one or more agents that can satisfy the execution
request have been found, it is possible to contract the non-functional requirements (contract ()).
Then, the App is sent to the chosen agent (appExecReq()), and finally, its execution is
performed (execution ()).

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:3-30
DOI: 10.1002/spe

18 S. SEBASTIO, M. AMORETTI AND A. LLUCH LAFUENTE

4.6. The util and 1og packages

These packages provide some basic mathematical functions, through the IFunction interface,
and logging performance indicators (e.g., task hit rate, performed requests and refused rate, and
queue statistics). Basic performance statistics can be obtained also using MultiVeStA.

Every event in the simulator (e.g., task arrival, node departure) can be scheduled according to an
arbitrary distribution, provided to the simulator by means of a configuration file. DEUS includes its
own statistical distribution library, which we further extended while implementing AVOCLOUDY
(currently available distributions are exponential, lognormal, uniform, Weibull, periodic, Poisson,
rectangular, and Pareto).

Finally, network logging capabilities for Pajek [63] and Gephi [64] (in GraphML file format) are
provided, respectively, in the LogCloudyForPajek and LogCloudyForGraphml classes.

It is worth to note that a single problem can be tackled from different layers of the architecture.
For example, it is possible to manage the volunteer node that goes down while it is executing an
application in different ways: (i) merely restarting the application on another volunteer, if the exe-
cution is not completed within a reasonable time-frame, or using a proactive approach, by running
application replicas in parallel on different volunteers (autonomic layer); or (ii) using heart-
beat messages to monitor the online presence and the progress of the execution in a remote node
(infrastructure layer). In some of our previous works [46, 47], we have used AVOCLOUDY
to model self-* approaches capable to deal with nodes that leave the volunteer network.

5. CASE STUDIES

Our simulator has been validated over several case studies [45—47] developed within the ASCENS
project [24]. This section describes some exemplifying aspects of their implementation, in order to
provide guidelines for using AVOCLOUDY.

5.1. Random task distribution

In designing a task distribution approach, the most simple algorithm that can be evaluated is the
Random distribution. This section describes the random algorithm as implemented in [46]. For each
App, the responsible ACaaS_ Agent generates a random list with other ACaaS Agents in the
network, to whom it can submit an execution request.

To include this simple behavior in AVOCLOUDY, we have only re-implemented the
searchExecutingNode () function in the AcaasNodeBehavior class, to shuffle the list of
known ACaaS_Agents before calling the built-in function askExecutionToNodeList ().

5.2. Cooperative task distribution

The impact of a cooperative behavior in the distributed execution of Apps for volunteer nodes has
been evaluated in [45]. This scenario assumes that volunteer nodes want to contribute to the net-
work with their resources but, at the same time, want to ensure that a certain amount of resources
are available for local use without using pre-reservation techniques. The exploited approach con-
siders a partial volunteer to ensure that the ACaaS Agent avoids overloading situations. An
ACaaS_Agent receiving an execution request accepts only if the miss rate that it perceives locally
is under a specified threshold:

currentMissRate < MissRateTolerance @)
The implementation of this approach is quite straightforward using AVOCLOUDY.
The AcaasNodeFeature computes the actualMissRate(), which is used by the

AcaasPolicy upon the ACaaS_ Agent receives an appExecReq ().

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:3-30
DOI: 10.1002/spe

AVOCLOUDY: A VOLUNTEER CLOUD SIMULATOR 19

5.3. Reputation-Based task distribution

In scenarios where node resources are unknown or when nodes do not want to disclose their status,
a valuable approach in the choice of the ACaaS Agents to target appExecReq () is repre-
sented by a reputation-based system [47]. Such a system provides a ranked list of ACaaS_Agents,
according to the feedback received about the interactions among the ACaaS_Agents. For example,
feedback can be provided once an ACaaS_Agent accepts, rejects, completes, or fails to execute a
remote App.

The key points modeling such scenario in AVOCLOUDY are registration with the rep-
utation system and feedback request/report. The reputation system itself can be modeled
as a node created in the early stage of the simulation. Node registration is per-
formed by the AbstractVolunteerNodeBirthEvent. In particular, the abstract method
specifyAcaasNode () has been used to contact the reputation system registering the presence
of the new node in the network.

When an ACaaS_Agent is made responsible for an App, its first action is to con-
tact the reputation system to obtain a ranked list of nodes, which is then used with
askExecutionToNodeList ().

5.4. A computational field for task distribution

Given the high complexity and heterogeneity of volunteer cloud computing, a centralized solution
to distribute the workload seems to be far from optimal. This is mainly due to impossibility to
obtain a global knowledge of node resources and especially of node loads. In a recent work [46],
we proposed a collaborative colored computational field to allow an agent-based tasks distribution
inspired by the ant colony optimization and gradient-based approaches.

Aside from the algorithmic details of the proposed solution, which are out of the scope of the pre-
sented work, our approach has requested a more articulated implementation, with respect to what
has been performed for the other algorithms presented in this section. In particular, it has been nec-
essary to implement new events for the periodic execution of agents that are in charge of building
the aforementioned computational field. These mobile agents are created when the ACaaS Agent
is generated, that is, in specifyAcaasNode (). Each node stores a portion of the distributed
computational field; thus, the AcaasNodeKnowledge has been extended to this purpose, tak-
ing in memory the pheromone values. The policies according to which the ACaaS Agent
sends the mobile agent to explore the network are defined in the AcaasNodePolicy includ-
ing information such as time-to-live, timeout, component weights, and considered resources.
Finally, to be able to exploit the information stored in the AcaasNodeKnowledge, also the
searchExecutionNode () has been modified.

Our ACO technique allows to distribute the workload in a way that every task execution request
is completed as soon as possible, while minimizing the amount of resources that are reserved but
not used, on a given node. The overall behavior brings to an increased probability to satisfy task
requests, while respecting their SLAs (e.g., deadlines).

5.5. Case Studies Final Remarks

It is worth to note that all the aforementioned case studies would not be easily implemented in
the available cloud simulators (as described in Section 8). Instead, as shown in this section, with
AVOCLOUDY, the implementation effort has been limited and targeted only to the architecture layer
involved in the evaluation of the proposed algorithms (the ACaas layer in our case studies). For
example, the validation of a P2P overlay protocol would affect only the Taas layer, while, for all
other layers, the basic implementations could be used without any further effort.

Finally, the performed integration with MultiVeStA allows AVOCLOUDY users to decouple the
definition of the system properties of interest from the model specification.

Examples of performance parameters that have been evaluated during these works, and whose
definition is already provided with AVOCLOUDY, are successfully executed tasks, refused remote
execution requests, total amount of addressed execution requests, mean task waiting and sojourn
times, and mean number of tasks executed on each node. For each of these parameters, the size of
the confidence interval and the variance are also provided.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:3-30
DOI: 10.1002/spe

20 S. SEBASTIO, M. AMORETTI AND A. LLUCH LAFUENTE

6. EXPERIMENT AND EVALUATION

This section describes an experiment for evaluating the effectiveness and performance of
AVOCLOUDY in simulating a volunteer cloud environment. The modeled scenario is quite real-
istic, considering the use of the Google workload and the characterization of data center and
volunteer nodes.

A reliable AVOCLOUDY validation to assess its level of accuracy requires to develop accu-
rate monitor techniques distributed over all the volunteers (that should be at least in the order of
1000 nodes for a realistic volunteer environment) and an evaluation of distribution and execution
approaches over a wide range of task types. Instead, the validation using many ACaaS_Agents on
the same machine would have been a less cumbersome activity but, at the same time, would have
significantly affected its accuracy not being able to test the network layer.

6.1. Simulated scenario

We have designed a scenario where some research institutions participate to the volunteer cloud
with their data centers, while other universities and volunteers participate with their desktops
(e.g., the labs machines unused during night) and laptops. The laptops are connected to the Internet
through a WiFi-g, while the data centers are wired connected via a 10-Gbit Ethernet. To use real-
istic characteristics for the data centers, we have considered the specification of the Google Cloud
Platform [65] (assuming the CPU frequency according to the currently available CPUs for the
server). For desktops and laptops, we have assumed a reasonable amount of shared resources, con-
sidering common commercial devices. Node attributes are summarized in Table I, where values are
uniformly distributed within the proposed intervals.

Concerning the workload characterization, we have considered the Google Cloud Backend [66]
described in [67]. There, tasks are characterized by duration, CPU, and memory requirements; basi-
cally, it is possible to discern two task categories: small and large. Examples of long-running tasks
are compute-intensive ones such as scientific simulations. Short-running tasks are instead highly
parallel operations, such as index lookups, searches, and Map-Reduce. Usually, small tasks have
a more stringent deadline, not to loose the advantage of the parallelism. It is worth to mention
that the volunteer cloud paradigm has been adopted in the BOINC prototype (BOINC-MR) to sup-
port Map-Reduce jobs [1]. Table II summarizes the task attributes according to the description
in [67].

The duration of the simulated scenario is 7 h (with a granularity of milliseconds), the same of the
Google Cloud Backend traces dataset [66].

6.2. Configuration file snippets

As an example, Listing 1 shows an excerpt of how the simulator has been configured, via its XML
file, to describe the volunteer desktop characteristics reported in Table I. For each parameter, it is
possible to specify a range of values with which each volunteer is characterized.

Table I. Node attributes.

Type of node CPU frequency (GHz) CPU (cores) RAM (GBs) Number of nodes
Desktops and laptops 1-2 1-6 0.1-4 1000-10 000
Data centers 1-3.73 1-16 3.75-60 7 (in different sites)

Table II. Task attributes.

Size Duration (h) CPU (cores) RAM (GBs) Deadline offset (percentage) Poisson mean arrival (ms)

Small 0-0.4 1 0-0.5 0.2 200
Large 1-12 1-4 1-4 0.4 600
Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:3-30

DOI: 10.1002/spe

AVOCLOUDY: A VOLUNTEER CLOUD SIMULATOR 21

Listing 1. Volunteer desktops

1 <aut:node id="desktop" handler="it.imtlucca.cloudyscience.VolunteerNode">
2 <aut :params>

3 <aut :param name="typeOfDevice" value="volunteer" />

4 <aut :param name="minPhysCore" value="1" />

5 <aut :param name="maxPhysCore" value="6" />

6 <aut :param name="minPhysCoreFreq" value="1" />
7 <aut :param name="maxPhysCoreFreq" value="2" />
8 <aut: minPhysRAM" value="128" />
9 <aut: maxPhysRAM" value="4096" />

10 <aut:param name="connection" value="WiFiG" />

Listing 2. Small tasks characteristics

<aut:node id="applicationSmall" handler="it.imtlucca.cloudyscience.applicationLayer.Application"s

1

2 <aut :params>

3 <aut:param name="minDeadlineOffsetToDuration" value="0.2" />
4 <aut :param name="maxDeadlineOffsetToDuration" value 2" />
5 <aut:param name="taskMinDegreeOfParallelism"

6 <aut: taskMaxDegreeOfParallelism"

7 <aut: paralFractionMin" value="1"

8 <aut: paralFractionMax" val

9 <aut: taskMinDuration" value="0" />

10 <aut: taskMaxDuration" value="144000" />
11 <aut :param name="taskMinRAM" value="0" />

12 <aut :param name="taskMaxRAM" value="512" />

13 </aut :params>

14 </aut :node>

Listing 2 reports another excerpt of the same XML configuration file, describing the attributes of
the small tasks reported in Table II, where the task duration is expressed in tens of milliseconds and
the deadline is expressed as offset percentage with respect to the task duration.

For sake of brevity, neither the whole XML configuration file nor the random task distribution
protocol written in Java (and briefly described in Section 5) are shown here.

6.3. Simulation results

As an example of possible performance parameters that can be obtained with AVOCLOUDY, we
have considered the overall number of tasks successfully executed or running, and the queue waiting
time perceived by the small tasks varying the number of volunteer nodes that are participating to the
network. The following plots show the mean and the confidence interval values for each number of
volunteers that have been considered.

Figure 9(left) shows that, as many volunteers participate, the percentage of tasks executed within
their deadline increase almost linearly. Modulo the assumptions and simplification considered in our
simulation, even a simple random task distribution protocol using 10 000 nodes can successfully
execute about 70% of the tasks workload.

The waiting time for the small tasks is shown in Figure 9(right). It is possible to observe that, as
the number of volunteers increases, even the small tasks, which are the most deadline-dependent,
perceive a reduced waiting time in the execution queue.

0.7 ; ; ; ; ; ; ; ; 40000
Y
0.6 » 35000
©
'_
£ osp S 30000
[72]
© £
= 04} @ 25000
IS L
[0 L [0} L
8 0.3 2 20000
T o2y t, 15000}
=
0.1 S 10000t
=
o 5000
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 1000 2000 3000 4000 5000 6000 7000 8000 900010000
Volunteer nodes Volunteer nodes
Figure 9. Overall hit rate (left) and waiting time for small tasks (right).
Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:3-30

DOI: 10.1002/spe

22 S. SEBASTIO, M. AMORETTI AND A. LLUCH LAFUENTE

3500

T T
with 1000 volunteers
with 2000 volunteers

with 3000 volunteers

W
o
o
o

2500

2000

1500

1000

Total execution time (seconds)

500

1 2 3 4 5 6 7 8
Number of servers

Figure 10. Performance scaling varying the number of running servers.

AVOCLOUDY provided other performance parameters for the described scenario, which are not
shown here, such as the number of execution requests sent and refused, waiting, and sojourn time
overall and discerned by task class.

6.4. Performance assessment of the simulator

All the experiments have been performed on a laptop equipped with a 2.0 GHz Quad Core CPU
(with Hyper-threading) and 16 GB of RAM, running Windows 7 64-bit and Java 1.7.0_71-b14
64 bit.

Recalling the toolchain depicted in Figure 3, it is worth to remark that MULTIVESTA allows
to execute multiple simulation runs in parallel. Each run performed in parallel requires a
MULTIVESTA server: a Java process that executes the simulation. To evaluate the performance
scaling of AVOCLOUDY, we ran the simulated scenario different times, while varying the MUL-
TIVESTA servers. Results are shown in Figure 10, where each server requires about 1.5 GB of
RAM. Once the required confidence interval (evaluated with the Student’s #-test) is specified by
means of percentage and radius, MULTIVESTA automatically runs other simulations until the
desired accuracy is reached. In our simulation, we have requested a 95% confidence interval with a
radius of 0.1.

As many servers are used in parallel to perform simulations, the overall time to obtain the results
is considerably reduced. It is worth to note that the performance scaling is affected by the statistical
nature of the analysis with a Monte Carlo simulation. Each simulation run is initialized with a
different seed, thus affecting the sample variance of the considered simulation result (e.g., the hit
rate), requiring a different number of simulation runs. Moreover, it is worth to note that the actual
number of events increase the number of volunteers, for example, due to signaling messages to
manage the P2P overlay.

Finally, it should be taken into account that our CPU has four physical and eight logical cores.
When the simulation time increases and more than four cores are used, the CPU is not able to use the
turbo boost technology to speed up the cores’ frequency, and thus, we do not perceive a performance
benefit by increasing the parallelism with our machine.

The reader interested in a deeper analysis of the performance scaling that can be achieved
integrating MULTIVESTA with a discrete event simulator can refer to the recent work by
Pianini et al. [68].

6.5. Lesson fearned and final remarks

Through the use of a simple experiment, this section has illustrated the use and the performance
achievable modeling a volunteer cloud environment with AVOCLOUDY.

The section has begun showing the experiment that in turn has proved the usefulness of the volun-
teer cloud to run execution-oriented tasks, such as Google workload. The modeling of the volunteer

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:3-30
DOI: 10.1002/spe

AVOCLOUDY: A VOLUNTEER CLOUD SIMULATOR 23

cloud started with a straightforward parametrization of the AVOCLOUDY XML configuration file,
to characterize tasks and nodes.

Among the many cloud performance parameters that can be automatically obtained from
AVOCLOUDY, we chose to show two plots that point out the scaling that can be obtained by increas-
ing the number of participating nodes. AVOCLOUDY provided as output several Gnuplot data file,
from which it was possible to draw the plots in Figure 9.

Despite the performance assessment has taken into account only few cores, is, however, possible
to appreciate the performance scaling that can be achieved executing simulation runs in parallel.

It is worth to remark that the AVOCLOUDY layered architecture and modularity (thanks to the
MAPE-K model) helped us to perform step-by-step correctness evaluation of our code, separately
validating each layer. This approach proved its effectiveness not only during the development of
AVOCLOUDY itself, but also for every task distribution protocol we have defined and analyzed
by means of AVOCLOUDY (summarized in Section 5). Some more work has to be performed to
improve the network layer, to allow for importing user-defined topologies.

Differently from a cloud simulator focused on the accurate modeling of the characteristics of a
real physical machine, a volunteer cloud simulator is focused on the modeling of a large number
of heterogeneous machines that are not always available (entering and leaving the network). The
complexity is then shifted to the overlay network, to the autonomic layer functionalities, and to the
choice of the significant aspects in the volunteer environment to allow the simulator to scale up to
manage thousands of nodes.

7. A WORLDWIDE CONFIDENCE VALIDATION

This section presents our experiments aimed at validating the confidence of our simulator. Our simu-
lator is able to deal with large-scale scenarios with several thousands of volunteers and beyond, thus
accommodating to the size of a real-world volunteer cloud platform. However, performing a vali-
dation over such large-scale scenarios is difficult and challenging due to the need of keeping track
of different performance measures for huge number of entities. In fact, as we report in the previous
text, the worldwide platform we have used did not allow us to scale the scenarios to thousands of
volunteer nodes. In our experiments, we therefore focused on mid-scale scenarios with several hun-
dreds of volunteer nodes deployed in the worldwide PlanetLab platform, of which the University of
Parma is a member.

7.1. PlanetLab, Experience and Testbed

PlanetLab [7] is a network of worldwide distributed machines, which are shared by academic insti-
tutions and industrial research labs. PlanetLab is mainly used to test new technologies for distributed
storage and processing.

The network currently consists of 1335 machines, each one running a minimal Fedora Core 8
Linux installation. PlanetLab users get secure shell (ssh) access to the remote machines, where they
receive a reserved isolated environment that they can configure and adapt to their needs.

To validate the simulator, we have developed simple bots that replicate the behavior of the
AVOCLOUDY agents, where tasks are randomly dispatched. The deployment effort in PlanetLab is
alleviated by CoDeploy [69], a network of high-performance proxy servers used to collectively pro-
vide a fast and robust Web content delivery service. In our experiments, CoDeploy allowed us to
deploy and start the bots on all the PlanetLab nodes.

The PlanetLab Web interface allows one to add the nodes that take part in the experiments. Unfor-
tunately, the use of PlanetLab is not smooth as it seems, and running our testbed has required a
significant effort. Among the 1335 nodes participating in the network, at the time of our experiments,
only 665 nodes were reported as online and available by the PlanetLab Web interface. Among them,
some nodes were not actually online or reachable with ssh, and some were misconfigured (for fire-
wall rules, absence of user disk space, and other wrong permissions). The third issue encountered
deploying our testbed was the absence of a Java runtime framework in all the machines that, for the
great part of the nodes, was not even available for installation, because the Fedora repositories were

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:3-30
DOI: 10.1002/spe

24 S. SEBASTIO, M. AMORETTI AND A. LLUCH LAFUENTE

Table III. Task attributes for validation.

Poisson mean arrival (sec) Duration (min) Deadline offset (percentage) size (MB) RAM (GB)

50 0—1[0.125 + §] 0.2 0-10 0-0.5

500000
450000
400000
350000
300000 -
250000
200000
150000
100000
50000

Hit rate on Tasks

Sojourn Time per Tasks (ms)

PlanetLab —x— |
AVoCloudy --x---
. i 1

Planetlab —*—

0 1 L n n n n n n AVOCIOUFY e J i n n n n n
) 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
Tasks max duration (min) Tasks max duration (min)

Figure 11. Hit rate (left) and sojourn time (right) comparison between PlanetLab and AVOCLOUDY.

offline for end-of-life distributions (Fedora 8 was marked for end-of-life on 2009). Recovering as
many nodes as possible for our testbed has therefore required a significant time-consuming effort,
in order to manually reconfigure the Linux repository on each machine and to install Java 5. With
the best of our effort, we have been able to build a volunteer cloud network of 233 bots.

After an initial idle period (used to stabilize the network and to propagate the start validation com-
mand), the bots (each one running on a different node) generate tasks with characteristics reported
in Table III. The maximum task duration has been changed during the experiments, from 8 min and
then halving six times (up to 7.5 s).

Each bot emulates the task payload generating a stub text file, which is transferred from the
generating volunteer node to the one that accepts the task execution. To manage multiple execution
requests at the same time, the bots have been developed as multithread applications, where a new
thread is generated for each incoming task execution request. Tasks are processed with a single core
fed from a First-In, First-Out (FIFO) queue. The task execution has been emulated through a thread
sleep for a length equivalent to the task duration.

A final issue encountered during the validation was the apparently significant discrepancy of
waiting and sojourn times measured in PlanetLab with the ones obtained from the simulator, while
the other performance metrics where consistent enough. This was due to a misalignment of system
times among the nodes. The problem has been resolved revising the bot code, in order to take times
relative to the local starting time of the experiment instead of absolute values.

The scenario was executed for 1 h. Given the length of each real experiment, we have repeated
the execution of each scenario only for three times, and averaged the results, without requiring a
specific confidence interval.

7.2. Validation Results and Comments

The results obtained from the volunteer network deployed in PlanetLab have been compared with
the ones obtained with AVOCLOUDY. The following plots show the comparison of AVOCLOUDY
and the real testbed, while varying the maximum task duration.

In Figure 11, it is possible to observe that, when the scenario considers very short tasks, the accu-
racy of the results provided by the simulator decreases, in particular for what concerns the sojourn
times (and similarly for the tasks waiting times). This behavior is expected, because, working with a
coarser time granularity, the AVOCLOUDY choice to ignore the time required to transmit each task

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:3-30
DOI: 10.1002/spe

AVOCLOUDY: A VOLUNTEER CLOUD SIMULATOR 25

application

Featuwe___+Jnanagesal thejob composing the App m “Aop Agent
~jobDescrption =
- qosReq n9 Knowled . @
— “nodesOnWhichisperfoming| P o
- generationTime ~reqCounter
~sartTime. w . A
- finishTime + getAppFeature() o h
- parallelism . "\, generates
- duration . N +prbfiges support to ",
-ram) wl « Polig s
- parallelizablefraction w .
- sizeOnHardDrive. - qoeReq renFuncionalRequadets j
- appType e
esticiondpgeiEecuion AppBirthEvent
+ &)
m X w \ w .
¢1] Behavior * w
TasStatus
askWorklowExecutond)
+contract)
autonomic
= e
eature o ACaa$ Node Agent
“actualload T Veawiedoe K G .
“worldHistory S seNewApR0
- appQueve. B = + asinistEstimation0
ey updateHitCounter)
+ executionTerminatedo | b4 w
e
iy ter0 - miss £ + interact (about Workiqw Managemen) with
X (LkpoType
‘appCithe o) & - reaReceived w,
“app - requnmet -
- duration ey ~waltingTime
nack ~waitngCounter
i3 - sojoumTime
~source -~ sojounCounter
~dest
AppCriteria .
partialVolunteer Ly w
fopesieioil TesmcionToAccepUobReq
fiesirsaling - cnteraToAcceptiobReq
E . resticionOnlobReq
maxlumOTAtiempts il i

- crteriaOnWorkflowMng

- acaashgent
- appAgent

FETIT v R pe— v gor
+workflowSupport) | defies an g 43

cals,
searchEdbctiode)

+ sentTaskForExecutiont

+manageApplicaton
+aceahgent)
+ appAgent)
+ regFinshEstimation)
[t |
G & T
Feahire 1aas_Node_Agent
~coreNumber [Knowledge .
- corefreq o . w .
~maintMemory ;
~nodeld s, m X}
- localMemory 7] i
~acthssupenode < T getNodeFeatre)
~zoneOfBelonging .
- isSupemode [
- isOniine
piscinio ~umOfComnectionsAmongZonesint
Sl connectionsAmongZones
~randomComnection
~randomZoneAssigoment
- numOfComnectionsAmongZonesongoing hecNodeResiie

e

al
m

Bendbnor

 checkNodeResiiency0

T N
VmCrteria doathLoprpei, gseaniectd X
i rgger
~aoteOPhysTov o) o BssnceTaosn) | 199
\mReszabl w + estmateTaskAcceptance0.
- stabilityFactor ¥ + estimateNetOverhead()

+ evaluateTaskDurauon(

(JJT *
—[_l i o

: v oty Wit W
Poliey
w .
- vmResizable Knowledge
Resizabl g e w
- tggerForStartup “WiLoqusace| *
- triggerForShutdown pl———""" +
- iggerForVMResize w W
w r
reasoflan fordgingto 11
to make prediction by ahalyzing requests pattern uses,
ria defined by
| uses
w ~time
Benavior - memoryUtiization|
o - coreUtlizaiton
o ma i - cpultiization
+manageShutdown) ~nodeld
fm
. ! N
N | V wi
e / IFunction Const
physical
7 2 + getvalue).
Feature Hardware +sethit)
~coreNumber FIBERVELOCITY
- corefreq - VACUUM.VELOCITY 7'y]
- mainMemory ;
~localMemory [|+ evaluateOverheadTime(Hardware oterEndPoint, App_Agent app0| i
- 0 Line
L P Wiy oo el
- typeotDevice [~ (1)
- geoPosition Nodelist
~tmevT
+ getCloudNodes0

- lanld + getVolunteerNodes()

‘AostactConnecton | rocaen © Getodesoniined
“maiange s ytocaton + gethodesOffine0
~minRange o] omean + gethppAgent)
- dataRate o + getlaasNodes0
[25% overhead: LAN, WAN, G-LAN. 10 G-LANDY + getAcaaiNodesO)
0% ovrad. WL WL, ViFiN
tne Lo 205 Piansian]

Figure 12. Class diagram of the AVOCLOUDY simulator.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:3-30
DOI: 10.1002/spe

26 S. SEBASTIO, M. AMORETTI AND A. LLUCH LAFUENTE

execution request becomes less significant. For reasonably long tasks, AVOCLOUDY allows us to
achieve a good accuracy. Moreover, it should be considered that, having expressed the task deadline
as percentage, shorter tasks implies less network delay tolerance.

In particular, it is worth noting that, while the real testbed has required to re-execute the exper-
iment spending an overall time of 21 h, AVOCLOUDY has required less than 1 min to simulate
the same scenario, and obviously, this advantage becomes more significant as the scenario of inter-
est concerns a larger time window. A similar benefit is reflected in the number of volunteers,
significantly limited in PlanetLab, while possibly unlimited in AVOCLOUDY. Obviously, the last
two consideration are not strictly related to AVOCLOUDY, but more generally applicable to every
simulator versus a real testbed approach.

Threats to Validity. The limitation to some basic scenarios does not allow us to draw fully defini-
tive conclusions. A more accurate validation could be performed, which would require the design
of rather sophisticated bots able to generate and execute real applications, even exploiting all the
cores available on each machine. Furthermore, different types of application should be evaluated.
Nonetheless, we believe that our validation experiments are promising and increase our confidence
in the simulator.

8. RELATED WORK

In its early days, the cloud has been mainly simulated through the already available grid computing
simulators, for example, GangSim [70], GridSim [71], OptorSim [72], and SimGrid [73]. The huge
popularity gained by cloud computing in the subsequent years has encouraged the development of
new simulator tailored for the cloud such as CloudSim [20], GreenCloud [21], iCanCloud [22], and
GloudSim [74].

CloudSim [20] has been developed in the CLOUDS Lab at University of Melbourne. Its layered
architecture enables the modeling of data center environments, providing supports to network topol-
ogy, VMs provisioning, CPU and memory allocation, and application execution. The main focus
of CloudSim is the evaluation of resource allocation policies, also with respect to costs, both from
users’ and providers’ perspectives. CloudSim proves to be a solid simulator to accurately model the
behavior of few interconnected data centers.

GreenCloud [21] is an extension of ns-2 [75] to simulate energy-aware data centers, focusing on
cloud communications (i.e., it is a packet-level simulator). Its peculiarity is a detailed modeling of
the energy consumption of the different components that constitute the data center equipment, for
example, computing server, network switches, and communication links.

iCanCloud [22] has been developed on top of OMNeT++ [76], by the University of Madrid. It
aims at predicting the cost-performance trade-off when a set of applications is executed on a specific
hardware architecture. It is sealed with many pre-built configurations for the storage and hypervisor
functionalities, which can be directly used through its GUI. Moreover, the simulation framework
includes instance types provided by Amazon.

GloudSim [74] is a distributed cloud simulator based on virtual machines, originally aimed
at reproducing the Google cloud environment departing from the same workload data we have
used in our experiments [66]. Its main features are the ability to deal with dynamically changing
computational resources and several types of events (e.g., killing or hibernating jobs).

It is available under the GNU GPL v3 license, and it has been applied to the optimization of
checkpoint intervals in Google tasks.

For all the aforementioned simulators, the detailed characterization of the data center behavior
prevents them to simulate heterogeneous, large-scale, complex, cooperative environments such as
volunteer clouds. Moreover, the AVOCLOUDY architecture facilitates the transition of the simulated
solution to the production environment.

A direct point-to-point comparison [21] among the mentioned simulators and AVOCLOUDY
cannot be performed, because, as already discussed, their purposes are different.

In the recent past, the SImBOINC [77] project has been developed to realize a simulator to test
scheduling strategies for the BOINC architecture. But later, the French INRIA decided to hold off

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:3-30
DOI: 10.1002/spe

AVOCLOUDY: A VOLUNTEER CLOUD SIMULATOR 27

the project, due to rapid changing in the BOINC architecture, which prevented them to maintain the
simulator updated. To the best of our knowledge, the only other effort to build a volunteer simulator
can be found in a paper by Byrski e al. [78]. However, such a tool has no website, no research
projects that use or have used it, and no information other than the referenced paper.

9. CONCLUSION

Volunteer cloud computing platforms present a more complex environment with respect to tra-
ditional clouds, mainly due to their heterogeneity and dynamism. The increasing complexity in
managing such systems demands for an accurate evaluation of new solutions, before their actual
deployment in the production environment. A simulation-based approach can provide a statistical
comfort on the expected performance. The available cloud simulators are not amenable to the design
and study of such systems, but only to accurately characterize the behavior of few interconnected
data centers, whose characteristics are well-known a priori.

In this work, we propose a volunteer cloud computing architecture and a simulator that has its
roots on agents, and the autonomic and volunteer paradigms. Our generalized cloud architecture
allows us to consider highly heterogeneous environments where both data center and volunteer
nodes cooperate. In the study of such kind of systems, it is worth to take into account that the
layered and agent-based architecture of AVOCLOUDY allows for a smooth transition from the
simulated model to a concrete implementation. The usefulness of the proposed AVOCLOUDY
has been demonstrated with a set of case studies that have already benefited from its highly
modular and flexible architecture [45-47]. The confidence of the simulator has been validated
over a set of real-world experiments based on worldwide distributed computations on top of the
PlanetLab platform.

We plan to extend the AVOCLOUDY in many directions, in particular to support the loading of a
network structure at boot time. Moreover, to increase the realism, we are evaluating the introduction
of an option to specify each network request as an event.

APPENDIX

A class diagram with all the main classes and methods of AVOCLOUDY is depicted in Figure 12.
The state diagram for the task status and its transitions is taken from [62] and depicted in Figure A.1.

ABORTED

II /O or event wait

abort

Scheduler dispatch

admitted

1/O or event completion

Figure A.1. State diagram for the task status transitions.

ACKNOWLEDGEMENTS

We are grateful to the anonymous reviewers for their useful comments and suggestions that have sig-
nificantly helped us to further improve our simulator and its presentation in the manuscript. Research
partially supported by the EU through the HOME/2013/CIPS/AG/4000005013 project CI2C, FP7-ICT
Integrated Project 257414 ASCENS, STReP project 600708 QUANTICOL, and the Italian PRIN
2010LHT4KM CINA. The contents of the paper do not necessarily reflect the position or the policy of
funding parties.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:3-30
DOI: 10.1002/spe

28

10.
11.
12.

13.
14.

15.

16.
17.

20.

21.
22.

23.

24.
25.
26.
217.

28.

29.

30.

S. SEBASTIO, M. AMORETTI AND A. LLUCH LAFUENTE

REFERENCES

. Costa F, Silva L, Dahlin M. Volunteer cloud computing: MapReduce over the Internet. 2011 IEEE International

Symposium on Parallel and Distributed Processing Workshops and PhD Forum (IPDPSW), Shanghai, May 2011;
1855-1862.

. Worldwide LHC computing grid. Available from: http://wlcg.web.cern.ch/ [last accessed 9 February 2015].
. Montresor A, Abeni L. Cloudy weather for P2P, with a chance of gossip. 2011 IEEE International Conference on

Peer-to-Peer Computing (P2P), Kyoto, August 2011; 250-259.

. Kavalionak H, Montresor A. P2P and cloud: a marriage of convenience for replica management. In Self-Organizing

Systems, vol. 7166, Kuipers F, Heegaard P (eds)., Lecture Notes in Computer Science. Springer, 2012; 60-71.

. Kavalionak H, Carlini E, Ricci L, Montresor A, Coppola M. Integrating peer-to-peer and cloud computing for

massively multiuser online games. Peer-to-Peer Networking and Applications 2013; 8:1-19. DOI: 10.1007/s12083-
013-0232-4.

. Babaoglu O, Marzolla M, Tamburini M. Design and implementation of a P2P cloud system. In Proceedings of the

27th Annual ACM Symposium on Applied Computing, SAC ‘12. ACM: New York, NY, USA, 2012; 412-417.

. PlanetLab: an open platform for developing, deploying, and accessing planetary-scale services. Available from:

https://www.planet-lab.org/ [last accessed 9 February 2015].

. Babaoglu O, Marzolla M. The people’s cloud. IEEE Spectrum 2014; 51:44-49.
. European Integrated Project 223850 NaDa (Nano Datacenters). Available from: http://www.nanodatacenters.eu/

[last accessed 9 February 2015].

European Project RI-261556 EDGI (European Desktop Grid Initiative). Available from: http://edgi-project.eu/
[last accessed 9 February 2015].

Segal B, Buncic P, Quintas DG, Gonzales DL, Harutyunyan A, Rantala J, Weir D. Building a volunteer cloud, CERN,
2009. Available from: http://ben.web.cern.ch/ben/Ven_abs.pdf [last accessed 9 February 2015].

BOINC: a system for public-resource computing and storage. Available from: http://boinc.berkeley.edu/ [last
accessed 9 February 2015].

HTCondor. Available from: http://research.cs.wisc.edu/htcondor/ [last accessed 9 February 2015].

Seattle: a platform for educational cloud computing. Available from: https://seattle.poly.edu/html/ [last accessed 9
February 2015].

SETI@home: an experiment in public-resource computing. Available from: http://setiathome.ssl.berkeley.edu/
[last accessed 9 February 2015].

OurGird. Available from: http://www.ourgrid.org/ [last accessed 9 February 2015].

Ghafarian T, Deldari H, Javadi B, Yaghmaee MH, Buyya R. CycloidGrid: a proximity-aware P2P-based resource
discovery architecture in volunteer computing systems. Future Generation Computer Systems 2013; 29(6):
1583-1595. DOI:10.1016/j.future.2012.08.010. Including Special sections: High Performance Computing in the
Cloud & Resource Discovery Mechanisms for P2P Systems.

. Ghafarian T, Deldari H, Javadi B, Buyya R. A proximity-aware load balancing in peer-to-peer-based volunteer

computing systems. The Journal of Supercomputing 2013; 65(2):797-822. DOI:10.1007/s11227-012-0866-7.

. Caton S, Rana O. Towards autonomic management for cloud services based upon volunteered resources. Concurrency

and Computation: Practice and Experience 2012; 24(9):992-1014. DOI:10.1002/cpe.1715.

Calheiros RN, Ranjan R, Beloglazov A, De Rose CAF, Buyya R. CloudSim: a toolkit for modeling and simula-
tion of cloud computing environments and evaluation of resource provisioning algorithms. Software: Practice and
Experience 2011; 41(1):23-50. DOI:10.1002/spe.995.

Kliazovich D, Bouvry P, Khan SU. GreenCloud: a packet-level simulator of energy-aware cloud computing data
centers. The Journal of Supercomputing 2012; 62(3):1263-1283.

Niuiiez A, Vazquez-Poletti JL, Caminero AC, Castaii¢ GG, Carretero J, Llorente IM. iCanCloud: a flexible and
scalable cloud infrastructure simulator. Journal of Grid Computing 2012; 10(1):185-209.

Mayer P, Kroiss C, Velasco J. ASCENS technical report: TR20120500 - the science cloud case study overview
and scenarios, ASCENS, 2012. Available from: http://www.pst.ifi.Imu.de/~mayer/papers/2012-05-00-TR-SCP-1.
pdf [last accessed 9 February 2015].

European Integrated Project 257414 ASCENS (Autonomic Service Component ENSembles). Available from: http://
www.ascens-ist.eu/ [last accessed 9 February 2015].

Satyanarayanan M, Bahl P, Caceres R, Davies N. The case for VM-based cloudlets in mobile computing. /EEE
Pervasive Computing 2009; 8(4):14-23.

Anderson DP. BOINC: a system for public-resource computing and storage. In Proceedings of the 5th IEEE/ACM
International Workshop on Grid Computing, GRID *04. IEEE Computer Society: Pittsburgh, USA, 2004; 4-10.
Thain D, Tannenbaum T, Livny M. Distributed computing in practice: the Condor experience. Concurrency - Practice
and Experience 2005; 17(2-4):323-356.

Brasileiro F, Araiijo E, Voorsluys W, Oliveira M, Figueiredo F. Bridging the high performance computing gap: the
OurGrid experience. Seventh IEEE International Symposium on Cluster Computing and the Grid, 2007. CCGRID
2007, Rio De Janeiro, 2007; 817-822.

Cappos J, Beschastnikh I, Krishnamurthy A, Anderson T. Seattle: a platform for educational cloud computing. In
SIGCSE. ACM: Chattanooga, TN, USA, 2009; 111-115.

Anderson DP, Cobb J, Korpela E, Lebofsky M, Werthimer D. SETI@home: an experiment in public-resource
computing. Communications of the ACM 2002; 45(11):56-61.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:3-30

DOI: 10.1002/spe

http://wlcg.web.cern.ch/
https://www.planet-lab.org/
http://www.nanodatacenters.eu/
http://edgi-project.eu/
http://ben.web.cern.ch/ben/Ven_abs.pdf
http://boinc.berkeley.edu/
http://research.cs.wisc.edu/htcondor/
https://seattle.poly.edu/html/
http://setiathome.ssl.berkeley.edu/
http://www.ourgrid.org/
http://www.pst.ifi.lmu.de/~mayer/papers/2012-05-00-TR-SCP-1.pdf
http://www.pst.ifi.lmu.de/~mayer/papers/2012-05-00-TR-SCP-1.pdf
http://www.ascens-ist.eu/
http://www.ascens-ist.eu/

31.
32.

33.

34.

35.
36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.
59.

60.

AVOCLOUDY: A VOLUNTEER CLOUD SIMULATOR 29

Kephart JO, Chess DM. The vision of autonomic computing. Computer 2003; 36:41-50.

Amoretti M, Picone M, Zanichelli F, Ferrari G. Simulating mobile and distributed systems with DEUS and ns-3.
HPCS, Helsinki, Finland, 2013; 107-114.

Distributed Systems Group, DEUS project homepage. Available from: http://code.google.com/p/deus/ [last accessed
9 February 2015].

Sebastio S, Vandin A. MultiVeStA: statistical model checking for discrete event simulators. VALUETOOLS, Torino,
Italy, 2013; 310-315.

MultiVeStA: code.google.com/p/multivesta.

Baset S, Schulzrinne H. An analysis of the Skype peer-to-peer Internet telephony protocol. Proceedings INFOCOM
2006. 25th IEEE International Conference on Computer Communications, Barcelona, Spain, April 2006; 1-11.
Montresor A. A robust protocol for building superpeer overlay topologies. 2004. Proceedings. Proceedings. Fourth
International Conference on Peer-to-Peer Computing, Zurich, Switzerland, August 2004; 202-209.

Pyun YJ, Reeves DS. Constructing a balanced, (log(N)/loglog(N))-diameter super-peer topology for scalable P2P
systems. IEEE International Conference on Peer-to-Peer Computing 2004; 0:210-218.

Amoretti M. A modeling framework for unstructured supernode networks. IEEE Communications Letters 2012;
16(10):1707-1710.

Koo SG, Lee CSG, Kannan K. A genetic-algorithm-based neighbor-selection strategy for hybrid peer-to-peer
networks. 13th International Conference on Computer Communications and Networks, 2004. ICCCN 2004.
Proceedings, Chicago, IL, October 2004; 469-474.

Huang K, Wang L, Zhang D, Liu Y. Optimizing the BitTorrent performance using an adaptive peer selection strategy.
Future Generation Computer Systems 2008; 24(7):621-630.

D’Acunto L, Andrade N, Pouwelse J, Sips H. Peer selection strategies for improved QoS in heterogeneous BitTorrent-
like VoD systems. 2010 IEEE International Symposium on Multimedia (ISM), Taichung, December 2010; 89-96.
Koo SG, Kannan K, Lee CG. On neighbor-selection strategy in hybrid peer-to-peer networks. Future Generation
Computer Systems 2006; 22(7):732-741.

Bolch G, Greiner S, de Meer H, Trivedi KS. Queueing Networks and Markov Chains (2nd edn). Wiley-Interscience:
Wiley Hoboken, New Jersey, 2006.

Amoretti M, Lluch Lafuente A, Sebastio S. A cooperative approach for distributed task execution in autonomic
clouds. 2013 21st Euromicro International Conference on Parallel, Distributed and Network-Based Processing
(PDP), Belfast, 2013; 274-281.

Sebastio S, Amoretti M, Lluch Lafuente A. A computational field framework for collaborative task execution in
volunteer clouds. In Proceedings of the 9th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems, SEAMS 2014. ACM: New York, NY, USA, Hyderabad, India, 2014; 105-114.

Celestini A, Lluch Lafuente A, Mayer P, Sebastio S, Tiezzi F. Reputation-based cooperation in the clouds. In
Trust Management VIII, vol. 430, Zhou J, Gal-Oz N, Zhang J, Gudes E (eds)., IFIP Advances in Information and
Communication Technology. Springer: Berlin Heidelberg, 2014; 213-220.

Hill MD, Marty MR. Amdahl’s law in the multicore era. Computer 2008; 41(7):33-38.

Sun X-H, Chen Y. Reevaluating Amdahl’s law in the multicore era. Journal of Parallel and Distributed Computing
2010; 70(2):183-188.

Woo DH, Lee HH. Extending Amdahl’s Law for energy-efficient computing in the many-core era. Computer;
41(12):24-31. DOI:10.1109/MC.2008.494.

Saino L, Cocora C, Pavlou G. A toolchain for simplifying network simulation setup. In Proceedings of the 6th
International ICST Conference on Simulation Tools and Techniques, SIMUTOOQOLS ‘13. ICST (Institute for Com-
puter Sciences, Social-Informatics and Telecommunications Engineering): ICST, Brussels, Belgium, Belgium, 2013;
82-91.

Picone M, Amoretti M, Zanichelli F. Evaluating the robustness of the DGT approach for smartphone-based vehicular
networks. 2011 IEEE 36th Conference on Local Computer Networks (LCN), Bonn, October 2011; 820-826.

Shoch JF, Hupp JA. Measured performance of an Ethernet local network. Communications of the ACM 1980;
23(12):711-721.

Boggs DR, Mogul JC, Kent CA. Measured capacity of an Ethernet: myths and reality, Digital, Western Research
Laboraroty, 1988.

Lian FL, Moyne JR, Tilbury DM. Performance evaluation of control networks: Ethernet, ControlNet, and DeviceNet.
IEEE Control System Magazine 2001:66-83.

networks DSS. The Gigabit Experts. Available from: http://www.dssnetworks.com/v3/FAQs.asp#Performance
[last accessed 9 February 2015].

Fritz! Transmission speed of wireless connections is low. Available from: http://en.avm.de/nc/service/fritzbox/fritzbox-
7390/knowledge-base/publication/show/514_Transmission-speed-of-wireless-connections-is-low/ [last accessed 9
February 2015].

Wikipedia. IEEE 802.11. Available from: http://en.wikipedia.org/wiki/IEEE_802.11 [last accessed 9 February 2015].
Lee SJ, Sharma P, Banerjee S, Basu S, Fonseca R. Measuring bandwidth between PlanetLab nodes. In Proceedings
of the 6th International Conference on Passive and Active Network Measurement, PAM’05. Springer-Verlag: Berlin,
Heidelberg, 2005; 292-305.

Thamarai Selvi S, Kumari MSS, Prabavathi K, Kannan G. Estimating job execution time and handling missing
job requirements using rough set in grid scheduling. 2010 International Conference on Computer Design and
Applications (ICCDA), Vol. 4, Qinhuangdao, June; V4-295-V4-299. DOI: 10.1109/ICCDA.2010.5541135.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:3-30

DOI: 10.1002/spe

http://code.google.com/p/deus/
code.google.com/p/multivesta
http://www.dssnetworks.com/v3/FAQs.asp#Performance
http://en.wikipedia.org/wiki/IEEE_802.11

30

61.
62.
63.
64.
65.
66.
67.

68.

69.
70.

71.

72.

73.

74.

75.

76.

77.
78

S. SEBASTIO, M. AMORETTI AND A. LLUCH LAFUENTE

Casolari S, Colajanni M, Tosi S, Presti FL. Real-time models supporting resource management decisions in highly
variable systems. /[PCCC, Albuquerque, NM, 2010; 247-254.

Silberschatz A, Galvin PB, Gagne G. Operating System Concepts (8th edn). Wiley Publishing: Wiley Hoboken,
New Jersey, 2008.

Pajek. Available from: vlado.fmf.uni-lj.si/pub/networks/pajek/ [last accessed 9 February 2015].

Gephi. Available from: gephi.org/ [last accessed 9 February 2015].

Google Cloud Platform - Machine Type. Available from: https://cloud.google.com/compute/#us [last accessed 9
February 2015].

Wilkes J. More Google cluster data. Google research blog. Posted at, 2011. Available from: http://googleresearch.
blogspot.com/2011/11/more-google-cluster-data.html [last accessed 9 February 2015].

Mishra AK, Hellerstein JL, Cirne W, Das CR. Towards characterizing cloud backend workloads: insights from
Google compute clusters. ACM SIGMETRICS Performance Evaluation Review 2010; 37(4):34-41.

Pianini D, Sebastio S, Vandin A. Distributed statistical analysis of complex systems modeled through a chemical
metaphor. 2014 International Conference on High Performance Computing Simulation (HPCS), Bologna, Italy, July
2014; 416-423.

CoDeploy: a scalable deployment service for PlanetLab. Available from: http://codeen.cs.princeton.edu/codeploy/
[last accessed 9 February 2015].

Dumitrescu C, Foster IT. GangSim: a simulator for grid scheduling studies. In CCGRID, Vol. 2. IEEE Computer
Society: Cardiff, UK, May 2005; 1151-1158.

Buyya R, Murshed M. GridSim: a toolkit for the modeling and simulation of distributed resource manage-
ment and scheduling for grid computing. Concurrency and Computation: Practice and Experience (CCPE) 2002;
14(13):1175-1220.

Bell WH, Cameron DG, Capozza L, Millar AP, Stockinger K, Zini F. OptorSim - a grid simulator for study-
ing dynamic data replication strategies. International Journal of High Performance Computing Applications 2003;
17:403-416.

Legrand A, Marchal L, Casanova H. Scheduling distributed applications: the SimGrid simulation framework. In
Proceedings of the 3st International Symposium on Cluster Computing and the Grid, CCGRID ‘03. IEEE Computer
Society: Washington, DC, USA, 2003; 138-.

Di S, Cappello F. Gloudsim: Google trace based cloud simulator with virtual machines. Software: Practice and
Experience 2014:n/a—n/a. DOI:10.1002/spe.2303.

Issariyakul T, Hossain E. Introduction to Network Simulator NS2 (1st edn). Springer Publishing Company,
Incorporated: Springer US, 2008.

Varga A, Hornig R. An overview of the OMNeT++ simulation environment. In Proceedings of Simutools ‘08, Simu-
tools ‘08. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering): ICST,
Brussels, Belgium, Belgium, 2008; 60:1-60:10.

SimBOINC. Available from: simboinc.gforge.inria.fr/ [last accessed 9 February 2015].

. Byrski A, Felus M, Gawlik J, Jasica R, Kobak P, Jankowski G, Nawarecki E, Wroczynski M, Majewski P, Krupa T,

Strychalski J. Volunteer computing simulation using RePast and MASON. Compure Science 2013; 14:153-172.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:3-30

DOI: 10.1002/spe

vlado.fmf.uni-lj.si/pub/networks/pajek/
gephi.org/
https://cloud.google.com/compute/#us
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://codeen.cs.princeton.edu/codeploy/
simboinc.gforge.inria.fr/

	AVoCloudy: a simulator of volunteer clouds
	SUMMARY
	Introduction
	Existing Platforms
	AVoCloudy Architecture
	AVoCloudy Implementation
	The physical layer package
	The infrastructure layer package
	The autonomic layer package
	The infrastructure.dc layer package
	The application layer package
	The util and log packages

	Case Studies
	Random task distribution
	Cooperative task distribution
	Reputation-Based task distribution
	A computational field for task distribution
	Case Studies Final Remarks

	Experiment and Evaluation
	Simulated scenario
	Configuration file snippets
	Simulation results
	Performance assessment of the simulator
	Lesson fearned and final remarks

	A worldwide Confidence Validation
	PlanetLab, Experience and Testbed
	Validation Results and Comments

	Related Work
	Conclusion
	REFERENCES

