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Abstract

Concepts are likely to be introduced in a future C++ standdrdey can be used for constraining tem-
plate parameters, which enables checking requiremenioplate parameters sooner in the compilation
process, and thus providing more intelligible error messag the user.

They can also be used in the specialization of templates lgmading to a better control over the
selection of the most appropriate version of a template fven instantiation. This latter aspect offers new
possibilities in the design of template libraries, as it@mtes the specialization mechanism of templates,
and set it up as a solid alternative to inheritance whencdbatiding can replace dynamic binding.

This report addresses the design of expression templatesginplates that represent expressions and
are usually built through operator overloading) that aefuido develop an embedded domain specific lan-
guage (EDSL), and can speed up the evaluation of an expndsgidelaying the evaluation of intermediate
operations to avoid unnecessary temporary objects.

We propose to use concept-based template specializatiparse expression templates in order to
ease the design of an EDSL. This approach is a static varianeavell-known visitor design pattern that
replaces the overridden methods in the double dispatcheadtiginal design pattern by template special-
izations based on concepts. An example of EDSL for lineagrmming developed with our solution
demonstrates that a concept-based design helps prodwerioige and reliable code.

Keywords: generic programming, template specialization, concaget specialization, template metapro-
gramming, expression templates.

Résumé

Les concepts seront probablement introduits dans uneefutarme du C++. lls servent notamment a
contraindre les parameétres d’un patron, ce qui permet diger@tes exigences sur des parametres du patron
plus t6t dans le processus de compilation, et de fournii dies messages d’erreur plus compréhensibles
pour l'utilisateur.

lIs peuvent servir aussi dans la spécialisation des pagtoomsiuisant alors a un meilleur contréle de la
sélection de la version la plus appropriée d’'un patron paerinstanciation donnée. Ce dernier aspect offre
de nouvelles possibilités pour la conception de bibliotlesaggénériques, car il améliore le mécanisme de
spécialisation des patrons et le positionne comme uneesaliernative a I'héritage quand la liaison statique
peut remplacer la liaison dynamique.

Ce rapport aborde la conception de patrons d’expresstengplate expressionge. des patrons qui
représentent des expressions et sont généralement étngtnule biais de la surcharge d’opérateurs) qui
sont utiles pour développer un langage dédié embaigudédded Domain Specific Language - ERSL
peuvent accélérer I'évaluation d’une expression en ratarivaluation d’opérations intermédiaires afin
d’éviter des objets temporaires inutiles.

Nous proposons d'utiliser la spécialisation de patronrtéie concept pour parcourir les patrons d’ex-
pressions afin de faciliter la conception d’'un EDSL. Cettpraphe est une variante statique du célébre
patron de conceptiowisiteur qui remplace les redéfinitions de méthodes du dodispatchdu patron de
conception original par des spécialisations de patronsapiosur les concepts. Un exemple d’EDSL pour
la programmation linéaire développé avec notre solutionaiére que la conception orientée concept aide
a produire un code concis et fiable.

Mots clés : programmation générique, spécialisation de patron, afigation orientée concept, métapro-
grammation par patrons, patrons d’expression.



1 Introduction

Concepts present many advantages for template programasrtfey can express constraints
on template parameters, they can improve checking theatness of template use [11]. Without
those constraints, when a template is used, ho immediatkiciges performed on the types bound
to the template parameters. And afterward, when the tymesféectively manipulated inside the
template, errors can be detected, usually with uninteligmessages to the user as they point to
the internals of the template.

Concepts can also be used to guide the specialization protésmplates, likenabl e_i f 4
can achieve in some contexts, but offering new possilslitiad safer instantiation [2]. Without
concepts, the template specialization mechanism is basédeatype pattern of the parameters,
which is not always the best way to guide the specializatimtgss: type patterns are missing
some information on types that could be relevant to defineialations.

However, concepts reveal to be a complex notion to integrate++. After a first attempt
for the C++ language to support concepts [7], a second pabpt@oncepts Lite" [13], has been
prototyped in GCC and published as an ISO/IEC Technical Specification [12]is Extension
introduces template constraints, which is a subset of giadhat allows the use of predicates
to constrain template parameters. The long-term goal efdkiension is to propose a complete
definition of concepts.

In this report, we focus on the use of concepts to enhancelaéengpecialization. Several
library-based proposals have been made to emulate cor[dé@pt$l], but with no, or a limited,
mechanism for concept-based specialization. In a prewoark, we proposed a library-based
solution that enables representing partially conceptsumnty them for template specialization
[2]. We choose here to use this library, called C4TS8¢¥Concepts for Template Specialization
in C++"), as it is fully portable (C++03 compliant, with syntactioprovements in C++11), and
light (only a small subset of concepts is implemented).

We consider here the design of embedded domain specificdgeguEDSL) using concept-
based specialization to show some new possibilities of gmsc In C++, EDSL's use operator
overloading to propose a language suited for a specific dofeag., linear algebra with matrix
and vector operations). Besides the syntactic aspectnitherlying metaprogramming technique
called "expression templates" enables speeding up theai@l of an expression (notably, it
allows evaluating an expression in a single pass that aveidporary objects) [15].

Evaluation means parsing the expression and visit each bitg aperations and operands
to perform a specific action. A generic approach for evahgatin expression is proposed here,
based on a static variant of the well-known visitor desigttgoa [5], that uses concept-based
specialization. Like the original design, this solutionplements a double dispatch mechanism
that makes the solution open for extension: new kinds ofsvand operands can be added at will.
Concepts also help making the code more reliable and cqrasseisits are ruled by concepts
instead of type patterns.

Section 2 introduces notions on concept-based specializahd the syntax used all along the
document. Section 3 briefly recalls the expression templaiehnique and its benefits. Section 4
presents our concept-based degigmbuild and evaluate expression templates with a statiavar
of the visitor design pattern. Section 5 shows how to buildEBXSL for linear programming with
our solution.

4. http://en.cppreference. com w cpp/types/enable_if

5. http://concepts. axi omati cs. or g/ ~ans/

6. http://forge.clernont-universite.fr/projects/cpp-concepts

7. Source code is available att:t p: // f or ge. cl er nont - uni versite. fr/ projects/et-concepts
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2 Concept-Based Specialization

2.1 Concepts and Relationships

When a type is bound to a template parameter, it must fulfihesgequirements from the
template. These requirements can be represented by a tdhatgefines syntactic constraints
(i.e., on the interface of the type) and semantic conssdiing., on the behavior of the type).
When a type fulfills the requirements of a concept, it is shat the type "models" the concept.
The notion of a specialization between concepts is callein@ment”; a concept that includes the
requirements of another concept is said to "refine" this epnc

For instance, let us define the concépt egr al that captures the requirements of an inte-
gral number, and the concegner i cal that captures the requirements of any kind of number.
One can state that typent models concepitnt egr al , and concept nt egr al refines concept
Nurreri cal .

This taxonomy of concepts can be used for template speati@iiz one can provide a template
Exanpl e<T> with specializations foNuneri cal and forl nt egral . Depending on the type
bound toT, the most specialized version of the template must be selegersion nt egr al for
T=int, versionNuneri cal for T=doubl e. Notice that nt also modelNuneri cal .

2.2 CATS++ Library

Waiting for concepts to be part of C++ standard, we proposedlation to allow template
specialization based on concepts [2]. Due to portabilitycepns, our goal was to provide a purely
library-based solution that could be used with any standaré compiler, and no need of an
additional tool. This library is based on template metamogning techniques, and uses macros
only as front-end to provide a light syntax to the user. It#3+G3 compliant, but its interface has
recently been completed using C++11 features to simpléysynta®. Nevertheless, the core of
the library remains as presented in [2].

This library, called C4TS++, provides syntax to declarecamts, modeling relationships and
refinement relationships. Based on these declarationglaggrspecialization with concepts can
be achieved. Concepts are used to constrain parameterpatialization. At instantiation time,
the most appropriate version of a template is selected lmasétke concepts modeled by the types
bound to the parameters: a metaprogram determines, foloeaobf these types, the most special-
ized concept to consider for this instantiation, based erdétlared taxonomy of concepts. This
solution is also open for extension: new concepts, relakigs, and template specializations can
be defined at any time; such additions will then be picked ufhbyspecialization mechanism.

2.3 Code Example

The example of Section 2.1 is written here using C4TS++.teirgll, concepts have to be
declared, using macmpnx_decl are_concept .

gnx_decl are_concept (Nuneri cal ) ;
gnx_decl are_concept (I ntegral);
gnx_decl are_concept (Fl oati ng);

8. Since version 2015-02-27.
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Modeling and refinement relationships can be added, usimgagax_add_nodel s. Notice
that both kinds of relationships are declared using the sasteiction.

tenpl ate <> gnx_add_nodel s(Integral, Nunerical); // Refinement
tenpl ate <> gnx_add_nodel s(Fl oati ng, Nunerical); // Refinenent

tenpl ate <> gnx_add_nodel s(int,Integral); /'l Model i ng

tenpl ate <> gnx_add_nodel s(doubl e, Fl oating); // Modeling

From now on, a taxonomy of concepts is defined, and it can mndgt at any time through
new concept and/or relationship declarations (providimag & few rules are followed to prevent
some "Schrédinger’s Cat" effect with templafesf. technical report [3]).

Defining template specializations based on concepts islsjrbpt the primary version of the
template must be prepared. First, we need an identifier tesept a case of template definition
with specializations, which is called a "specializatiomtaxt" (the reason is that our mechanism
needs to know all the concepts involved in the specialinatimf a given template; as code analysis
is not possible with a library-based approach, the soluiado make explicit declarations that as-
sociate concepts to a specialization context). The comest be unique for each case of template
definition; it can be an existing type, or a type speciallylaex for this purpose.

struct Exanpl eCont ext ;

Second, for each template parametethat will be constrained by concepts in specializa-
tions, an additional paramet&r is necessary to represent the most appropriate concept of
in this context of specialization (the value ©fwill be deduced automatically by metafunction
gnx_best _concept _t).

tenplate < class T,

class C = gnx_best _concept _t <Exanpl eCont ext, T>
>

struct Exanpl e;

The template is now prepared for concept-based speciatizahe additional parameter can
be constrained by any concept to define a specializatiorgrlyerequirement being to declare the
use of the concept to the context (using mapne_add_uses).

tenpl ate <> gnx_add_uses( Exanpl eCont ext, Nuneri cal ) ;

tenpl ate <class T> struct Exanpl e<T, Nureri cal >
{ Exanpl e(void) { cout << typeid(T).name() << " = Nunerical" << endl; } };

tenpl ate <> gnx_add_uses( Exanpl eCont ext, I ntegral);

tenpl ate <class T> struct Exanpl e<T, Integral >
{ Exanpl e(void) { cout << typeid(T).name() << " = Integral" << endl; } };

tenpl ate <> gnx_add_uses( Exanpl eCont ext, Fl oati ng);

tenpl ate <class T> struct Exanpl e<T, Fl oati ng>

{ Exanpl e(void) { cout << typeid(T).name() << " = Floating" << endl; } };

New concepts and/or relationships can be added at any tinmey Will be considered in
the specialization process as long as the template has eatibstantiated (cf. technical re-
port [3]). For instance, a clasg/Nunber can be defined and declared to motleheri cal ,
and automatically théunmeri cal version of the template will be selected when instantiating
Exanpl e<MyNunber >,

class MyNunber { [...] };

tenpl ate <> gnx_add_nodel s( MyNunber, Nuneri cal ) ;

9. Metaphor fromht t p: / / www. codepr oj ect. coml Arti cl es/ 776770/ Aut omati c- St ati c- Counter.
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3 Expression Templates

Expression templates are a technique introduced by [15]laf}do represent an expression as
an object, using templates to build the type of this objette Tain goal of expression templates
is to tackle performance problems that may occur with operaverloading. The structure of
an expression is represented by a recursive compositioypestthat models an abstract syntax
tree (AST). an expression is an operation on operands teagxpressions. With C++11, the
composition can be modeled by a single tempktpr essi on with a parameter to represent the
operator characterizing the operation, and a pack of pdaesst represent the operands.

tenpl ate <cl ass OPERATOR, cl ass... OPERANDS> struct Expression {
std::tupl e<const OPERANDS &. ..> operands;

tenplate <class... OPS> explicit Expression(OPS &&. .. o0ps)
operands(ops...) {}

doubl e eval uat e(unsi gned i) const
{ return OPERATOR :eval uate(operands,i); }
b

The code presented in this section is simplified to point batliasics only (notably, type
passing should be optimized with perfect forwarding, ame$yshould be stripped of qualifiers to
bind the template parameters®éfpr essi on). Assume now that each unary or binary arithmetic
operator of C++ is represented by a class defined accorditing tiwllowing pattern.

struct AdditionCperator {
tenpl ate <cl ass OP1, cl ass OP2>
static doubl e eval uate(const std::tuple<OPl, OP2> & tuple,unsigned i) {
return std::get<O>(tuple).evaluate(i) + std::get<l>(tuple).evaluate(i);
}
}

Consider a templatér r ay<N> (similar tost d: : ar r ay) that represents an array of si&e
we would like to overload the arithmetic operators so openaton arrays are applied on each ele-
ment, e.g., operation = a+b means[i] =a[i] +b[i] for each element at indéx Expression
- a+b=* ¢ for instance, where variables b andc are objects of clasar r ay<N>, can be modeled
by a recursive composition using templ&epr essi on.

using exp_t = Expression< AdditionQOperator,
Expr essi on< M nusCper at or,
Array<N>
>1
Expression< MultiplicationOperator,
Array<N>,
Array<N>
>
>;

Notice that, at compile time, such a static structure coealghérsed using metaprogramming
techniques to generate a specific code. Assume now thamatithoperators have been over-
loaded as follows.

tenpl ate <cl ass OP1, cl ass OP2>

inline Expressi on<Additi onQper at or, OP1, OP2> oper at or +( OP1 && opl,

oP2 && op2)
{ return Expression<AdditionQperator, OP1, OP2>(opl, op2); }

This overloading allows codea+bxc to automatically produce an object of typep t.
Before introducing lambda expressions in C++11, such ¢bjeauld be used to represent lambda
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functions [15], but the main interest of expression tengsdas their ability to delay the evaluation
of intermediate operations to avoid unnecessary tempatajgcts. For instance, let us consider
the assignment = - a+bx ¢, whered is an object of classr r ay<N> and templaté\r r ay has the
following assignment operator.

tenpl at e <cl ass EXPRESSI ON\>

inline Array<N> & Array<N>:: operator=(const EXPRESSI ON & expression) {
for (unsigned i = 0; i<N, ++i) values[i] = expression.evaluate(i);
return *this;

}

The AST of the expression is built and passed as argumeng tassignment operator. In this
function, methodval uat e is recursively called on every operation and operand ofxpesssion
(notice thatAr r ay must have a methoelval uat e), which results in a single loop and the inlin-
ing of the whole evaluation. The code generated for the aswgt operator has a performance
equivalent to:

for (unsigned i = 0; i<N, ++i) d[i] = -a[i] + b[i]*c[i];

Notice that basic operator overloading would create tearyoobjects during the evaluation
of expression a+b+* ¢, which would produce a code having a performance equivadent

Array<N> al; for (unsigned i = 0; i<N, ++i) al[i] = -a[i];
Array<N> a2; for (unsigned i = 0; i<N ++i) a2[i] = b[i]=*c[i];
Array<N> a3; for (unsigned i = 0; i<N, ++i) a3[i] = al[i]+a2[i];

4 Expression Templates with Concepts

We propose to use concepts to design a framework for expressmplates, with the aim of
modeling expressions and overloading operators once aadl feso users can focus on expression
parsing. In the previous example, templat@r essi on is designed for a single kind of evaluation
(cf. eval uat e method), whereas one might need various kinds of evaluétign, computation,
display, semantic analysis...). Our solution uses corcapéd specialization as a reliable and
extensible way of defining evaluations. It is inspired frdra tdouble dispatch of the visitor design
pattern [5], with template specialization replacing metbgerriding. Concepts could also provide
more control over operands, e.g., static assertions fatedlbased on concepts could detect the
use of wrong operands for an operation.

First, our design for expression templates is introducdth & specific care on the possible
storage of an expression to delay evaluation. Then, thentamg of concepts that will guide
the parsing of expressions, and operator overloading tlilbpmduce expression objects, are
presented. Finally, our solution to evaluate an expressitm concept-based specialization is
detailed.

4.1 Modeling

A different version of templat&xpr essi on is proposed, with no evaluation method (the
process is externalized, cf. double dispatch), and a newl&denparameter (boolear XED)
to anticipate the possibility of storing an expression tgtpone evaluation. ParameterXED
indicates whether an expression is an "rvalue" ("transiexyression, temporary object destroyed
at the end of instruction), or an "Ivalue” ("fixed" expresgia copy of the temporary version made
for further use}®.

10. http://en. cppreference. com w cpp/ | anguage/ val ue_cat egory
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tenpl ate <bool FI XED, cl ass OPERATOR, cl ass. .. OPERANDS>
struct Expression : public AbstractExpression {

usi ng operator _t OPERATOR;

usi ng operands_t std:: tupl e<OPERANDS. . . >;

std::tupl e<etc_transi ent _operand_t <OPERANDS>. . . > oper ands;

tenmpl ate <class... OPS> explicit Expression(OPS &&. .. o0ps)
oper ands(std: : forward<OPS>(ops)...) {}
i

The primary version of templatxpr essi on represents a transient expression (FeXED=
fal se). As shown in Figure 1, the template models conagptpr essi on that imposes fea-
tures to access the operator and the operands of the expredsvtice the use of metafunction
etc_transi ent_operand_t ! that opens the possibility of choosing the way of storing an
operand (by reference, the default choice to avoid unnapgsspies, or by copy).

4.2 Fixing an Expression

One might need to store an expression for further use: tppostthe evaluation, or to perform
multiple evaluations in sequence (e.g., analyzing the A8 Ppéarallel evaluation). Let us consider
such an example, where arithmetic operators are overloamegturn transient expressions (as
detailed in Section 4.4).

auto & e = -atb=c;

[...]

f(e);
This code is incorrect, as the AST built for the expressiamisvalue, which makes reference

e invalid at the last line. The expression must be copied tagdvalue. Templat&xpr essi on

is specialized foFlI XED=t r ue to represent a fixed expression. Its constructor makestpeshie

copy of a transient expression to get a fixed expression: dheetsion of each operand is made

by metafunctioret c_fi xed_oper and_t <T> that returns the type to use for fixing and storing

an operand of type.

tenpl ate <cl ass OPERATOR, cl ass. .. OPERANDS>

struct Expression<true, OPERATOR, OPERANDS. . . > : public Abstract Expression {
usi ng operator _t OPERATOR;
usi ng operands_t std::tupl e<OPERANDS. . . >;

std::tupl e<etc_fixed_operand_t <OPERANDS>. . . > oper ands;

tenpl ate <cl ass... OPS>
Expressi on(const Expressi on<fal se, OPERATOR, OPS. .. > & expressi on)
oper ands( expr essi on. operands) {}

}s

Operands that are rvalues must be copied (mainly the irssaoctemplateExpr essi on),
but not necessarily operands likeb andc that are lvalues. Depending on the application, one
might want to keep references or make copies of operandsindc. The default behavior is that
expressions keep constant references of lvalues, but unetadnet ¢_f i xed_operand_t can
be specialized.

11. We chose to prefix all the metafunctions and macros ofibrarl with "et c_".

Research Report LIMOS/RR-15-02
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermbrtrand, France, 2015.



Functionet c_fi x is provided to help (thanks to type deduction) the copy ohadient ex-
pression of typd to make a fixed expression of typec_fi xed_t <T>. The previous example
must be corrected as follows.

auto e = etc_fix(-a+bx*c);

[...]

f(e);

A templateLi t er al <FI XED, TYPE> is necessary to keep track of rvalue operands of type
TYPE that are not objects based on templgtgr essi on. For instance, in expressi@s a, the
first operand is an rvalue that must be copied when the whaeessgion is being fixed. Operator
overloading is designed to automatically encapsulate anatvalue with templatei t er al (cf.
"boxing" in Section 4.4). For expressi@a a, it produces an object of the following type.

Expression< fal se, Mul tiplicationOperator,
Li teral <fal se,int>,
Array<nN>
>

TemplateLi t er al is considered a unary expression: it models concépt er al that re-
fines conceptExpr essi on (cf. Figure 1). Therefore, it provides the same featuresamplate
Expr essi on. It is merely a wrapper for an operand that is either trandigikkeeps a constant
reference of the operand) or fixed (it keeps a copy of the opra

4.3 Taxonomy of Concepts

As parsing an expression is based on concepts, it is negessdefine a taxonomy of the
concepts that characterize the operations and operandpraissions.

« abstract »
AbstractExpression

« models »| { sizeof...(OPERANDS) =1 } | ! { sizeof...(OPERANDS) = 2 }
« concept » « models »§ :
cLiteral i« models »

« refines »!

« concept » « concept »
cExpressionl cExpression2
« refines »i i« refines »
« concept »
cExpression

N -{-« type » + operator_t AN
— - e -emees Instance of std: :tuple
Nested types ‘ “TTo---{-« type » + operands_t------ E ‘

+ operands : operands_t

« constructor » + cExpression<OPS...>(ops:OPS...)

Figure 1:Taxonomy of concepts for expressions.
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Figure 1 shows that templat&pr essi on andLi t eral indirectly model conceptEx-
pr essi on, and that expressions are classified according to they. ariinceptcExpr essi onl
for unary expressions, concepiExpr essi on2 for binary expressions... Both templates also in-
herit from abstract clas&bst r act Expr essi on to enable type erasure (cf. Section 4.5.3).

Each operator of interest for expression templates is septed by a class (likaddi t i on-
Oper at or presented in Section 3, but with no evaluation method), he@ssociated operation is
characterized by a concept. The taxonomy of concepts is letatpso expressions based on the
operator model the concept of the operation.

« concept »
cExpression2

« refines »\

« concept »

cAdditionOperation

« models ».

Figure 2:Addition operation in the taxonomy of concepts.

For instance, declaring the addition operator implies dwejiclassAddi t i onOper at or and
declaring concept Addi t i onQper at i on that refinescExpr essi on2 (cf. Figure 2). Besides,
any instance oExpr essi on with parametelOPERATOR = Addi t i onOper at or models concept
cAddi ti onOper ati on. This declaration can be achieved as follows using C4TS++.

struct AdditionQOperator;
gnx_decl are_concept (cAddi ti onOper ati on);
tenpl ate <> gnx_add_nodel s(cAddi ti onQper ati on, cExpr essi on2);

tenpl ate <bool FIXED, cl ass... OPERANDS>
gnx_add_nodel s( Expr essi on<Fl XED, Addi ti onQper at or, OPERANDS. . . >,
cAddi ti onOperation);

The taxonomy can be extended, notably to detect the origeralantics of an operator, e.g.,
to know if it is arithmetic, logical or relational. For thisugpose, conceptsArithneti c-
Operation, cLogi cal Operati on andcRel ati onal Oper ati on have been inserted in the
taxonomy (e.g., conceptAddi t i onOper at i on refines conceptAri t het i cOper ati on).

4.4 Operators Overloading

Once an operator has been declared, the associated funulistrbe overloaded to return an
expression object. For instance, functigmer at or + has to be overloaded to return an object of
typeExpr essi on<f al se, Addi ti onOper at or, B1, B2>, whereB1 andB2 are the types of the
two operands. However, such an overload requires some @asurghown in the following code
(based on this pattern, macros are provided to allow ovénidth a single instructiof?).

12. Macroset c_over| oad_oper at or[ 1| 2] are provided to declare a unary or binary operator, and ozédrthe
associated function in a single linet c_over | oad_oper at or 2( Addi ti on, operat or +, " +").
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tenplate < class OP1, cl ass OP2,

class Tl = gnx_base_type_t <OP1>,
class T2 = gnx_base_type_t <OP2>,
class Bl = etc_operand_boxi ng_t<OP1 &&>,
class B2 = etc_operand_boxi ng_t <OP2 &&>

>
t ypenanme enabl e_i f< gnx_or< etc_is_operand<T1>,
etc_i s_operand<T2>
>

Expr essi on<f al se, Addi ti onOper at or, B1, B2>
> itype
operator+(OP1 && opl, OP2 && op2) {
return Expression<fal se, Addi ti onOperat or, B1, B2>(std: : f or war d<OP1>(opl),
std: : f orwar d<OP2>(0p2));
}

The overload is parameterized on ty@x andOP2 (deduced at function call) that are con-
verted intoB1 andB2 (operation called "boxing") using metafunctienc_oper and_boxi ng_t .
This metafunction is designed to convert any rvalue thabisbhased on templatéxpr essi on
into an instance of templatei t er al (as explained in Section 4.2)0OP1 and OP2 are also
stripped of their qualifiers to gatl andT2 (e.g.,const i nt &becomes nt ) using metafunction
gnx_base_t ype_t (note that it is also used in boxing to get tyfasandB2 without qualifiers).

Without constraints o@P1 andOP2, the overload would be valid for any type of operand. The
SFINAE principle of C++, through templatmabl e_i f 4, is applied to get control: the overload
is valid only if T1 or T2 is a type activated to be an operand (metafunction_i s_oper and<T>
returns whether typ& is activated). Initially, only types based on templakgr essi on and
Li t eral are activated to be operands, and one has to specializeumetiahet c_i s_oper and
to formally activate a type. Macret c_act i vat e_oper and is provided to help the specializa-
tion. For instanceAr r ay<N> can be activated as follows.

tenpl ate <unsigned N> etc_activate_operand(Array<N>);

4.5 Expression Evaluation
4,5.1 Visitor Design Pattern

The visitor design pattern is a well-known solution to resgr® an operation to apply on each
element of an heterogeneous set, where the code of the iopedspends on the type of the
element [5]. The pattern allows defining new operations withimpact on the classes of the
elements. In our case, it could be used to evaluate an expmees$. Figure 3), but it presents
many restrictions: it is based on dynamic binding (whichlddead to significant execution time
overhead), and elements must belong to the same base claish fvarrows the possibilities of
extension, as any object cannot be an element in this pattern

The principle is that an object, the visitor, is moved frone @aement to the next to perform
the operation. The code executed for each visit dependseotypie of the visitor (i.e., the kind
of operation to perform) and on the type of the element. Thipatch is based on two virtual
methods:accept that is overridden for each type of element (to redirect o dbrrectvi si t
method of the visitor), andi si t that is overloaded for each type of element and is overridden
for each kind of operation (cf. Figure 3, where the visitashetnts are operands of an expression).
A visit is achieved by calling thaccept method of the element with the visitor as argument.
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FIXED:boolean, OPERATOR, OPERANDS... :

1  Expression ‘-pooooooooosoeosooee
+ accept(v:Visitor &) j

« abstract »
Operand q

+ accept(v:Visitor &)

« abstract » e
Visitor Virtual template methods. B
| Impossible in C++!

+ visit<FILX,OPS...>(exp:const Expression<FIX,AdditionOperator,OPS...> &)~
+ visit<N>(array:const Array<N> &)

T

Streamer Evaluator

- stream : std::ostream & - value : double
- index : unsigned

+ visit<FIX,OPS...> (exp:const Expression<FIX,AdditionOperator,OPS...> &)
+ visit<N>(array:const Array<N> &) + visit<FIX,OPS...> (exp:const Expression<FIX,AdditionOperator,OPS...> &)
v + visit<N>(array.const Array<N> &) '

stream << "+";
visit (std::get<l>(exp.operands));

AN

visit(std::get<0>(exp.operands)); N

value = array[index]; visit (std::get<0>(exp.operands));
‘ vl = value;

visit (std::get<1>(exp.operands)) ;

v2 = value;

value = vl+v2;

Figure 3:Visitor design pattern for expression evaluation.

In this design, the elements belong to the same base classpaghwith expression templates,
the elements can be of various types with no class relatipnsich as the instances of templates
Expressi on andArray. Figure 3 also presents methodissi t as virtual template methods,
which is impossible in C++. Therefore, thésit method should be explicitly overloaded for
possibly any instance of templaipr essi on, which is hardly tractable. Besides, the signature
of methodvi si t is fixed: in our example, there is no value returned and asiagjument (the
operand). A workaround is to add attributes to the visitorgpresent the return value and the
arguments, but it could lead to unclear code (cf. visioal uat or).

4.5.2 Concept-Based Visitor

A solution with concepts is proposed that keeps the ideawblgadispatch of the visitor design
pattern. This static approach is implemented by a template vi si t with two parameters: the
type of the visitor and the type of the operand.

tenpl ate < class VI SITOR,
cl ass OPERAND,
cl ass CONCEPT = gnx_best_concept _t <VI S| TOR, OPERAND>,
cl ass ENABLE = void
>

struct etc_visit;

The double inheritance of the original design pattern isaegd by a single template spe-
cialization: for instance, instead of specializing cl&si t or with classX and classper and

Research Report LIMOS/RR-15-02
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermbrtrand, France, 2015.



11

with classy, templateet ¢c_vi si t is specialized with/l SI TOR = X andOPERAND = Y. The spe-
cialization process must be controlled by concepts, aepted in Section 2, which requires an

additional parameteEONCEPT. A last parameteENABLE is also added to help applying SFINAE
if necessary.

— ‘ ! OPERATION:cAdditionOperation |
etc_visit<Evaluator,OPERATION> --;-----ooomommmmmmmmoooooo e
+ run(op:const OPERATION &,i:unsigned) : double .
— . { N:unsigned | . N
etc_visit<Evaluator,Array<N>>  *“-j-------7=-----! return etc_run<Evaluator, 0> (op, i)

+ etc_run<Evaluator,1>(op,i);

+ run(array:const Array<N> &,i:unsigned) : double .,

return array[i];

Figure 4:Concept-based visitor for expression evaluation.

The notion of visitor remains in the form of a class actingdentifier of the type of opera-
tion applied on the elements, but the instantiation of amahp not mandatory. Let us declare
an empty clasgval uat or to represent the operation of computing the element at indeixan
expression ofar r ay<N> objects. For instance, to define the visit of the additionratog, tem-
plateet c¢_vi si t is specialized for conceptAddi t i onOper at i on and visitorEval uat or (cf.

Figure 4 and the following code). Notice that the visitorsslalso acts as specialization context
(cf. Section 2).

tenpl ate <> gnx_add_uses( Eval uat or, cAddi ti onCper ati on);

tenpl ate <cl ass OPERATI ON>
struct etc_visit<Eval uat or, OPERATI ON, cAddi ti onQperation> {
static doubl e run(const OPERATI ON & op, unsigned i) {
return etc_run<Eval uator,0>(op,i) + etc_run<Evaluator, 1>(op,i);
}
s

The code of the visit is located in a static methach of the specialized version of template
et c_vi sit. The prototype of this method is almost free, the only caistrbeing that the first
argument must be the operand to process. Parsing all therafseand operations of an expression
is recursive: for instance, visiting an addition operatinrans adding the results of the visits
on each operand. A visit is called through functieinc_r un that helps instantiating template
et c_vi sit, as shown in the following code.

tenpl ate <class VI SI TOR, unsi gned N, cl ass EXPRESSI ON, cl ass. .. ARGS>
inline auto etc_run( EXPRESSI ON && expression, ARGS &&. .. args) {
return etc_visit< gnx_base_type_t<VI SI TOR>,
et c_oper and_t ype_t <EXPRESSI ON, N>
>::run(etc_operand_val ue<N>(expression),
gnx_f orwar d<ARGS>(args)...);
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Functionset c_oper and_t ype_t andet c_oper and_val ue are provided to ease the access
to the type and value of an operand from its position in anesgon. Several versions of function
et c_run are implemented to allow more flexibility. Notably, the ftioon can be called with
the index of the operand to visit, as in the previous exangieyithout index to visit the whole
expression. For instance, the assignment operator of &e#plr ay can be overloaded as follows
to fully evaluate the expression received as argument.

tenpl at e <cl ass EXPRESSI ON\>
inline Array<N> & Array<N>:: operator=(const EXPRESSI ON & expression) {
for (unsigned i = 0; i<N, ++i)
val ues[i] = etc_run<Eval uator>(expression,i);

return *this;

}

4.5.3 Expression and Visitor Types Erasure

In all previous examples, expressions are evaluated kmpthigir exact type at compile time,
which limits the performance overhead of expression tetaplaHowever, one could delay the
evaluation enough to have to store the expression with tygeuee (i.e., by losing the concrete
type of the expression at compile time). A unique abstrage tig then necessary to represent
any expressionExpr essi on andLi t er al templates both inherit frorbst r act Expr essi on
(cf. Figure 1). This way, any expression can be manipulaged pointer or a reference of type
Abstract Expressi on.

« abstract »
AbstractExpression

Variable )
expression

- expression : const AbstractExpression * X
- streamer : AbstractVisit<Streamer> *
- evaluator : AbstractVisit<Evaluator> *

+ operator=<EXPRESSION>(exp:const EXPRESSION &) -+..
+ display(stream:std::ostream &)-..__
+ evaluate() : double .

auto * fixed = new etc_fixed t<EXPRESSION>(exp);
“~{ expression = fixed;

streamer = etc_concrete_visit<Streamer>(fixed);
evaluator = etc_concrete_ visit<Evaluator>(fixed);

return evaluator->run(); streamer->run (stream) ;

« abstract »
AbstractVisit<Streamer>

Streamer| Py «uses » 3
4“{ ConcreteVisit<Streamer,X> } —————————————————————————————————————— e

« abstract »
AbstractVisit<Evaluator>

evaluator Py «uses » i
4{ ConcreteVisit<Evaluator,X> } *************************************************************************************

Figure 5:Type erasure to delay expression evaluation.
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Let us consider the following example where expression tatap are used to represent for-
mulas to compute the values of variables.

Variable a,b,c,d,e;

O T Qo O
| I | I R |
P ~NT WO
- % TR
(9] o

»

cout << e.evaluate();

The formulas are written with no specific order: for instantee formula of variablel that
depends orb andc is defined before the formulas bfandc. The evaluation ob*c cannot
be performed at the assignmentdo It must be delayed after the assignmenbaindc. Thus,
eachvar i abl e object needs to store the expression of its formula with grasure, because the
type of the expression cannot be deduced at the definitiotasé\¢ar i abl e. At assignment, the
expression is dynamically copied to get a fixed version thatfierenced by a pointer attribute in
classvar i abl e (cf. Figure 5).

We now consider the possibility to compute the value of aalde (cf. methodkval uat e)
and to output its formula (cf. methadi spl ay). For this purpose, visitorgval uat or and
Streaner are defined and used to specialize tempéate_vi si t. But to visit an expression,
i.e., when calling functiort c_r un, the visitors must be handled with the concrete B the
expression. In our example, types known at assignment and lost after.

Template clasoncr et eVi si t <VI SI TOR, EXPRESSI ON> is defined to represent objects
that embed, in their methadun, the code to visit an object of concrete typePRESSI ON with
VI SI TOR (cf. Figure 6). These objects are dynamically created duifie assignment (by call-
ing the helper functioret c_concret e_vi si t), and stored in attributes (cfeval uat or and
st r eaner ), while the concrete typX of the expression is known (cf. Figure 5). Afterward, their
r un method can be called to start a visit (cf. methedal uat e anddi spl ay).

« abstract »

AbstractVisit

+ run(:ARGS...) : RET

f —  VISITOR, EXPRESSION, RET(ARGS...) = VISITOR: signature_t |
ConcreteVisit I T

- expression : EXPRESSION *

«constructor » + ConcreteVisit:EXPRESSION *)
+ run(args:ARGS...) : RET----------. I N

""" return etc_run<VISITOR> (*expression,args...);

Figure 6:Visit abstraction for type erasure.

As for expressions, type erasure is necessarnyCorcr et eVi sit objects. Therefore, ab-
stract classtbst ract Vi si t <VI SI TOR> is defined to represent the visit b SI TOR of any
expression, saoncr et eVi sit objects can be manipulated as pointers or references of type
Abst ract Vi si t <VI SI TOR>. Notice that method un of these objects has to be virtual, which
implies a performance overhead when calling for a visit. egv, the performance of the visit
itself remains unchanged.

To define templatesbst r act Vi si t andConcr et eVi si t requires the signature of the vis-
itor, meaning the return typRET and the arguments typ@&GS. . . of methodr un in specializa-
tions ofet c_vi si t for this visitor. To facilitate the instantiation of thosentplates, a member
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type si gnat ure_t has to be defined in each visitor to represent its signatwsimguemplate
specialization, typeBET andARGS. .. can be deduced fromi gnat ur e_t automatically). For
instance, visitor&val uat or andSt r eamer are defined as follows.

struct Evaluator { using signature_t
struct Streaner { using signhature_t

doubl e(void); };
voi d(std::ostream &) ; };

5 Example of EDSL

An EDSL for linear programming is defined here with concegbdl expression templafés
A linear program (clasBr ogr am) is a problem where an objective has to be optimized (minimiz
ing or maximizing a linear expression) under constraings #ine linear expressions bounded by an
inferior or superior value, or equal to a value. A linear @gsion (classi near %) is a weighted
sum of variables (clasgari abl e). Here is an example of linear program expressed with our
EDSL.

Pr ogram p;
auto & x1 = p.newari abl e();
maximize 3z: — 2z Sz auto & x2 = p. nevvvar! abl e();
1 2+ ot auto & x3 = p.newari abl e();

pJunder 5z — 29 + 4x3 < 8
1 + 3x9 + 8x3 > 25 p. maxi m ze(3*x1 - 2+x2 + 8%x3);
91:1 —|—633‘2 _31:3 = 17 p += Gxx1l - 2%*X2 + 4xx3 <= 8,
p += x1 + 3*x2 + 8*x3 >= 25;
p += 9*x1 + 6*x2 - 3*x3 == 17;

Classvari abl e is activated to be an operand, which automatically makegapsession with
at least one operand of this type to produce an object basezhgiateExpr essi on. The latter
can be evaluated by visit@&ui | der to build the linear expression (or constraint) that it repras
(i.,e. alLinear object). Notably, the assignment operator of classear is overloaded the
following way.

tenpl at e <cl ass EXPRESSI ON\>

inline Linear & Linear::operator=(const EXPRESSI ON & expression) {
clear();
et c_run<Bui | der >(expression, *t his);
return xthis;

}

The visit consists in building progressively a linear exgsien (or constraint) by associating
a coefficient to each variable. The process starts with aneegipn where all the coefficients
are null, and progressively, for each encountered opethede coefficients are updated, leading
finally to a simplified linear expression. For instance, thiéofving constraints will be simplified
at their evaluation.

3xx1 + 4%(2%x2 - 3*x3) <= 13 — 3*xx1 + 8+*x2 - 12x¥xx3 <= 13
2%x1 - 3*x2 >= 5xx1 + 2*x3 — -3*X1 - 3*x2 - 2+*x3 >= 0

The visit of Bui | der is defined from the specializations of templatec_vi si t described
in Table 1. Some are constrained by the type of the operagd, {@&ri abl e andLi near),
whereas others are constrained by the concepts modeled:lpypdrand (e.g., the addition and
multiplication operations).

13. Source code is available at:t p: // f or ge. cl ernont - uni versite. fr/ proj ects/et-concepts
14. To avoid confusion with templatépr essi on, class i n: : Expr essi on from code is called.i near here.
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Specialization constraints Assertions
OPERAND=Vari abl e

OPERAND= Li near
OPERAND modelsclLi t er al The literal is arithmetic.

OPERAND modelscMul ti pl i cati onOperati on | One operand is an arithmetic literal
and the other one is a linear expression.

OPERAND modelscDi vi si onQper ati on The left operand is a linear expression
and the right operand is an arithmetic literal.

OPERAND modelscPl usQper at i on The operand is a linear expression.
orcM nusQperati on

OPERAND modelscAddi t i onQper ati on Both operands are linear expressions.
orcSubtracti onQOperation

OPERAND modelscRel at i onal Oper ati on Both operands are linear expressions and the
relationship is an inferiority, superiority or equality.

Table 1:Specializations for the visit of a linear expression or d¢aist.

For each visit, assertions are set in order to verify theasyot the expression and make sure
that it is really linear. These assertions are only supatfitiecause the recursivity of the visit
allows in-depth verification. Here is the example of thetwa$ia subtraction operation.

tenpl ate <> gnx_add_uses(Buil der, cSubtracti onOperation);

tenpl ate <cl ass TYPE>
struct etc_visit<Builder, TYPE, cSubtracti onQperation> {
static_assert(is_|linear<etc_operand_type_t<TYPE, 0>>::val ue,
"Left operand nust be a linear expression.");

static_assert(is_|linear<etc_operand_type_t<TYPE, 1>>::val ue,
"Ri ght operand must be a |linear expression.");

static void run(const TYPE & operation,Linear & l|inear,
doubl e coef = 1.0) {
et c_run<Bui | der, 0>(operati on, | i near, coef);
et c_run<Bui | der, 1>(operation, | i near, - coef);
}
}s

Assertions ensure that both operands are linear exprassigetafunction s_| i near returns
whether the operand is linear by checking that its tye isear or Vari abl e, or that it models
the concepts of operations supposedly linear suchAdsi ti onQper ati on, cMul ti plica-
ti onOper at i on... This test relies on metafunctigmx_mat ches 1° provided by C4TS++.

tenpl ate <cl ass TYPE>
struct is_linear : gnx_matches<Buil der, TYPE,
Li near, Vari abl e,
cAddi ti onOperati on,
cMul tiplicationQperation,
[...]
> {};

With only 8 specialization&®, verification, building and simplification of a linear exps&on
or constraint are defined. Thanks to concepts, the visit@fttpression is fully controlled: the
selection of a specialized version of template_vi si t is only possible if the operand models
the specified concept, and assertions allow additionakaisrb validate the syntax.

15. The second parameter is compared with the types and msnidet follow, the first one is the observer (cf.
Section 2).
16. C4TS++ allows using logical combinations of conceptsaatrol template specialization [1].
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6 Conclusion

A new design of expression templates based on conceptspes®d in this report. A tax-
onomy of the concepts that characterize the operations pathods of expressions has been
defined. As it relies on the implementation of concepts byGh&S++ library, the taxonomy can
be extended at will, notably to distinguish operations Ham® semantics. The evaluation of an
expression is a recursive process that goes through thaetbsyntactic tree of the expression to
apply a specific action on each node. Nodes are operationspandnds that can be distinguished
based on the concepts they model, so the evaluation praogssned only from actions associated
to some specific concepts.

This design is inspired from the double dispatch of the ersdesign pattern that enables
extensibility: new kinds of evaluations can be defined andtypes of operands can be addressed
at will. In this solution, the double inheritance of the anig design pattern is replaced by a single
template specialization with evaluation and operand tgsgsarameters. Concept-based template
specialization allows defining a specific action for any giw®ncept or logical combination of
concepts modeled by an operand or operation of an expression

In the case of operations on vectors and matrices, expressioplates provide a significant
speed up compared to classic overloading [16]. Howeves téthnique can prevent some com-
piler optimization due to an aliasing problem [4, 8], or canrevealed inefficient on specific
operations where temporary objects are necessary (likecesmultiplication [9]). Concepts can
help to address these issues by bringing more semanticsetators (like [6] that assigns alge-
braic properties to types using concepts) and using a ctibesed visitor to adapt the evaluation
according to the nature of the operators.

Expression templates based on concepts have been usedwateftDSL for linear program-
ming. With only a few template specializations, an evatraprocess to verify, build and simplify
linear expressions and constraints has been designed.eXpesiment shows that concepts of-
fer possibilities of controlling template specializatitmt enforce its reliability and selectivity.
Concept-based specialization should be considered taaehheritance when dynamic binding
is not necessary, as in the case of parsing the static steuatan expression.
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