
SOFTWARE: PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2016; 46:1181–1200
Published online 16 September 2015 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/spe.2373

Design and analysis of target-sensitive real-time systems

Giorgio Buttazzo*,†, Carmelo Di Franco and Mauro Marinoni

Scuola Superiore Sant’anna, Pisa, Italy

SUMMARY

A significant number of real-time control applications include computational activities where the results
have to be delivered at precise instants, rather than within a deadline. The performance of such systems
significantly degrades if outputs are generated before or after the desired target time. This work presents a
general methodology that can be used to design and analyze target-sensitive applications in which the timing
parameters of the computational activities are tightly coupled with the physical characteristics of the system
to be controlled. For the sake of clarity, the proposed methodology is illustrated through a sample case
study used to show how to derive and verify real-time constraints from the mission requirements. Software
implementation issues necessary to map the computational activities into tasks running on a real-time kernel
are also discussed to identify the kernel mechanisms necessary to enforce timing constraints and analyze the
feasibility of the application. A set of experiments are finally presented with the purpose of validating the
proposed methodology. Copyright © 2015 John Wiley & Sons, Ltd.

Received 31 October 2014; Revised 27 July 2015; Accepted 21 August 2015

KEY WORDS: target-sensitive applications; real-time computing; embedded systems

1. INTRODUCTION

Real-time systems are computing systems in which some computations have to be performed within
precise bounded delays in order to guarantee a desired performance. Examples can be found in
several application domains including avionics, automotive, manufacturing, plant control, health
care, and transportation. Some of these systems are quite sensitive to timing issues in the sense that
their overall performance is strictly related to the time at which outputs are produced.

Many theories have been developed in the literature to analyze the behavior of time-sensitive
systems in which computational activities need to be executed within a specified deadline. This
means that the corresponding task is allowed to execute anywhere in a time interval defined by its
activation time and its deadline. In many cases, completing the task as soon as possible or just at
its deadline does not cause significant performance difference, as for instance in sensory acquisition
and control, video encoding and decoding, image processing, and many other activities. In such
systems, a jitter in the output does not degrade the overall system performance significantly. In fact,
as long as the average sampling rate is in the specified range, the jitter is filtered out by the inertia
of the actuators (e.g., in robotics) or by the human vision system (e.g., in multimedia display).

In other applications, however, the time at which the output is produced (denoted as target time)
strongly affects the overall system performance. For example, studies on human perception have
shown that the human ear is capable of detecting a time jitter on the order of a few milliseconds,
especially in rhythmic melodies and syncopated music [1, 2]. As a consequence, in computer-
generated music, the notes produced by a program have to be played at precise target times, with a
tolerance of a few milliseconds. To describe such a timing property, Dannenberg and Jameson [3]

*Correspondence to: Giorgio Buttazzo, Scuola Superiore Sant’anna, Pisa, Italy.
†E-mail: g.buttazzo@sssup.it

Copyright © 2015 John Wiley & Sons, Ltd.



1182 G. BUTTAZZO, C. DI FRANCO AND M. MARINONI

introduced a new task model where a deadline is not interpreted as the maximum time instant at
which the execution must be completed, but as the best target time at which the output should be
produced. In this case, the listener perceives a degradation in performance not only if a note is gen-
erated too late, but also if it is played too early with respect to the target time. Later, Brandt and
Dannenberg [4] identified the most relevant mechanisms that should be implemented in a real-time
kernel to support music software characterized by low latency.

Other target-sensitive applications where outputs have to be produced ‘on time’ with a specified
tolerance are those where a moving object has to be tracked by a robot system [5–9]. In this situation,
the maximum tolerated timing error depends on the object speed and size.

The schedulability analysis of real-time tasks that must be executed at precise instants has
been investigated by several authors under different assumptions. For example, Jensen, Locke, and
Tokuda [10] introduced the use of utility functions to evaluate the performance of time-sensitive
applications and measure the quality of a produced result as a function of the task finishing time.

Chen and Muhlethaler [11] investigated how to schedule a set of value-based tasks under the
criterion of maximizing the sum of tasks’ contributions. Farzinvash and Kargahi [12] introduced the
concept of instant value function to compute a value as a function of the instant at which a job is
executed and proposed a scheduler that tries to maximize the total value accumulated by the task set.

To schedule overlapping events generated around the same target time, Guerra and Fohler [13, 14]
presented an algorithm based on gravitational field. In their approach, every task is considered as
a mass denoting a different importance level, free to oscillate on a pendulum hanged at the desired
target time. Then, the schedule is derived by computing the mass distributions along the timeline
resulting from the equilibrium condition. A Markov decision process has been adopted by Tidwell
et al. [15] to derive optimal scheduling policies that maximize the cumulative value achieved by
periodic tasks executing in stochastic non-preemptive intervals.

Although the papers cited in the previous text proposed new scheduling algorithms for target-
sensitive task sets, no one addressed the problem of how to use such algorithms to provide a set
of guidelines for the design and implementation of such systems. Buttazzo et al. [16] provided a
preliminary overview of the implementation issues for a specific target-sensitive application and
illustrated the problems that can occur when coding the software on a real-time operating system.
This paper extends the work in [16] by considering a more precise and formal analysis, presenting
a more general methodology, and validating the approach with additional experiments.

Contributions Although each of the previous papers provides a solution for a particular problem,
a general methodology for designing and analyzing target-sensitive systems is still missing. The
present work is aimed at integrating several contributions to address different aspects involved in
the development of such type of systems, where some results must be delivered at predefined time
instants, with a desired tolerance. In particular, this paper

1. shows how to derive the timing constraints of the computational tasks from the mission
requirements and the features of the physical system;

2. presents different implementation approaches, discussing the weak and strong points of the
different solutions; and

3. experimentally evaluates the behavior of the different solutions, showing how the performance
guarantee can be predicted from the analysis.

For the sake of clarity, the proposed methodology is illustrated on a sample case study, used as a
reference application to concretely illustrate the various steps.

Paper organization The rest of this paper is organized as follows. Section 2 presents the task
model used to describe the real-time computational activities and summarizes the analysis tech-
niques that can be used to verify the application schedulability; Section 3 describes the system taken
as a reference to illustrate the proposed approach. Section 4 presents how to derive the timing con-
straints as a function of the mission requirements and system features; Section 5 discusses some
implementation issues; Section 6 reports a set of experiments performed on the physical platform,
and finally, Section 7 summarizes our conclusions.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:1181–1200
DOI: 10.1002/spe



TARGET-SENSITIVE SYSTEMS 1183

2. TASK MODEL AND BACKGROUND ANALYSIS

This section presents how to model and schedule the computational activities involved in a target-
sensitive system. Then, the appropriate methods for performing the feasibility analysis of the
application are presented under both fixed priority and deadline-based scheduling.

A generic real-time application can be modeled as a task set � of n periodic or sporadic real-time
tasks, that is � D ¹�1; : : : ; �nº.

Each task �i is characterized by a release offset ˚i , a worst-case execution time Ci , a relative
deadline Di , and a minimum interarrival time Ti , which is equivalent to the period if �i is periodic.
The ratio Ui D Ci=Ti represents the task utilization factor, and the total utilization of the task set is
denoted as U :

U D

nX
iD1

Ci

Ti
: (1)

In this paper, it is assumed that all the periodic tasks are synchronously released at some predeter-
mined time. Two possible scheduling algorithms are considered for managing the application tasks:
a generic fixed priority scheduler and the earliest deadline first (EDF) algorithm [17].

Each task may include non-preemptive regions for guaranteeing the atomicity of certain opera-
tions, including critical sections for accessing globally shared resources. In particular, for each task
�i , qi denotes the length of the longest non-preemptive region of task �i .

The following sections summarize the schedulability tests that can be performed under fixed
priority and EDF scheduling in the presence of non-preemptive regions.

2.1. Fixed priority analysis

The schedulability analysis of fixed priority periodic or sporadic tasks can be efficiently performed
by the workload analysis [18]. This method is based on the concept of level-i workload Wi .t/,
which represents the cumulative execution request generated by task �i and all higher-priority tasks
over an interval of length t . Assuming tasks are ordered by decreasing priority, the level-i workload
Wi .t/ can be expressed as

Wi .t/ D Ci C

i�1X
kD1

�
t

Tk

�
Ck 6 t: (2)

Then, the feasibility of a set � of n periodic or sporadic tasks can be verified through the following
theorem.

Theorem 1 (Lehoczky–Sha–Ding, 1989)
A set � of n periodic tasks is schedulable by a fixed priority algorithm if and only if

8i D 1; : : : ; n 9t 2 .0;Di � W Wi .t/ 6 t: (3)

This result has been extended by Yao, Buttazzo, and Bertogna [19] to allow the usage of non-
preemptive regions.

Theorem 2 (Yao–Buttazzo–Bertogna, 2011)
Let � be a set of n periodic tasks in which each task �i may include non-preemptive regions of
maximum length qi . Then, � is schedulable with a fixed priority algorithm if for all �i 2 � , there
exists a time t 2 .0;Di � such that

Bi CWi .t/ 6 t (4)

where

Bi D max
k>i
¹qkº: (5)

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:1181–1200
DOI: 10.1002/spe



1184 G. BUTTAZZO, C. DI FRANCO AND M. MARINONI

Under fixed priority scheduling, a target-sensitive task can be guaranteed to execute at its activa-
tion time provided that it is assigned the highest priority level. In the presence of non-preemptive
regions, however, the worst-case start time delay that task �1 can suffer is equal to the longest
non-preemptive region of the lower priority tasks, that is, B1 D max¹q2; : : : ; qnº.

2.2. EDF analysis

The schedulability analysis of periodic or sporadic tasks under EDF can be efficiently performed by
the processor demand criterion [20]. This method is based on the concept of demand bound function
dbf.t/, which represents the overall computation time of the jobs with a deadline no greater than t ,
that is,

dbf.t/ D
nX
iD1

�
t C Ti �Di

Ti

�
Ci 6 t: (6)

Then, the feasibility of a set � of n periodic or sporadic tasks can be verified through the following
theorem.

Theorem 3 (Baruah–Rosier–Howell, 1990)
A set � of n periodic tasks is schedulable by EDF if and only if U < 1 and

8t 2 D dbf.t/ 6 t; (7)

where D denotes the set of all deadlines no greater than a certain value given by the minimum
between the hyperperiod H D lcm.T1; : : : ; Tn/ and the following bound

Lb D max

�
Dmax;

Pn
iD1.Ti �Di /Ui

1 � U

�

where Dmax D max¹D1; : : : ;Dnº.

This result has been extended by Bertogna and Baruah [21] to allow the usage of non-preemptive
regions. The blocking time introduced by non-preemptive regions is taken into account through a
blocking functionQ.D/, which returns the maximum amount of time for which a job with deadline
D can execute non-preemptively without jeopardizing the schedulability of the task set. In particular,
the blocking function Q.D/ is computed as follows:

²
Q.D1/ D D1 � C1
Q.Dk/ D min .Q.Dk�1/; Dk � dbf.Dk//

Then, the resulting schedulability test is stated by the following theorem.

Theorem 4 (Bertogna–Baruah, 2010)
Let � be a set of n periodic tasks in which each task �i may include non-preemptive regions of
maximum length qi . Then, � is schedulable by EDF if 8i D 1; : : : ; n qi 6 Q.Di / and

8t 2 D Q.t/C dbf.t/ 6 t; (8)

where D denotes the set of deadlines defines in Theorem 3.

Under EDF, a target-sensitive task can be guaranteed to be executed as soon as possible if it is
assigned the shortest relative deadline compatible with the shortest worst-case response time, that
is, D1 D C1 C B1, where B1 D max¹q2; : : : ; qnº.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:1181–1200
DOI: 10.1002/spe



TARGET-SENSITIVE SYSTEMS 1185

3. REFERENCE SYSTEM

In this work, the platform illustrated in Figure 1 has been used as a reference example for a generic
target-sensitive system. In this setup, a laser pulse of a given duration ı has to be generated at a
proper time so that the light passes through the hole made on a rotating disk. The laser beam is
positioned to point to the upper position of the disk (reference position), and it is correctly aligned
to hit the target, consisting of a photoresistor (P) located behind the disk, as illustrated in the figure.
In these conditions, the goal of the controller (PC) is to compute the precise instant of time at which
the laser has to be switched on to pass through the hole, when it is in the upper disk position.

The radius of the hole, its position on the disk, and the radius of the laser spot are assumed to
be known, whereas the angular velocity ! of the disk is not known and has to be estimated by a
sensor, consisting of an optical encoder (E) mounted on the shaft of a DC motor (M), before the
reduction. It is assumed that the value of ! changes slowly and can be considered to be constant
within a revolution.

It is worth noting that the design issues discussed for the considered system are similar to those
found in many other real world applications, from target tracking in defense systems to ignition
scheduling in engine control systems.

The notation used throughout the paper to describe the system parameters and variables is
reported in Table I.

Figure 1. Platform used as a reference system.

Table I. Notation used for the parameters of the system.

R Distance of the hole center from the disk center
RB Radius of the beam
RH Radius of the hole
D Distance between the disk and the shooting device

� Angular position of the hole at the current reading
�old Angular position of the hole at the previous reading
�0 Angular position of the hole in the uppermost position (reference position)
�� Angular difference between current and reference position
! Estimated angular velocity of the disk
t Current time
t0 Future time the hole will be in the uppermost disk position
�ta Triggering delay of the laser device
ı Laser pulse duration
ts Shooting time computed by the system
�t Time interval between current and firing instant
Ts Time interval between two angular readings
Tsafe Sampling period to ensure that the target is within the safe region
"� Angular position error
"! Speed measurement error
"t Time estimation error

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:1181–1200
DOI: 10.1002/spe



1186 G. BUTTAZZO, C. DI FRANCO AND M. MARINONI

The next section derives the tolerances and the constraints among the variables necessary to define
the application timing constraints.

4. TOLERANCES AND CONSTRAINT DERIVATION

The simplest method for estimating the angular speed ! is to sample the disk position at regular
intervals Ts and divide the difference of two consecutive angular readings (� � �old ) by the period
Ts between the readings, that is

! D
� � �old

Ts
: (9)

If "� denotes the angular error of a measurement, the estimated speed will be affected by a maximum
error equal to

"! D
2"�

Ts
: (10)

If the direction of rotation is not known, to make a correct estimation, the angular difference of two
consecutive samples cannot be higher than � , that is

j!j 6 �

Ts
: (11)

Also, to ensure that consecutive angular readings have different values (i.e., to have � ¤ �old ), in
the period Ts , the disk must cover an angle greater than 2"� , which gives a lower bound on !:

j!j > 2"�
Ts
: (12)

For a given period Ts , the range of ! values in which the speed is correctly estimated is given by
Equations (11) and (12). Vice versa, if the disk speed is known to be in a given range [!min, !max],
the two speed limits can be used to constrain the period Ts:

Constraint 1

2"�

!min
6 Ts 6

�

!max
: (13)

If �0 denotes the reference angular position, the angular difference�� with respect to �0 is given
by

�� D �0 � � C

²
2� if �0��

!
< 0

0 otherwise.
(14)

In particular, �� is a positive value and represents the angular displacement the disk has to cover
from the current position to reach the reference angle �0 in the direction of rotation. The time
required to cover this angular displacement (assuming a constant speed) is equal to

�t D
��

j!j
: (15)

As a consequence, the time t0 at which the hole reaches the angle �0 is

t0 D t C�t D t C
��

j!j
: (16)

Note that t0 also represents the time at which the light must reach the photoresistor. For deriving a
more general analysis, we assume that the laser device is affected by a triggering delay �ta, so that
it must be triggered a time �ta in advance to hit the photoresistor at t0.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:1181–1200
DOI: 10.1002/spe



TARGET-SENSITIVE SYSTEMS 1187

Figure 2. Tolerance caused by the difference between RH and RB .

In conclusion, the fire signal must be given at time ts D t0 ��ta; hence, another constraint is

Constraint 2

ts D t C
��

j!j
��ta: (17)

Observe that the interval �t computed by Equation (15) is affected by an error "t , which (in the
worst case) is given by

"t D
�� C "�

j!j � "!
�
��

j!j
: (18)

If the hole center is positioned at distance R from the disk center, such a timing error, at speed !,
causes a maximum target displacement of "t j!jR, which is tolerated only if it is less than or equal
to the difference between the hole radius RH and the radius RB of the laser spot,‡ as illustrated in
Figure 2; that is, if

"t j!jR 6 RH �RB : (19)

The difference RH � RB represents the chord approximation of the corresponding arc, which
is reasonable for small angular values. Hence, its value is expressed in radians, and the angular
tolerance � that ensures a successful shot is

� D arcsin

�
2.RH �RB/

R

�
: (20)

The inequality given in Equation (19) can also be written as

"t 6
�

j!j
: (21)

A safety condition as a function of �� can be derived by substituting Equation (18) into
Equation (21):

�� 6 j!jTs
� � "�

2"�
� �: (22)

The right-hand side of Equation (22) represents the maximum angular difference ��max at which
the target is guaranteed to be caught at speed !:

��max D j!jTs
� � "�

2"�
� �: (23)

Observe that a value ��max > 2� means that the target hit can be guaranteed even by planning
the shoot more than one rotation ahead.

‡The derivation of the RB value for laser spot is explained in Section 6.1.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:1181–1200
DOI: 10.1002/spe



1188 G. BUTTAZZO, C. DI FRANCO AND M. MARINONI

Figure 3. Safe region for computing the firing instant.

Note that ��max reduces with !, because small speed values increase the interval �t in which
the speed error "! is integrated. Therefore, ��max must be reduced to contain the angular drift
within the tolerance �.

Likewise, a minimum angular interval ��min is needed before firing:

��min D j!j�ta: (24)

Note that a value��min > 2� means that the firing time must be planned at least one rotation ahead.
In conclusion, a correct behavior can be guaranteed only if the firing time is set when the angular

target distance �� from �0 is within the safe interval [��min, ��max]. This means that to ensure
that the firing time falls in the safe region, the encoder must be sampled with a period no larger than
a maximum value Tsafe given by

Constraint 3

Tsafe D
��max ���min

j!j
: (25)

An example of safe region for the case of a disk rotating clockwise is illustrated in Figure 3.
Another constraint results from the fact that, at the shooting instant, the laser is activated for a

duration ı. Such an interval cannot not be too long, because an earlier laser activation would keep
the laser on until the hole crosses the photoresistor, so accounting for a correct shot even on a
wrong prediction. To prevent such a phenomenon, ı must be set equal to the minimum time Tph just
sufficient to activate the photoresistor, and this time cannot be larger than the photoresistor visibility
time Tvis , which is given by

Tvis D
2.RH �RB/

!maxR
: (26)

Hence, to avoid such a problem, it must be Tph 6 Tvis , which means

Constraint 4

Tp 6
2.RH �RB/

!maxR
: (27)

5. TASK STRUCTURE AND FUNCTIONAL BEHAVIOR

The previous section derived three constraints, obtained from Equations (13), (17), and (25), respec-
tively. They will be used to set the periods and deadlines of three corresponding tasks, which interact
through a shared buffer, as depicted in Figure 4:

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:1181–1200
DOI: 10.1002/spe



TARGET-SENSITIVE SYSTEMS 1189

Figure 4. Tasks structure of the application.

Figure 5. States diagram of the application.

� The first task, �1 (estimate_speed), is periodically activated to acquire the encoder with a
period T1 D Ts (constraint 1). It derives the current position � of the disk and, using the value
(�old ) detected in the previous run, estimates the disk angular velocity ! using Equation (9),
and writes it into the shared buffer.
� The second task, �2 (plan_shooting) is also periodic. Every period T2, it reads the current

target position � and the disk speed ! from the buffer, and, if the hole is found in the safe
region, it calculates the shooting time ts using constraint 2. This value is used to set an event
at time ts for activating the third task �3, which will actually trigger the laser (or the shooting
device). To ensure that �2 is activated at least once when the current target position is within
the safe region, the period T2 is set according to constraint 3.
� Task �3 (fire) is a sporadic routine activated at time ts to trigger the shooting device.

Figure 5 illustrates the state diagram describing the functional behavior of the application. At the
beginning, the system is in the IDLE state waiting for a ‘fire request’. When a ‘fire request’ is given
by the user, the application switches to ARMED mode, in which the system is continuously sampled
until the hole is found in the safe region. At this time, the firing instant ts is computed by task �2
and the system switches to LOCKED mode, waiting for the shooting device to fire. Once the firing
command is given, the system is switched back to the IDLE state by task �3.

5.1. Implementation notes

This section discusses some guidelines that should be followed in the implementation of the appli-
cation tasks. For the sake of simplicity, the pseudo code of the tasks makes use of the following
functions:

� current_time() returns the current time of the system;
� set_state(value) sets the system state at the value specified in the argument (IDLE,
ARMED, or LOCKED;
� read_sensor() acquires the encoder and returns the current angular position of the hole;
� write_buffer(value) writes the value passed as argument in the shared buffer;
� read_buffer() reads the buffer and returns the current value of the shared variable;
� post_task(�; ts) sets the activation of task � at time ts;

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:1181–1200
DOI: 10.1002/spe



1190 G. BUTTAZZO, C. DI FRANCO AND M. MARINONI

Figure 6. Implementation A of task �1 for the estimation of the disk speed.

� wait_for_period() suspends the execution of the calling task until the next periodic
activation.

At initialization, the system state is set to IDLE and is brought in the ARMED state by a fire request
issued by the user (e.g., by pressing a button).

5.2. Estimation of the disk velocity

If task �1 (estimate_speed) is assigned the highest priority, then consecutive jobs are exactly
separated by a period Ts , thus the angular speed of the disk can be computed by Equation (9). A first
implementation of such a task (denoted as implementation A) is reported in Figure 6. However, note
that if �1 is assigned a medium priority, consecutive samples will be separated by a varying interval
because of the interference of higher-priority tasks. In such a general case, the disk angular speed
should be estimated taking into account the actual time difference between consecutive samples:

! D
� � �old

t � told
: (28)

The corresponding task implementation (denoted as implementation B) is shown in Figure 7.
It is worth observing that the speed estimation computed by implementation B is correct only if

the current time is always acquired just after reading the sensor, as written in the code. A preemption
between the two instructions would introduce a delay that would affect the speed computation. In
order to avoid such a situation, the instructions for reading the sensor and the current time should be
executed atomically, encapsulating them in a non-preemptive region. The task implementing such a
solution (denoted as implementation C) is reported in Figure 8.

The non-preemptive regions, however, may introduce a potential blocking time (Q) to the higher-
priority task that has to be accounted in the schedulability analysis, as reported in Section 2.

Note that the blocking time Q also affects the bounds of the safety region, because it has to be
added to "t in Equation (19). Thus, ��max becomes:

��max D j!jTs
� � "�

2"�
� � � j!jQ

j!jTs � 2	�

2	�
: (29)

5.3. Shooting the target

Based on the speed estimated by �1, task �2 (plan_shooting) computes the shooting time ts to
hit the target according to Equation (17). Note that, if the hole is not inside the safe region shown
in Figure 3, the shooting time cannot be correctly estimated, hence no action is executed by �2,

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:1181–1200
DOI: 10.1002/spe



TARGET-SENSITIVE SYSTEMS 1191

Figure 7. Implementation B of task �1 for the estimation of the disk speed.

Figure 8. Implementation C of task �1 for the estimation of the disk speed.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:1181–1200
DOI: 10.1002/spe



1192 G. BUTTAZZO, C. DI FRANCO AND M. MARINONI

which is then suspended until the next period. When the hole is detected within the safe region, then
ts is estimated, and the activation of �3 is set at time ts . When executed, task �3 (fire) triggers
the shooting device and switches the system state to IDLE. The pseudo code of tasks �2 and �3
is reported in Figures 9 and 10, respectively. Observe that the interval between two consecutive
executions of task �2 can be larger than period T2, because of the interference (I2) caused by the
higher-priority tasks (�1 and �3). It follows that, to ensure that the shooting time falls in the safe
region, we have to guarantee that T2 C I2 6 Tsafe , that is (by Equation (25))

T2 6
��max ���min

j!j
� I2: (30)

By exploiting Equations (23) and (24), the constraint on T2 can be expressed as follows:

T2 6 Ts
� � "�

2"�
�

�

j!j
��ta � I2: (31)

Figure 9. Pseudo code of task �2 for computing the shooting time.

Figure 10. Pseudo code of task �3 for firing.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:1181–1200
DOI: 10.1002/spe



TARGET-SENSITIVE SYSTEMS 1193

Observe that, for achieving a correct execution, task �3 must be activated exactly at time ts and
immediately scheduled by the kernel. Therefore, �3 must be assigned the highest priority, so that it
can preempt all the other application tasks. However, being �3 a sporadic task, its interference has to
be properly accounted in the analysis to guarantee the application feasibility, as shown in Section 2.

To characterize the worst-case interference of the sporadic task, its minimum interarrival time has
to be determined based on the system features. From the behavior described in the previous text,
task �3 can be activated no more than once for every disk rotation, hence T3 D 2�=!max .

Moreover, being �3 the task with the highest priority, it cannot be preempted by other tasks, but
it can be blocked by the longest non-preemptive region Q; thus, its relative deadline can be set as
D3 D C3 C Q. The relative deadlines of the other two tasks, �1 and �2, can be set equal to their
periods (D1 D T1 and D2 D T2), because they are implemented to be tolerant to the interference.

6. EXPERIMENTAL VALIDATION

A set of experiments have been carried out on a real platform, which has been developed with
the purpose of validating the proposed approach and comparing the behavior of the various
implementations presented in Section 5.

6.1. Hardware platform

The test system consists of a compact disk mounted on a brushed DC servomotor having a gear
reduction ratio of 9.68:1. The hole position angle has been measured by an optical encoder (mounted
on the motor shaft, before the reduction) having 48 pulses per rotation, leading to an angular error
on the disk equal to

"� D
360

48 � 9:68
D 0:775 deg

�
13:52 � 10�3 rad

	
: (32)

The plant controller was implemented on a Flex§ board based on a Microchip 16-bit dsPIC
microcontroller running the application on top of a real-time kernel.

The shooting device consists of a laser pointer, pointing toward a photoresistor positioned behind
the disk and acquired by a 12-bit analog-to-digital converter. The firing signal is generated by a
digital output line connected with the laser. During firing, the laser is activated for an interval ı D
400 
s, which is equal to the time Tph just sufficient to switch the photoresistor on. The hole has
a radius RH D 3 mm, and its center is positioned at distance R D 53 mm from the disk center. In
this setup, the shooting time �ta can clearly be neglected.

To determine the value of RB in our system, a specific experiment has been carried out to char-
acterize the effect of the laser spot on the used photoresistor. Keeping the laser always on, the
photoresistor output was acquired for different angular values of the hole around the reference posi-
tion. Figure 11 shows the photoresistor response (in volts) to the laser beam as a function of the
hole angular position � . Note that the value of �H is the maximum angular position for which the
photoresistor is sensible to the laser beam and it is related with the hole radius (RH ) by the relation
RH D R tan.�H /. The interval [��T , �T ] represents the angular range in which the photoresistor
output is above the interrupt activation threshold (Vth). Hence, as clearly depicted in the figure, the
laser spot radius can be estimated as

RB D R tan.�H � �T /: (33)

The measured values of �T and �H resulted to be 2 deg (3:49 � 10�2 rad) and 3.24 deg (5:65 � 10�2

rad), respectively, so the equivalent laser spot radius resulted to be RB D 1:15 mm.
The maximum motor speed is 4000 deg/s (69.81 rad/s), but to observe the system behavior when

the speed exceeds the bound given by Equation (11), we considered!max = 3000 deg/s (52.36 rad/s).
A minimum rotation speed !min = 500 deg/s (8.72 rad/s) was also imposed to derive a safe value of

§Flex board web site: http://www.evidence.eu.com/products/flex.html.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:1181–1200
DOI: 10.1002/spe

http://www.evidence.eu.com/products/flex.html.


1194 G. BUTTAZZO, C. DI FRANCO AND M. MARINONI

Figure 11. Photoresistor output for different hole angular values around the reference position.

T2, based on Equation (31). In this setting, the bounds of the safe region computed by Equations (24)
and (23) resulted to be ²

��min D 0
��max D 1:035j!jTs � �

where, as in Equation (20), � D 2:38 deg (41:52 � 10�3 rad).
Also note that, with the current settings, constraint 4 is satisfied, being Tph D 400 ms, which is

less than the photoresistor visibility time

Tvis D
2.RH �RB/

!maxR
D 1 ms:

6.2. Software implementation

The application has been developed on top of the ERIKA Enterprise kernel [22], which is an open-
source real-time kernel for embedded platforms compliant with the OSEK/VDX standard [23]. In
ERIKA, a task is a sequence of jobs, each resulting from the execution of a function written in
C code. For each periodic task, an alarm is used to activate its jobs with the specified period. A
kernel functionality is in charge of managing the alarms through a hardware timer configured with
a granularity set by the application. Tasks’ initializations are performed inside the main function,
together with the alarms activations. According to the OSEK/VDX standard, all the tasks and the
corresponding scheduling policy are set statically at compile time. The developer can decide among
different scheduling algorithms, as fixed priorities (FPs) and earliest deadline first (EDF) [17].

To test the system near the limit conditions, the period of task �1 has been set to the maximum
value allowed by Equation (13), that is

T1 D Ts D
�

!max
D 60 ms;

while period T2 has been set within the bound expressed in Equation (31), considering I2 D 0
and ! D !min D 500 deg/s (8.72 rad/s) (which gives T2 6 61:84 ms). In all the experiments,
T2 D 55 ms and T3 D 2�=!max D 120 ms (equal to the minimum interarrival time of task �3).

A data logging task, �log , is also included in the application in order to monitor the main variables
and send them to a PC via a serial line. To avoid extra blocking interference, all logged variables are
shared by means of double buffering.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:1181–1200
DOI: 10.1002/spe



TARGET-SENSITIVE SYSTEMS 1195

Table II. Task set parameters used in the experiments.

Priority Relative deadline
Task Ci (ms) Ti (ms) Ui under FP under EDF (ms)

�1 0.1 60 1.66 �10�3 2 60
�2 0.07 55 1.27 �10�3 3 55
�3 0.6 120 5.00 �10�3 5 0.6
�d 3.5 35 0.1 4 35
�log 5.1 1000 5.10 �10�3 1 1000

FP, fixed priority; EDF, earliest deadline first.

Table III. Set of experiments carried out on the refer-
ence system.

Experiment Output Free variable Scheduler

Exp. 1 Miss ratio ! FP
Exp. 2 Miss ratio Ud FP
Exp. 3 Miss ratio ! FP
Exp. 4 Miss ratio ! EDF

FP, fixed priority; EDF, earliest deadline first.

Finally, in order to test the different implementations under variable workload conditions, a
higher-priority disturbing task �d has been introduced, with a period Td D 35ms and a computation
time Cd , which can be increased by a factor k, so that Cd D 3:5 � k ms. As a result, the utilization
of the disturbing task is given by

Ud .k/ D Cd � k=Td D k=10

and defined in such a way that the system reaches a total utilization of 1.0 for k D 9. Table II
summarizes the timing parameters of the task set (higher values of priority denote higher priority).
It is worth noting that, without the disturbing task, the application is schedulable under both FP
and EDF. With the disturbing task, the analysis reported in Section 2 shows that the application is
schedulable under both FP and EDF for k 6 9.

6.3. Experiments

This section presents a set of experiments on the reference system considered in the paper aimed
at validating the proposed approach. The metrics for evaluating the system performance is the miss
ratio, that is the ratio of the cumulative number of missed and skipped shots and the number of
full disk rotations performed in the experiment (where a shot is triggered at each rotation). The first
three experiments are executed under fixed priority scheduling, whereas the fourth experiment has
been carried out under EDF scheduling, using the parameters reported in Table II. Table III briefly
summarizes the set of experiments.

6.3.1. Experiment 1. The first experiment is aimed at comparing the three implementations of task
�1 presented in Section 5 (referred to A, B, and C), with the purpose of evaluating their impact on the
system performance as a function of the disk speed!. In this test, the speed is varied from 2760 deg/s
(48.17 rad/s) to 3400 deg/s (59.34 rad/s), and the disturbing task is not present (i.e., Ud D 0).
For each speed value, 800 full disk rotations are performed. The output of this test is reported in
Figure 12.

Note that, being !max D 3000 deg/s (52.36 rad/s), all the three implementations quickly reach
a miss ratio equal to 1.0 as soon as the rotation speed crosses the limit value of 3000 deg/s
(52.36 rad/s). For ! 6 2900 deg/s (50.61 rad/s), all the three implementations exhibit a good per-
formance (miss ratioD 0.0) because, in the absence of the disturbing task, they are able to correctly
calculate ! with enough precision.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:1181–1200
DOI: 10.1002/spe



1196 G. BUTTAZZO, C. DI FRANCO AND M. MARINONI

Figure 12. Miss ratio as a function of ! for the three implementations (A, B, and C) of task �1.

Figure 13. Actual interference measured on �2 as a function of Ud . The dashed line denotes the value of
I2max .

The different behavior of the three versions mainly appears for rotation speeds in the range
[2900 deg/s, 3000 deg/s] (50.61–52.36 rad/s). As expected, implementation A provides the worst
performance, because ! is estimated by Equation (9), without taking into account the execution jit-
ter. However, because there is no disturbing task, the jitter is minimum and allows a fairly accurate
estimate up to a speed ! D 2900 deg/s (50.61 rad/s). Implementation B takes jitter into account,
and as there is no disturbing task, its behavior is roughly equal to implementation C. In fact, both
implementations B and C present a negligible number of missed targets even for ! values quite near
to !max .

6.3.2. Experiment 2. The second experiment has been carried out with the objective of evaluating
the robustness of the three implementations of �1 in the presence of an increasing interference. This
was performed by setting a fixed disk speed and measuring the actual interference I2 on task �2 for
increasing values of the disturbing load Ud , obtained by increasing the factor k from 0 to 9. The
value of ! has been set to ! D 2818 deg/s (49.19 rad/s), which is a high value that still guarantees
(as shown in Figure 12) a negligible miss ratio for all the three implementations without disturbing
load (Ud D 0). Figure 13 shows the interference measured on �2 as a function of the utilization of
the disturbing task Ud .

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:1181–1200
DOI: 10.1002/spe



TARGET-SENSITIVE SYSTEMS 1197

The dashed line represents the maximum interference (I2max D 6:28ms) that can be tolerated by
the system to catch the target, computed by Equation (31) for ! D 2818 deg/s (49.19 rad/s). Note
that the value at which the two lines intersect represents the maximum disturbing load (U �

d
' 0:18)

that guarantees the correct performance.
In order to verify the adherence of the theoretical bound I2max provided by Equation (31) with

the actual performance of the different task implementations, the miss ratio has been monitored as
a function of the disturbing load Ud , for the same angular velocity ! D 2818 deg/s (49.19 rad/s)
used in the experiment. The results of this test are reported in Figure 14, where each value in the
plot represents the miss ratio over 800 full disk rotations.

As it is clear from the plots, implementation A (which does not take the interference into account)
starts missing the target for low values of Ud . Implementation B (which takes interference into
account but does not guarantee an atomic computation of !) exhibits a better performance than A
but still produces some misses at values of Ud 6 U �d . Implementation C not only guarantees a zero-
miss ratio for Ud 6 U �d , but it is also able to keep a good performance for slightly higher Ud values,
because the actual interference may be less than the maximum one considered in the analysis.

Figure 14. Miss ratio as a function of Ud for the three implementations (A, B, and C) of task �1.

Figure 15. Miss ratio as a function of ! for different disturbing loads.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:1181–1200
DOI: 10.1002/spe



1198 G. BUTTAZZO, C. DI FRANCO AND M. MARINONI

6.3.3. Experiment 3. A third experiment has been performed to evaluate how the miss ratio of
implementation C is affected by the rotation speed for different disturbing loads. As in the first
experiment, ! was varied from 2760 deg/s (48.17 rad/s) to 3400 deg/s (59.34 rad/s), performing
800 full disk rotations for each point of the plot and for five different disturbing loads (Ud D
0; 0:1; 0:3; 0:5; and 0.7). The results of this experiment are shown in Figure 15.

Note that when ! < !max , the system never misses the target if the utilization of the disturbing
load is below the critical value (Ud 6 Ud ' 0:18). For higher disturbing loads, the number of
misses increases proportionally to the interference. For ! > !max , it is interesting to observe that
an increasing disturbing load produces a side effect that allows obtaining a correct speed estimate
once in a while. This can be explained by noting that, in the presence of high disturbing load, the
jitter on �1 increases, causing the execution of consecutive jobs to vary a lot within its period. As a
consequence, it may often happen that two consecutive jobs execute close to each other, so leading
to a correct speed estimate, even for ! > !max . Figure 16 illustrates the phenomenon described in
the previous text, where an increased interference Cd may reduce the interval QTs D t2 � t1 between
successive readings.

6.3.4. Experiment 4. A final experiment has been carried out to test the performance of the system
under EDF scheduling. Task-relative deadlines were assigned to be equal to task periods, except for
the sporadic task �3, whose relative deadline was set equal to its worst-case computation time. In
particular, because the difference between the two scheduling algorithms can only be appreciated
under heavy workload conditions, this test was planned to verify how the miss ratio of implementa-
tion C is affected by the rotation speed for increasing disturbing loads. As in experiment 3, ! was
varied from 2760 deg/s (48.17 rad/s) to 3400 deg/s (59.34 rad/s), performing 800 full disk rotations

Figure 16. Side effect of the interference that may reduce the interval between successive readings.

Figure 17. Miss ratio as a function of ! for different disturbing loads under earliest deadline first scheduling.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:1181–1200
DOI: 10.1002/spe



TARGET-SENSITIVE SYSTEMS 1199

Figure 18. Average and maximum interference measured on �2 as a function of Ud under fixed priority (FP)
and earliest deadline first (EDF) scheduling.

for each point of the plot and for five different disturbing loads (Ud D 0; 0:1; 0:3; 0:5; and 0.7). The
results of this experiment are shown in Figure 17.

By comparing Figures 15 and 17, it can easily be seen that the general performance trends under
FP and EDF are quite similar. However, note that for ! < !max , for the same values of Ud , the
miss ratio achieved under EDF is slightly higher than under FP, because EDF distributes the jitter
more evenly among the tasks [24]. To better explain this phenomenon, we measured the interference
suffered by tasks �1 and �2 under both FP and EDF. As expected, the interference suffered by �2
(whose priority is higher than �1) is higher under EDF, as illustrated in Figure 18, hence the higher
jitter. The interference on task �1 resulted to be comparable for both schedulers; hence, it is not
reported here.

Also note that the compensation phenomenon observed under FP for ! > !max (illustrated in
Figure 16) occurs less frequently under EDF due to the more uniform jitter distribution among
the tasks.

7. CONCLUSIONS

This paper presented a general methodology for the design and analysis of target-sensitive real-time
systems, where the output of one or more tasks must be produced at precise time instants, rather than
within a deadline. The proposed approach has been instantiated to a reference platform to practically
show how to model the physical system, how to derive timing constraints, how to map specific
functionalities into periodic and sporadic tasks, and finally how to verify the system schedulability
and performance.

Three alternative implementations have been proposed and compared to evaluate the effect of the
inter-task interference on the system performance. Also, the application has been executed on two
different scheduling algorithms, available in the ERIKA real-time kernel: a fixed priority scheduler
and earliest deadline first. The experimental results reported in the paper, besides verifying the
effectiveness of the proposed procedure, confirmed that, if following the proper design guidelines,
it is possible to implement a system that never fails its goal. Even in the presence of a high-priority
disturbing load, it has been shown how the interference can be characterized and taken into account
to meet the application requirements.

REFERENCES

1. Lunney HMW. Time as heard in speech and music. Nature 1974; 249(5457):592.
2. Iyer V, Bilmes J, Wright M, Wessel D. A novel representation for rhythmic structure. Proceedings of the International

Computer Music Conference, San Francisco, California, USA, 1997; 97–100.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:1181–1200
DOI: 10.1002/spe



1200 G. BUTTAZZO, C. DI FRANCO AND M. MARINONI

3. Dannenberg RB, Jameson DH. Real-time issues in computer music. Proceedings of the 14th Real-Time Systems
Symposium (RTSS ‘93), Raleigh-Durham, North Carolina, USA, December 1–3, 1993; 258–261.

4. Brandt E, Dannenberg R. Low-latency music software using off-the-shelf operating systems. Proceedings of the
Internationl Computer Music Conference, San Francisco, California, USA, 1998; 137–141.

5. Houshangi N. Control of a robotic manipulator to grasp a moving target using vision. Proceedings of the IEEE
International Conference on Robotics and Automation, Cincinnati, Ohio, USA, May 13–18, 1990; 604–609.

6. Allen PK, Timcenko A, Yoshimi B, Michelman P. Trajectory filtering and prediction for automated tracking and
grasping of a moving object. Proceedings of the IEEE International Conference on Robotics and Automation, (ICRA
‘92), Nice, France, May 12–14, 1992; 1850–1856.

7. Buttazzo GC, Allotta B, Fanizza F. Mousebuster: a robot for catching fast objects. IEEE Control Systems Magazine
1994; 14(1):49–56.

8. Facchinetti T, Buttazzo G. A real-time system for tracking and catching moving targets. Proceedings of the 5th
IFAC International Symposium on Intelligent Components and Instruments for Control Applications (SICICA 2003),
Aveiro, Portugal, July 9–11, 2003; 251–256.

9. Linderoth M, Robertsson A, Åström K, Johansson R. Vision based tracker for dart-catching robot. Proceedings of the
9th IFAC International Symposium on Robot Control (SYROCO‘09), Gifu, Japan, September 9–12, 2009; 883–888.

10. Jensen DE, Locke DC, Tokuda H. A time-driven scheduling model for real-time operating systems. Proceedings of
the 6th IEEE Real-Time Systems Symposium, San Diego, California, USA, December 3–6, 1985; 112–122.

11. Chen K, Muhlethaler P. A scheduling algorithm for tasks described by time value function. Real-Time Systems 1996;
10(3):293–312.

12. Farzinvash L, Kargahi M. A scheduling algorithm for execution-instant sensitive real-time systems. Proceedings of
the 15th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA
‘09), Beijing, China, August 24–26, 2009; 511–518.

13. Guerra R, Fohler G. A gravitational task model for target sensitive real-time applications. Proceedings of the 20th
Euromicro Conference on Real-Time Systems, Prague, Czech Republic, July 2–4, 2008; 309–317.

14. Guerra R, Fohler G. On-line scheduling algorithm for the gravitational task model. Proceedings of the 21st Euromicro
Conference on Real-Time Systems (ECRTS 09), Dublin, Ireland, July 1–3, 2009; 97–106.

15. Tidwell T, Glaubius R, Gill CD, Smart WD. Optimizing expected time utility in cyber-physical systems
schedulers. Proceedings of the 31st IEEE Real-Time Systems Symposium (RTSS 2010), San Diego, California, USA,
November 30 – December 3, 2010; 193–201.

16. Buttazzo GC, Franco CD, Marinoni M. Target-sensitive systems: analysis and implementation issues. Proceedings
of the 17th IEEE Conference on Emerging Technologies and Factory Automation (ETFA 2012), Cracow, Poland,
September 17–21, 2012; 1–8.

17. Liu CL, Layland JW. Scheduling algorithms for multiprogramming in a hard-real-time environment. Journal of the
Association for Computing Machinery 1973; 20(1):46–61.

18. Lehoczky J, Sha L, Ding Y. The rate monotonic scheduling algorithm: exact characterization and average case
behavior. Proceedings of the 10th IEEE Real-Time Systems Symposium (RTSS‘89), Santa Monica, California, USA,
December 5–7, 1989; 166–171.

19. Yao G, Buttazzo G, Bertogna M. Feasibility analysis under fixed priority scheduling with limited preemptions. Real-
Time Systems 2011; 47(3):198–223.

20. Baruah SK, Rosier LE, Howell RR. Algorithms and complexity concerning the preemptive scheduling of periodic,
real-time tasks on one processor. Journal of Real-Time Systems 1990; 2:301–324.

21. Bertogna M, Baruah S. Limited preemption EDF scheduling of sporadic task systems. IEEE Transactions on
Industrial Informatics 2010; 6(4):579–591.

22. Gai P, Lipari G, Abeni L, di Natale M, Bini E. Architecture for a portable open source real-time kernel environment.
Proceedings of the 2nd Real-Time Linux Workshop, Orlando, FL, USA, November 2000; 1–9.

23. OSEK. OSEK/VDX operating system specification 2.2.1. OSEK Group: (Available from: http://www.osek-vdx.org),
2003.

24. Buttazzo GC. Rate monotonic vs. EDF: judgment day. Real-Time Systems 2005; 29(1):5–26.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:1181–1200
DOI: 10.1002/spe

http://www.osek-vdx.org

	Design and analysis of target-sensitive real-time systems
	Summary
	INTRODUCTION
	TASK MODEL AND BACKGROUND ANALYSIS
	Fixed priority analysis
	EDF analysis

	REFERENCE SYSTEM
	TOLERANCES AND CONSTRAINT DERIVATION
	TASK STRUCTURE AND FUNCTIONAL BEHAVIOR
	Implementation notes
	Estimation of the disk velocity
	Shooting the target

	EXPERIMENTAL VALIDATION
	Hardware platform
	Software implementation
	Experiments
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4


	CONCLUSIONS
	REFERENCES


