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Abstract. Range Minimum Query (RMQ) is an important building brick of many compressed
data structures and string matching algorithms. Although this problem is essentially solved
in theory, with sophisticated data structures allowing for constant time queries, practical
performance and construction time also matter. Additionally, there are offline scenarios in
which the number of queries, q, is rather small and given beforehand, which encourages to use a
simpler approach. In this work, we present a simple data structure, with very fast construction,
which allows to handle queries in constant time on average. This algorithm, however, requires
access to the input data during queries (which is not the case of sophisticated RMQ solutions).
We subsequently refine our technique, combining it with one of the existing succinct solutions
with O(1) worst-case time queries and no access to the input array. The resulting hybrid is
still a memory frugal data structure, spending usually up to about 3n bits, and providing
competitive query times, especially for wide ranges. We also show how to make our baseline
data structure more compact. Experimental results demonstrate that the proposed BbST
(Block-based Sparse Table) variants are competitive to existing solutions, also in the offline
scenario.
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1 Introduction

The Range Minimum Query (RMQ) problem is to preprocess an array in a way al-
lowing to return the position of the minimum element for an arbitrary input interval,
specified by a pair of indices, in an efficient manner. More formally, for an array
A[1 . . . n] of objects from a totally ordered universe and two indices i and j such
that 1 ≤ i ≤ j ≤ n, the range minimum query RMQA(i, j) returns argmini≤k≤j A[k],
which is the position of a minimum element in A[i . . . j]. One may alternatively re-
quire the position of the leftmost minimum element, i.e., resolve ties in favour of the
leftmost such element, but this version of the problem is not widely accepted. In the
following considerations we will assume that A contains integers from the universe
U = {1, 2, . . . , n}, of log2 n bits each.

This innocent-looking little problem has quite a rich and vivid history and perhaps
even more important applications, in compressed data structures in general, and in
text processing in particular. Solutions for RMQ which are efficient in both query time
and preprocessing space and time are building blocks in such succinct data structures
as, e.g., suffix trees, two-dimensional grids or ordinal trees. They have applications
in string mining, document retrieval, bioinformatics, Lempel-Ziv parsing, etc. For
references to these applications, see [6,5].

The RMQ problem history is related to the LCA (lowest common ancestor) prob-
lem defined for ordinal trees: given nodes u and v, return LCA(u, v), which is the
lowest node being an ancestor of both u and v. Actually, the RMQ problem is linearly
equivalent to the LCA problem [8,4], by which we mean that both problems can be
transformed into each other in time linearly proportional to the size of the input. It

ar
X

iv
:1

71
1.

10
38

5v
1 

 [
cs

.D
S]

  2
8 

N
ov

 2
01

7



Paper Submitted to PSC

is relatively easy to notice that if the depths of all nodes of tree T visited during an
Euler tour over the tree are written to array A, then finding the LCA of nodes u and
v is equivalent to finding the minimum in the range of A spanned between the first
visits to u and v during the Euler tour (cf. [4, Observation 4]). Harel and Tarjan [13]
were the first to give O(n)-time tree preprocessing allowing to answer LCA queries in
constant time. The preprocessing required O(n) words of space. Bender and Farach [4]
presented a significantly simpler algorithm with the same time and space complexity.
Further efforts were focused on reducing the space of the LCA/RMQ solution, e.g.,
Sadakane [16] showed that LCAs on a tree of n nodes can be handled in constant time
using only 2n + o(n) bits. A crowning achievement in this line of research was the
algorithm of Fischer and Heun [6], who showed that RMQs on A can be transformed
into LCA queries on the succinct tree, and this leads to an RMQ solution that also
uses 2n + o(n) bits and (interestingly) does not access A at query time. This result
essentially matches the information-theoretic lower bound for an RMQ solution not
accessing the input array, which is 2n− Θ(log n) bits. Any scheme for RMQs allows
to reconstruct the Cartesian tree [6, Section 2.2] of the input array by iteratively
querying the scheme for the minimum; the number of bits to describe any possible
Cartesian tree here is 2n−Θ(log n) [14,6], hence the bound.

The Fischer and Heun solution, although allowing for constant time RMQ queries,
is not so efficient in practice: handling one query takes several microseconds (see [5]).
Some ingenious algorithmic engineering techniques, by Grossi and Ottaviano [12],
Ferrada and Navarro [5], and Baumstark et al. [3], were proposed to reduce this
time, and the fastest implementation [3] achieves around 1µs per query (timings vary
depending on query parameters) on an single core of the Intel Xeon E5-4640 CPU.

Recently, Alzamel et al. [2] (implicitly) posed an interesting question: why should
we use any of these sophisticated data structures for RMQ when the number of
queries is relatively small and building the index (even in linear time, but with a
large constant) and answering then the queries (even in constant time each, but
again with a large constant) may not amortize? A separate, but also important point
is that if we can replace a heavy tool with a simpler substitute (even if of limited
applicability), new ideas may percolate from academia to software industry. Of course,
if the queries [`i, ri] are given one by one, we cannot answer them faster than in the
trivial O(ri − `i + 1) = O(n) time for each, but the problem becomes interesting if
they are known beforehand. The scenario is thus offline (we can also speak about
batched queries or bulk queries). Batched range minima (and batched LCA queries)
have applications in string mining [7], text indexing and various non-standard pattern
matching problems, for details see [2, Section 5].

In this paper we first present a heuristical idea for RMQ computation (without a
constant-time guarantee). This idea is very simple, the corresponding data structure
very fast to build (as opposed to any other RMQ algorithm we are aware of) and
it answers range minimum queries faster on average than competitive algorithms,
except perhaps on narrow intervals. Then, a hybrid of our solution with most efficient
constant-time RMQs is presented, with usually less than 3n bits of space and no need
to access A. In this way we boost the average performance of constant-time solutions
without sacrificing much in the space usage. Ideas for making our data structure
compact are discussed in a separate section. We also discuss the scenario of running
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batched range minima (relevant when the number of queries is significantly smaller
than the input array size), to which we also adapt our idea.

The roadmap of the paper is as follows. In the next section we present our block-
based approach to the standard (online) RMQ problem. By “online RMQ” we mean
the scenario in which the data structure is built first, to handle any number of queries
to follow. In several subsections, we present a plain block-based sparse table (BbST)
algorithm, a hybrid with a theoretical solution, a two-level BbST representation, and
a compact representation. Section 3 deals with the offline RMQ problem variant.
Here the number of input queries is expected to be small compared to the input
array size, and for this reason building a costly data structure may be an overkill.
In this scenario we measure (both in complexity terms and in experiments) the time
and space to handle q queries. The subsections of Section 3 present the first (and only
so far) algorithm for offline RMQ, by Alzamel et al., and our adaptation of BbST to
this setting. Section 4 contains experimental results. The last section concludes.

We use a standard notation in the paper. All logarithms are of base 2. The space
usage is sometimes expressed in words (of log2 n bits), sometimes in bits, whichever
more convenient, and we are explicit about those units.

A (very) preliminary version of our paper was presented in Proc. PSC 2017 [10].

2 Our algorithms

Before presenting our algorithms, we must remind the classic idea of the Sparse Table
(ST) [4], as a point of departure. Given an array A of size n, we compute and store
the minima for all its subarrays of size being a power of two. Let Mi,j denote the
position of the minimum of the subarray A[i . . . i + 2j − 1] (observe that for j = 0
we have a subarray with one element). Figure 1 illustrates. Any interval in A, with
its boundaries denoted by [`, r], can be covered by a pair of such subarrays, for
example A[2 . . . 8] is covered with A[2 . . . 5] and A[5 . . . 8]. Finding the position of the
minimum in this interval, that is, returning RMQA(`, r), boils down to reading two
precomputed minima and returning the position of the minimum of these two values.
In our example, min(A[2 . . . 8]) is equal to M2,2 if A[M2,2] ≤ A[M5,2], or equal to M5,2

otherwise. The space used by ST is O(n log n) words.

In the following subsections, first we present our block-based sparse table idea,
which competes practically (although not in the worst case) with existing RMQ al-
gorithms. This algorithm, however, requires access to A. Then we propose a hybrid
algorithm, improving the worst-case time and also allowing to get rid of A.

2.1 Block-based Sparse Table

The first algorithm we present can be considered as a generalization of ST for blocks
(with some twist).

In the construction, array A is divided into equal blocks of size k and for each
block Bi (where i = 1, 2, . . .) we find and store the positions of O(log(n/k)) minima,
where jth value (j = 1, 2, . . . ) is the minimum of A[(i− 1)k + 1 . . . (i− 1)k + 2j−1k],
i.e., the minimum over a span of 2j−1 blocks, where the leftmost block is Bi. The
required space is O((n/k) log(n/k)) words.
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A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 ...

2 4 3 7 4 3 2 9 1 7 ...

M2,0 = 2

M2,1 = 3

M2,2 = 3

M5,2 = 7

Figure 1. A prefix of the input array A, together with several precomputed Sparse
Table values. Each Mi,j stores the position of the minimum in A[i . . . i+ 2j − 1]. For
example, M5,2 = 7, since the minimum of A[5 . . . 8], which is 2, is located in A[7] (ties
are resolved arbitrarily).

To answer a query [`, r], we find m′, the position of the minimum over the smallest
span of blocks fully including the query1, using the technique of the sparse table. If
` ≤ m′ ≤ r, then m′ is the answer and it is returned. In the opposite (rare) case, we
continue with finding the position m′′ of the minimum over the largest span of blocks
fully included in the query, and then scan (at most) O(k) cells of A to find the true
minimum and return its position.

Figure 2 reveals more details concerning this operation. The query starts some-
where in block B3 and ends in block B8. The left of the two intervals covering the
range of blocks B3 . . . B8 spans over B3 . . . B6. Each M ′

i,j (j ≥ 0) stores the position of
the minimum of the subarray of A covering the blocks Bi . . . Bi+2j−1. In our example,
the position of the minimum for the range of B3 . . . B6 is stored in M ′

3,2. The value
of this minimum is 5 and it belongs to B4 (which is denoted as M ′

5,2 = M ′
8,0). As

block B4 is wholly contained in our query, there is no need to scan any part of a
block. The situation is different for the right of the two intervals covering B3 . . . B8,
namely B5 . . . B8. Here the minimum belongs to B8 (i.e., M ′

5,2 = M ′
8,0) and moreover,

it happens that it is located beyond the prefix of this block covered by the query,
which is shown in the figure with an arrow. In this case, the prefix of B8 must be
scanned. At the end, one extra comparison returns the RMQ value.

If the average query interval width is u, the probability that m′ belongs to the
union of the two blocks containing ` and r, respectively, is O(k/u). The average query
time complexity is thus O((k/u)× k + (1− k/u)× 1) = O(k2/u), which is constant
for u = Ω(k2).

1 In the earlier (conference) version of our work [10] this algorithm was slightly different: we started
from the largest span of blocks fully included in the query. Although the space usages and time
complexities of both variants are the same, the new one is practically faster by about 20 percent
for large intervals, while the speed for small intervals is more or less the same.
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Bi = Aik... A(i+1)k−1 B1 B2 B3 B4 B5 B6 B7 B8 B9 ...

M’i,0=RMQB[i]
M’1,0 M’2,0 M’3,0 M’4,0 M’5,0 M’6,0 M’7,0 M’8,0 M’9,0 ...

Vi=A[M’i,0] 12 6 9 5 11 31 4 2 11 ...

M’3,2 = M’4,0

M’5,2 = M’8,0

k-element
block

example
query

scan 
needed

no scan

Figure 2. A prefix of the input array A divided into blocks Bi. The positions of the
block minima are stored in M ′

i,0. The corresponding minima values are in Vi.

Sparse Table with higher arity. Let us now consider a generalization of the doubling
technique in Sparse Table (a variant that we have not implemented). Instead of using
powers of 2 in the formula A[(i − 1)k + 1 . . . (i − 1)k + 2j−1k], we use powers of an
arbitrary integer ` ≥ 2 (in a real implementation it is convenient to assume that ` is
a power of 2, e.g., ` = 16). Then, the minimum over a range will be calculated as a
minimum over ` precomputed values. The worst-case query time becomes O(` + k),
but the space gets reduced by a factor of log `. We will come back to this variant in
Section 3.2.

2.2 A hybrid algorithm

The algorithm presented in the previous subsection has two drawbacks. One is the
worst-case query time of O(k), rather than O(1). The other is that it requires access
to array A, which typically occupies around n log n bits. We present now a hybrid
of our technique with any existing algorithm with no access to A at query time and
constant time queries. Such solutions, e.g., Baumstark et al. [3], may use 2n + o(n)
bits of space.

The hybrid builds both a data structure from Baumstark et al. and a block-based
sparse table, storing however both the minimum positions and their values in the
latter component. Note that the plain BbST does not store the minimum values since
A is available there.

The queries in our hybrid are handled as follows. First the BbST component
tries to answer the query. Using the sparse table requires comparing values of two
retrieved minima and this is when we would have to refer to A, but in the modified
BbST we access the stored values (there are only O((n/k) log(n/k)) of them in total,
not O(n log n)). If, however, we are unlucky and in the plain BbST we would have to
scan at most two blocks, we switch to the component with O(1) time. To sum up, our
solution speeds up the queries performed by Baumstark et al. in many practical cases,
preserves the constant worst case time and increases the space usage only moderately
(to less than 3n, as we will see in the experimental section). The last property, compact
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space, requires however an appropriate representation of the BbST component (and
well chosen parameters), which is described in Section 2.4.

2.3 Two-level block-based Sparse Table

We come back to our basic variant, from Section 2.1, and show how to generalize this
procedure to two levels of blocks.

The idea is to compute minima for n/k2 non-overlapping blocks of size k2 and
then apply the doubling technique from Sparse Table on larger blocks, of size k1. We
assume that k2 divides k1.

The first construction stage, finding the minima for blocks of size k2, takes O(n)
time. The second stage, working on blocks of size k1, takes O(n/k2+(n/k1) log(n/k1))
time. Then we answer the queries; if we are unlucky and one or two blocks of size k1
have to be scanned, the procedure is sped up with aid of the precomputed minima
for the blocks of size k2. Here were assume that the queries are sampled uniformly
randomly over the whole input array, i.e., the average query width is O(n). A query is
thus answered in O(k1/k2 + k2) time in the worst case and in O(1) time on average if
(k1/n)× (k1/k2 + k2) = O(1). The condition on the average case becomes clear when
we notice that the probability of the unlucky case is, under the given assumption,
Θ(k1/n) and checking (up to) two blocks takes O(k1/k2+k2) time. Fulfilling the given
condition implies that k1k2 = O(n) and k1/k2 = O(n/k1).

Our goal is to find such k1 and k2 that the extra space is minimized but
the average constant time preserved. To this end, we set k1 =

√
n log n, k2 =√

n/ log n, and for these values the average time becomes O(1). The space is
O(n/k2 + (n/k1) log(n/k1)) = O(

√
n log n) words.

Note that we preserved the average time of the variant from Section 2.1 and
reduced the extra space by a factor of log1/2 n. Note also that the space complexity
cannot be reduced for any other pair of k1 and k2 such that k1k2 = O(n).

It is quite easy to notice that generalizing the presented scheme to multiple levels
does not help, i.e., it is impossible to obtain both O(1) average query time and
o(
√
n log n) words of space. Indeed, let us have h ≥ 2 levels and choose the parameters

k1 > . . . > kh, such that each ki+1 divides ki. The minima for non-overlapping blocks
of size ki, i = h, h− 1, . . . , 2, are first computed, and then also the minima for blocks
of size k1, their doubles, quadruples, and so on. The constant average time for query
answering now requires that (k1/n)×(k1/k2+k2/k3+ . . .+kh−1/kh+kh) = O(1). The
second factor on the left-hand side is Ω(kh), hence the condition implies that k1kh =
O(n) (which is analogous to the condition required for the two-level variant). As the
space is Θ((n/k1) log(n/k1)+n/k2+n/k3+ . . .+n/kh) = Ω((n/k1) log(n/k1)+n/kh),
it is minimized for k1 = Θ(

√
n log n) and k2 = Θ(

√
n/ log n), which gives Ω(

√
n log n)

words of space, not better than for the case of h = 2.
We implemented the two-level variant, as will be seen in the experimental section.

In the standard (non-compact) version we have k2 ≤ 256 and thus the respective
minimum positions are stored on one byte each.

2.4 Compacting BbST

In the (block-based) sparse array in each block we store multiple minimum positions:
for a span of one block, a span of two blocks, a span of four blocks, and so on. Let us
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denote the (conceptual) array containing the minimum positions for all spans over 2j

blocks with the jth layer, where 0 ≤ j ≤ blog nc.
If we store the minimum positions näıvely in log n bits, the total size of our data

structure is O((n/k) log(n/k) log n) bits. Pointing to a minimum in jth layer, however,
requires fewer bits: log k bits in 0th layer and j (extra) bits in jth layer for j > 0. We
simply point to a block containing a minimum rather than to its exact position, except
for the lowest layer. Figure 3 presents the relation between M ′

i,j, the position of the
minimum of the span of blocks Bi . . . Bi+2j−1, and ∆i,j which stores ith value for jth
layer. The relation is simple: M ′

i,j = M ′
i+∆i,j ,0

. In this way, we can reduce the overall

space to O((n/k)(log k + log n) + (n/k) log2(n/k)) bits. In the real implementation,
however, we store the minimum positions every 9th layer directly (using log n bits)
and in the remaining layers use 8 bits, i.e., 1 byte for a reference. This is a convenient
tradeoff between memory use and byte-aligned access to data.

We can do better though, for the price of more costly access to the minima. To
this end, each ∆i,j, j > 0, can be encoded on one bit, with reference to ∆i,j−1, and
the total space use is then O((n/k)(log k + log(n/k)) bits.

We admit that our data structure resembles the tournament tree and its compact
version, the navigation pile [15]. The tournament tree is form of a min-heap, in which
every leaf represents a player and every internal node stores a copy of the winner. In
the navigation pile there is no redundancy, only single bits telling the winner, with a
primary motivation to reduce cache misses, e.g., in priority queue operations.

There is one more aspect concerning the required space. Let us consider a hybrid of
an O(1)-time RMQ algorithm with our two-level BbST variant (which, as experiments
will show, is an attractive solution). Apart from the minimum positions for each block
of size k2 we also need to store its value. In order not to spend log n bits for such
values, we apply a quantization heuristic. The smallest and the largest minimum
among the minima for blocks of size k2 are converted to 0 and maxQ, respectively.
The other minimum values are quantized more ‘densely’ for smaller and less densely
for larger values (as, assuming a uniformly random distribution of the input data in
A, minima for blocks tend to be closer to the global minimum than to the maximum
among those minima for blocks).

3 Offline Range Minimum Queries

If the queries to the array are known beforehand and their number q is limited,
resigning from heavy RMQ machinery in favour of much simpler solutions is not only
more natural, but may also prove faster and memory frugal. In the first subsection
below, we present the only known so far solution to this scenario, from Alzamel et
al. [2], while in the next subsections we show how to adapt our block-based sparse
table to offline queries.

3.1 The Alzamel et al. algorithm

Following [1] (see the proof of Lemma 2), the Alzamel et al. approach starts from
contracting the array A into O(q) entries. The key observation is that if no query
starts or ends with an index i and i + 1, then, if A[i] 6= A[i + 1], max(A[i], A[i + 1])
will not be the answer to any of the queries from the batch. This can be generalized
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Bi = Aik.. A(i+1)k-1 B1 B2 B3 B4 B5 B6 B7 B8 B9 ...

Vi=A[M’i,0] 12 6 9 5 11 31 4 2 11 ...

M’i,0=RMQB[i]
M’1,0 M’2,0 M’3,0 M’4,0 M’5,0 M’6,0 M’7,0 M’8,0 M’9,0 ...

M’i,1=M’i+Δ[i,1],0
... ...

M’i,2=M’i+Δ[i,2],0
... ... ... ...

M’i,3=M’i+Δ[i,3],0
... ... ... ... ... ... ... ...

Δi,1 1 0 1 0 0 1 1 0 ... ...

Δi,2 3 2 1 3 3 2 ... ... ... ...

Δi,3 7 6 ... ... ... ... ... ... ... ...

Figure 3. Compact variant of the block-based sparse table. Apart from the minimum
positions for single blocks (array V ) also ∆i,∗ arrays are stored, which allow to access
the minima over larger spans of blocks.

into continuous regions of A. Alzamel et al. mark the elements of A which are either
a left or a right endpoint of any query and create a new array AQ: for each marked
position in A its original value is copied into AQ, while each maximal block in A that
does not contain a marked position is replaced by a single entry, its minimum. The
relative order of the elements copied from A is preserved in AQ, that is, in AQ the
marked elements are interweaved with representatives of non-marked regions between
them. As each of q queries is a pair of endpoints, AQ contains up to 4q + 1 elements
(repeating endpoint positions imply a smaller size of AQ, but for relative small batches
of random queries this effect is rather negligible). In an auxiliary array the function
mapping from the indices of AQ into the original positions in A is also kept.

For the contracted data, three procedures are proposed. Two of them, one offline
and one online, are based on existing RMQ/LCA algorithms with linear preprocess-
ing costs and constant time queries. Their practical performance is not competitive
though. The more interesting variant, ST-RMQCON, achieves O(n+q log q) time2. The
required space (for all variants), on top of the input array A and the list of queries Q,
is claimed to be O(q), but a more careful look into the algorithm (and the published
code) reveals that in the implementation of the contracting step the top bits of the
entries of A are used for marking. There is nothing wrong in such a bit-stealing tech-
nique, from a practical point3, but those top bits may not always be available and
thus in theory the space should be expressed as O(q) words plus O(n) bits.

We come back to the ST-RMQCON algorithm. As the name suggests, it builds the
Sparse Table structure for the contracted array. All the queries can be answered in
O(q) time. Interestingly, the construction and the queries are performed together,

2 Written consistently as n + O(q log q) in the cited work, to stress that the constant associated
with scanning the original array A is low.

3 One of the authors of the current work also practiced it in a variant of the SamSAMi full-text
index [11, Section 2.3].
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with re-use of the array storing the minima. The ST construction time is O(q log q),
but due to this clever trick, the size of the helper array is not O(q log q), but only
O(q).

3.2 Block-based Sparse Table for the offline RMQ

BbST with the input array contraction On a high level, our first algorithm for
the offline RMQ consists of the following four steps:

1. Sort the queries and remap them with respect to the contracted array’s indices
(to be obtained in step 2).

2. Contract A to obtain AQ of size O(q) (integers).
3. Build the block-based sparse table on AQ (see Section 2.1), with blocks of size k.
4. Answer the queries, again in the manner of the solution from Section 2.1.

In the following paragraphs we are going to describe those steps in more detail,
also pointing out the differences between our solution and Alzamel et al.’s one.

(1) Sorting/remapping queries. Each of the 2q query endpoints is represented as a
pair of 32-bit integers: its value (position in A) and its index in the query list Q. The
former 4-byte part is the key for the sort while the latter 4 bytes are satellite data.
In the serial implementation, we use kxsort4, an efficient MSD radix sort variant.
In the parallel implementation, our choice was Multiway-Mergesort Exact variant
implemented in GNU libstdc++ parallel mode library5. As a result, we obtain a
sorted endpoint list E[1 . . . 2q], where Ei = (Ex

i , E
y
i ) and Ex

i+1 ≥ Ex
i . Alzamel et al.

do not sort the queries, which is however possible due to marking bits in A.
(2) Creating AQ. Our contracted array AQ contains the minima of all areas

A[Ex
i . . . E

x
i+1], in order of growing i. AQ in our implementation contains thus (up

to) 2q − 1 entries, twice less than in Alzamel et al.’s solution. Like in the preceding
solution, we also keep a helper array mapping from the indices of AQ into the original
positions in A.

(3) Sparse Table on blocks. Here we basically follow Alzamel et al. in their ST-
RMQCON variant, with the only difference that we work on blocks rather than in-
dividual elements of AQ. For this reason, this step takes O(q + (q/k) log(q/k)) =
O(q(1 + log(q/k)/k)) time and O((q/k) log(q/k)) space. The default value of k, used
in the experiments, is 512.

(4) Answering queries. The speculative reads in the block-based sparse table
(cf. Section 2.1) allow to answer a query often in constant time (yet, in rare cases an
O(k)-time scan is needed). This simple idea is crucial for the overall performance of
our scheme. In the worst case, we spend O(k) time per query here, but on average,
assuming uniformly random queries over A, the time is O((k/q)×k+(1−k/q)×1) =
O(1 + k2/q), which is O(1) for k = O(

√
q).

Let us sum up the time (for a serial implementation) and space costs. A scan
over array A is performed once, in O(n) time. The radix sort applied to our data of
2q integers from {1, . . . , n} takes (in theory) O(qmax(log n/ log q, 1)) time. Alterna-
tively, introsort from C++ standard library (i.e., the std::sort function) would yield
O(q log q) time. To simplify notation, the Sort(q) term will further be used to denote

4 https://github.com/voutcn/kxsort
5 https://gcc.gnu.org/onlinedocs/libstdc++/manual/parallel_mode.html
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the time to sort the queries and we also introduce q′ = q/k. AQ is created in O(q)
time. Building the Sparse Table on blocks adds O(q+ q′ log q′) time. Finally, answer-
ing queries requires O(qk) time in the worst case and O(q + k2) time on average. In
total, we have O(n+ Sort(q) + q′ log q′ + qk) time in the worst case. The extra space
is O(q′ log q′).

In Section 2.1 we presented a variant of the Sparse Table with arity higher than two
for the online RMQ problem. Now we discuss it in the context of the offline RMQ. The
worst-case time of handling q queries becomes O(n+Sort(q)+q′ log q′/ log `+q`+qk),
which is minimized for ` = max(log q′/(k log log q′), 2). With k small enough to have
` = log q′/(k log log q′), we obtain O(n+Sort(q)+q′ log q′/ log log q′+qk) overall time
and the required extra space is O(q′ log q′/ log log q′) words.

If we focus on the average case, where the last additive term of the worst-case
time turns into k2/q, it is best to take k =

√
q, which implies ` = 2. In other words,

this idea has its niche only considering the worst-case time, where for a small enough
k both the time and the space of the standard block-based Sparse Table solution are
improved.

BbST with no input array contraction The simple solution presented in Sec-
tion 2.1, due to a very fast construction, seems to be suitable also for the offline
RMQ problem. This variant greatly simplifies the procedure described in Section 3.2,
as now there is no need to sort the queries. Basically, we reduce the previous variant
to the last two stages. Naturally, this comes at a price: the extra space usage becomes
O((n/k) log(n/k)) words (yet the optimal choice of k may be different, closer to

√
n),

but query times often become very competitive.

Let us focus on the space and time complexities for this variant, for both the
worst and the average case. The analysis resembles the one for the variant with the
contracting of A. We have two parameters, n and k, and two stages of the algorithm.
The former stage takes O(n+(n/k) log(n/k)) time, the latter takes O(qk) time in the
worst case and O(q(1 + k2/n)) on average (which is O(q) if k = O(

√
n)). In total we

have O(n+(n/k) log(n/k)+qk) time in the worst case and O(n+(n/k) log(n/k)+q)
time on average, provided in the latter case that k = O(

√
n). The space, expressed in

words, is O((n/k) log(n/k)). To minimize both the time and the space for the average
case we set k = Θ(

√
n). Then the average time becomes O(n +

√
n log

√
n + q) =

O(n+ q) and the space is O(
√
n log n).

4 Experimental results

For the experiments, we use the array A storing random 32-bit unsigned integers.
The queries are pairs of the form (`i, ri), where `i is drawn uniformly random from
the whole sequence and ri − `i is between 0 and a specified range width limit.

Our algorithms were implemented in C++ and compiled with 32-bit gcc 7.2.0 with
-O3 -mavx2 switches. The source codes can be downloaded from https://github.

com/kowallus/BbST. The experiments were conducted on a desktop PC equipped
with a 4-core Intel i7 4790 3.6 GHz CPU and 32 GB of 1600 MHz DDR3 RAM (9-9-9-
24), running Windows 10 Professional. All presented timings in all tests are medians
of 7 runs, with cache flushes in between.
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Figure 4. Average query times for ranges of varying maximum width (uniformly
random from 1 to the given value) and two sizes of the input sequence (100M and
1G). For each maximum width 1M queries were used. The space usage, in bits, for
particular solutions is given in the legends, in parentheses. The bottom figures include
only the faster solutions from the top figures, plus a line for the standard Sparse Table.

We start with the experiments in the traditional, offline, RMQ scenario. Fig. 4
presents average query times in function of growing maximum query range size. We
use the following algorithms in the comparison:

– SDSL-SCT and SDSL-SADA, two RMQ implementations from the well-known
SDSL library [9] (https://github.com/simongog/sdsl-lite),

– BP (Balanced Parentheses) algorithm by Ferrada and Navarro [5] (https://
github.com/hferrada/rmq.git),

– SDSL-BP and SDSL-REC, two algorithms by Baumstark et al. [3] (https://
github.com/kittobi1992/rmq-experiments),

– BbST, our baseline solution, with block size of k = 512,
– BbST2, our two-level solution, with block sizes (k1, k2) set to (512, 64) or

(4096, 256), respectively.

The numbers is parentheses give the space usage in bits. Note that our algorithms
require access to array A, which results in the overhead of 32n bits. The input size n
is 100 million in the left figures and 1 billion in the right ones. The top figures present
all lines while in the bottom ones we focus on the faster ones (note the time scale).
The line with vertical markers stands for the classical Sparse Table solution; it shows
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Figure 5. Estimated worst-case query times for ranges of varying maximum width
(uniformly random from 1 to the given value) and two sizes of the input sequence
(100M and 1G). For each maximum width 1M queries were used. The space usage,
in bits, for particular solutions is given in the legends, in parentheses.

the performance of this very simple data structure, which is unbeatable for relatively
narrow queries (of width up to a few thousands), yet the required space is around
320–400n bits.

We can see that our idea of using blocks not only reduces the ST space by an
order of magnitude, but also speeds up queries on wide intervals. SDSL-REC is the
most succinct solution. BP is a close second in space, yet not so fast as SDSL-BP and
SDSL-REC. Of these two, SDSL-REC seems to be the method of choice, even if not
always faster than SDSL-BP. The performance of our variants usually improves with
growing range widths, which is not the case of the competitors. The two-level variant,
BbST2, is more succinct and also usually faster than BbST. We note that BbST2 is,
roughly speaking, about twice faster than SDSL-REC with range widths up to a few
thousands (the gap is greater than 2-fold for n = 100M and smaller for n = 1G), yet
grows to an order of magnitude for wide queries.

In Fig. 5 we estimate the worst-case, rather than average, query time of our
algorithms. In this experiment, for each query we scan the two blocks to which its
boundaries belong (no matter if this scan were really needed) and the averages over
such times are presented. Note that a ‘direct’ measurement of the worst case, that
is, taking the maximum time over many queries, is hard to perform reliably, as the
times are below 1µs. As expected, in this comparison our algorithms are not really
competitive, except for narrow ranges (maximum width of 30 in the test). Yet, for
much wider ranges BbST variants are inferior in speed only to SDSL-REC and SDSL-
BP. Interestingly, the query times of BP grow roughly linearly in the logarithm of the
range width; for the other tested algorithms the timings stabilize.

For the experiments to follow in most cases we present the results only for n = 1G,
to save space (in the case of n = 100M the trends are similar).

Our next attempt was to combine the block-based sparse table with SDSL-REC, in
order to get rid of the input array during the query handling. The variants with letter
‘x’ in their names, shown in Fig. 6, are not yet hybrids; they do not answer RMQ in
all cases. They simply get rid of array A and are thus unable to scan over an interval.
If the precomputed minima are not enough to answer a given query, the algorithm
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Figure 6. The query success rate, i.e., how often a random query can be handled
by our data structure without accessing the input array A. For each maximum width
1M queries were used. The space usage, in bits, for particular solutions is given in
the legends, in parentheses. Note that these solutions are not full RMQ-answering
algorithms.

(c)BbSTx (resp. (c)BbST2x) is unable to given an answer. The query success rate
tells how often the query can be handled. Note that now the space is much reduced.
The left figure presents variants based on the standard BbST(2), while the right one
shows their compact versions, with prefix ‘c’ in their names. As expected, the compact
variants require less space, but their query success rates overlap with the values for
the corresponding non-compact variants.

For the hybrids involving cBbST2, we used the following formula for quantizing
the block minimum values for the blocks of size k2:

bmaxQ× (1− (maxMin− v)8/(maxMin−minMin)8)c,

where v is a block minimum value, and maxMin (resp. minMin) is the largest (resp.
smallest) minimum among the minima for blocks of size k2. The formula was found
experimentally.

As the compact variants are recommended both for speed and space frugality,
we combined them with SDSL-REC variants into hybrids (Fig. 7). We can see that
for wide intervals our hybrids are faster than SDSL-REC by more than an order of
magnitude, while for narrow ones (up to a few hundred in width) the gap is quite
narrow. Yet, the more successful of our variants, the hybrid with block sizes of 16384
and 256, respectively, is defeated in speed (by about 10%) only for the narrowest
interval. Fortunately, the same variant is more compact of our two, with 2.24n bits
of space, which is not much more than 2.16n bits of SDSL-REC.

An important facet of every data structure is its construction time. Table 1
presents the construction times (and space usage) for several RMQ algorithms or
their configurations, for the input array of size n = 1G. We can see that the plain
BbST is clearly the fastest, about 40 times faster than the fastest solution with con-
stant worst case time queries, SDSL-SCT. Note also that in the construction time
for SDSL-SCT over 1G elements we can build BbST and answer from about 100M
to 400M queries. Our two-level variant, BbST2, is still very fast in construction. The
hybrids, however, must require more time to build than SDSL-REC, which is their
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Figure 7. Average query times for ranges of varying maximum width (uniformly
random from 1 to the given value) and two sizes of the input sequence (100M and 1G).
Our hybrid, cBbST2-SDSL-REC, in two parameter configurations, is compared against
the fastest non-hybrid solution from the literature, SDSL-REC. For each maximum
width 1M queries were used. The space usage, in bits, for particular solutions is given
in the legends, in parentheses.

variant build time size / n
[s] [bits]

SDSL-SADA 212.5 5.85
SDSL-SCT 23.9 2.54
BP 66.6 2.21
SDSL-BP 26.0 2.55
SDSL-REC 62.6 2.16
ST 436.6 404.94
BbST, k = 512 0.6 34.63
BbST2, k1 = 512, k2 = 64 2.7 34.75
BbST2, k1 = 4096, k2 = 256 2.8 32.31
cBbST-SDSL-REC, k = 512 66.0 2.82
cBbST2-SDSL-REC (512, 64) 67.6 3.07
cBbST2-SDSL-REC (16384, 256) 67.6 2.24

Table 1. Construction times and space usage for several RMQ algorithms, for n =
1G. All implementations are single-threaded.

component. ST, as clearly the most memory-demanding data structure, is also the
slowest to build.

Table 2 focuses on the space usage for individual components of our variants. The
values in column “backend RMQ data” are equal to either 32 (i.e., the size of input
data in array A) for non-hybrid solutions or the number of bits per element spent in
SDSL-REC. The size of the sparse table component is relatively large for k1 = 512,
but improves in the compact variants (those with ‘c’ in their names) and, of course,
gets reduced with growing k1. The overhead of the second level blocks is given in the
last column.

The last experiments concerned the offline RMQ scenario. Here, a batch of q
queries is handled, where q � n. The comparison comprises the following algorithms:

– ST-RMQCON, by Alzamel et al. [2] (https://github.com/solonas13/rmqo),

14
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variant backend sparse second
RMQ data table level

BbST, k = 512 32 2.63 —
BbST2, k1 = 512, k2 = 64 32 2.63 0.13
BbST2, k1 = 4096, k2 = 256 32 0.28 0.03
BbST-SDSL-REC, k = 512 2.16 2.63 —
BbST2-SDSL-REC (512, 64) 2.16 2.63 0.63
BbST2-SDSL-REC (4096, 256) 2.16 0.28 0.16
cBbST-SDSL-REC, k = 512 2.16 0.66 —
cBbST2-SDSL-REC (512, 64) 2.16 0.66 0.25
cBbST2-SDSL-REC (16384, 256) 2.16 0.01 0.06

Table 2. Space usage for individual data structure components. All numbers are in
bits per element.

q (in 1000s) stage 1 stages 1–2 stages 1–3 stages 1–4

n = 100M

10 1.4 95.9 95.9 100.0
320 23.5 92.5 93.0 100.0

10240 65.8 88.3 89.1 100.0

n = 1G

32 0.4 99.6 99.6 100.0
1024 13.8 96.5 96.8 100.0

32768 59.0 87.9 88.6 100.0

Table 3. Cumulative percentages of the execution times for the successive stages of
BbSTCON with the fastest serial sort (kxsort). The default value of k (512) was used.
Each row stands for a different number of queries (given in thousands).

– BbSTCON, a version of our block-based sparse table with contracted input array,
with block size of k = 512,

– BbST and BbST2, our algorithms used in the previous experiments, with block
sizes set to k = 512 (BbST) and (k1, k2) = (4096, 256) (BbST2).

We can see (Fig. 8) that the relative advantage of our variants over ST-RMQCON

grows with the number of queries. In any case, our algorithm is several times faster
than its predecessor. For small enough q (the left figures), BbSTCON dominates over
BbST, while for a larger number of queries BbST takes the lead. In almost all cases,
our two most successful variants are several times faster than ST-RMQCON, sometimes
(BbST, relatively large q) reaching an order of magnitude gap in performance.

Table 3 contains some profiling data. Namely, cumulative percentages of the exe-
cution times for the four successive stages (cf. Section 3.2) of BbSTCON with default
settings, are shown. Unsurprisingly, for a growing number of queries the relative im-
pact of the sorting stage (labeled as stage 1) grows, otherwise the array contraction
(stage 2) is dominating. The last two stages are always of minor importance in these
tests.

Different sorts for BbSTCON, in a serial regime, were applied in the experi-
ment shown in Fig. 9. Namely, we tried out C++’s qsort and std::sort, kxsort,

gnu parallel::sort and Intel parallel stable sort (pss). The function qsort, as it is
easy to guess, is based on quick sort. The other sort from the C++ standard library,
std::sort, implements introsort, which is a hybrid of quick sort and heap sort. Its idea
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Figure 8. Running times for with varying number of queries q, from
√
n to 32

√
n

(left figures) and from 64
√
n to 1024

√
n (right figures), where n = 1G. The symbol

m denotes a query width. In the top figures the maximum query width is 32K, while
in the bottom ones it is 1G.

is to run quick sort and only if it gets into trouble on some pathological data (which
is detected when the recursion stack exceeds some threshold), switch to heap sort.
In this way, std::sort works in O(n log n) time in the worst case. The next contender,
kxsort, is an efficient MSD radix sort. The last two sorters are parallel algorithms, but
for this test they are run with a single thread. The gnu sort is a multiway mergesort
(exact variant) from the GNU libstdc++ parallel mode library. Finally, Intel’s pss is
a parallel merge sort6. We use it in the OpenMP 3.0 version.

For the last experiment with BbSTCON, we ran our algorithm in a parallel mode,
varying the number of threads in {1, 2, . . . , 8, 12, 16} (Fig 10). For sorting the queries
we took the faster parallel sort, gnu parallel::sort. The remaining stages also benefit
from parallelism. The second stage computes in parallel the minima in contiguous ar-
eas of A and the third stage correspondingly handles blocks of AQ. Finally, answering
queries is handled in an embarassingly parallel manner.

As expected, the performance improves up to 8 threads (as the test machine has
4 cores and 8 hardware threads), but the overall speedups compared to the serial
variant are rather disappointing, around factor 2 or slightly more.

6 https://software.intel.com/en-us/articles/

a-parallel-stable-sort-using-c11-for-tbb-cilk-plus-and-openmp
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Figure 10. Impact of the number of threads in gnu parallel::sort and in creating
AQ (by independent scanning for minima in contiguous areas of A) on the overall
performance of BbSTCON, for different number of queries q, where n is 100M (left
figure) or 1G (right figure). Note the logarithmic scale on the Y-axis.

Table 4 presents the memory use (apart from input array A and the set of queries
Q) for our variants. BbST is insensitive here to q. The parameter k was set to 512
in the case of BbSTCON. As expected, the space for BbSTCON grows linearly with q.
For small enough q, BbSTCON is more succinct than BbST (unless we run it with
large k, which hampers the speed), but for the maximum tested number of queries,
q ≈ 1024

√
n, BbST easily wins in this respect. Finally, BbST2 may pose a better

time-space tradeoff than BbST.

5 Final remarks

Computing range minimum queries over a sequence of length n is a fundamental
primitive in many compressed data structures (indexes) and string mining. We pro-
posed a very simple, yet efficient approach to this problem, called BbST, adapting the
well-known Sparse Table technique to work on blocks, with speculative block minima
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variant extra space as % of the input
with parameter n = 100, 000, 000 n = 1, 000, 000, 000

BbSTCON, q ≈
√
n 0.10 0.03

BbSTCON, q ≈ 32
√
n 3.23 1.03

BbSTCON, q ≈ 1024
√
n 103.68 33.20

BbST, k = 512 7.03 8.20
BbST, k = 1024 3.32 3.91
BbST, k = 2048 1.56 1.86
BbST, k = 4096 0.73 0.88
BbST, k = 8192 0.34 0.42
BbST, k = 16, 384 0.16 0.20
BbST, k = 32, 768 0.07 0.09

BbST2 (512, 64) 7.42 8.59
BbST2 (4096, 256) 0.83 0.98
BbST2 (16384, 256) 0.26 0.29

Table 4. Memory use for the three variants, as the percentage of the space occupied
by the input array A (which is 4n bytes). The parameter k was set to 512 for BbSTCON.

comparisons. This technique alone allows to be competitive in speed to existing RMQ
solutions, but has two drawbacks: it allows to obtain constant query time only in the
average case (assuming that the range width is large enough to the block size, speci-
fied at construction time) and it requires access to the input array during the query
handling. As a next solution we thus proposed to combine our technique with one of
the existing succinct solutions with O(1) worst-case time queries and no access to the
input array. The resulting hybrid is still a memory frugal data structure, spending
usually up to about 3n bits, and providing competitive query times, especially for
wide ranges. We also showed how to make our baseline data structure more compact.

Additionally, we showed how to use the BbST approach (in a standard or modi-
fied way) in the recently proposed scenario of offline RMQ. In this problem, the set
of q queries is given beforehand and if q is small enough, it is not recommended to
build a (heavy) data structure on the input array as this overhead may not be com-
pensated. Experimental results show that the block-based Sparse Table approach can
be recommended also for the offline RMQ problem. Not surprisingly, parallelization
allowed to obtain extra speedups.
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Stringology Conference 2017, J. Holub and J. Žďárek, eds., Czech Technical University in Prague, Czech
Republic, 2017, pp. 85–95.

11. S. Grabowski and M. Raniszewski: Sampled suffix array with minimizers. Software–Practice and
Experience, 47(11) 2017, pp. 1755–1771.

12. R. Grossi and G. Ottaviano: Design of practical succinct data structures for large data collections,
in 12th International Symposium on Experimental Algorithms (SEA), June 5-7, 2013, Rome, Italy,
V. Bonifaci, C. Demetrescu, and A. Marchetti-Spaccamela, eds., vol. 7933 of LNCS, Springer, 2013,
pp. 5–17.

13. D. Harel and R. E. Tarjan: Fast algorithms for finding nearest common ancestors. SIAM Journal
on Computing, 13(2) 1984, pp. 338–355.

14. G. Jacobson: Space-efficient static trees and graphs, in 30th Annual Symposium on Foundations of
Computer Science (FOCS), October 30 – November 1, 1989, Research Triangle Park, North Carolina,
USA, IEEE, 1989, pp. 549–554.

15. J. Katajainen and F. Vitale: Navigation piles with applications to sorting, priority queues, and
priority deques. Nordic Journal of Computing, 10(3) 2003, p. 238.

16. K. Sadakane: Compressed suffix trees with full functionality. Theory of Computing Systems, 41(4)
2007, pp. 589–607.

19


	Faster range minimum queries by Tomasz Kowalski, Szymon Grabowski

