
HAL Id: hal-01351060
https://hal.science/hal-01351060

Submitted on 2 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Designing Expression Templates with Concepts
Bruno Bachelet, Loïc Yon

To cite this version:
Bruno Bachelet, Loïc Yon. Designing Expression Templates with Concepts. Software: Practice and
Experience, 2017, 47 (11), pp.1521-1537. �10.1002/spe.2483�. �hal-01351060�

https://hal.science/hal-01351060
https://hal.archives-ouvertes.fr


Designing Expression Templates with Concepts

Bruno Bachelet1,4, Loïc Yon2,4

Research ReportLIMOS/RR-15-02

December 3, 2015

1. bruno.bachelet@isima.fr - http://frog.isima.fr/bruno
2. loic.yon@isima.fr - http://www.isima.fr/˜loic
3. LIMOS, UMR 6158-CNRS, Université Blaise Pascal, BP 10125, 63173 Aubière, France.



Abstract

Concepts are likely to be introduced in a future C++ standard. They can be used for constraining tem-
plate parameters, which enables checking requirements on template parameters sooner in the compilation
process, and thus providing more intelligible error messages to the user.

They can also be used in the specialization of templates, thus leading to a better control over the
selection of the most appropriate version of a template for agiven instantiation. This latter aspect offers new
possibilities in the design of template libraries, as it enhances the specialization mechanism of templates,
and set it up as a solid alternative to inheritance when static binding can replace dynamic binding.

This report addresses the design of expression templates (i.e. templates that represent expressions and
are usually built through operator overloading) that are useful to develop an embedded domain specific lan-
guage (EDSL), and can speed up the evaluation of an expression by delaying the evaluation of intermediate
operations to avoid unnecessary temporary objects.

We propose to use concept-based template specialization toparse expression templates in order to
ease the design of an EDSL. This approach is a static variant of the well-known visitor design pattern that
replaces the overridden methods in the double dispatch of the original design pattern by template special-
izations based on concepts. An example of EDSL for linear programming developed with our solution
demonstrates that a concept-based design helps producing concise and reliable code.

Keywords: generic programming, template specialization, concept-based specialization, template metapro-
gramming, expression templates.

Résumé

Les concepts seront probablement introduits dans une future norme du C++. Ils servent notamment à
contraindre les paramètres d’un patron, ce qui permet de vérifier des exigences sur des paramètres du patron
plus tôt dans le processus de compilation, et de fournir ainsi des messages d’erreur plus compréhensibles
pour l’utilisateur.

Ils peuvent servir aussi dans la spécialisation des patrons, conduisant alors à un meilleur contrôle de la
sélection de la version la plus appropriée d’un patron pour une instanciation donnée. Ce dernier aspect offre
de nouvelles possibilités pour la conception de bibliothèques génériques, car il améliore le mécanisme de
spécialisation des patrons et le positionne comme une solide alternative à l’héritage quand la liaison statique
peut remplacer la liaison dynamique.

Ce rapport aborde la conception de patrons d’expressions (template expressions, i.e. des patrons qui
représentent des expressions et sont généralement construits par le biais de la surcharge d’opérateurs) qui
sont utiles pour développer un langage dédié embarqué (Embedded Domain Specific Language - EDSL), et
peuvent accélérer l’évaluation d’une expression en retardant l’évaluation d’opérations intermédiaires afin
d’éviter des objets temporaires inutiles.

Nous proposons d’utiliser la spécialisation de patron orientée concept pour parcourir les patrons d’ex-
pressions afin de faciliter la conception d’un EDSL. Cette approche est une variante statique du célèbre
patron de conceptionvisiteurqui remplace les redéfinitions de méthodes du doubledispatchdu patron de
conception original par des spécialisations de patron reposant sur les concepts. Un exemple d’EDSL pour
la programmation linéaire développé avec notre solution démontre que la conception orientée concept aide
à produire un code concis et fiable.

Mots clés : programmation générique, spécialisation de patron, spécialisation orientée concept, métapro-
grammation par patrons, patrons d’expression.



1

1 Introduction

Concepts present many advantages for template programming. As they can express constraints
on template parameters, they can improve checking the correctness of template use [11]. Without
those constraints, when a template is used, no immediate checking is performed on the types bound
to the template parameters. And afterward, when the types are effectively manipulated inside the
template, errors can be detected, usually with unintelligible messages to the user as they point to
the internals of the template.

Concepts can also be used to guide the specialization process of templates, likeenable_if 4

can achieve in some contexts, but offering new possibilities and safer instantiation [2]. Without
concepts, the template specialization mechanism is based on the type pattern of the parameters,
which is not always the best way to guide the specialization process: type patterns are missing
some information on types that could be relevant to define specializations.

However, concepts reveal to be a complex notion to integratein C++. After a first attempt
for the C++ language to support concepts [7], a second proposal, "Concepts Lite" [13], has been
prototyped in GCC5 and published as an ISO/IEC Technical Specification [12]. This extension
introduces template constraints, which is a subset of concepts that allows the use of predicates
to constrain template parameters. The long-term goal of this extension is to propose a complete
definition of concepts.

In this report, we focus on the use of concepts to enhance template specialization. Several
library-based proposals have been made to emulate concepts[10, 11], but with no, or a limited,
mechanism for concept-based specialization. In a previouswork, we proposed a library-based
solution that enables representing partially concepts andusing them for template specialization
[2]. We choose here to use this library, called C4TS++6 ("Concepts for Template Specialization
in C++" ), as it is fully portable (C++03 compliant, with syntactic improvements in C++11), and
light (only a small subset of concepts is implemented).

We consider here the design of embedded domain specific languages (EDSL) using concept-
based specialization to show some new possibilities of concepts. In C++, EDSL’s use operator
overloading to propose a language suited for a specific domain (e.g., linear algebra with matrix
and vector operations). Besides the syntactic aspect, the underlying metaprogramming technique
called "expression templates" enables speeding up the evaluation of an expression (notably, it
allows evaluating an expression in a single pass that avoidstemporary objects) [15].

Evaluation means parsing the expression and visit each one of its operations and operands
to perform a specific action. A generic approach for evaluating an expression is proposed here,
based on a static variant of the well-known visitor design pattern [5], that uses concept-based
specialization. Like the original design, this solution implements a double dispatch mechanism
that makes the solution open for extension: new kinds of visits and operands can be added at will.
Concepts also help making the code more reliable and concise, as visits are ruled by concepts
instead of type patterns.

Section 2 introduces notions on concept-based specialization and the syntax used all along the
document. Section 3 briefly recalls the expression templates technique and its benefits. Section 4
presents our concept-based design7 to build and evaluate expression templates with a static variant
of the visitor design pattern. Section 5 shows how to build anEDSL for linear programming with
our solution.

4. http://en.cppreference.com/w/cpp/types/enable_if
5. http://concepts.axiomatics.org/~ans/
6. http://forge.clermont-universite.fr/projects/cpp-concepts
7. Source code is available at:http://forge.clermont-universite.fr/projects/et-concepts

Research Report LIMOS/RR-15-02
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2015.



2

2 Concept-Based Specialization

2.1 Concepts and Relationships

When a type is bound to a template parameter, it must fulfill some requirements from the
template. These requirements can be represented by a concept that defines syntactic constraints
(i.e., on the interface of the type) and semantic constraints (i.e., on the behavior of the type).
When a type fulfills the requirements of a concept, it is said that the type "models" the concept.
The notion of a specialization between concepts is called "refinement": a concept that includes the
requirements of another concept is said to "refine" this concept.

For instance, let us define the conceptIntegral that captures the requirements of an inte-
gral number, and the conceptNumerical that captures the requirements of any kind of number.
One can state that typeint models conceptIntegral, and conceptIntegral refines concept
Numerical.

This taxonomy of concepts can be used for template specialization: one can provide a template
Example<T> with specializations forNumerical and forIntegral. Depending on the type
bound toT, the most specialized version of the template must be selected: versionIntegral for
T = int, versionNumerical for T = double. Notice thatint also modelsNumerical.

2.2 C4TS++ Library

Waiting for concepts to be part of C++ standard, we proposed asolution to allow template
specialization based on concepts [2]. Due to portability concerns, our goal was to provide a purely
library-based solution that could be used with any standardC++ compiler, and no need of an
additional tool. This library is based on template metaprogramming techniques, and uses macros
only as front-end to provide a light syntax to the user. It is C++03 compliant, but its interface has
recently been completed using C++11 features to simplify the syntax8. Nevertheless, the core of
the library remains as presented in [2].

This library, called C4TS++, provides syntax to declare concepts, modeling relationships and
refinement relationships. Based on these declarations, template specialization with concepts can
be achieved. Concepts are used to constrain parameters in a specialization. At instantiation time,
the most appropriate version of a template is selected basedon the concepts modeled by the types
bound to the parameters: a metaprogram determines, for eachone of these types, the most special-
ized concept to consider for this instantiation, based on the declared taxonomy of concepts. This
solution is also open for extension: new concepts, relationships, and template specializations can
be defined at any time; such additions will then be picked up bythe specialization mechanism.

2.3 Code Example

The example of Section 2.1 is written here using C4TS++. First of all, concepts have to be
declared, using macrognx_declare_concept.

gnx_declare_concept(Numerical);
gnx_declare_concept(Integral);
gnx_declare_concept(Floating);

8. Since version 2015-02-27.

Research Report LIMOS/RR-15-02
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2015.



3

Modeling and refinement relationships can be added, using macrognx_add_models. Notice
that both kinds of relationships are declared using the sameinstruction.

template <> gnx_add_models(Integral,Numerical); // Refinement
template <> gnx_add_models(Floating,Numerical); // Refinement

template <> gnx_add_models(int,Integral); // Modeling
template <> gnx_add_models(double,Floating); // Modeling

From now on, a taxonomy of concepts is defined, and it can be extended at any time through
new concept and/or relationship declarations (providing that a few rules are followed to prevent
some "Schrödinger’s Cat" effect with templates9, cf. technical report [3]).

Defining template specializations based on concepts is simple, but the primary version of the
template must be prepared. First, we need an identifier to represent a case of template definition
with specializations, which is called a "specialization context" (the reason is that our mechanism
needs to know all the concepts involved in the specializations of a given template; as code analysis
is not possible with a library-based approach, the solutionis to make explicit declarations that as-
sociate concepts to a specialization context). The contextmust be unique for each case of template
definition; it can be an existing type, or a type specially declared for this purpose.

struct ExampleContext;

Second, for each template parameterT that will be constrained by concepts in specializa-
tions, an additional parameterC is necessary to represent the most appropriate concept ofT

in this context of specialization (the value ofC will be deduced automatically by metafunction
gnx_best_concept_t).

template < class T,
class C = gnx_best_concept_t<ExampleContext,T>

>
struct Example;

The template is now prepared for concept-based specialization: the additional parameter can
be constrained by any concept to define a specialization, theonly requirement being to declare the
use of the concept to the context (using macrognx_add_uses).

template <> gnx_add_uses(ExampleContext,Numerical);

template <class T> struct Example<T,Numerical>
{ Example(void) { cout << typeid(T).name() << " = Numerical" << endl; } };

template <> gnx_add_uses(ExampleContext,Integral);

template <class T> struct Example<T,Integral>
{ Example(void) { cout << typeid(T).name() << " = Integral" << endl; } };

template <> gnx_add_uses(ExampleContext,Floating);

template <class T> struct Example<T,Floating>
{ Example(void) { cout << typeid(T).name() << " = Floating" << endl; } };

New concepts and/or relationships can be added at any time. They will be considered in
the specialization process as long as the template has not been instantiated (cf. technical re-
port [3]). For instance, a classMyNumber can be defined and declared to modelNumerical,
and automatically theNumerical version of the template will be selected when instantiating
Example<MyNumber>.

class MyNumber { [...] };

template <> gnx_add_models(MyNumber,Numerical);

9. Metaphor fromhttp://www.codeproject.com/Articles/776770/Automatic-Static-Counter.

Research Report LIMOS/RR-15-02
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2015.



4

3 Expression Templates

Expression templates are a technique introduced by [15] and[14] to represent an expression as
an object, using templates to build the type of this object. The main goal of expression templates
is to tackle performance problems that may occur with operator overloading. The structure of
an expression is represented by a recursive composition of types that models an abstract syntax
tree (AST): an expression is an operation on operands that are expressions. With C++11, the
composition can be modeled by a single templateExpression with a parameter to represent the
operator characterizing the operation, and a pack of parameters to represent the operands.

template <class OPERATOR,class... OPERANDS> struct Expression {
std::tuple<const OPERANDS &...> operands;

template <class... OPS> explicit Expression(OPS &&... ops)
: operands(ops...) {}

double evaluate(unsigned i) const
{ return OPERATOR::evaluate(operands,i); }

};

The code presented in this section is simplified to point out the basics only (notably, type
passing should be optimized with perfect forwarding, and types should be stripped of qualifiers to
bind the template parameters ofExpression). Assume now that each unary or binary arithmetic
operator of C++ is represented by a class defined according tothe following pattern.

struct AdditionOperator {
template <class OP1,class OP2>
static double evaluate(const std::tuple<OP1,OP2> & tuple,unsigned i) {
return std::get<0>(tuple).evaluate(i) + std::get<1>(tuple).evaluate(i);

}
};

Consider a templateArray<N> (similar tostd::array) that represents an array of sizeN,
we would like to overload the arithmetic operators so operations on arrays are applied on each ele-
ment, e.g., operationc = a+b meansc[i] = a[i]+b[i] for each element at indexi. Expression
-a+b*c for instance, where variablesa, b andc are objects of classArray<N>, can be modeled
by a recursive composition using templateExpression.

using exp_t = Expression< AdditionOperator,
Expression< MinusOperator,

Array<N>
>,

Expression< MultiplicationOperator,
Array<N>,
Array<N>

>
>;

Notice that, at compile time, such a static structure could be parsed using metaprogramming
techniques to generate a specific code. Assume now that arithmetic operators have been over-
loaded as follows.

template <class OP1,class OP2>
inline Expression<AdditionOperator,OP1,OP2> operator+(OP1 && op1,

OP2 && op2)
{ return Expression<AdditionOperator,OP1,OP2>(op1,op2); }

This overloading allows code-a+b*c to automatically produce an object of typeexp_t.
Before introducing lambda expressions in C++11, such objects could be used to represent lambda

Research Report LIMOS/RR-15-02
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2015.



5

functions [15], but the main interest of expression templates is their ability to delay the evaluation
of intermediate operations to avoid unnecessary temporaryobjects. For instance, let us consider
the assignmentd = -a+b*c, whered is an object of classArray<N> and templateArray has the
following assignment operator.

template <class EXPRESSION>
inline Array<N> & Array<N>::operator=(const EXPRESSION & expression) {
for (unsigned i = 0; i<N; ++i) values[i] = expression.evaluate(i);
return *this;

}

The AST of the expression is built and passed as argument to the assignment operator. In this
function, methodevaluate is recursively called on every operation and operand of the expression
(notice thatArray must have a methodevaluate), which results in a single loop and the inlin-
ing of the whole evaluation. The code generated for the assignment operator has a performance
equivalent to:

for (unsigned i = 0; i<N; ++i) d[i] = -a[i] + b[i]*c[i];

Notice that basic operator overloading would create temporary objects during the evaluation
of expression-a+b*c, which would produce a code having a performance equivalentto:

Array<N> a1; for (unsigned i = 0; i<N; ++i) a1[i] = -a[i];
Array<N> a2; for (unsigned i = 0; i<N; ++i) a2[i] = b[i]*c[i];
Array<N> a3; for (unsigned i = 0; i<N; ++i) a3[i] = a1[i]+a2[i];

4 Expression Templates with Concepts

We propose to use concepts to design a framework for expression templates, with the aim of
modeling expressions and overloading operators once and for all, so users can focus on expression
parsing. In the previous example, templateExpression is designed for a single kind of evaluation
(cf. evaluate method), whereas one might need various kinds of evaluation(e.g., computation,
display, semantic analysis...). Our solution uses concept-based specialization as a reliable and
extensible way of defining evaluations. It is inspired from the double dispatch of the visitor design
pattern [5], with template specialization replacing method overriding. Concepts could also provide
more control over operands, e.g., static assertions formulated based on concepts could detect the
use of wrong operands for an operation.

First, our design for expression templates is introduced, with a specific care on the possible
storage of an expression to delay evaluation. Then, the taxonomy of concepts that will guide
the parsing of expressions, and operator overloading that will produce expression objects, are
presented. Finally, our solution to evaluate an expressionwith concept-based specialization is
detailed.

4.1 Modeling

A different version of templateExpression is proposed, with no evaluation method (the
process is externalized, cf. double dispatch), and a new template parameter (booleanFIXED)
to anticipate the possibility of storing an expression to postpone evaluation. ParameterFIXED
indicates whether an expression is an "rvalue" ("transient" expression, temporary object destroyed
at the end of instruction), or an "lvalue" ("fixed" expression, a copy of the temporary version made
for further use)10.

10. http://en.cppreference.com/w/cpp/language/value_category

Research Report LIMOS/RR-15-02
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2015.



6

template <bool FIXED,class OPERATOR,class... OPERANDS>
struct Expression : public AbstractExpression {
using operator_t = OPERATOR;
using operands_t = std::tuple<OPERANDS...>;

std::tuple<etc_transient_operand_t<OPERANDS>...> operands;

template <class... OPS> explicit Expression(OPS &&... ops)
: operands(std::forward<OPS>(ops)...) {}

};

The primary version of templateExpression represents a transient expression (i.e.,FIXED =

false). As shown in Figure 1, the template models conceptcExpression that imposes fea-
tures to access the operator and the operands of the expression. Notice the use of metafunction
etc_transient_operand_t 11 that opens the possibility of choosing the way of storing an
operand (by reference, the default choice to avoid unnecessary copies, or by copy).

4.2 Fixing an Expression

One might need to store an expression for further use: to postpone the evaluation, or to perform
multiple evaluations in sequence (e.g., analyzing the AST for parallel evaluation). Let us consider
such an example, where arithmetic operators are overloadedto return transient expressions (as
detailed in Section 4.4).

auto & e = -a+b*c;
[...]
f(e);

This code is incorrect, as the AST built for the expression isan rvalue, which makes reference
e invalid at the last line. The expression must be copied to getan lvalue. TemplateExpression
is specialized forFIXED = true to represent a fixed expression. Its constructor makes possible the
copy of a transient expression to get a fixed expression: the conversion of each operand is made
by metafunctionetc_fixed_operand_t<T> that returns the type to use for fixing and storing
an operand of typeT.

template <class OPERATOR,class... OPERANDS>
struct Expression<true,OPERATOR,OPERANDS...> : public AbstractExpression {
using operator_t = OPERATOR;
using operands_t = std::tuple<OPERANDS...>;

std::tuple<etc_fixed_operand_t<OPERANDS>...> operands;

template <class... OPS>
Expression(const Expression<false,OPERATOR,OPS...> & expression)
: operands(expression.operands) {}

};

Operands that are rvalues must be copied (mainly the instances of templateExpression),
but not necessarily operands likea, b andc that are lvalues. Depending on the application, one
might want to keep references or make copies of operandsa, b andc. The default behavior is that
expressions keep constant references of lvalues, but metafunctionetc_fixed_operand_t can
be specialized.

11. We chose to prefix all the metafunctions and macros of our library with "etc_".

Research Report LIMOS/RR-15-02
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2015.



7

Functionetc_fix is provided to help (thanks to type deduction) the copy of a transient ex-
pression of typeT to make a fixed expression of typeetc_fixed_t<T>. The previous example
must be corrected as follows.

auto e = etc_fix(-a+b*c);
[...]
f(e);

A templateLiteral<FIXED,TYPE> is necessary to keep track of rvalue operands of type
TYPE that are not objects based on templateExpression. For instance, in expression3*a, the
first operand is an rvalue that must be copied when the whole expression is being fixed. Operator
overloading is designed to automatically encapsulate suchan rvalue with templateLiteral (cf.
"boxing" in Section 4.4). For expression3*a, it produces an object of the following type.

Expression< false,MultiplicationOperator,
Literal<false,int>,
Array<N>

>

TemplateLiteral is considered a unary expression: it models conceptcLiteral that re-
fines conceptcExpression (cf. Figure 1). Therefore, it provides the same features as template
Expression. It is merely a wrapper for an operand that is either transient (it keeps a constant
reference of the operand) or fixed (it keeps a copy of the operand).

4.3 Taxonomy of Concepts

As parsing an expression is based on concepts, it is necessary to define a taxonomy of the
concepts that characterize the operations and operands of expressions.

Figure 1:Taxonomy of concepts for expressions.

Research Report LIMOS/RR-15-02
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2015.



8

Figure 1 shows that templatesExpression and Literal indirectly model conceptcEx-
pression, and that expressions are classified according to their arity: conceptcExpression1
for unary expressions, conceptcExpression2 for binary expressions... Both templates also in-
herit from abstract classAbstractExpression to enable type erasure (cf. Section 4.5.3).

Each operator of interest for expression templates is represented by a class (likeAddition-
Operator presented in Section 3, but with no evaluation method), and the associated operation is
characterized by a concept. The taxonomy of concepts is completed so expressions based on the
operator model the concept of the operation.

Figure 2:Addition operation in the taxonomy of concepts.

For instance, declaring the addition operator implies defining classAdditionOperator and
declaring conceptcAdditionOperation that refinescExpression2 (cf. Figure 2). Besides,
any instance ofExpression with parameterOPERATOR = AdditionOperator models concept
cAdditionOperation. This declaration can be achieved as follows using C4TS++.

struct AdditionOperator;

gnx_declare_concept(cAdditionOperation);

template <> gnx_add_models(cAdditionOperation,cExpression2);

template <bool FIXED,class... OPERANDS>
gnx_add_models(Expression<FIXED,AdditionOperator,OPERANDS...>,

cAdditionOperation);

The taxonomy can be extended, notably to detect the originalsemantics of an operator, e.g.,
to know if it is arithmetic, logical or relational. For this purpose, conceptscArithmetic-
Operation, cLogicalOperation and cRelationalOperation have been inserted in the
taxonomy (e.g., conceptcAdditionOperation refines conceptcArithmeticOperation).

4.4 Operators Overloading

Once an operator has been declared, the associated functionmust be overloaded to return an
expression object. For instance, functionoperator+ has to be overloaded to return an object of
typeExpression<false,AdditionOperator,B1,B2>, whereB1 andB2 are the types of the
two operands. However, such an overload requires some care,as shown in the following code
(based on this pattern, macros are provided to allow overload with a single instruction12).

12. Macrosetc_overload_operator[1|2] are provided to declare a unary or binary operator, and overload the
associated function in a single line:etc_overload_operator2(Addition,operator+,"+").

Research Report LIMOS/RR-15-02
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2015.



9

template < class OP1,class OP2,
class T1 = gnx_base_type_t<OP1>,
class T2 = gnx_base_type_t<OP2>,
class B1 = etc_operand_boxing_t<OP1 &&>,
class B2 = etc_operand_boxing_t<OP2 &&>

>
typename enable_if< gnx_or< etc_is_operand<T1>,

etc_is_operand<T2>
>,

Expression<false,AdditionOperator,B1,B2>
>::type

operator+(OP1 && op1,OP2 && op2) {
return Expression<false,AdditionOperator,B1,B2>(std::forward<OP1>(op1),

std::forward<OP2>(op2));
}

The overload is parameterized on typesOP1 andOP2 (deduced at function call) that are con-
verted intoB1 andB2 (operation called "boxing") using metafunctionetc_operand_boxing_t.
This metafunction is designed to convert any rvalue that is not based on templateExpression
into an instance of templateLiteral (as explained in Section 4.2).OP1 and OP2 are also
stripped of their qualifiers to getT1 andT2 (e.g.,const int & becomesint) using metafunction
gnx_base_type_t (note that it is also used in boxing to get typesB1 andB2 without qualifiers).

Without constraints onOP1 andOP2, the overload would be valid for any type of operand. The
SFINAE principle of C++, through templateenable_if 4, is applied to get control: the overload
is valid only if T1 or T2 is a type activated to be an operand (metafunctionetc_is_operand<T>

returns whether typeT is activated). Initially, only types based on templatesExpression and
Literal are activated to be operands, and one has to specialize metafunctionetc_is_operand
to formally activate a type. Macroetc_activate_operand is provided to help the specializa-
tion. For instance,Array<N> can be activated as follows.

template <unsigned N> etc_activate_operand(Array<N>);

4.5 Expression Evaluation

4.5.1 Visitor Design Pattern

The visitor design pattern is a well-known solution to represent an operation to apply on each
element of an heterogeneous set, where the code of the operation depends on the type of the
element [5]. The pattern allows defining new operations withno impact on the classes of the
elements. In our case, it could be used to evaluate an expression (cf. Figure 3), but it presents
many restrictions: it is based on dynamic binding (which could lead to significant execution time
overhead), and elements must belong to the same base class (which narrows the possibilities of
extension, as any object cannot be an element in this pattern).

The principle is that an object, the visitor, is moved from one element to the next to perform
the operation. The code executed for each visit depends on the type of the visitor (i.e., the kind
of operation to perform) and on the type of the element. This dispatch is based on two virtual
methods:accept that is overridden for each type of element (to redirect to the correctvisit
method of the visitor), andvisit that is overloaded for each type of element and is overridden
for each kind of operation (cf. Figure 3, where the visited elements are operands of an expression).
A visit is achieved by calling theaccept method of the element with the visitor as argument.

Research Report LIMOS/RR-15-02
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2015.



10

Figure 3:Visitor design pattern for expression evaluation.

In this design, the elements belong to the same base class, whereas with expression templates,
the elements can be of various types with no class relationship, such as the instances of templates
Expression andArray. Figure 3 also presents methodsvisit as virtual template methods,
which is impossible in C++. Therefore, thevisit method should be explicitly overloaded for
possibly any instance of templateExpression, which is hardly tractable. Besides, the signature
of methodvisit is fixed: in our example, there is no value returned and a single argument (the
operand). A workaround is to add attributes to the visitor torepresent the return value and the
arguments, but it could lead to unclear code (cf. visitorEvaluator).

4.5.2 Concept-Based Visitor

A solution with concepts is proposed that keeps the idea of double dispatch of the visitor design
pattern. This static approach is implemented by a templateetc_visit with two parameters: the
type of the visitor and the type of the operand.

template < class VISITOR,
class OPERAND,
class CONCEPT = gnx_best_concept_t<VISITOR,OPERAND>,
class ENABLE = void

>
struct etc_visit;

The double inheritance of the original design pattern is replaced by a single template spe-
cialization: for instance, instead of specializing classVisitor with classX and classOperand

Research Report LIMOS/RR-15-02
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2015.



11

with classY, templateetc_visit is specialized withVISITOR = X andOPERAND = Y. The spe-
cialization process must be controlled by concepts, as presented in Section 2, which requires an
additional parameterCONCEPT. A last parameterENABLE is also added to help applying SFINAE
if necessary.

Figure 4:Concept-based visitor for expression evaluation.

The notion of visitor remains in the form of a class acting as identifier of the type of opera-
tion applied on the elements, but the instantiation of an object is not mandatory. Let us declare
an empty classEvaluator to represent the operation of computing the element at indexi of an
expression ofArray<N> objects. For instance, to define the visit of the addition operator, tem-
plateetc_visit is specialized for conceptcAdditionOperation and visitorEvaluator (cf.
Figure 4 and the following code). Notice that the visitor class also acts as specialization context
(cf. Section 2).

template <> gnx_add_uses(Evaluator,cAdditionOperation);

template <class OPERATION>
struct etc_visit<Evaluator,OPERATION,cAdditionOperation> {
static double run(const OPERATION & op,unsigned i) {
return etc_run<Evaluator,0>(op,i) + etc_run<Evaluator,1>(op,i);

}
};

The code of the visit is located in a static methodrun of the specialized version of template
etc_visit. The prototype of this method is almost free, the only constraint being that the first
argument must be the operand to process. Parsing all the operands and operations of an expression
is recursive: for instance, visiting an addition operationmeans adding the results of the visits
on each operand. A visit is called through functionetc_run that helps instantiating template
etc_visit, as shown in the following code.

template <class VISITOR,unsigned N,class EXPRESSION,class... ARGS>
inline auto etc_run(EXPRESSION && expression,ARGS &&... args) {
return etc_visit< gnx_base_type_t<VISITOR>,

etc_operand_type_t<EXPRESSION,N>
>::run(etc_operand_value<N>(expression),

gnx_forward<ARGS>(args)...);
}

Research Report LIMOS/RR-15-02
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2015.



12

Functionsetc_operand_type_t andetc_operand_value are provided to ease the access
to the type and value of an operand from its position in an expression. Several versions of function
etc_run are implemented to allow more flexibility. Notably, the function can be called with
the index of the operand to visit, as in the previous example,or without index to visit the whole
expression. For instance, the assignment operator of templateArray can be overloaded as follows
to fully evaluate the expression received as argument.

template <class EXPRESSION>
inline Array<N> & Array<N>::operator=(const EXPRESSION & expression) {
for (unsigned i = 0; i<N; ++i)
values[i] = etc_run<Evaluator>(expression,i);

return *this;
}

4.5.3 Expression and Visitor Types Erasure

In all previous examples, expressions are evaluated knowing their exact type at compile time,
which limits the performance overhead of expression templates. However, one could delay the
evaluation enough to have to store the expression with type erasure (i.e., by losing the concrete
type of the expression at compile time). A unique abstract type is then necessary to represent
any expression:Expression andLiteral templates both inherit fromAbstractExpression
(cf. Figure 1). This way, any expression can be manipulated as a pointer or a reference of type
AbstractExpression.

Figure 5:Type erasure to delay expression evaluation.

Research Report LIMOS/RR-15-02
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2015.



13

Let us consider the following example where expression templates are used to represent for-
mulas to compute the values of variables.

Variable a,b,c,d,e;

e = a+d;
a = 3;
d = b*c;
b = 7;
c = 14;

cout << e.evaluate();

The formulas are written with no specific order: for instance, the formula of variabled that
depends onb andc is defined before the formulas ofb andc. The evaluation ofb*c cannot
be performed at the assignment tod. It must be delayed after the assignment ofb andc. Thus,
eachVariable object needs to store the expression of its formula with typeerasure, because the
type of the expression cannot be deduced at the definition of classVariable. At assignment, the
expression is dynamically copied to get a fixed version that is referenced by a pointer attribute in
classVariable (cf. Figure 5).

We now consider the possibility to compute the value of a variable (cf. methodevaluate)
and to output its formula (cf. methoddisplay). For this purpose, visitorsEvaluator and
Streamer are defined and used to specialize templateetc_visit. But to visit an expression,
i.e., when calling functionetc_run, the visitors must be handled with the concrete typeX of the
expression. In our example, typeX is known at assignment and lost after.

Template classConcreteVisit<VISITOR,EXPRESSION> is defined to represent objects
that embed, in their methodrun, the code to visit an object of concrete typeEXPRESSION with
VISITOR (cf. Figure 6). These objects are dynamically created during the assignment (by call-
ing the helper functionetc_concrete_visit), and stored in attributes (cf.evaluator and
streamer), while the concrete typeX of the expression is known (cf. Figure 5). Afterward, their
run method can be called to start a visit (cf. methodsevaluate anddisplay).

Figure 6:Visit abstraction for type erasure.

As for expressions, type erasure is necessary forConcreteVisit objects. Therefore, ab-
stract classAbstractVisit<VISITOR> is defined to represent the visit byVISITOR of any
expression, soConcreteVisit objects can be manipulated as pointers or references of type
AbstractVisit<VISITOR>. Notice that methodrun of these objects has to be virtual, which
implies a performance overhead when calling for a visit. However, the performance of the visit
itself remains unchanged.

To define templatesAbstractVisit andConcreteVisit requires the signature of the vis-
itor, meaning the return typeRET and the arguments typesARGS... of methodrun in specializa-
tions ofetc_visit for this visitor. To facilitate the instantiation of those templates, a member

Research Report LIMOS/RR-15-02
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2015.



14

type signature_t has to be defined in each visitor to represent its signature (using template
specialization, typesRET andARGS... can be deduced fromsignature_t automatically). For
instance, visitorsEvaluator andStreamer are defined as follows.

struct Evaluator { using signature_t = double(void); };
struct Streamer { using signature_t = void(std::ostream &); };

5 Example of EDSL

An EDSL for linear programming is defined here with concept-based expression templates13.
A linear program (classProgram) is a problem where an objective has to be optimized (minimiz-
ing or maximizing a linear expression) under constraints that are linear expressions bounded by an
inferior or superior value, or equal to a value. A linear expression (classLinear 14) is a weighted
sum of variables (classVariable). Here is an example of linear program expressed with our
EDSL.

P



















maximize 3x1 − 2x2 + 8x3

under 5x1 − 2x2 + 4x3 ≤ 8

x1 + 3x2 + 8x3 ≥ 25

9x1 + 6x2 − 3x3 = 17

Program p;

auto & x1 = p.newVariable();
auto & x2 = p.newVariable();
auto & x3 = p.newVariable();

p.maximize(3*x1 - 2*x2 + 8*x3);

p += 5*x1 - 2*x2 + 4*x3 <= 8;
p += x1 + 3*x2 + 8*x3 >= 25;
p += 9*x1 + 6*x2 - 3*x3 == 17;

ClassVariable is activated to be an operand, which automatically makes anyexpression with
at least one operand of this type to produce an object based ontemplateExpression. The latter
can be evaluated by visitorBuilder to build the linear expression (or constraint) that it represents
(i.e. a Linear object). Notably, the assignment operator of classLinear is overloaded the
following way.

template <class EXPRESSION>
inline Linear & Linear::operator=(const EXPRESSION & expression) {
clear();
etc_run<Builder>(expression,*this);
return *this;

}

The visit consists in building progressively a linear expression (or constraint) by associating
a coefficient to each variable. The process starts with an expression where all the coefficients
are null, and progressively, for each encountered operand,these coefficients are updated, leading
finally to a simplified linear expression. For instance, the following constraints will be simplified
at their evaluation.

3*x1 + 4*(2*x2 - 3*x3) <= 13 −→ 3*x1 + 8*x2 - 12*x3 <= 13
2*x1 - 3*x2 >= 5*x1 + 2*x3 −→ -3*x1 - 3*x2 - 2*x3 >= 0

The visit ofBuilder is defined from the specializations of templateetc_visit described
in Table 1. Some are constrained by the type of the operand (e.g., Variable and Linear),
whereas others are constrained by the concepts modeled by the operand (e.g., the addition and
multiplication operations).

13. Source code is available at:http://forge.clermont-universite.fr/projects/et-concepts
14. To avoid confusion with templateExpression, classlin::Expression from code is calledLinear here.

Research Report LIMOS/RR-15-02
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2015.



15

Specialization constraints Assertions
OPERAND = Variable

OPERAND = Linear

OPERAND modelscLiteral The literal is arithmetic.

OPERAND modelscMultiplicationOperation One operand is an arithmetic literal
and the other one is a linear expression.

OPERAND modelscDivisionOperation The left operand is a linear expression
and the right operand is an arithmetic literal.

OPERAND modelscPlusOperation The operand is a linear expression.
or cMinusOperation

OPERAND modelscAdditionOperation Both operands are linear expressions.
or cSubtractionOperation

OPERAND modelscRelationalOperation Both operands are linear expressions and the
relationship is an inferiority, superiority or equality.

Table 1:Specializations for the visit of a linear expression or constraint.

For each visit, assertions are set in order to verify the syntax of the expression and make sure
that it is really linear. These assertions are only superficial, because the recursivity of the visit
allows in-depth verification. Here is the example of the visit of a subtraction operation.

template <> gnx_add_uses(Builder,cSubtractionOperation);

template <class TYPE>
struct etc_visit<Builder,TYPE,cSubtractionOperation> {
static_assert(is_linear<etc_operand_type_t<TYPE,0>>::value,

"Left operand must be a linear expression.");

static_assert(is_linear<etc_operand_type_t<TYPE,1>>::value,
"Right operand must be a linear expression.");

static void run(const TYPE & operation,Linear & linear,
double coef = 1.0) {

etc_run<Builder,0>(operation,linear,coef);
etc_run<Builder,1>(operation,linear,-coef);

}
};

Assertions ensure that both operands are linear expressions: metafunctionis_linear returns
whether the operand is linear by checking that its type isLinear or Variable, or that it models
the concepts of operations supposedly linear such ascAdditionOperation, cMultiplica-
tionOperation... This test relies on metafunctiongnx_matches 15 provided by C4TS++.

template <class TYPE>
struct is_linear : gnx_matches<Builder,TYPE,

Linear,Variable,
cAdditionOperation,
cMultiplicationOperation,
[...]

> {};

With only 8 specializations16, verification, building and simplification of a linear expression
or constraint are defined. Thanks to concepts, the visit of the expression is fully controlled: the
selection of a specialized version of templateetc_visit is only possible if the operand models
the specified concept, and assertions allow additional controls to validate the syntax.

15. The second parameter is compared with the types and concepts that follow, the first one is the observer (cf.
Section 2).

16. C4TS++ allows using logical combinations of concepts tocontrol template specialization [1].

Research Report LIMOS/RR-15-02
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2015.



16

6 Conclusion

A new design of expression templates based on concepts is proposed in this report. A tax-
onomy of the concepts that characterize the operations and operands of expressions has been
defined. As it relies on the implementation of concepts by theC4TS++ library, the taxonomy can
be extended at will, notably to distinguish operations based on semantics. The evaluation of an
expression is a recursive process that goes through the abstract syntactic tree of the expression to
apply a specific action on each node. Nodes are operations andoperands that can be distinguished
based on the concepts they model, so the evaluation process is defined only from actions associated
to some specific concepts.

This design is inspired from the double dispatch of the visitor design pattern that enables
extensibility: new kinds of evaluations can be defined and new types of operands can be addressed
at will. In this solution, the double inheritance of the original design pattern is replaced by a single
template specialization with evaluation and operand typesas parameters. Concept-based template
specialization allows defining a specific action for any given concept or logical combination of
concepts modeled by an operand or operation of an expression.

In the case of operations on vectors and matrices, expression templates provide a significant
speed up compared to classic overloading [16]. However, this technique can prevent some com-
piler optimization due to an aliasing problem [4, 8], or can be revealed inefficient on specific
operations where temporary objects are necessary (like matrices multiplication [9]). Concepts can
help to address these issues by bringing more semantics to operators (like [6] that assigns alge-
braic properties to types using concepts) and using a concept-based visitor to adapt the evaluation
according to the nature of the operators.

Expression templates based on concepts have been used to define an EDSL for linear program-
ming. With only a few template specializations, an evaluation process to verify, build and simplify
linear expressions and constraints has been designed. Thisexperiment shows that concepts of-
fer possibilities of controlling template specializationthat enforce its reliability and selectivity.
Concept-based specialization should be considered to replace inheritance when dynamic binding
is not necessary, as in the case of parsing the static structure of an expression.

References

[1] Bruno Bachelet. Logical Operations on Concepts in the C4TS++ Library. Technical report,
LIMOS, Université Blaise Pascal, Clermont-Ferrand, France, 2012.

[2] Bruno Bachelet, Antoine Mahul, and Loïc Yon. Template Metaprogramming Techniques
for Concept-Based Specialization. InScientific Programming, volume 21, pages 43–61. IOS
Press, 2013.

[3] Bruno Bachelet and Loïc Yon. Schrödinger Effect of Templates. Technical report, LIMOS,
Université Blaise Pascal, Clermont-Ferrand, France, 2015.

[4] Federico Bassetti, Kei Davis, and Dan Quinlan. C++ Expression Templates Performance
Issues in Scientific Computing. InParallel Processing Symposium, pages 635–639, 1998.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[6] Peter Gottschling and Andrew Lumsdaine. Integrating Semantics and Compilation: Using
C++ Concepts to Develop Robust and Efficient Reusable Libraries. InProceedings of the 7th
International Conference on Generative Programming and Component Engineering, pages
67–75, 2008.

Research Report LIMOS/RR-15-02
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2015.



17

[7] Douglas Gregor, Bjarne Stroustrup, Jeremy Siek, and James Widman. Proposed Wording for
Concepts (Revision 3). Technical report, N2421=07-0281, ISO/IEC JTC 1, 2007.

[8] Jochen Härdtlein, Alexander Linke, and Christoph Pflaum. Fast Expression Templates:
Object-Oriented High Performance Computing. InLecture Notes in Computer Science, vol-
ume 3515, pages 1055–1063. Springer-Verlag, 2005.

[9] Klaus Iglberger, Georg Hager, Jan Treibig, and Ulrich Rüde. Expression Templates Re-
visited: a Performance Analysis of Current Methodologies.In SIAM Journal on Scientific
Computing, volume 34-2, pages C42–C69, 2012.

[10] Brian McNamara and Yannis Smaragdakis. Static Interfaces in C++. InFirst Workshop on
C++ Template Programming, 2000.

[11] Jeremy G. Siek and Andrew Lumsdaine. Concept Checking:Binding Parametric Polymor-
phism in C++. InFirst Workshop on C++ Template Programming, 2000.

[12] Andrew Sutton. Working Draft, C++ Extensions for Concepts. Technical report, N4361,
ISO/IEC JTC 1, 2015.

[13] Andrew Sutton, Bjarne Stroustrup, and Gabriel Dos Reis. Concepts Lite: Constraining Tem-
plates with Predicates. Technical report, N3580, ISO/IEC JTC 1, 2013.

[14] David Vandevoorde and Nicolai M. Josuttis.C++ Templates: the Complete Guide. Addison-
Wesley, 2003.

[15] Todd L. Veldhuizen. Expression Templates. InC++ Gems, pages 475–487. SIGS Books,
1996.

[16] Todd L. Veldhuizen. Arrays in Blitz++. InLecture Notes in Computer Science, volume 1505,
pages 223–230. Springer-Verlag, 1998.

Research Report LIMOS/RR-15-02
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2015.


