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SUMMARY

Random hashing can provide guarantees regarding the performance of data structures such as hash tables—
even in an adversarial setting. Many existing families of hash functions are universal: given two data
objects, the probability that they have the same hash value is low given that we pick hash functions at
random. However, universality fails to ensure that all hash functions are well behaved. We might further
require regularity: when picking data objects at random they should have a low probability of having
the same hash value, for any fixed hash function. We present the efficient implementation of a family
of non-cryptographic hash functions (PM+) offering good running times, good memory usage as well
as distinguishing theoretical guarantees: almost universality and component-wise regularity. On a variety
of platforms, our implementations are comparable to the state of the art in performance. On recent Intel
processors, PM+ achieves a speed of 4.7 bytes per cycle for 32-bit outputs and 3.3 bytes per cycle for 64-bit
outputs. We review vectorization through SIMD instructions (e.g., AVX2) and optimizations for superscalar
execution.

KEY WORDS: performance; measurement; random hashing, universal hashing, non-cryptographic
hashing, avalanche effect

1. INTRODUCTION

Hashing is ubiquitous in software. For example, most programming languages support hash tables,
either directly, or via libraries. However, while many computer science textbooks consider random
hashing, most software libraries use deterministic (i.e., non-random) hashing.

A hash function maps data objects, such as strings, to fixed-length values (e.g., 64-bit integers).
We often expect data objects to be mapped evenly over the possible hash values. Moreover, we
expect collisions to be unlikely: there is a collision when two objects are mapped to the same hash
value. Hash tables can only be expected to offer constant time query performance when collisions
are infrequent.

When hashing is deterministic, we pick one hash function once and for all. It is even customary
for this hash function to be common knowledge. Moreover, the objects being hashed are typically
not random, they could even be provided by an adversary. Hence, an adversary can cause many
collisions that could translate into a denial-of-service (DoS) attack [1, 2, 3].

In random hashing, we regularly pick a new hash function at random from a family of hash
functions. With such random hashing, we can bound the collision probability between two objects,
even if the objects are chosen by an adversary. By using random hashing, programmers might
produce more secure software and avoid DoS attacks. Maybe for this reason, major languages
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have adopted random hashing. Python (as of version 3.3), Ruby (as of version 1.9) and Perl (as
of version 5.18) use random hashing by default [4]. Unfortunately, these languages fail to offer a
theoretical guarantee regarding collision probabilities.

A family of hash functions having a low collision probability given two objects chosen by an
adversary may contain terrible hash functions: e.g., hash functions mapping all objects to the same
value (see § 3). In practice, such bad hash functions can be reused over long periods of time: e.g.,
a Java program expects the hash value of a given object to remain the same for the duration of
the program. An adversary could detect that a bad hash function has been selected and launch a
successful attack [5, 6]. Thus we should ensure that all hash functions in a family can be safely used.
We believe that regularity might help in this regard: a function is regular if all hash values are equally
likely given that we pick the data objects at random. Indeed, regularity implies that the probability
that two objects picked at random have the same hash value is low. We generalize regularity to
component-wise regularity by considering same-length strings that differ by one character. We want
to minimize the probability that any two such strings have the same hash value.

In the following sections, we describe a practical approach toward generating non-cryptographic
hash functions for arbitrary objects that have low probabilities of collision when picking hash
values at random (i.e., universality) and low probabilities when picking data objects at random
(i.e., regularity).

It is not difficult to construct such families: e.g., the family h(x) = ax mod p for p prime and an
integer a picked randomly in [1, p) is regular and almost universal over integers in [0, p). However,
our objective is to implement a practical solution in software that provides competitive speed. In
particular, we wish to hash arbitrarily long strings of bytes, not just integers in [0, p), and in doing
so, we wish to make the best possible use of current processors. To achieve our goals, we use affine
functions over a suitable finite field to hash blocks of machine words. We choose the finite field so as
to make the operations efficient. We then use a tree construction to hash long strings. The resulting
family of hash functions is called PM+. We establish universality and regularity properties.

We run performance experiments using a variety of platforms such as Intel, AMD and ARM
processors, with both Microsoft and GNU compilers. On recent Intel processors, our proposal
(PM+) hashes long strings at a rate of 4.7 bytes per cycle for 32-bit outputs 3.3 bytes per cycle
for 64-bit outputs. Generally, our functions match the speed of state-of-the-art hash functions: they
are as fast as MurmurHash [7] on shorter segments and comparable to VHASH [8] on longer data
segments. However, PM+ has distinguishing theoretical guarantees: MurmurHash is not claimed to
be universal and VHASH offers poor regularity.

We also present the optimization methods used to achieve the good performance of PM+ (see § 6).
For example, we optimize the computation of a scalar product in a finite field. Such optimizations
might be useful for a variety of functions.

2. RANDOM HASHING

Good hash functions are such that hash values are random in some sense. To achieve randomness,
we pick a hash function h : X → Y at random in a family of hash functions. (For our notation,
see Table I.) For practical reasons, we assume Y to be an interval of integers starting at zero, e.g.,
Y = [0, 232).

A family is uniform if P (h(x) = c) = 1/|Y | for any constant c ∈ Y and any x ∈ X where |Y | is
the cardinality of Y [9]. Uniformity is a weak property: letH be the family of hash functions of the
form h(x) = c for some c ∈ Y , then H is uniform even though each hash function maps all values
to the same constant c. If P (h(x) = c) ≤ ε for all x and all c, then we say that it is ε-almost uniform.

A family is universal [10, 11] if the probability of a collision is no larger than if the hash
values were random: P (h(x) = h(x′)) ≤ 1/|Y | for any x, x′ ∈ X such that x 6= x′. It is ε-almost
universal [12] (also written ε-AU) if the probability of a collision is bounded by ε < 1. Informally,
we say that a family has good universality if it is ε-almost universal for a small ε. Universality does
not imply uniformity.
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Table I. Notation

h, f, g, fi hash functions
H,F ,G families of hash function
X,Y, Z sets of integer values
x ∈ X value x in X
|X| cardinality of the set X
p prime number
κ parameter of the PM+ family
s string
si value of the ith character
m number of characters in a block
n number of bits
L number of levels

For example, consider Carter-Wegman polynomial hashing [10]. It is given by the family of
functions h : Y m → Y of the form h(s1, s2, . . . , sm) =

∑m
i=1 t

n−isi where the computation is
executed over a finite field of cardinality |Y |. The value t is picked in Y . It is (m− 1)/|Y |-almost
universal but not uniform (even when m = 1) [13].

2.1. ∆-universality

A family is ∆-universal (∆U) [14] if P (h(x) = h(x′) + c mod |Y |) ≤ 1/|Y | for any constant c
and any x, x′ ∈ X such that x 6= x′. Moreover, it is ε-almost ∆-universal (ε-A∆U or ε-ADU)
if P (h(x) = h(x′) + c mod |Y |) ≤ ε for any constant c and any x, x′ ∈ X such that x 6= x′. ∆-
universality implies universality but not uniformity.

It is necessary sometimes to take an L-bit hash value and hash it down to [0,m). It is common to
simply apply a modulo operation to achieve the desired result. As long as the original hash family
is ∆-universal, the modulo operation is a sound approach as the next lemma shows.

Lemma 1
(Dai and Krovetz [8, Lemma 4]) Given an ε-almost ∆-universal family H of hash functions
h : X → Y , the family of hash functions {h(x) mod M | h ∈ H} fromX to [0,M) is

⌈
2|Y |−1
M

⌉
× ε-

almost ∆-universal. Moreover, if M divides |Y |, then the result is an |Y |M × ε-almost ∆-universal
family.

Lemma 1 encourages us to seek low collision probabilities if we expect users to routinely rely
on only a few bits of the hash result. For example, let us consider Bernstein’s [15] state-of-the-
art 128-bit Poly1305 family. It is ε-almost ∆-universal with ε = 8dL/16e/2106 where L is the size
of the input in bytes. For all but very large values of L, ε is very small. However, if we reduce
Poly1305 to 32 bits by a modulo operation, the result is ε-almost ∆-universal with ε = 8dL/16e/210
by Lemma 1. In other words, it might be possible to find two 2040-byte strings that always collide
on their first 32 bits when using the Poly1305 hash family. Though this is not a problem in a
cryptographic setting where a collision requires all 128 bits to be equal, it can be more of a concern
with hash tables.

2.2. Strong universality

A family is strongly universal [16] (or pairwise independent) if given 2 distinct values x, x′ ∈
X , their hash values are independent: P (h(x) = y ∧ h(x′) = y′) = 1

|Y |2 for any hash values
y, y′ ∈ Y . Strong universality implies uniformity, ∆-universality and universality. Intuitively, strong
universality means that given h(x) = y, we cannot tell anything about the value of h(x′) when
x′ 6= x.
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When M divides |Y |, if H is strongly universal then so is {h(x) mod M | h ∈ H}. To put it
another way, if H is strongly universal with |Y | a power of two, then selecting the first few bits
preserves strong universality.

The MULTILINEAR hash family is a strongly universal family [10, 17]. It is the addition of a
constant value with the scalar product between random values (sometimes called keys) and the
input data represented as vectors components (s1, . . . , sm), where operations and values are over
a finite (or Galois) field: h(s1, s2, . . . , sm) = a0 +

∑m
i=1 aisi. The hash function h is specified by

the randomly generated values a0, a1, a2, . . . , am. In practice, we often pick a finite field Fp having
prime cardinality (p). Computations in Fp are easily represented using ordinary integer arithmetic
on a computer: values are integers in [0, p), whereas additions and multiplications are followed by a
modulo operation (x×Fp

y = xy mod p and x+Fp
y = x+ y mod p).

There are weak versions of strong universality that are stronger than ε-almost universality. E.g.,
we say that the family is ε-almost strongly universal if it is uniform and if

P (h(x) = y | h(x′) = y′) ≤ ε

for any distinct x, x′. It is ε-variationally universal if it is uniform and if∑
y∈Y

∣∣P (h(x) = y|h(x′) = c)− 1/|Y |
∣∣ ≤ 2ε

for all distinct x, x′ and for any c [18]. There are also stronger versions of strong universality such
as k-wise independence [19, 13]. For example, Zobrist hashing [20, 21, 22] is 3-wise independent
(and therefore strongly universal). It is defined as follows. Consider the family F of all possible
functions X → Y . There are |Y ||X| such functions, so that they can each be represented using
|X| log |Y | bits. Given strings of characters from X of length up to N , pick N functions from F ,
f1, f2, . . . , fN using N |X| log |Y | bits. The hash function is given by s→ f1(s1) Y · · · Y f|s|(s|s|)
where Y is the bitwise exclusive or. Though Zobrist hashing offers strong universality, it may require
a lot of memory. Setting aside the issue of cache misses, current x64 processors cannot sustain more
than two memory loads per cycle which puts an upper bound on the speed of Zobrist hashing. In an
exhaustive experimental evaluation of hash-table performance, Richter et al. [23] found that Zobrist
hashing produces a low throughput. Consequently, the authors declare it to be “less attractive in
practice” than its strong randomness properties would suggest.

2.3. Composition and concatenation of families

There are two common ways to combine families of hash functions: composition (h(x) = g ◦
f(x) ≡ g(f(x))) and concatenation (h(x) = (g(x), f(x)) or h = (g, f)).† For completeness, we
review important results found elsewhere [12]. Under composition uniformity is preserved, but
universality tends to degrade linearly in the sense that the bounds on the collision probability add
up (see Lemma 2).

Lemma 2
Let F and G be εF -almost and εG-almost universal families of hash functions f : X → Y and
g : Y → Z. Let H be the family of hash functions h : X → Z made of the functions h = g ◦ f
where f ∈ F and g ∈ G.

• Then H is εF + εG-almost universal.

• Moreover, if G is εG-almost ∆-universal, then H is εF + εG-almost ∆-universal.

• If G is uniform then so is H.

Lemma 3
Universality is preserved under concatenation. That is, let F be a family of hash functions f : X →
Y , then the family made of the concatenations (f, f) : X ×X → Y × Y is ε-almost universal if F
is ε-almost universal.

†Some authors might refer to a concatenation as a cartesian product or a juxtaposition.
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3. REGULARITY

Though we can require families of hash functions to have desirable properties such as uniformity
or universality, we also want individual hash functions to have reasonably good properties. For
example, what if a family contains the hash function h(x) = c for some constant c? This particular
hash function is certainly not desirable! In fact, it is the worst possible hash function for a hash table.
Yet we can find many such hash functions in a family that is otherwise strongly universal. Indeed,
Dietzfelbinger [9] proposed a strongly universal family made of the hash functions

hA,B(x) =
(
Ax+B mod 2K

)
÷ 2n−1

with integers A,B ∈ [0, 2K). It is strongly universal over the domain of integers x ∈ [0, 2n).
However, one out of 2K hash functions has A = 0. That is, if you pick a hash function at random,
the probability that you have a constant function (h0,B(x) = B ÷ 2L−1) is 1/2K . Though this
probability might be vanishingly small, many of the other hash functions have also poor distributions
of hash values. For example, if one picks A = 2K−1, then any two hash values (hA,B(x) and
hA,B(x′)) may only differ by one bit, at most. Letting A be odd also does not solve the problem:
e.g., A = 1, B = 0 gives the hash function x÷ 2n−1 which is either 1 or 0.

Such weak hash functions are a security risk [5, 6]. Thus, we require as much as possible that
hash functions be regular [24, 25].

Definition 1
A hash function h : X → Y is regular if for every y ∈ Y , we have that |{x ∈ X : (h(x) = y)}| ≤
d|X|/|Y |e. Further, a family H of hash functions is regular if every h ∈ H is regular.

We stress that this regularity property applies to individual hash functions.‡ However, we can still
give a probabilistic interpretation to regularity: if we pick any two values x1 and x2 at random, the
probability that they collide h(x1) = h(x2) should be minimal (|Y |/|X|) if h is regular.

As an example, consider the case where X = Y = {0, 1}. There are only two regular hash
functions h : X → Y . The first one is the identity function (hI(0) = 0, hI(1) = 1) and the second
one is the negation function (hN (0) = 1, hN (1) = 0). The family {hI , hN} is uniform and universal:
the collision probability between distinct values is zero.

More generally, whenever X = Y , a function h : X → Y is regular if and only if it is a
permutation. This observation suffices to show that it is not possible to have strong universality and
regularity in general. Indeed, suppose that X = Y , then all hash functions h must be permutations.
Meanwhile, strong universality means that given that we know the hash value y of the element x (i.e.,
h(x) = y), we still known nothing about the hash value of x′ for x′ 6= x. But if h is a permutation, we
know that the hash values differ (h(x′) 6= h(x))—contradicting strong universality. More formally,
if h is a permutation, we have that h(x) 6= h(x′) for x 6= x′ which implies that P (h(x) = h(x′)) = 0
whereas P (h(x) = h(x′)) = 1/|Y | is required by strong universality. Thus, while we can have both
universality and regularity, we cannot have both strong universality and regularity.

The next two lemmas state that regularity is preserved under composition and concatenation.

Lemma 4
(Composition) Assume that |Y | divides |X| and |Z| divides |X|. Let f : X → Y and g : Y → Z be
regular hash functions then f ◦ g : X → Z is also regular.

Lemma 5
(Concatenation) Let f : X1 → Y1 and g : X2 → Y2 be regular hash functions then the function
h : X1 ×X2 → Y1 × Y2 defined by h(x1, x2) = (f(x1), g(x2)) is also regular.

‡In contrast, Fleischmann et al. [26] used the term ε-almost regular to indicate that a family is almost uniform:
P (h(x) = y) ≤ ε for all x and y given that h is picked inH.
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3.1. Component-wise regularity

We can also consider stronger forms of regularity. Consider hash functions of the form f : X1 ×
X2 × · · · ×Xm → X , then the hash function is component-wise regular if we can arbitrarily fix all
input components but one and still generate all hash values fairly, that is

|{x ∈ Xi : (h(x1, . . . , xi−1, x, xi+1, . . . , xm) = y)}|
≤ d|Xi|/|Y |e

for any i, any y and any values

x1, x2, . . . , xi−1, xi+1, . . . , xm.

Intuitively, component-wise regularity ensures that if we pick two same-length strings at random that
differ in only one pre-determined component, the collision probability is minimized. By inspection,
component-wise regularity is preserved under composition and concatenation.

Of particular interest are the hash functions of the form f : X ×X × · · · ×X → X . In this case,
component-wise regularity implies that the restriction of the function to one component (setting all
other components to constants) is a permutation of X . Clearly, if f1 and f2 are two such functions
then their concatenation ((f1, f2)) is also component-wise regular, and if g is itself component-
wise regular, then the composition of g with the concatenation (f1, f2), written g(f1, f2), is again
component-wise regular. The following lemma formalizes this result.

Lemma 6
Let fi : Xm → X be component-wise regular hash functions for i = 1, . . . ,m. Let g : Xm → X be
a component-wise regular hash function. Then the composition and concatenation g(f1, f2, . . . , fm)
is component-wise regular.

3.2. K-regularity

Regularity is not always reasonable: for example, regularity implies that |Y | divides |X|. Naturally,
we can weaken the definition of regularity: we say that hash function isK-regular if h(x) = y is true
for at most Kd|Y |/|X|e values x given a fixed y. A 1-regular function is simply regular. We define
component-wise K-regularity in the obvious manner. Our objective is to achieve K-regularity for a
small value of K.

Though regularity is preserved under composition, K-regularity is not. Indeed, consider the 4-
regular function h : {0, 1, . . . , 2n − 1} → {0, 1, . . . , 2n − 1} given by h(x) = bx/4c. Composing h
with itself, we get a 16-regular function h′(x) = h(h(x)) = bx/16c. The example illustrates the
following lemma.

Lemma 7
Let f : X → Y and g : Y → Z be K1-regular and K2-regular hash functions then f ◦ g : X → Z is
(K1 ×K2)-regular if |Y | divides |X| and |Y | divides |Z|.

Proof
Given z ∈ Z, we have that g(y) = z is true for at most K2|Z|/|Y | values y ∈ Y . In turn, we have
that h(x) = y for at most K2|Y |/|X| values x ∈ X . Thus, given z ∈ Z, we have that g(f(x)) = z is
true for at most K2|Z|/|Y | ×K2|Y |/|X| = K1K2|Z|/|X|, completing the proof.

Thus, in general, regularity degrades exponentially under composition. In contrast, universality
degrades only linearly under composition: an K1/2

n-almost universal family composed with
another K2/2

n-almost universal is at least (K1 +K2)/2n-almost universal (by Lemma 2).
To achieve strong regularity, a good strategy might be to only compose functions that are 1-

regular. Of course, we might still need to reduce the hash values to a useful range. Thankfully,
regularity merely degrades to 2-regularity under modulo operations.
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Lemma 8
Given a regular hash function h : X → Y , we have that the hash function h′ defined by

h′(x) = h(x) mod M

for M ≤ |Y | is regular if M divides |Y | and 2-regular otherwise.

Proof
Pick any value y ∈ [0,M). If h′(x) = y then h(x) = y + kM mod |Y | for some integer k such that
kM ∈ [0, |Y |). There are

⌈
|Y |
M

⌉
such values for k:

0, 1, . . . ,

⌈
|Y |
M

⌉
M − 1.

Because h is regular, the equation h′(x) = y has at most
⌈
|Y |
M

⌉
× |X||Y | solutions for x. To determine

the K-regularity, we have to divide this result by |X|M : K =
⌈
|Y |
M

⌉
× |X||Y | ×

M
|X| =

⌈
|Y |
M

⌉
× M
|Y | ≤(

|Y |
M + M−1

M

)
M
|Y | = 1 + M−1

|Y | . We have that K ≤ 2 in general and K = 1 if M divides |Y |.

4. A TREE-BASED CONSTRUCTION FOR UNIVERSALITY AND REGULARITY

We want to address long objects, such as variable-length strings, while maintaining the collision
probability as low as possible. Though we could get strong universality with the MULTILINEAR
hash family, we would need as many random bits as there are bits in our longest object. What if
some of our objects use gigabytes or more? It may simply not be practical to generate and store so
many random bits. To alleviate this problem, it is common to use a tree-based approach [27, 16, 28].
Such an approach allows us to hash very long strings using hash functions that require only a few
kilobytes for their description. It is a standard approach so we present it succinctly.

Let X be a set of integers values containing at least the values 0 and 1. We pick L hash functions
f1, f2, . . . : Xm → X from a family H (e.g., MULTILINEAR family from § 2.2). Take any string s
made of N character values from X and let L = dlogmN + 1e. Append the value 1 at the end of the
string s to create the new string σ [8, 29, 30, 31]. If L = 1, simply return f1(σ) with the convention
that we pad σ with enough zeros that it has lengthm. If L > 1, split σ intomL−1 segments of length
m each (except for the last segment that might need padding) and apply fL on each segment: the
result is a new string of length at most mL−1. Split again the result into mL−2 segments of length
at most m each and apply fL−1 on each segment. Continue until a single value remains. See Fig. 1
for an illustration and see Algorithm 1 for the corresponding pseudocode.

If the family H is ε-almost universal, then the family formed by the tree-based construction
has to be Lε-almost universal. Indeed, it can be viewed as the composition of (fL, fL, . . .),
(fL−1, fL−1, . . .), . . . , f1. Each one is ε-almost universal by Lemma 3. And the composition of
L ε-almost universal functions is Lε-almost universal by Lemma 2.

Moreover, because f1 is ε-almost ∆-universal, and the composition of (fL, fL, . . .),
(fL−1, fL−1, . . .), . . . , (f2, f2, . . .) is (L− 1)ε-almost universal, we have that the final construction
must be Lε-almost ∆-universal. Further, as long as H is a uniform family, the construction is
uniform. Moreover, by Lemma 6, we have that if the family H is regular and component-wise
regular, then the result from the construction is regular component-wise regular as well.

To achieve almost ∆-universality, it is only required that the last of the hash functions applied
come from an almost ∆-universal family. Thus it is possible to use families with weaker
universalities (e.g., merely ε-almost universal) as part of the tree-based construction, while still
offering almost ∆-universality in the end. However, with regularity, we cannot as easily substitute
potentially weaker hash families: we require that all hash functions being composed be regular.

For clarity, we described Algorithm 1 in such a way that the first level is computed entirely
as a first step (using f1), followed by a second pass at the second level (using f2) and so on. This
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f1(a,b, 1, 0)

a b 1 0
(a) String ab

f2(f1(a,b,c,d), f1(e, 1, 0, 0), 0, 0)

f1(a,b,c,d)

a b c d

f1(e, 1, 0, 0)

e 1 0 0

(b) String abcde

Figure 1. Simplified tree-based algorithm hashing the strings ab and abcde using hash functions
f1, f2, . . . : X4 → X

Algorithm 1 Tree-based algorithm

Require: Set of integer values X containing at least the values 0 and 1. {E.g., set of all 32-bit integers.}
Require: L hash functions f1, f2, . . . , fL of the form Xm → X for m > 1, picked independently from a

family H that is uniform and ε-almost ∆-universal.
1: input: string s made of N character values from X with 1 ≤ N ≤ mL − 1. {That is, s ∈ XN and
|s| = N .}

2: Let σ be the string of length N + 1 that we get by appending the value 1 at the end of the string s. {We
have that |σ| ≤ mL.}

3: j ← 1
4: while σ contains more than one character value (|σ| > 1) do
5: while the length |σ| is not a multiple of m, append a zero to σ.
6: σ ← fj(σ1, . . . , σm), fj(σm+1, . . . , σ2m), . . . ,

fj(σ|σ|−m+1, . . . , σ|σ|)
7: j ← j + 1
8: end while
9: return the sole character value of σ as the hash value of s

approach requires allocating dynamically a possibly large amount of memory. We compute the same
result using a bounded and small amount of memory [29]: no more than m(L− 1) values from X .
We first hash the first m characters of the string that has been extended with an extra 1. The result
is written at the first location in the second level. We repeat with the next m elements. (Cases where
we have fewer than m characters left are also handled efficiently, avoiding copies and explicit zero-
padding.) Once we have m hash values stored in the second level, we hash them and store the result
in the third level. After each chunk of m characters is hashed, we push its hash value to a higher
level. Once we are done hashing the input, we complete the computation.

Almost all data objects in modern computing can be represented as a string of bytes (8-bit words)
so we assume that we accept strings of bytes for complete generality. Yet on 32-bit or 64-bit
processors, it is not always desirable to process the inputs byte-by-byte: it is more natural and
faster to process the data using 32-bit or 64-bit machine words. So our set of characters X is made
of all 32-bit or all 64-bit values. When appending the string with a value of 1 as in Algorithm 1,
we actually pad with a 1-byte and zeros to the nearest machine word boundary. In software, we
avoid creating a new extended string with padded bytes—as it would be inefficient. Instead we just
compute the final machine word and use an optimized code path.

As pointed out by Halevi and Hugo [32], there is a downside to the tree-based approach: the
universality degrades linearly with the height of the tree. We could solve this problem by hashing
all but the last level of the tree to a larger domain (e.g., one of cardinality L|X|), as long as we
could maintain regularity. Or, instead, we could use a two-level approach where only the first level
uses MULTILINEAR, while the second level uses a polynomial hash family: VHASH described in
Appendix F uses a similar approach [8]. We would need to ensure that we have good regularity in
both levels. However, we can alleviate this degraded universality problem by using a tree of small
height. That is, if we choose the family H of hash functions h : Xm → X with a relatively large
integer m, we may never require a tall tree (e.g., one with more than ≈ 8 levels). In this manner,
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the tree-based approach may still meet our goals by ensuring component-wise regularity while still
achieving good universality.

5. UNIVERSALITY AND REGULARITY WITH PM+

To implement Algorithm 1, we need to select a family of hash functions H. The MULTILINEAR
family (see § 2.2) might fit our needs in mathematical terms since it is strongly universal:
h(s) = a0 +

∑m
i=1 aisi mod p for p prime. By picking keys a1, a2, . . . as integers in [1, p), we get

a component-wise regular and almost universal family. However, the resulting hash family depends
crucially on the choice of a prime number p. In related work, authors chose prime numbers smaller
than a power of two [30, 8, 22] such as Mersenne primes or pseudo-Mersenne primes (primes of
the form 2n − k where k is much smaller than 2n in absolute value [33]). Such prime numbers
enable fast modulo reduction algorithms. For example, p = 261 − 1 is a Mersenne prime. Given a
64-bit integer x, we can compute x mod p by first computing (x mod 261) + (x÷ 261) and then
subtracting p from x if x exceeds p.

Of course, we do not hash strings of numbers in [0, p) for p prime, instead we hash strings of
numbers in [0, 2n). Choosing p < 2n is not a problem to get almost universality [31, Section 4].
However, it makes it more difficult to achieve regularity. To illustrate the problem, consider once
more the family h(x) = ax mod p for p prime and an integer a picked randomly in [1, p). This
family is regular for inputs in [0, p). Suppose however that x ∈ [0, 2n) for 2n > p, then the result is
at most 2-regular. Because regularity degrades exponentially with composition, if we use a 2-regular
function at each level in the a tree-based setting, the final result might only be 2L-regular for trees of
height L. However, the problem goes away if we pick 2n < p, as h(x) = ax mod p is then regular
once more.

Hence, our selection of prime numbers p is based on two requirements:

1. for a number x that fits a single processor word, x mod p should be equal to x, thus making
it easy to achieve regularity, and

2. reduction modulo p of numbers that do not fit to a single word should be expressed in terms
of computationally inexpensive operations. In practice, this may be achieved by choosing p
close to a power of two matching the processor word size (such as 264).

Thus, we use minimal primes that are greater than any number that fits in a single processor word,
that is, for a 32-bit platform, p = 232 + 15, and for 64-bit platform, p = 264 + 13 (see Table II).
We call primes of a form 2n + k where k is small PSEUDO+MERSENNE primes by analogy with
pseudo-Mersenne primes. Table II gives several such primes, e.g., 264 + 13.

The idea of using PSEUDO+MERSENNE primes for universal hashing is not new [15, 32].

• Our approach is similar to Multidimensional-Modular-Hashing (MMH) [32]. The MMH
authors use p = 232 + 15 for n = 32. They build their hash family on multilinear functions
of the form h(s) = (

∑m
i=1 aisi mod 22n) mod p (as opposed to h(s) =

∑m
i=1 aisi mod p).

That is, they use only two n-bit words to compute the sum although more than 2n bits are
required (e.g., 3 words) to compute the exact sum. They prove that their speed optimization
only degrades the universality slightly (by a factor of 2). However, they also degrade the
regularity. Because the regularity degrades exponentially with composition in the worst case
(see § 3), we prefer to avoid non-regular functions for a tree-based construction. Moreover, we
are able to produce fast code to compute the exact sum (see Appendix B). Since we benchmark
our contributed functions against a family faster than MMH (VHASH [30, 8]), we do not
consider MMH further.

• Our approach is also related to Bernstein’s [15] cryptographic Poly1305 function that uses
p = 2130 − 5 to generate 128-bit hash values. Bernstein reports choosing p = 2130 − 5 instead
of a value closer to 2128 for computational convenience. Though it is possible that larger
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Table II. Smallest primes larger than a power of two [34]

Power of two Smallest prime

28 28 + 1
216 216 + 1
232 232 + 15
264 264 + 13
2128 2128 + 51

primes than the ones we choose could allow further speed optimizations, it may also degrade
the universality slightly. Thus we do not consider the possibility further.

From this family of prime numbers, we define the PM+-MULTILINEAR family of hash functions.

Definition 2
Let p be a prime, X = [0, p) and m a positive integer. Let 2n be the largest power of two smaller
than p. The PSEUDO+MERSENNE-MULTILINEAR family (or PM+-MULTILINEAR) is the set of
functions from Xm to X of the form

f(s) ≡ f(s1, . . . , sm) =

(
b+

m∑
i=1

aisi

)
mod p (1)

where b is an integer in [0, 2n) whereas a1, . . . , am are non-zero integers in (0, p− κ) for some
integer κ ≥ 0.

Observe that integers subject to additions and multiplications modulo p for p prime form a finite
field Fp. Thus we have that ax mod p = a′x mod p implies a = a′ unless x = 0 since x is invertible
(in Fp). We have that PM+-MULTILINEAR is component-wise regular: we can solve the equation
f(s) = y for si with exactly one value: si = a−1i (y − a1s1 − a2s2 − · · · − ai−1si−1 − ai+1si+1 −
amsm) in Fp. That is, it suffices to require that the parameters a1, . . . , am are non-zero to get
regularity.

We can also show ε-almost ∆-universality as follows. Consider the equation(
b+

m∑
i=1

aisi

)
−

(
b+

m∑
i=1

ais
′
i

)
mod p = y

for some y in [0, p) for two distinct strings s and s′. We have that sr 6= s′r for some index r. Thus,
fixing all other values, we can solve for exactly one value ar such that the equality holds. When
picking the hash function at random, ar can have one of p− κ− 1 different values (all integers in
[1, p− κ)), thus the equation holds with probability at most 1/(p− 1− κ).

Similarly, we can show that PM+-MULTILINEAR is 1/2n-almost uniform. Indeed, consider the
equation (

b+

m∑
i=1

aisi

)
mod p = y

for some y in [0, p). Fixing the ai’s, the si’s and y, there is exactly one value b ∈ [0, p) solving this
equation. Yet we have 2n possible values for b, hence the result.

We have the following lemma.

Lemma 9
The family PM+-MULTILINEAR is 1/(p− 1− κ)-almost ∆-universal, 1/2n-almost uniform and
component-wise regular.
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Though it may seem that the parameter κ is superfluous as setting κ = 0 optimizes universality,
we shall see that restricting the range of values with κ > 0 can ease computations. Similarly, it
may seem wasteful to pick b ∈ [0, 2n) instead of picking it in [0, p), but this is again done for
computational convenience.

In what follows, we call PM+ the use Algorithm 1 with the hash family PM+-MULTILINEAR.
The result is a hash family that is L/(p− 1− κ)-almost ∆-universal, uniform and component-wise
regular over strings of length up to mL − 1.

Naturally, we want the resulting hash values to fit in a more convenient range than [0, p).
So, we compute h(s) mod 2n. We have that

⌈
p
2n

⌉
= 2. As per Lemmas 1 and 8, the result is

3L/(p− 1− κ)-almost ∆-universal and 2-regular.§

6. AN EFFICIENT IMPLEMENTATION OF PM+

The functions in the PM+-MULTILINEAR family make use of a modulo operation. On most
modern processors, division and modulo operations are computationally expensive in comparison
to addition, or even multiplication. Thankfully, equation 1 suggests a single modulo operation after
a series of multiplications and additions that reduces the number of modulo operations to one per
m multiplications [32, 31], where m is a parameter of our family. We can furthermore tune PM+ by
optimizing the scalar product computations (see § 6.1) and replacing expensive modulo operation
by a specialized routine (see § 6.2).

6.1. Scalar product computation

Our data inputs are strings of n-bit characters. Two cases are important: 2n = 232 (particularly
for 32-bit architectures) and 2n = 264 (mostly for 64-bit architectures). Where applicable we refer
to them separately as PM+-MULTILINEAR32 (or PM+32 in the tree-based version) and PM+-
MULTILINEAR64 (or PM+64 in the tree-based version).

Consider the scalar product between keys and components
∑

i aisi. Recall that we pick the values
ai in (0, p− κ). As long as we choose κ large enough so that p− κ ≤ 2n, we have that ai is also
a machine-sized word (e.g., 64 bits on a 64-bit platform). For long data segments, we expect most
of the running time to be due to the first level of the tree, and mostly due to the computation of the
sum

∑m
i=1 aisi. We describe our fast implementation of such computations on modern superscalar

processors in Appendix B.
Though we hash strings of machine-sized words (so that si ∈ [0, 2n)), in a tree-based setting

(see Algorithm 1), we can no longer assume that si fits in a single word—beyond the first level.
Two words are required in general. The si’s are in [0, 232 + 15) for PM+32 and in [0, 264 + 13) for
PM+64 at all but the first level in Algorithm 1. (We could reduce the hash values so that they fit
in a single word, but it would degrade the regularity and universality of the result.) For speed and
convenience, we still want the result of the multiplication to fit in two words. That is, we want that
aisi ∈ [0, 22n) or, more specifically,

(p− κ)(p− 1) < 22n.

For this purpose, we set κ = 24 for PM+64. That is, we pick the ai’s in (0, 264 + 13− 24) =
(0, 264 − 11). For PM+32, we set κ = 28 and pick ai’s in (0, 232 + 15− 28) = (0, 264 − 13). See
Table III for the parameters and Table IV for the properties of the resulting hash families.

For both the PM+32 and PM+64 cases, we use a maximum of 8 levels (L = 8). Yet we are
unlikely to use that many levels in practice: e.g., if we assume that inputs fit in four gigabytes, then
4 levels are sufficient.

§Since 2p−1
2n

< 3.
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Table III. Parameters used by PM+

Word size 2n p κ m L

32 bits 232 232 + 15 28 128 8
64 bits 264 264 + 13 24 128 8

Table IV. Properties of Algorithm 1 applied with PM+-MULTILINEAR in a tree-based setting (PM+). String
lengths are expressed in machine words (32 bits or 64 bits).

Name Word size Hash interval max. string length universality regularity

PM+32 32 bits [0, 232) (256 − 1) words 12
231−7

-A∆U component-wise 2-regular

PM+64 64 bits [0, 264) (256 − 1) words 12
263−6

-A∆U component-wise 2-regular

6.2. Efficient modulo reduction

We have insured that the result of our multiplications fit in two words. Halevi and Krawczyk [32,
Section 3.1] have derived an efficient modulo reduction in such cases. However, the sum of our
multiplications requires more than two words since, unlike Halevi and Krawczyk, we compute an
exact sum. Thus we need to derive an efficient routine to apply the modulo operation on three input
words. We have that

S =

(
b+

m∑
i=1

aisi

)
≤ (2n − 1) +m(22n − 1)

Because we choosem = 128, we have that the result fits into three words (w0, w1, w2) (either 32-bit
or 64-bit words) with a small value stored in the most significant word w2 (no larger than m).

The modulo reduction uses the equalities (modulo 2n + k): 2n = −k and (2n)2 = (−k)2 = k2.
In our case, k = 15 or k = 13 depending on whether we use a 32-bit or 64-bit platform. Then, for
any number S that fits in 3 words w0, w1, w2 (i.e., it is smaller than 23n where n = 32 or n = 64),
we have

S ≡ w0 + w1 × 2n + w2 × (2n)2

≡ w0 − k × w1 + k2 × w2

modulo 2n + k. Let u0 = (k × w1) mod 2n and u1 = (k × w1)÷ 2n, then k × w1 = u1 × 2n + u0.
By substitution, we further obtain

S ≡ w0 + k2 × w2 − 2n × u1 − u0
≡ w0 + k2 × w2 + k × u1 − u0
≡ (w0 + k2 × w2 + k × u1) + (2n + k − u0)

modulo 2n + k.
We have thus reduced S to a number smaller than 22n (modulo 2n + k) which fits in two n-

bit words. We can therefore write S ≡ v0 + 2nv1(mod 2n + k) where v0, v1 ∈ [0, 2n) are easily
computed.

We can also bound our representation of S as follows:

• w0 ≤ 2n − 1;

• k2w2 ≤ k2m ≤ 152 × 128 = 28800

• k × u1 = k × (k × w1 ÷ 2n) ≤ k × ((k × 2n − 1)÷ 2n) ≤ k(k − 1) ≤ 210;

• 2n + k − u0 ≤ 2n + k − 1 ≤ 2n + 14.
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Thus we have a bound of 2× 2n + 29023. It follows that v1 ≤ 2.
To reduce S to a number in [0, p) requires branching (see Algorithm 2). The algorithm works as

follows:

• If k × v1 ≤ v0, we exploit the fact that, modulo 2n + k, we have 2n × v1 = −k × v1 to return
v0 − k × v1.
To accelerate this case in software, we can use the fact that v0 ≥ 2k ⇒ k × v1 ≤ v0. Since
v0 ≥ 2k is common and faster than checking that k × v1 ≤ v0, it is worth introducing an extra
branch.

• If k × v1 > v0, then we know that v1 > 0. If v1 = 1, then v0 < k and we can return v0 + 2n

without any reduction. Otherwise we have that v1 = 2. In such a case, we use the fact that
2× 2n = 2n − k mod (2n + k) to write v0 + 2× 2n as 2n − k + v0. This value is smaller
than 2n + k since v0 < 2k.

Algorithm 2 Reduction algorithm: find the integer z ∈ [0, 2n + k) such that v1 + 2nv2 = z mod
2n + k.

1: input: an integer v1 ∈ [0, 2n) and an integer v2 ∈ {0, 1, 2} {Represents v1 + 2nv2.}
2: if k × v1 ≤ v0 then
3: return v0 − k × v1 {Can use v0 ≥ 2k ⇒ k × v1 ≤ v0 to accelerate the check}
4: end if
5: if v1 = 1 then
6: return v0 + 2n

7: end if
8: return v0 − k {v1 = 2 in this case}

7. ACHIEVING THE AVALANCHE EFFECT

It is often viewed as desirable that a small change in the input should lead to a large change in
the hash value. For example, we often check whether hash functions satisfy the avalanche effect:
changing a single bit of the input should flip roughly half the bits of the output [35].

To improve our hash functions in such respect, we add an extra step to further mix the output bits.
We borrowed these procedures from MurmurHash [7]. For PM+64 the step in C is

z = z ^ (z >> 33);
z = z * 0xc4ceb9fe1a85ec53;
z = z ^ (z >> 33);

and for PM+32 it is
z = z ^ (z >> 13);
z = z * 0xab3be54f;
z = z ^ (z >> 16);

where Y is the bitwise exclusive or and z is an unsigned integer of a respective size (32 bit for
PM+32 and 64 bit for PM+64). These transformations are invertible for all integers that fit a single
word and, therefore, they do not affect universality and regularity.

8. EXPERIMENTS

We implemented PM+ for the x64, x86 and ARM platforms in C++. On the x86 platform, we use
the SSE2 instruction set for best speed. We make our software freely available under an open source
license.¶

¶http://sourceforge.net/projects/hasher2/

http://sourceforge.net/projects/hasher2/
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To test the practical fitness of the PM+ schema, we chose the SMHasher [7] framework. It
provides a variety of performance tests as well as several statistical tests. For comparison purposes,
we used the same framework to test other hashes commonly used in industry.

1. The hash functions used in the C++ standard (std) library.

2. The hash functions used in the Boost library, a widely used C++ library.

3. MurmurHash 3A for 32-bit platforms and MurmurHash 3F for 64-bit platforms: a popular
family of hash functions used by major projects such Apache Hadoop and Apache Cassandra.

4. VHASH [8, 30] (see Appendix F), one of the fastest hash families on 64-bit processors.

5. SipHash [36]: the 64-bit family hash functions used by the Python language.

Of course, there are many more fast hash functions (e.g., xxHash, CityHash [37, 38],
SpookyHash [39], FarmHash [40], CLHASH [41] and tabulation-based or Zobrist hashing [20,
21, 22]). For a recent review of non-cryptographic hash functions, we refer the interested reader to
Ahmad and Younis [42], Estébanez et al. [43] or Thorup [44]. We leave a more detailed comparison
to future work.

We performed extra steps to ensure these functions work inside the SMHasher testing
environment:

Standard library To hash an arbitrary length data segment we used the library function hash
<string>: it takes a string object as a single parameter. The C++11 standard does not
specify the implementation so it is vendor and even version specific. In practice, the hash
value generated occupies 32 bits on 32-bit platforms and 64 bits on 64-bit platforms.
In the context of the SMHasher testing environment, we must first create a string object based
on the data segment and its length to use this function. To exclude the time used for the
creation of the std::string object, we added a separate method that does just the creation
of the object itself, and nothing else. Hence, we were able to estimate the time required to
create the object and deduct it from the whole processing time. We have observed that time
spent on object preparation was roughly 10 % of the total processing time.

Boost Boost is a well regarded C++ library and it is likely that its hash functions are in common use.
We tested the hash_range( char*, char*) function from version 1.5 of the Boost
library. Like the standard library, the hash value generated occupies 32 bits on 32-bit platforms
and 64 bits on 64-bit platforms.

VHASH We chose to compare against VHASH because it is one of the fastest families of hash
functions on longer data sets: e.g., it is several times faster than high performance alternatives
such as Poly1305 [30]. It is faster than UMAC [30] which has itself found to be twice as
fast as MMH [27]. We used the most recent VHASH implementation made available by its
authors [45]. It generates 32-bit hash values on 32-bit platforms whereas it generates 64-bit
hash values on 64-bit platforms. On 64-bit platforms, it pads data with zeros if the input size is
not a multiple of 16 bytes. Such padding results in copying up to 127 bytes to an intermediate
buffer. This operation is done at most once per data segment, and, therefore, affects only
relatively short segments. We believe that certain changes in the base implementation might
potentially be more efficient than our approach with copying; correspondingly, we calculate
and present optimistic estimates that do not include time spent on additional processing
(similar to our approach with the standard library). We proceed similarly on the 32-bit ARM
platform.
For the Intel 32-bit platform (x86), the authors’ implementation [45] provides two options:
one uses SSE2 instructions and another one is in pure C. The performance of the SSE2
implementation is more than two times higher, so the SSE2 option is used for testing. This
particular SSE2 implementation does not require a particular memory alignment. However, it
also assumes that data is processed in blocks of 16 bytes, so we use buffering as in the 64-bit
platform.
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Figure 2. Speed of the hash functions on random strings of various lengths on the recent Intel Haswell
microarchitecture.

8.1. Variable-length results on recent Intel processors

In Fig. 2, we compare directly the speeds in bytes per CPU cycle of our hash families over random
strings of various lengths. We use a recent Intel processor with the recent Haswell microarchitecture:
an Intel i7-4770 processor running at 3.4 GHz. This processor has 32 kB of L1 cache per core,
256 kB of L2 cache per core and 8 MB of L3 cache. The software was compiled with GNU GCC
4.8 to a 64-bit Linux executable.

In this test, the 64-bit VHASH is capable of hashing 3.9 input bytes per cycle for long strings
(4 kB or more). PM+64 is 15 % slower on such long strings at 3.3 bytes per cycle.

Our PM+32 can be 40 % faster than PM+64, reaching speeds of 4.7 bytes per cycle on long
strings. Thus, if we only need 32-bit hash values, it could be preferable to use PM+32. The speed
of MurmurHash 3A is disappointing at 0.8 bytes per cycle, whereas MurmurHash 3F does better at
2 bytes per cycle on long strings. SipHash reaches a speed of 0.5 bytes per cycle. The Boost and std
hash functions are slower on long strings (less than 0.25 bytes per cycle).

On short strings, PM+64 and PM+32 are fastest followed by MurmurHash 3F.

8.2. Multiplatform performance testing

8.2.1. Methodology We compare the time used by all hashing methods using std::hash as a
reference (setting std::hash to 1.0). Each single test is characterized by three “dimensions”:
(1) platform and compiler; (2) data; and (3) physical machine. We have reduced our analysis to the
first two “dimensions” as follows: given a platform and data, tests were done on some number of
physical machines, and respective normalized timings were averaged.

8.2.2. Platforms, compilers, hardware, sample data Information about platforms/compilers used
for our tests is gathered in Appendix A.
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Table V. Relative time taken to hash (1–31 bytes) and long (256 kB) segments (standard library = 1). Best
results are in bold.

Boost Murmur-
3a

SipHash VHASH PM+32 PM+64b

x86, GCC
short 1.03 0.50 3.94 2.64c 0.59
long 1.60 0.31 2.75 0.27 0.11

x86, MSVC
short 1.23 0.63 5.70 4.28c 0.76
long 1.11 0.30 2.39 0.28 0.10

x64, GCC
short 1.05 0.57 1.27 1.19c 0.50 0.53
long 1.38 0.15 0.73 0.08 0.10 0.09

x64, MSVC
short 1.37 0.77 1.90 2.02c 0.69 0.65
long 1.40 0.13 0.67 0.10 0.09 0.09

ARMv7
short 0.89 0.86 –d 1.22c 0.87
long 1.29 0.76 –d 0.81 0.49

a MurmurHash 3A for 32-bit platforms and MurmurHash 3F for 64-bit platforms. As
suggested by a comment in the MurmurHash3 code [46], MurmurHash 3A is best on
32-bit platforms, and MurmurHash 3F is best on 64-bit platforms (and this has been
confirmed in our tests).

b PM+64 is implemented for 64-bit platforms only
c Optimistic estimate as described above; measured values were 30–40 % higher.
d Not tested

Performance tests were done for short (1–31 bytes) and long (256 kB) data segments. Results for
both short and long data segments were averaged; all results were finally represented as ratios to
the default std::hash function. For these tests, data segments were provided by the SMHasher
testing framework. None of the methods is designed or optimized for a specific type of data, such
as, for instance, text, and, therefore, none of the methods is put in explicit (dis)advantage by such
data generation.

We expect our results to be independent from the number of CPU cores since none of our
techniques are parallelized. Moreover, we also expect the RAM type to be insignificant since even
our large segments fit in L3 processor cache.

8.2.3. Multiplatform performance results Results of performance testing are gathered in Table V.
On x86 and x64 platforms time was measured in CPU clocks (rdtsc); and on ARM time values
were collected in microseconds. While averaging over different physical machines, the greatest
relative standard deviation among all entries except SipHash was 22 % (deviation of SipHash was up
to 38 %), and for over 90 % of entries this value was less than 15 %. The relative standard deviations
are sufficiently small to view the presented averages as representative and to provide some assurance
that relative performance results of our algorithms can be expected on a variety of platforms. The
results are summarized in Fig. 3.
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Figure 3. Performance summary

Our results show that the hash functions in the standard library can be slow on long segments:
MurmurHash, VHASH and PM+ can be ten times faster. But even on short segments, PM+ can be
twice as fast as the standard library (on x64 platforms).

The VHASH implementation is only competitive on long segments on x64. We are not surprised:
it was designed specifically for 64-bit processors. On the x64-GCC platform, VHASH can be up
to about 30 % faster than PM+. (The precise averages on long segments for VHASH and PM+ are
0.081 and 0.106.) This is consistent with earlier findings [17] (see Appendix F): VHASH is based on
a function (NH) that is computationally inexpensive compared with MULTILINEAR—at the expense
of regularity.

PM+ fares well on the ARM platform: PM+ is at least 50 % faster than the alternatives on long
segments.

PM+ is faster than MurmurHash 3 on x64 platforms. MurmurHash 3 is only significantly faster
(20 %) than PM+ on short segments on the x86-MSVC platform.

PM+32 and PM+64 have, in average, similar performance on 64-bit platforms. A closer
examination reveals that PM+32 is faster than PM+64 on recent processors supporting AVX2
instruction set (as reported in § 8.1) while it is slower on older processors without support for
AVX2.

9. CONCLUSION

We have described methods for constructing almost-universal hash function families for data strings
of variable length. Our hash functions are suitable for use in common data structures such as hash
tables. They offer strong theoretical guarantees against denial-of-service attacks:

• We have almost universality: given two distinct data objects chosen by an adversary, the
probability that they have the same hash value, that is, the probability that they collide, is
very low given that we pick the hash functions at random. Our families have lower collision
bounds than the state-of-the-art VHASH.

• We have shown that these hash functions are regular and component-wise regular, that is,
they make an even use of all possible hash values. In doing so, they minimize the collision
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probability between two data objects selected at random. Competitive alternatives such as
VHASH are not regular which is a possible security risk [5, 6].

Further, we have shown that an implementation of these non-cryptographic hash functions offered
competitive speed (as fast as MurmurHash), and were substantially faster than the implementations
found in C++ standard libraries. Our approach is similar to previous work on fast universal hash
families (e.g., MMH [32], CLHASH [41], UMAC [27], VHASH [30] and Poly1305 [15]), except
that we get good regularity in addition to the high speed and universality. To promote the use of our
hash functions among practitioners and researchers, our implementation is freely available as open
source software.

In the future, it may be interesting to analyze the regularity of other universal hash families [15,
32, 31, 41], possibly improving it when possible. We could also seek faster families of hash functions
that are both almost universal and regular.
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Table VI. Platforms used.

Name Processor Bits Compiler Flags/Configuration

x64, GCC AMD, Intela 64 GNU GCC 4.8 -O2 -march=x86-64
x64, MSVC Intel Core i7b 64 MSVS 2013 Release
x86, GCC AMD, Intela 32 GNU GCC 4.8 -O2 -march=i686
x86, MSVC Intel Core i7b 32 MSVS 2013 Release
ARMv7 ARM Cortex/Kraitc 32 GNU GCC 4.6d Release
a Results have been averaged over AMD FX-8150 Eight-Core (Bulldozer, Desktop), Intel Core

i7 620M (Westmere, Mobile), Intel Xeon E5-2630 (Sandy Bridge, Server), Intel Core i5-
3230M (Ivy Bridge, Mobile), and Intel Core i7-4770 (Haswell, Desktop) with a maximum
relative standard deviation of 0.20.

b Results have been averaged over Intel Core i7-2820QM (Sandy Bridge, Mobile), Intel Core
i7-3667U (Ivy Bridge, Ultra-low power), Intel Core i7-3770 (Ivy Bridge, Desktop), Intel Core
i7-4960X (Ivy Bridge, Extreme edition), and Intel Core i7-4700MQ (Haswell, Mobile) with a
maximum relative standard deviation of 0.12.

c Results have been averaged over Exynos 3110 (Cortex A8), Qualcomm Snapdragon
MSM8255 (Scorpion), dual-core Exynos 4210 (Cortex-A9), dual-core Exynos 4412 (Cortex-
A9), and quad-core Qualcomm Snapdragon 600 (Krait 300) with a maximum relative standard
deviation of 0.21.

d From the Android NDK, revision r9d.

A. PLATFORMS USED

The platforms/compilers that we have used for testing are: x86/x64 with Microsoft Visual C++ 2013
compiler; x86/x64 with GCC compiler (version: 4.8); and ARMv7 with the Android NDK (revision
9c, December 2013) which uses the GCC compiler internally. For more details see Table VI.

B. OPTIMIZATION TECHNIQUES FOR CALCULATING SCALAR PRODUCTS ON X86
AND X64 PROCESSORS

As mentioned in § 6.1, it is important to optimize the computation of the scalar product. Overall,
for the computation of the scalar product on x86 processors, we found best to use vectorization in
the 32-bit case presented in § B.1. In the 64-bit case, we present a thoroughly optimized use of
conventional instructions in § B.2.

B.1. Vectorizing the Computation of the Scalar Product

We can implement a scalar product over pairs of 32-bit integers using one multiplication per pair,
as well as additions with carry bit (e.g., the adc x86 instruction) to generate the resulting 3-word
(96-bit) result.

To achieve better speed, we use the fact that modern CPUs support vector computations through
Single Instruction on Multiple Data (SIMD) instructions. For instance, the x86 architecture has
Streaming SIMD Extensions (SSE) using 128-bit registers and the more recent Advanced Vector
Extensions (AVX) using wider 256-bit registers.

Our fastest 32-bit scalar production implementation for recent Intel processors uses AVX2. AVX2
has a vpmuludq instruction (corresponding to the _mm256_mul_epu32 Intel intrinsic) that can
multiply four pairs of 32-bit integers, thus generating four 64-bit integers.
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B.2. Faster sums using two sets of accumulators

The standard instruction set may provide better for 64-bit outputs. That is, we can multiply two
64-bit integers, and then add the 128-bit result to three 64-bit words (representing a 192-bit sum)
using a sequence of x64 instructions: mulq (multiplication), addq (addition), and two adcq (add
with a carry bit). The steps can be described as follows:

1. We use three 64-bit registers as accumulators c1, c2, c3 representing the total sum as a
3× 64 = 192-bit integer. The registers are initialized with zeros.

2. For each input pair of 64-bit values, the mulq instruction multiplies them and stores the
results in two 64-bit registers (a and d). One register (a) contains the least significant 64 bits
of the product, and the other (d) the most significant 64 bits.

3. The first accumulator, corresponding to the least significant 64 bits, is easily updated with a
simple addition (addq): c1 = (c1 + a) mod 264. If the sum exceeds 264 − 1, the carry bit b
is set to 1. That is, we have that b = (c1 + a)÷ 264. Then we update the second accumulator
using the add-with-carry instruction (adcq): c2 = (c2 + d+ b) mod 264. We also update the
third accumulator similarly.

This approach is efficient: we only use 4 arithmetic x64 instructions per input pair. Yet, maybe
surprisingly, there is still room for optimization.

If their operands and output values are independent, modern processors may perform more than
a single instruction at a time. Indeed, recent Intel processors can retire 4 instructions (or fused
µops) per cycle. We reviewed the initial version of our code with the IACA code analyzer [47]
for the most recent Intel microarchitecture (Haswell). IACA revealed that the throughput was
limited by data dependencies. Though the processor can execute one multiplication per cycle, it
may sometimes have to wait for the accumulators to be updated. Thus we rewrote our code to
use two sets of accumulators. Effectively, we sum the odd terms and the even terms separately
(
∑m/2

i=1 a2is2i and
∑m/2

i=1 a2i+1s2i+1) and then we combine them. Respective code samples can be
found in Appendix D (in x64 assembly) and Appendix E (in C++ with Intel intrinsics). A new
analysis with IACA reveals that the throughput of this new code is then limited by the frontend
of the processor (responsible for instruction decoding). On long strings, using a recent Haswell
processor (Intel i7-4770 running at 3.4 GHz), we went from ≈ 1150 million input pairs per second
to ≈ 1350 million input pairs per second (an 18 % gain).

C. CODE SAMPLE TO SUM 64-BIT PRODUCTS OF 32-BIT INTEGERS

The following C++ code computes the 96-bit integer representing the sum of 128 products between
pairs of 32-bit integers using AVX2 intrinsics (m = 128, n = 32). See § B.1 for an analysis. For the
description of the intrinsics, we refer the reader to Intel’s documentation [48].

// input: two arrays of 32-bit integers
// const uint32_t* coeff;
// const uint32_t* x;

// output parameters:
uint64_t low_bits;
uint32_t high_bits;

__m256i ctr0, ctr1;
__m256i a, data, product, temp;
uint64_t temp_fin;

// Set accumulators to zero
ctr0 = _mm256_setzero_si256 ();
ctr1 = _mm256_setzero_si256 ();
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// process the loop (unrolling may help)
for ( int i=0; i<128; i+=8 )
{

// Load 256-bit value (eight ints)
a = _mm256_loadu_si256

((__m256i *)(coeff+i));
data = _mm256_loadu_si256

((__m256i *)(x+i));
// multiply ints at even positions
product = _mm256_mul_epu32 ( data, a);
temp = _mm256_srli_epi64

( product, 32 );
ctr1 = _mm256_add_epi64

( ctr1, temp );
ctr0 = _mm256_add_epi64

( ctr0, product );
// exchange even-odd
// note: 0xb1 = 1*1+0*4+3*16+2*64
a = _mm256_shuffle_epi32

( a, 0xb1);
data = _mm256_shuffle_epi32

( data, 0xb1 );
// multiply ints at even positions
// (former odd positions)
product = _mm256_mul_epu32 ( data, a);
temp = _mm256_srli_epi64

( product, 32 );
ctr1 = _mm256_add_epi64

( ctr1, temp );
ctr0 = _mm256_add_epi64

( ctr0, product );
}

// finalize

// desired results are in c0 and c1
// we interleave the sums and add them
temp = _mm256_unpackhi_epi64

( ctr0, ctr1 );
data = _mm256_unpacklo_epi64

( ctr0, ctr1 );
ctr1 = _mm256_add_epi64

( data, temp );
// extract a 64+32 bit number
// (low_bits, high_bits)
uint64_t lo = *(uint64_t*)(&ctr1) +

((uint64_t*)(&ctr1))[2];
uint64_t hi = ((uint64_t*)(&ctr1))[1] +

((uint64_t*)(&ctr1))[3];
uint32_t lohi = lo >> 32;
uint32_t hilo = hi;
uint32_t diff = lohi - hilo;
hi += diff;
lo = (uint32_t)lo +

(((uint64_t)(uint32_t)hi)<<32);

// answer:
low_bits = lo;
high_bits = hi >> 32;
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D. CODE SAMPLE TO SUM 128-BIT PRODUCTS OF 64-BIT INTEGERS (ASSEMBLER)

The following assembly code computes the 192-bit integer representing the sum of 128 products
between pairs of 64-bit integers using the standard x64 instruction set (m = 128, n = 64).

// input: pointers to 64-bit arrays
// rbx: address of the start of
// the 1st array
// rcx: address of the start of
// the 2nd array
// 1st accumulator:
// r10: least significant 64 bits
// r11: mid 64 bits
// r12: most significant 64 bits
// 2nd accumulator:
// r13: least significant 64 bits
// r14: mid 64 bits
// r15: most significant 64 bits

// add 1st product to 1st accumulator
movq 0(%rbx),%%rax\n
mulq 0(%rcx)\n
addq %%rax, %%r10\n
adcq %%rdx, %%r11\n
adcq $0, %%r12\n

// add 1st product to 1st accumulator
movq 8(%rbx),%%rax\n
mulq 8(%rcx)\n
addq %%rax, %%r13\n
adcq %%rdx, %%r14\n
adcq $0, %%r15\n

// ... repeat as necessary

// merge accumulators:
movq 8(%rbx),%%rax\n
mulq 8(%rcx)\n
addq %%rax, %%r13\n
adcq %%rdx, %%r14\n
adcq $0, %%r15\n

// the sum of products is now at
// (r10, r11, r12)

E. CODE SAMPLE TO SUM 128-BIT PRODUCTS OF 64-BIT INTEGERS USING INTEL
INTRINSICS

The following C++ code computes the 192-bit integer representing the sum of 128 products between
pairs of 64-bit integers using Intel intrinsics (m = 128, n = 64). Such code is well suited for the
Microsoft Visual C++ compiler.

// 1st accumulator:
uint64_t low1 = 0; // least sign. 64 bits
uint64_t high1 = 0; // next 64 bits
uint64_t vhigh1 = 0; // most significant
// 2nd accumulator
uint64_t low2 = 0; // least sign. 64 bits
uint64_t high2 = 0; // next 64 bits
uint64_t vhigh2 = 0; // most significant
// intermediates:
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uint64_t mulLo, mulHi;
unsigned char c;
for(size_t i = 0; i<128; i+=2)
{

// process even pair
// _umul128 is Microsoft-specific
mulLo = _umul128(a[i],s[i],&mulHi);
// _addcarry_u64 is an Intel intrinsic
// supported by Microsoft
c = _addcarry_u64

(0, mulLo, low1, &low1);
c = _addcarry_u64

(c, mulHi, high1, &high1);
_addcarry_u64(c, vhigh1, 0, &vhigh1);

// process odd pair
mulLo = _umul128

(a[i+1],s[i+1],&mulHi);
c = _addcarry_u64

(0, mulLo, low2, &low2);
c = _addcarry_u64

(c, mulHi, high2, &high2);
_addcarry_u64(c, vhigh2, 0, &vhigh2);

}

c = _addcarry_u64(0, low1, low2, &low1);
c = _addcarry_u64

(c, high1, high2, &high1);
_addcarry_u64

(c, vhigh1, vhigh2, &vhigh1);

// result is at (low1, high1, vhigh1)

F. NON-REGULARITY OF THE VHASH FAMILY

The effort to design practical universal random hash functions with good properties has a long
history. Thorup [49] showed that strongly universal hashing could be very fast. Crosby and
Wallach [1] showed that almost universal hashing could be as fast as common deterministic hash
functions. Their conclusion was that while universal hash functions were not standard practice, they
should be. In particular, they got good experimental results with UMAC [27].

More recently, Krovetz proposed the VHASH family [30]. On 64-bit processors, it is faster than
the hash functions from UMAC.

Like UMAC, VHASH is ε-almost ∆-universal and builds on the NH family:

NH(s) =

(
l/2∑
i=1

(
((s2i−1 + k2i−1) mod 2n)

× ((s2i + k2i) mod 2n)
))

mod 22n.

NH is fast in part due to the fact that it uses one multiplication per pair of input words. In contrast,
MMH or PM+, as derivatives of MULTILINEAR, use at least one multiplication per input word.
However, the number of multiplications is not necessarily a performance bottleneck: recent Intel
processors can execute one multiplication per cycle. We should not expect hash functions with half
the number of multiplications to be twice as fast [17]. For example, a fast hash function might be
limited by the number of micro-operations that the processor can retire per cycle (4 on recent Intel
processors) rather than by the number of multiplications.
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Figure 4. Fraction of all 2n-bit integers that are the product of two n-bit integers.

Like MULTILINEAR, NH is 1/2n-almost ∆-universal, but MULTILINEAR generates values in
[0, 2n) whereas NH generates values in [0, 22n). (For this reason, NH might not be well suited for a
tree-based approach as described in § 4.)

Krovetz reports that VHASH is twice as fast as UMAC (0.5 CPU cycle per input byte vs. 1 CPU
cycle per input byte on an AMD Athlon processor). For long strings on 64-bit processors, we expect
VHASH to be one of the fastest universal hash families.

The updated VHASH [8] family is ε-almost universal over [0, 264 − 257) with ε = 1
261 for strings

of length up to 262 bits. In contrast, PM+ produces hash values in [0, 264) with ε = 8
263−6 for strings

of length up to (262 − 64) bits.
We can describe the 64-bit VHASH as follows: NH is used with n = 64 to generate 128-bit

hash values on 128-byte blocks. The result is 1/264-almost ∆-universal on each block. In turn,
the result is mappend to the interval [0, 2126) by applying a modulo reduction (mod 2126): the
family is then 1/262-almost ∆-universal on each block. The hashed values over each block are
then aggregated using a polynomial hash family computed over [0, 2127 − 1). The result is finally
reduced to [0, 264 − 257) with modulo operations and divisions.

The NH family is not regular. For instance, consider values of s where s = (s1, s2) and at least
one of s1 and s2 is even, which is 3

4 of all possible values. If both k1 and k2 are even, then NH(s) is
even, too, and, therefore, 3

4 of all values are mapped to only 1
2 of all values.

To make matters worse, the NH family is never regular for any choice of keys (ki) and it has
“very little regularity” as n grows in the following sense. For any given integers k1, k2 ∈ [0, 2n),
consider the map from [0, 2n)× [0, 2n)→ [0, 22n) given by NH(x, y) = ((x+ k1 mod 2n)((y +
k2 mod 2n) mod 22n. Because we pick x, y ∈ [0, 2n), we can choose k1 = k2 = 0 without loss of
generality. We can then ask about the size of the image of NH(x, y). That is, which fraction of all
integers in [0, 22n) are the product of two numbers in [0, 2n)? Erdös showed that this ratio goes to
zero as n becomes large [50]. Though we do not know of an exact formula, we plot the relative size
of the image of NH in Fig. 4: already at n = 20 only about one integer out of five in [0, 240) can
be generated by the product of two integers in [0, 220) [51]. We expect that for n = 64, the ratio
is considerably less than 20 %. Note that keeping only, say, the least significant 2n− 2 bits (e.g.,
applying mod 22n−2) or most significant 2n− 2 bits (e.g., applying÷22) does not change the core
result: the relative size of the image still goes to zero as n becomes large.

Hence NH is not even 5-regular. The issue is more dramatic if we consider component-wise
regularity. Indeed, consider NH(s) over 2-character strings (s1, s2). If s2 + k2 mod 2n = 0, we have
that NH(s) = 0 for all values of s1, which is the worst possible case. NH and VHASH are not at all
component-wise regular.
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