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Abstract–Hadoop Distributed File System (HDFS) and MapReduce model have become popular technologies for large scale 
data organization and analysis. Existing model of data organization and processing in Hadoop using HDFS and MapReduce 
are ideally tailored for search and data parallel applications, for which there is no need of data dependency with its 
neighbouring/adjacent data. However, many scientific applications such as image mining, data mining, knowledge data 
mining, and satellite image processing are dependent on adjacent data for processing and analysis.  In this paper, we 
identify the requirements of the overlapped data organization and propose a two phase extensions to HDFS and 
MapReduce programming model, called XHAMI, to address them. The extended interfaces are presented as APIs 
and implemented in the context of Image Processing (IP) application domain. We demonstrated effectiveness of 
XHAMI through case studies of image processing functions along with the results. Although XHAMI has little 
overhead in data storage and input/output operations, it greatly enhances the system performance and simplifies the 
application development process. Our proposed system, XHAMI, works without any changes for the existing MapReduce 
models, and can be utilised by many applications where there is a requirement of overlapped data. 
 
Keywords: Cloud Computing, Big Data, Hadoop, MapReduce, Extended MapReduce, XHAMI, Image Processing, Scientific 
computing, Remote Sensing. 

1. Introduction 

The amount of textual and multimedia data has grown considerably large in recent years due to the 
growth of social networking, healthcare applications, surveillance systems, earth observation sensors 
etc. This huge volume of data in the world has created a new field in data processing called as Big Data 
[1], which refers to an emerging data science paradigm of multi-dimensional information mining for 
scientific discovery and business analytics over large scale scalable infrastructure [2]. Big Data handles 
massive amounts of data collected over time, which is otherwise difficult task to analyse and handle 
using common database management tools [3]. Big Data can yield extremely useful information; 
however apart, urges new challenges both in data organization and processing [4].  
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Hadoop [5] is an open source framework for storing, processing, and analysis of large amounts of 
distributed semi structured/unstructured data [6]. The origin of this framework comes from internet 
search companies like Yahoo and Google, who needed new processing tools and models for web page 
indexing and searching. This framework is designed for data parallel processing at Petabyte and Exabyte 
scales distributed on the commodity computing nodes. Hadoop cluster is a highly scalable architecture, 
that spawns both compute and data storage nodes horizontally for preserving and processing large scale 
data to achieve high reliability and high throughput. Therefore, Hadoop framework and its core sub 
components—HDFS [7][8] and MapReduce[9][10][11]—are gaining popularity in addressing several 
large scale applications of data intensive computing in several domain specific areas like social 
networking, business intelligence, and scientific analytics, etc. for analysing large scale, rapidly 
growing, variety structures of data. 
 
The advantages of HDFS and MapReduce in Hadoop eco system are – horizontal scalability, low cost 
setup with commodity hardware, ability to process semi-structured/ unstructured data, and simplicity in 
programming. However, HDFS and MapReduce, though offer tremendous potential for gaining 
maximum performance, but due to its certain inherent limiting features, unable to support applications 
with overlapped data processing requirements. Below we describe one such domain specific applications 
in remote sensing image processing and their requirements. 
 
1.1.Remote Sensing Imaging Applications 

Earth observation satellite sensors provide high-resolution satellite imagery having image scene sizes 
from several megabytes to gigabytes. High resolution satellite imagery, for example, Quick Bird, 
IKONOS, Worldview, IRS CARTOSAT[12], are used in various applications of information extraction 
and analysis in domains such as oil/gas mining, engineering construction like 3D urban/terrain mapping, 
GIS developments, defence and security, environmental monitoring, media and entertainment, 
agricultural and natural resource exploration. Due to increase in the numbers of satellites and technology 
advancements in the remote sensing, both the data sizes and their volumes are increasing on a daily 
basis. Hence, organization and analysis of such data for intrinsic information is a major challenge.  
 
Ma et al. [13] discussed challenges and opportunities in Remote Sensing (RS) Big Data computing, 
focussed on RS data intensive problems, analysis of RS Big Data, and several techniques for processing 
RS Big Data. Two dimensional structured representation of images, and majority of the functions in 
image processing being highly parallelizable, the HDFS way of organizing the data as blocks and usage 
of MapReduce functions for processing each block as independent map function, makes Hadoop a 
suitable platform for large scale high volume image processing applications.  
 
1.2.Image Representation 

An image is a two-dimensional function f(x,y)as depicted in Figure 1,where x and y are spatial (plane) 
coordinates, and the amplitude of ‘f’ at any pair of coordinates (x,y) is called intensity or gray level of 
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the image at that point [14]. Image data mining is a technology that aims in finding useful information 
and knowledge from large scale image data [15]  until a pattern in the image becomes obvious. This 
involves the usage of several image processing techniques such as enhancement, classification, 
segmentation, object detection etc., which could use in turn several combinations of 
linear/morphological spatial filters [14] to achieve the result. Image mining is the process of searching 
and discovering valuable information and knowledge in large volumes of data. Image mining follows 
basic principles from concepts in databases, machine learning, statistics, pattern recognition and soft 
computing. Image mining is an emerging research field in geosciences due to the large scale increase of 
data which lead to new promising applications. For example, the use of very high resolution satellite 
images in earth observation systems now enables the observation of small objects, while the use of very 
high temporal resolution images enables monitoring of changes at high frequency for detecting the 
objects. 
However, actual data analysis in geosciences or earth observation techniques suffers from the huge 
amount of complex data to process. Indeed, earth observation data (acquired from optical, radar, and 
hyper spectral sensors installed on terrestrial, airborne or space borne platforms) is often heterogeneous, 
multi-scale, and composed of complex objects. Segmentation algorithms, unsupervised and supervised 
classification methods, descriptive and predictive spatial models and algorithms for large time series 
would be applied to assist experts in their knowledge discovery.  
 

 
Figure 1. Image representation with segmented blocks 

Many of the algorithms applied during image mining techniques such as linear/morphological spatial 
filters demand use of adjacent pixels for processing the current pixel. For example as depicted in Figure 
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1, a smoothening operation performs weighted average of a 3X3 kernel window; hence, the output of 
pixel X depends on the values of X1, X2, X3, X4, X5, X6, X7, and X8. If an image is represented as 
segmented blocks, processing the pixels those are falling on the block boundaries require the pixels from 
their next immediate adjacent block, as depicted in Figure 1. Therefore if the image is organized as 
several physical distributed data blocks, image filtering operations cannot be performed on the edge 
pixels, unless overlap data required is preserved in the blocks. For example processing the pixels such as 
b1, b2, b3 of block 1, requires its adjacent block 2 pixels such as y1, y2, y3. It is easy to get the 
overlapping pixels, for an image organized as a single large file, by moving the file pointer back and 
forth to read the data of interest. But, if the images are organized as segmented blocks, then the 
application demands the overlapping data at data nodes for processing, which in turn, requires moving 
of this overlapped data to the data nodes. As these data blocks are distributed, accounts for large I/O 
overheads during processing. 
 
Hadoop and several other similar application implementations (see Section 2), split the data based on a 
fixed size, which results in partitioning of data as shown in Figure 1. Each of the blocks is written to 
different data nodes. Therefore the boundary pixels of entire line b1, b2, b3... in each block cannot be 
processed, as the adjacent pixels are not available at the respective data nodes. Similarly for the pixels 
marked as y1, y2, y3, y4,… cannot be performed straight away. To process these boundary pixels i.e., 
the start line and end line in each block a customized map function to read additional pixels from a 
different data node is essential, otherwise the output would be incorrect. These additional read 
operations for each block increase I/O overhead significantly.  
 
1.3.Our Contributions 

To meet the requirements of applications with overlapped data, we propose an Extended HDFS and 
MapReduce Interface, called XHAMI, which offers a two phase extensions to HDFS and MapReduce 
programming model. The extended interfaces are presented as APIs and implemented in the context of 
Image Processing (IP) application domain. We demonstrated effectiveness of XHAMI through case 
studies of image processing functions along with the results. Our experimental results reveal that 
XHAMI greatly enhances the system performance and simplifies the application development process. It 
works without any changes for the existing MapReduce models, and hence it can be utilised by many 
applications where there is a requirement of overlapped data. 
 
1.4.Paper Organisation 

The rest of the paper is organised as follows. Section 2 describes related work in image processing with 
HDFS and MapReduce over Hadoop framework. Section 3 describes XHAMI system for large scale 
image processing applications as a two phase extension over the conventional Hadoop HDFS and 
MapReduce system. The first extension discusses the data organization over HDFS, and the second 
illustrates high level packages for image processing. XHAMI hides the low level details of the data 
organization over HDFS and offers a high level APIs for processing large scale images organized in 
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HDFS using MapReduce computations. Section 4 describes experimental results of XHAMI compared 
with conventional Hadoop for data organization, followed by customized Hadoop MapReduce (MR), 
and other related systems like Hadoop Image Processing Interface (HIPI) [16] for MapReduce 
computations. Section 5 presents conclusions and future work. 
 

2. Related Work 

Image processing and computer vision algorithms can be applied as multiple independent tasks on large 
scale data sets simultaneously in parallel on a distributed system to achieve higher throughputs. Hadoop 
[5] is an open source framework for addressing large scale data analytics uses HDFS for data 
organization and MapReduce as programming models. In addition to Hadoop, there are several other 
frameworks like Twister [17] for iterative computing of streaming text analytics, and Phoenix [18] used 
for map and reduce functions for distributed data intensive Message Passing Interface (MPI) kind of 
applications. 
 
Kennedy et al. [19] demonstrated the use of MapReduce for labelling 19.6 million images using nearest 
neighbour method. Shi et al. [20] presented use of MapReduce for Content Based Image Retrieval 
(CBIR), and discussed the results obtained by using around 400,000 images approximately. Yang et al. 
[21] presented a system MIFAS for fast and efficient access to medical images using Hadoop and Cloud 
computing. Kocalkulak et al. [22] proposed a Hadoop based system for pattern image processing of 
intercontinental missiles for finding the bullet patterns. Almeer et al. [23] designed and implemented a 
system for remote sensing image processing with the help of Hadoop and Cloud computing systems for 
small scale images. Demir [24] et al. discussed the usage of Hadoop for small size face detection 
images. All these systems describe the bulk processing of small size images in batch mode over HDFS, 
where each map function processes the complete image.  
 
White et al. [25] discussed the overheads that can be caused due to small size files, which are 
considerably smaller than the block size in HDFS. A similar approach is presented by Sweeney et al. 
[16] and presented Hadoop Image Processing Interface (HIPI) as an extension of MapReduce APIs for 
image processing applications. HIPI operates on the smaller image files, and bundles the data files 
(images) into a large single data file called HIPI Image Bundle (HIB), and the indexes of these files are 
organized in the index file. 
 
Potisepp [26] discussed the processing small/regular images of total 48675 by aggregating them into 
large data set, and processed them on Hadoop using MapReduce as sequential files, similar to the one 
addressed by HIPI. Also, presented feasibility study as a proof-of-concept test for a single large image as 
blocks and overlapping pixels for non-iterative algorithms image processing. However, no design, or 
solution, or methodology has been suggested to either to Hadoop or MapReduce for either Image 
Processing applications or for any other domain, so that the methodology works for existing as well as 
new models which are under consideration. 
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Papers discussed above, demonstrated the usage of Hadoop for image processing applications, and 
compared the performance of image processing operations over single PC system running on a 
conventional file system Vs Hadoop cluster. Few other papers have demonstrated the extension of 
Hadoop, called  HIPI to solve the small files problem, which combine the smaller images into large 
bundle and process them using HIPI Bundle (HIB). These systems had limitations in addressing the 
spatial image filters applications as the overlap data is not present among the adjacent blocks for 
processing. In this paper, we address the issues related to organization and processing of single large 
volume images, which are in general in data sizes ranging from Megabytes to Gigabytes, and their 
processing using MapReduce. To address the issues, we discuss the extensions proposed of the Hadoop 
for HDFS and MapReduce, and present those extensions XHAMI. Though, XHAMI demonstrates 
remote sensing/geo sciences data processing, but the same can be used for other domains where data 
dependencies are major requirements, e.g. bio medical imaging. 
 

3. XHAMI- Extended HDFS and MapReduce 
 
In this section we describe XHAMI - the extended software package of Hadoop for large scale image 
processing/mining applications. First we present XHAMI APIs for reading and writing (I/O), followed 
by MapReduce for distributed processing. We discuss two sample case studies i.e. histogram and image 
smoothening operations. Histogram computes the frequency of pixel intensity values in the image, and 
smoothening operation uses spatial filters like Sobel, Laplacian etc. [14]. Later, we discuss how XHAMI 
can be used for data organization, designing user specific Image related MapReduce functions, and 
extending the functionality for other image domain specific applications. 
 
3.1 XHAMI –HDFS I/O extensions for domain specific applications 

Figure 2 depicts the sequence of steps in reading/writing the images using XHAMI software library over 
Hadoop framework.  Initially, client uses XHAMI I/O functions (step 1) for reading or writing the data. 
The client request is translated into create() or open() by XHAMI, and sent to Distributed File System 
(step 2). Distributed File System instance calls the name node to determine the data block locations (step 
3). For each block, the name node returns the addresses of the data nodes for writing or reading the data. 
Distributed File System returns FSDataInput/Output Stream, which in turn will be used by XHAMI to 
read/write the data to/from the data nodes. XHAMI checks file format, if the format is in image type 
(step 4), then metadata information such as file name, total scans, total pixels, total numbers of bands in 
the image, and the number of bytes per pixel are stored in HBASE [28], this simplifies header 
information reading as and when required through HBASE queries, otherwise reading the header block 
by block is tedious and time consuming process. 
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Figure 2.XHAMI for read/write operations 

 
Later on XHAMI calls FSDataInput/Output Stream either to read/write the data to/from the respective 
data nodes (step 5). Steps 6 and 7 are based on standard HDFS data reading/writing in the pipelining 
way. Each block is written with the header information corresponding to the blocks i.e. blockid, start 
scan, end scan, overlap scan lines in the block, scan length, and size of the block. Finally, after the 
read/write operation the request is made for closing the file (step 8), and the status (step 9) is forwarded 
to the name node. Below we describe techniques developed for data organization followed by extended 
APIs for HDFS and MapReduce. 
 
3.2 Data Organization 

Single large image data is organized as blocks, with an overlap with its next immediate blocks. The 
segmented techniques used for data organization are shown in Figure 3. Figure 3.a depicts an image as a 
one dimensional sequence of bytes, Figure 3.b depicts, block segmentation in horizontal direction, and 
Figure 3.c shows the organization in both horizontal and vertical directions.  
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Image blocks are can be constructed in two ways i.e.  (i) unidirectional: partitioning across the scan line 
direction as shown in Figure 3.b and (ii) bidirectional:  partitioning both horizontal and vertical 
directions as shown in Figure 3.c. while construction, it is essential to ensure that, no split take place 
within the pixel byte boundaries. The methods are described below. 
 

 

 

 

Figure 3. Block construction methods 

i) Unidirectional split: blocks are constructed by segmenting the data in across scan line (horizontal) 
direction. Each block is written with the additional lines at the end of the block. 
 
ii) Bi-directional split: splitting the file into blocks in both horizontal and vertical directions. The split 
results in the blocks, for which, the first and last blocks have overlap with their adjacent two blocks, and 
all the remaining blocks have overlap with their adjacent four blocks. This type of segmentation results 
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in large storage overhead which is approximately double the size of the unidirectional segment 
construction. This type of organization is preferred while images have larger scan line lengths. 

In the current version of XHAMI package data organization is addressed for unidirectional segmented 
blocks, however, it can be extended for bi-directional split. The segmentation procedure is described 
below.  

Scan lines for each block Sb computed as 

 

𝑆𝑏 =  �𝐻 (𝐿 ∗ 𝑃)� � 

 
H = HDFS Default block length in Mbytes. 
L = length of scan line i.e. total pixels in the scan line. 
P = pixel length in bytes. 
S = total number of scan lines. 
 
Total number of blocks T, having overlap of α number of scan lines is  
 
  𝑇 =  �𝑆 𝑆𝑏� � 
  If  T* α >Sb then T = T+1. 
 
The start and end scan lines 𝐵𝑖,𝑠 and 𝐵𝑖,𝑒in each block is given below; N representing total scans in the 
image. 
 

𝐵𝑖,𝑠 = �
1,                                        𝑖 = 1

𝐵𝑖−1,𝑒−𝛼+1,                      1 < 𝑖 < 𝑇
𝐵𝑁−1,𝑒−𝛼+1                       𝑖 = 𝑇

 

 

𝐵𝑖,𝑒 = �
𝐵𝑖,𝑠 + 𝑆𝑏 − 1   1 ≤ 𝑖 < 𝑇

𝑆𝑏𝑖 = 𝑇  

 
Block length is computed as below. 
 

𝑅𝑖= (𝐵𝑖,𝑒 − 𝐵𝑖,𝑠 + 1 ) ∗ 𝐿 ∗ 𝑃 , 1 ≤ 𝑖 ≤ 𝑇 
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The blocks are constructed with metadata information in the header, such as blockid, start scan, end 
scan, overlap scan lines in the block, scan length, block length. Though, metadata adds small additional 
storage overheads, but, simplifies the processing activity during Map phase, for obtaining the total 
number of pixels, number of bands, bytes per pixel etc, and also helps to organize the blocks in the order 
during the combine/merge phase using blockid.  
 
3.3 XHAMI package description 

XHAMI offers Software Development Kit (SDK) for Hadoop based large scale domain specific data 
intensive applications designing. It provides high level packages for data organization and for 
MapReduce based processing simplifying the development and quick application designing by hiding 
several low level details of image organization and processing. XHAMI package description is as 
follows- XhamiFileIOFormat is the base class for all domain specific applications which is placed under 
the package xhami.io, as shown in Figure 4. 
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Figure 4. XHAMI I/O package 

XhamiFileIOFormat extends FileInputFormat from the standard Hadoop package, and the 
implementation of several methods, for hiding the low level handling of data for HDFS data 
organization is handled by this package. The major methods offered under XhamiFileIOFormat class are 
i) setting the overlap, ii) getting the overlap, iii) reading, writing, and seeking the data without 
knowing/knowledge of the low level details of the data. 

org.apache.hadoop.FileInputFormat org.apache.hadoop.RecordReader

xhami.io.XhamiFileIOFormat
Configuration conf
FileSystem filesystem
String fileName
FSDataInputStream fdis
FSDataOutputStream fdos
long overlap
boolean setxhamiConfiguration( String 
coresite, String hdfssite)
public boolean create(String fileName)
public FSDataInputStream open(String 
fileName) 
public void  setoverLap(int overlap)
public void seek(long position)
public int getoverLap()
public void write(byte[] b)
public byte[] read(int length)
public void close()
public RecordReader<Long Writable, 
ByteArray> getRecordReader(InputSplit
split, JobConf job, Reporter reporter)

xhami.io.XhamiRecordReader
long  start
long pos
long end
int maxlength
Long writableKey
byte[] buf
void initialize(InputSplit genericSplit, 
TaskAttemptContext context)
public boolean nextKeyvalue()
public Long Writable getCurrentKey()
public byte[] getCurrentValue()
public float getProgress()
public void close()

xhami.io.XhamiImage
byte header[]
DataSet dataset
pubic boolean writeFile(String 
srcFileName, string dstFileName)
public int readFile(String fileName)
byte[] getRoi(int stscan, int stpixel, int
width, int height)
int getPixel(int scan, int pixel)
abstract public Object setBlockHeader(int
blockid)
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XhamiFileIOFormat is used as base class for several application developers for file I/O functionality and 
implement further for domain specific operations. Xhami.io.XhamiImage is an abstract class which 
provides the methods for the implementation of image processing domain specific functionality by 
extending XhamiFileIOFormat. XhamiImage extends XhamiFileIOFormat class and implements several 
image processing methods for setting the header/metadata information of the image, block wise 
metadata information, and for read/write the image blocks into the similar format of that original file, 
using Geographical Data Abstraction Layer (GDAL) library [27] and offers several methods such as 
reading the region of interest, getting the scan lines, pixel, reading the pixel grey vale etc., by hiding the 
low level details of file I/O. Several methods in XhamiFileIOFormat, XhamiImage classes, and 
XhamiRecordReader classes are described in Table 1, Table 2 and Table 3 respectively. XhamiImage 
implements Geographic Data Abstraction Layer (GDAL) functionality using the DataSet object for 
image related operations. XhamiImage class can be extended by the Hadoop based Image processing 
application developer by setting up their own implementation of setBlockHeadermethod. 
XhamiRecordReader reads the buffer data and sends to the Map function for processing. 
 

Table 1. Description of Methods in XhamiFileIOFormat class 
Method name Method description Return value 

boolean 
setxhamiConfiguration(String 
coresite, String hdfssite) 

Sets the HDFS configuration 
parameters such as coresite and 
hdfssite. This function in turn uses 
the Configuration object, and calls 
addResource methods of its base 
class, to set establish the 
connectivity to HDFS site. 

If the configuration parameters are 
correct, then boolean value true is 
returned.  In case wrong supply of 
arguments, or if the parameter files 
are not available, or due to invalid 
credentials, or else HDFS site may 
be down, false will be returned. 

boolean create(String fileName) Create the file with name filename 
to write to HDFS. Checks if the file 
already exists. This function is used 
before the file is to be written to 
HDFS. 

Returns true if the file is not present 
in HDFS, or else returns false. 

FSDataInputStream open(String 
filename) 

Checks if the file is present in the 
HDFS.  

If the file is present 
FSDataInputStream having the 
object value is returned, otherwise 
FSDataInputStream with value 
having null is returned. 

void setoverLap(int overlap) Used to set the overlap across the 
segmented blocks. The supplied 
overlap value is an integer value 
corresponding to the overlap size in 
bytes. 

- 

void seek(long position) Moves the file pointer to the 
location position in the file. 

- 
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int getoverLap() Reads the overlap value set for the 
file while writing to HDFS. 

Return the overlap value if set for the 
file or else returns -1. 

void write(byte[] b) Writes b number of bytes to the file. - 
byte[] read(int length) Reads length number of bytes from 

the file. 
Returns the data in the byte array 
format. 

void close() Closes the data pointers those are 
opened for reading / writing the 
data. 

- 

RecordReader <Long Writable, 
ByteArray> 
getRecordReader(InputSplit split, 
JobConf job, Reporter reporter 

Reads the Xhami compatible record 
reader in bytes, for MapReduce 
computing by overriding the 
RecordReader method of 
FileInputFormat class.  The 
compatible here means the window 
size to be read for processing the 
binary image for processing. This 
would be supplied as argument 
value to the Image Processing 
MapReduce function. If the value is 
of type fixed, then the entire Block 
is read during processing. 

Returns the Default Hadoop 
RecordReader Object for processing 
by the MapReduce job.  

 

Table 2.XhamiImageclass description 
Method name Method description Return value 

boolean writeFile(String 
srcFileName, String dstFileName) 

Used for writing the contents of the 
file srcFileName, to the destination 
dstFileName. 

Boolean value true is returned if the 
writing is successful, or else false is 
returned. 

int readFile(String fileName) Set the file fileName to read from 
the HDFS. Returns the total 
numbers of blocks, that the file is 
organized in HDFS. 

Number of blocks that the file is 
stored in HDFS. If the file does not 
exist -1 is returned. 

byte[] getRoi(int stscan, int stpixel, 
int width, int height) 

Reads the array of bytes from the 
file already set, starting at stscan 
and pixel, with a block of size width 
and height bytes. 

If successful returns byte array read, 
or else returns NULL object.   

int getPixel(int scan, int pixel) Reads the pixel value at the location 
scan and pixel. 

Returns pixel(gray) value as integer. 

abstract   public Object 
setBlockHeader(int blockid) 

Abstract method which would be 
overwritten by XHAMI application 
developers for image processing 
domain applications. 

Header information type casted to 
Object data type. 
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Package hierarchy of MapReduce for Image processing domain is shown in Figure 5 and methods in the 
packages are described in Table 4. 

Table 3.  Methods in XhamiRecordReader 
Method name Method description Return value 

Initialize(InputSplit genericSplit, 
TaskAttemptContext context) 

Overrides the Initialize method of 
standard Hadoop Record reader 
method.  Implements the own split 
method, which reads the content 
which is compatible with the Xhami 
File data format, hiding the overlap 
block size. 

- 

boolean nextKeyvalue() Overrides the nextKeyvalue method 
of its base class RecorReader.  

Returns true if it can read the next 
record for the file, or else return 
false. 

Long Writable getCurrentKey() getCurrentKey method of its base 
class is overridden.   

Return Writable Object of the 
record recorder method. 

float getProgress() Overriding method, to send the 
progress of the data read. 

Return float false representing the 
percentage of data read so far from 
the XhamiRecordRecorder, 
corresponding to the InputSplit. 

byte[] getCurrentValue() Reads the bytes array to be sent for 
computing for Map function. 

Return byte array if true, else 
returns NULL object. 

void close() Closes the record reader object. - 
 

Table 4. Description of  XHAMI MapReduce classes for Image Processing domain 
MapReduce Class Description Return value 
Sobel Implementation of Sobel spatial edge detection filter. It 

has map function implementation only, and the  Reduce 
is not required, as the output of the map itself is directly 
written, as it does not required any collection of the map 
inputs for processing further. This implementation hides 
the several details such as overlapping pixels across the 
blocks, and the kernel window size to be read for 
processing. Output is written to the HDFS file system.  

Output Images with the 
detected edges. 

Laplacian Implementation of Laplacian differential edge detection 
filter. It has map function implementation but not reduce 
method. Reduce is not required, as the output of the map 
itself is directly written, as it does not required any 
collection of the map inputs for processing further. This 
implementation hides the several details such as 
overlapping pixels across the blocks, and the kernel 

Output Images with the 
detected edges. 
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window size to be read for processing. Output is written 
to the HDFS file system.  

Histogram Implements both Map and Reduce functions. Map 
collects the count of the pixel (gray) value, and reduce 
does the aggregation of the collected numbers from the 
map functions. While processing it does not consider the 
overlapping pixels across the blocks. 

Histogram of the image. 

 

 

Figure 5. XHAMI MapReduce Package for Image processing domain 

org.apache.hadoop.mapred.MapReduceBase

xhami.mapreduce.SobelEdgeMap
XhamiRecordReader xhamirr
public void Configure(JobConf
job)
public void close()
public void map(LongWritable
key, BytesWritable, value, 
OutputCollector<IntWritable, 
BytesWritable> output, Reporter 
reporter)

org.apache.hadoop.mapred.MapReduceBase

xhami.mapreduce.Laplacin
XhamiRecordReader xhamirr
public void Configure(JobConf
job)
public void close()
public void map(LongWritable
key, BytesWritable, value, 
OutputCollector<IntWritable, 
BytesWritable> output, Reporter 
reporter)

org.apache.hadoop.mapred.MapReduceBase

xhami.mapreduce.Histogram
XhamiRecordReader xhamirr
public void Configure(JobConf
job)
public void close()
public void map(LongWritable
key, BytesWritable, value, 
OutputCollector<IntWritable, 
Text > output, Reporter reporter)
public void reduce(IntWritable
key, Iterator<IntWritable> values, 
OutputCollector<IntWritable, 
Text> output, Reporter reporter)

XHAMI package offers
XhamiRecordReader class which uses
XhamiImage class for getting image
information such as number of blocks,
overlap among the subsequent blocks,
metadata information of the image and
segmented blocks.

Other MapReduce functions available as
part of package are Gaussian, Dilute, erode
etc…
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Below we describe sample implementation of XHAMI MapReduce functions for image processing 
domain. 

3.4 XHAMI –MapReduce Functions 

In this section we describe the extensions for Map and Reduce functions for image processing 
applications. Based on the image processing operation either map function alone, or both map and 
reduce functions are implemented. For example, edge detection operation does not require the reducer, 
as the resultant output of the map function is directly written to the disk. Each map function reads the 
block numbers and metadata of the corresponding blocks.  
 
Read operations can be implemented in two ways in HDFS, one way is to implement own split function, 
ensuring the split does not happen across the boundaries, and other one is to use FIXED LENGTH 
RECORD of FixedLengthInputFormat class. The package offers the implementations for both FIXED 
LENGTH RECORD and custom formatter XhamiRecordRecorder.  
 
(1) MapReduce Sobel edge detection sample implementation 

Edges characterize boundaries in images are areas with strong intensity contrasts- a jump in intensity 
from one pixel to the next. There are many ways to perform edge detection. However, the majority of 
different methods may be grouped into two categories, gradient, and Laplacian. The gradient method 
detects the edges by looking for the maximum and minimum in the first derivative of the image. The 
Laplacian method searches for zero crossings in the second derivative of the image to find the edges. An 
edge has the one-dimensional shape of a ramp and calculating the derivative of the image can highlight 
its location.  In the map function, for edge detection, the combiner and reduce functions are not 
performed, as there is no need of aggregation of the individual map functions.   
 
The differences between conventional Hadoop implementation and the XHAMI implementations are as 
follows-  in the former, the data is organized as segmented as blocks, and there is no overlap of the line 
pixels across the blocks. Hence, it would be difficult to process the edge pixels of the blocks, and to 
process the edge pixels, one should get the two blocks, and compute the overlap pixels before it is sent 
to the map function for processing. Also, it would be difficult to ensure that the split does not happen 
within the pixel while reading. But, XHAMI hides all such low level details of data organization such as 
lines or pixels overlap, no split within the pixels, number of blocks the image is organized as blocks, and 
header information of the blocks. 
 
(2) MapReduce Histogram sample implementation 
 
Histogram operation computes frequency count of the pixel in the image. The histogram is computed as 
follows, first, the block and length of the block is read, and each block is mapped to one map function. 
The difference between the conventional implementation and the XHAMI MapReduce Histogram 
implementation are – in the former, it is necessary to ensure that the split does not happen within the 
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pixels. The later overcomes this problem by using XHAMI Image implementation for data 
organization, and ensures that overlap lines (pixels) are vomited during processing by the Map 
function. 

 
3.5 Writing domain specific applications by extending XHAMI package 

XhamiFileIOFormat class is the base class, which hides the low level details of data organization and 
processing for the several applications of binary data handling. This class offers several methods for 
reading, writing, seeking to the particular block of the image, getting the overlap information among the 
subsequent blocks etc. XhamiImage class is an extended class of XhamiFileIOFormat, which offers 
several methods for handling the data for several applications in image processing domain. XhamiImage 
could be used for development of HDFS based data organization readily, or else, one can extend the 
class XhamiFileIOFormat for handling similar kind of image processing domain applications of their 
own interest. Below, we describe the procedure for writing and reading the images in HDFS format 
using by extending XhamiImage for writing XHAMI based applications. 
 

• Extend XhamiImage class and implement setBlockHeader method. 
• Define header class and the necessary data types for implementation of the Image processing 
application. 
• Implement setBlockHeader method using the FSDataInputStream available in XhamImage class 
as member variable. 
• Set the overlap required among the adjacent blocks using setoverLap method.  
• Assign the source file and destination files, using the writeFile method. Internally, this method 
computes the total file size, by computing the total numbers of blocks that the image gets divided 
into and writes the corresponding block header. 
• The contents of the file using getBlockCount and getBlockData methods. 

 
Table 5 shows a sample code describing how to extend XhamiImage class for writing the images along 
with the image specific header while storing the image into HDFS.  
 

Table 5.XhamiImage extension for writing block header 

class ImageHeader implements Serializable{ 
int blockid, startscan, endscan, overlapscan, scanlength, blocklength, bytesperpixel;  
} 
public class XhamiImageIOOperations extends XhamiImage{ 
   //other implementation specific to the application 
@override 
public object setBlockHeader(int blockid){ 
ImageHeader ih = new ImageHeader(); 
 //set the details and write to FSDataOutputStream 
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} 

 
4. Performance Evaluation 

In this section we present the experiments conducted for large size images of remote sensing data having 
different dimensions (scans, pixels) and sizes varying approximately from 288 Megabytes to 9.1 
Gigabytes. First we discuss data organization and I/O overheads for read and write, followed by 
performance comparison of image processing operations for histogram and Sobel edge detection filter. 
We conduct the experiments both on Hadoop using conventional APIs and XHAMI libraries, and 
discuss how XHAMI simplifies the programming complexity, and increases the performance when 
applied to a large scale images. The experiments are conducted to analyse the two important factors; i) 
performance gain/improvement of proposed XHAMI system Vs. Hadoop and similar systems, as 
discussed in section 4.1, and ii) I/O performance overheads for read and write operations, of XHAMI 
Vs. Hadoop based HDFS data organization, discussed in Section 4.2. 

Table 6. System configuration  

Type Processor type hostname RAM (GB) Disk (GB) 
Name node Intel Xeon 64 bit , 4 

vCpus, 2.2 GHz 
namenode 4  100 

Job tracker -do- jobtracker 2 80 
Data node 1 -do- datanode1 2 140 
Data node 2 Intel Xeon 64 bit , 4 

vCpus, 2.2 GHz 
datanode2 2 140 

Data node 3 Intel Xeon 64 bit , 2 
vCpus, 2.2 GHz 

datanode3 2  140 

Data node 4 -do- datanode4 2  100 
 
For the experimental study, virtualization setup based Xen hypervisor with a pool of four servers of Intel 
Xeon 64 bit architecture are used. The configuration of the nodes for RAM, disk storage capacity, and 
virtual CPUs for each node in the Hadoop cluster are shown in Table 6. Hadoop version 2.7 is 
configured in the fully distributed mode on all these virtual machines running with 64 bit ‘Cent OS’ 
operating system.  
 
4.1 Performance comparisons of XHAMI,  Hadoop (HDFS, MapReduce), and HIPI 

Sample data sets used for experiments are from the Indian Remote Sensing (IRS) satellite series i.e. 
CARTOSAT-1, and CARTOSAT-2A are shown in Table 7. In the table, the columns; Image size 
represents the original image size in bytes in regular file system, and the resulted image size indicates 
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the size in bytes in HDFS with overlapping of 5 scan lines using the block length computation algorithm 
in unidirectional approach illustrated in section 3.2. A sample image with overlap of 5 scan lines shown 
in red colour is depicted in Figure 6. The results show a maximum of 0.25% increase in the image size, 
which is negligible. 

 

 

Figure 6.Image blocks with overlap highlighted in rectangular box 

 

Table 7. Sample data sets used and the resultant image size 

S.No Image size (in 
bytes) 

Scan line 
length 

Total Scan 
lines 

Resulted Image 
size ( in bytes) 

1 288000000 12000 12000 288480000 
2 470400000 12000 19600 471240000 
3 839976000 12000 34999 841416000 
4 1324661556 17103 38726 1327911126 
5 3355344000 12000 139806 3361224000 
6 9194543112 6026 762906 9202738472 

 

Here, we discuss the I/O performance of HDFS data organization in XHAMI and default Hadoop for 
single large volume image handling, followed by MapReduce image processing in XHAMI, customized 
MapReduce for Hadoop, and HIPI. The data sets used for the experiments shown in Table 7. Here, 
Hadoop, in its native form cannot be used for MapReduce Image processing, due to the overlapped data 
requirements as discussed in Section 1, hence, we few customizations are done, to default Hadoop 
MapReduce, like locating the neighbour adjacent block data and its location, and migrating them to the 
node where Map functioning is to be computed. We present the results for image processing operations 
such as histogram and Sobel filter, followed by read and write overheads. The I/O overhead 
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comparisons are presented for both Hadoop, and XHAMI. The advantage of HIPI over customised 
Hadoop is the use of Java Image Processing Library. HIPI comes with processing the image formats like 
jpg, and png files, hence do not require the additional implementation functions for image handling. As 
HIPI uses HIB formats to create a single bundle for smaller image files, but, the data sets used for the 
experiments are very large, hence, here HIB consists of a single image itself, unlike the smaller files 
bundled into a single image. 

 (a) Histogram operation 

Histogram operation counts the frequency of the pixel intensity in the entire image, which is similar to 
counting the words in the file. The performance results of histogram operation for customized Hadoop 
MapReduce (MR), HIPI and XHAMI are shown in Figure 7. For customized Hadoop MR, data is 
organized as non overlapped blocks, for XHAMI, data blocks are with overlapping data, and extensions 
of HDFS and MapReduce APIs for processing. For HIPI processing, the data blocks are retrieved using 
HIB files, and for XHAMI the data is retrieved from the data blocks having overlap region with their 
corresponding immediate subsequent block. The results show that, all the three systems Customized 
Hadoop, HIPI, and XHAMI performance are more or less similar, and has XHAMI has little overhead 
which is less than 0.8% with customized Hadoop, which is due to skipping of the overlapped scan lines 
while processing. 

 

Figure 7. Histogram performance 

 (b) Fixed mask convolution operation 
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Convolution is a simple mathematical operation which is fundamental to many common image 
processing operators. The convolution is performed by sliding the kernel over the image, generally 
starting at the top left corner, so as to move the kernel through all the position where the kernel fits 
entirely within the boundaries of image. Convolution methods are the most common operations used in 
image processing which uses the mask operator i.e. kernel for performing windowing operations on the 
images. Sobel operator is one of the commonly used methods for detecting edges in the image using 
convolution methods. In case if the image is organized as physical partitioned distributed blocks, then, 
convolution operations cannot process the edge pixels of such blocks, due to the non availability of the 
adjacent blocks data on the same node. In conventional Hadoop based HDFS and MapReduce 
processing, the data is organized as physical partitioned blocks, hence, the edge pixels cannot be 
processed directly, and demands the additional I/O overheads for processing the edge pixels of each 
block.  

Here, we present the performance of the Sobel edge detection implementation in XHAMI, and compare 
it with customized Hadoop MapReduce (MR) and HIPI. In customized Hadoop MR; data is physically 
partitioned as non overlapping data blocks, and for HIPI data is organized as single large block for the 
file stored in HIB data format. For MapReduce processing; customized Hadoop MR, uses an additional 
functionality is included in Map function for retrieving the adjacent block information corresponding to 
the block to be processed. In the case of HIPI the logic cannot be added, due to the non availability of 
HIPI APIs to know corresponding adjacent block information. The results are depicted in Figure 8, 
compare the performance of XHAMI with customized Hadoop MR and HIPI. The results indicate that, 
the performance of XHAMI is much better, and which is nearly half of the time taken by Customized 
Hadoop MR, and it is extremely better over HIPI. Customized Hadoop MR is implemented with 
standard Java Image Processing Library, with few customized features over default Hadoop, like 
retrieving the adjacent blocks information in Map functions for processing the edge pixels of the blocks. 
This customization requires additional overheads, increasing both the programming and computational 
complexities. The additional overheads are mainly due to the transfer of whole data block which is 
located in different data nodes, than the one where Map function to be processed. 
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Figure 8.Sobel filter performance 

HIPI has in built Java Processing APIs for processing the jpg and png image formats. For HIPI, the data 
is organized a single large block equivalent to the size of the image, as there is no functionality readily 
available for retrieving the adjacent blocks information. Due to this reason, the experiments for the 
larger image size data sets starting from Serial numbers 3 and above mentioned in the Table 8 could not 
be conducted. XHAMI overcomes the limitations of both Hadoop, and HIPI, by extending the Hadoop 
HDFS and MapReduce functionalities with the overlapped data partitioned approach, and MR 
processing using high level APIs with the integrated open source GDAL package for handling several 
types of image formats. XHAMI not only simplifies the programming complexity, but also allows the 
development of image processing applications quickly over Hadoop framework using HDFS and 
MapReduce. 

Table 8. Read/write performance overheads 

S.No Image 
size 
(MB) 

Write ( Sec) Read (Sec) 
Default 
Hadoop 

XHAMI Default 
Hadoop 

XHAMI 

1 275 5.865 5.958 10.86 10.92 
2 449 14.301 14.365 19.32 19.45 
3 802 30.417 30.502 40.2 40.28 
4 1324 44.406 77.153 50.28 50.95 
5 3355 81.353 88.867 90.3 90.6 
6 8768 520.172 693.268 550.14 551.6 
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Figure 9.  Image write performance 
 
4.2 Read / write overheads 

Performance of read and write function in default Hadoop and XHAMI with overlap of 5 scan lines in 
horizontal partition direction is shown in Figure 10 and Figure 9 respectively. The results shown in 
Figure 10 represents a negligible read overhead, as the scan lines to be skipped are very few, and also 
the position of those lines to skip are known prior. Write performance overheads are shown in Figure 9, 
indicate that, XHAMI has minimal overheads compared with default Hadoop, and it is observed that 
data sets in serial nos. 1, 2, 3 and 5 is less than 5%, and for other data sets it is 33%. 
 
The data sets 4 and 6 are with larger scan line lengths, this in turn has consumed more storage disks 
space, resulting more read and writes overheads. Performing the vertical direction partition also has 
resulted in more write overheads for these two data sets, as the number of pixels in vertical direction is 
more compared to the scan direction. Read performance for all the data sets is less than 0.2% which is 
very negligible.  Hence, the better mechanism to choose the partitioning approach is use to compute the 
number of blocks during data partition either in horizontal or vertical direction, and subsequently 
compute the storage overhead for each blocks followed by all the blocks. Based on the storage 
overheads, a data partitioning approach selection can be made, for the one resulted in minimal write 
overheads. But it is to be observed that for image processing explorations, in general the images are 
written once and read several times, hence, the writing overhead is one time activity, which is negligible, 
while compared with the overall performance achieved while processing. 
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Figure 10. Image read performance 

5. Conclusions and Future Work 

Image processing applications deal with processing of pixels in parallel, for which Hadoop and 
MapReduce can be effectively used to obtain higher throughputs. However many of the algorithms in 
Image Processing, and other scientific computing, require use of neighbourhood data, for which the 
existing methods of data organization and processing are not suitable. We presented an extended HDFS 
and MapReduce interface, called XHAMI, for image processing applications. XHAMI offers extended 
library of HDFS and MapReduce to process the single large scale images with high level of abstraction 
over writing and reading the images. APIs are offered for all the basic forms Read/Write and Query of 
images. Several experiments are conducted on sample of six data sets with a single large size image 
varying from approximately 288 MB to 9.1 GB.  
 
Several experiments are conducted for reading and writing the images with and without overlap using 
XHAMI. The experimental results are compared with the Hadoop system, and HIPI, shows that, though 
the proposed methodology incurs marginal read and write overheads, due to overlapping of data, 
however, the performance has scaled linearly and also programming complexity is reduced significantly. 
Currently XHAMI has functions for the data partitioning in horizontal direction, it needs to be extended 
for both in vertical direction, and bi-directional (both horizontal, and vertical). 
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The system is implemented with both the fixed length record and the customized split function which 
hides the low level details of handling and processing, spawning more map functions for processing. 
However, challenges involved in organizing the sequence of executed map functions for aggregations 
need to be addressed. We plan to implement the bi-directional split also in the proposed system, which 
would be the requirement for large scale canvas images. The proposed MapReduce APIs could be 
extended for many more Image processing and Computer vision modules. It is also proposed to extend 
the same to multiple image formats in the native format itself.  
 
Currently, image files are transferred one at a time from the local storage to Hadoop cluster. In future, 
Data aware scheduling discussed in our earlier work [29] will be integrated for the large scale data 
transfers from the replicated remote storage repositories and performing group scheduling on the 
Hadoop cluster. 
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