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Abstract

Cloud computing has grown to become a popular distributed comput-
ing service offered by commercial providers. More recently, Edge and Fog
computing resources have emerged on the wide-area network as part of
Internet of Things (IoT) deployments. These three resource abstraction
layers are complementary, and offer distinctive benefits. Scheduling appli-
cations on clouds has been an active area of research, with workflow and
dataflow models offering a flexible abstraction to specify applications for
execution. However, the application programming and scheduling mod-
els for edge and fog are still maturing, and can benefit from learnings
on cloud resources. At the same time, there is also value in using these
resources cohesively for application execution. In this article, we offer a
taxonomy of concepts essential for specifying and solving the problem of
scheduling applications on edge, for and cloud computing resources. We
first characterize the resource capabilities and limitations of these infras-
tructure, and offer a taxonomy of application models, Quality of Service
(QoS) constraints and goals, and scheduling techniques, based on a liter-
ature review. We also tabulate key research prototypes and papers using
this taxonomy. This survey benefits developers and researchers on these
distributed resources in designing and categorizing their applications, se-
lecting the relevant computing abstraction(s), and developing or selecting
the appropriate scheduling algorithm. It also highlights gaps in literature
where open problems remain.

1 Introduction

In computing, scheduling refers to the process of allocating computing resources
to an application and mapping constituent components of that application onto
those resources, in order to meet certain Quality of Service (QoS) and resource
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conservation goals [114]. The application itself may be represented in an ab-
stract or concrete form using different programming primitives such as processes,
threads, tasks, jobs, workflows, petri nets, and so on [153, 54, 111, 147]. Simi-
larly, the computing resource may be diverse, ranging from local cores and pro-
cessors on a host, to distributed resource like nodes in a cluster, virtual machines
(VM) in a cloud, edge or mobile devices in an Internet of Things (IoT) deploy-
ment, or desktops in a volunteer computing network [71, 172, 175, 173, 15]. QoS
for the application, such as their latency, and conservation goals, such as min-
imizing the quanta of resource or their energy footprint, can likewise be used
to determine the schedule. Consequently, examining application scheduling re-
quires us to understand the behavior of the computing resources, application
models, and QoS goals in an integrated manner.

There is a growing availability of heterogeneous distributed computing re-
sources. Cloud computing is a capability offered by commercial service providers
using a rental model. Here, virtualized compute and storage resources at large
data center with thousands of servers are available on-demand [16]. In addition,
there has been the emergence of devices at the Edge of the network as part of the
broader roll-out of Internet of Things (IoT). These can be sensors and devices
that are part of Smart City infrastructure, lifestyle gadgets like wearables, and
smart appliances or smart phones. Besides sensing and generating observation
streams, these devices that number in the tens of thousands have spare com-
pute, storage and memory capacities. These can be leveraged to execute IoT
applications at the edge of the network [63]. Further, there has been heightened
interest in Fog resources, that are between the edge and cloud in the network
hierarchy, with compute, storage and memory capacities that fall between these
layers as well [136]. These edge and fog resources provide the opportunity for
low latency processing of the generated data, closer to its source, and on the
wide-area network [143]. As a result, there is critical need to understand how
this diverse ecosystem of edge, fog and cloud resources can be effectively used
by large-scale distributed applications.

Scheduling applications on edge, fog and cloud deals with the placement of
the application’s logic components onto these resources for execution, deciding
their interactions within this compute and network hierarchy, and managing
various forms of dynamism, to meet their QoS requirements. There can be re-
source mobility at the edge and fog layers. The applications may also impose
requirements on logical mobility of processes and data. Further, there may be
changes in the data generation rates, network behavior or energy levels of batter-
ies that require reactive strategies [131]. The application needs to be scheduled
and coordinated in order to meet various QoS goals such as latency, energy and
monetary constraints. As a result, scheduling within this complex ecosystem
involves a multitude of online coordination and optimization decisions, and the
flow of control signals and data that can impact the application performance
and resource usage.

There has been substantial work on examining scheduling approaches on
clouds and clusters [175, 83]. However, given the nascency of edge and fog
resources, there is a lack of a systematic review of distributing and scheduling
applications on these resource classes individually, and together with clouds [70].
Ezisting literature has proposed the conceptual foundations of edge and fog
computing [26, 44, 36, 136]. Others, including us, have discussed the benefits
and challenges involved in the coordination among edge, fog and cloud layers



in a hierarchical model [104, 156], but fail to examine in detail their impact of
the applications and their schedule. Several scheduling approaches also do not
distinguish between the edge and the fog layers, and subsume the former into the
latter (or vice versa) [141, 140, 46]. There is also divergence in the assumptions
made on the reliability and costing for the edge and fog layers. Hence, there
is the need to understand the possible architectural patterns and scheduling
mechanisms that have been proposed to cohesively schedule on these resource
abstraction layers to inform researchers on open problems, and developers on
available approaches and their relative merits.

A literature survey can offer a framework to examine and understand such
fast-paced emerging research, in the context of existing works. Preliminary
surveys on Mobile Edge Computing (MEC), review task offloading strategies
adopted by mobile edge devices that coexist with cloud resources, motivated by
the growth in smart phones [6, 96]. However, these tend to focus on scheduling
individual smart phone apps on a single edge device and the cloud. We generalize
beyond mobile edges to all types of edge resource, include fog computing as a
first-class entity, and consider diverse application and scheduling models on
them. Some of these also consider the evolution of mobile edge computing with
the advent of 5G communication technologies, with capabilities like network
slicing and network function virtualization [146]. We approach this survey from
the application and Infrastructure as a Service (IaaS) perspective, rather than
examine the internals of the hardware or communications architectures. Others
have also summarized the relative characteristics of the three resource layers,
similar to the System Design branch of our taxonomy [173]. However, they do
not examine the impact of this on application design and scheduling models.

We distinguish our work from numerous cloud computing surveys, that re-
view the breadth of the cloud ecosystem [175], scheduling of VMs onto hosts [83,
101], and use of multi-cloud environments [65]. These are at different levels of
abstractions, even within cloud computing. We also contrast with specialized
reviews on specific scheduling techniques or resource feature, such as meta-
heuristics [161, 151], elasticity, and fault-tolerance [42, 73]. Rather, we take a
holistic view of these and other characteristics such as pricing, variable perfor-
mance, and application models, and consider them in the presence of edge and
fog resources as well. the application and system models as well. These related
works are reviewed in greater detail in Section 5.

We address these gaps and present a survey on scheduling of applications
on to Edge, Fog and Cloud computing resources, both independently and collec-
tively, based on a review of contemporary scheduling literature. Specifically, we
present a taxonomy of concepts and approaches for scheduling applications
on edge, fog and cloud resources (§ 3), based on a detailed review of research
literature over the past decade. This classification covers properties of edge,
fog and cloud resources relevant to scheduling, characteristics of the application
that impacts the schedule, and the diverse QoS and constraints that determine
the performance of the schedule, and categories of scheduling algorithms that
exist. We then tabulate key scheduling literature using this taxonomy to
offer a birds-eye view of the landscape of application scheduling on these re-
sources (§ 4). We place our survey in the context of other related surveys
that exist, and argue its novelty and impact (§ 5). Lastly, we discuss emerging
trends in this decade-old research area, and highlight open problems that the
research community is actively exploring at present (§ 6).



At the same time, our goal is not to examine specific implementations of
edge or fog computing technologies, cloud service offerings beyond IaaS (and
even that with an emphasis on computing resources), nor to offer case-studies
of applications. We compare and contrast the conceptual features across these
resources, and abstract the higher-order application models to help examine
scheduling techniques. We also do not consider security and privacy aspects
such as authentication, encryption and cyber-attacks on edge, fog and cloud.
Networking and communications technologies, and data center management are
out of scope as well. Existing literature, some of which we review in the related
work, address these adequately.

This article draws on our two prior works that characterize the resource be-
havior of edge, fog and cloud [156], and offer an overview of fog computing [136].
These content are selectively incorporated in the resource capabilities section
(§ 3.1). However, the scope of this current review is substantially wider and
more in-depth, as is seen by the rest of the article.

In summary, our survey is based on the premise that: (1) it is important
to consider edge, fog and cloud resources collectively and also in contrast to
each other, to leverage their mutual benefits; (2) this has to be examined from
the application definition and scheduling perspective as it faces the end users
and developers on these resource, rather than the service providers; and (3)
programming models and scheduling techniques on individual resource layers
are translatable to others, in addition to exploring approaches that cut across
these layers. To this end, we offer a novel and useful review of current literature
and a consequent taxonomy related to these goals.

As a result, it presents designers of scheduling algorithms for edge, fog and
cloud applications with a clear set of system and application features they should
consider for their target infrastructure. It also provides architects of applica-
tion runtimes with the available options of scheduling algorithms that they can
leverage to meet the needs of their end-users. Also, it highlights gaps in existing
literature where the intersection between these resource layers have yet to be
adequately addressed.

2 Background

In this section, we provide a background of edge and fog computing to motivate
the need to consider them as first-class computing resources, while substantiat-
ing this with a conceptual taxonomy for them later in § 3.1. We then briefly
discuss prior work on Mobile Cloud Computing (MCC) (also called, Mobile
Edge Computing (MEC)), which has generalized into edge and cloud comput-
ing. This offers a contrast from this conceptual predecessor, and scheduling
strategies that have been attempted on it. Lastly, we offer a similar distinction
from the extensive work on scheduling for High Performance Computing (HPC)
resources, which is related to but has key distinctions from how applications are
scheduled on the cloud. These establish clear contrasts from our effort while
still offering a background on prior work on related technology domains.



2.1 Edge and Fog Computing as an Emerging Resource
Abstractions

Edge computing refers to the use of thousands of computing devices such as
sensors, gateways, mobile devices or embedded systems at the edge of the net-
work, often in the context of mobile phones or the Internet of Things (IoT),
for performing computation. This complements their traditional role of data
collection and actuation, while the cloud is used for computation and data
analytics [72, 25]. Fog computing [25], also known as Cloudlets [126], was intro-
duced by Satyanarayanan, et al., and popularized by Cisco as a complementary
resource-rich layer that sits between the edge and the cloud [156]. Fog provides
data, compute, storage, and application services to end-users similar to cloud
data centers but with lower latency and faster response as it is typically 1-hop
away from the edge [22, 144].

There are many applications that motivate and benefit from edge and fog
computing [156]. There is a global push toward Smart Cities as a manifestation
of IoT. Given the advances in deep learning, large-scale video surveillance has
been adopted for public safety and as a proxy for ambient observations using
analytics, such as to identify parking violations, and classify vehicles and people
[170, 79]. Training the neural network models is computationally costly, and the
source video streams at the edge are also large in size. Accelerated fog resources
can complement edge resources available for deep learning while reducing data
transfer costs to the cloud. Smart Power Grids are another key domain in smart
cities [137, 156], with net-connected smart meters reporting power demand at
households and industries every few minutes to the utility [13]. Smart grid
applications like Demand-response (DR) optimization help shape or shift power
demand using forecasting models on the cloud that trigger curtailment strategies
on the edge when a load mismatch is detected [12, 11]. State estimation to
determine the health of the distribution network is even more time sensitive,
O(ms), and necessitating computing at the edge [110].

While edge and fog computing are still emerging technologies, this taxonomy
throws more light on these resource abstractions and their effective use from an
application and scheduling model, based on current literature and technology.

2.2 Scheduling on Mobile Clouds vs. Edge Computing

Mobile Cloud Computing (MCC) (also called Mobile Edge Computing (MEC)
or Mobile Clouds) is a precursor to the more general edge computing concept [49,
123, 56]. It has a restricted design, motivated by cellular phones, both smart
and feature phones, running applications or “apps”. MCC is concerned with
strategies for offloading these applications from the mobile devices to the cloud
due to the constrained computing power of the device. It involves a simple
network topology, and is often limited to direct communication between one
mobile (edge) device and the cloud.

In the most common form of MCC, the coordination between the mobile
device and the cloud is often on a per-application basis, i.e., each application
is designed to run a part of its logic on the phone and the rest on the cloud.
E.g., the cloud may be used for data persistence, to look-up information, or
to perform some costly computing tasks. The interaction may be using service
endpoints, and this takes the form of a client-server architecture.



However, there exist research on more general frameworks that decide which
applications or modules to offload, and when. CloneCloud [39] partitions a
mobile application and migrates it to a device clone running in the cloud to
minimize the application execution time and conserve the energy of the device.
[19] study the trade-off between off-loading and not off-loading computation and
software/data backup from mobile edge devices to the cloud, using bandwidth
and energy consumption as metrics. Others plan of such off-loading at the
cellular network level for different devices to the cloud, with apps defined as
workflows [47].

MCC usually does not cooperatively schedule apps across a group of devices,
due to security concerns of phones users, and energy constraints of the devices.
Also, there are typically only the mobile device and the cloud layers. There
is some literature on smart phones interacting with other nearby devices for
performing computations [131], while others have also proposed using cellular
towers as base-stations as a fog-like layer.

We generalize this even further by considering edge, fog and cloud resource
abstractions, and examining distributed scheduling across one or more of these.
That said, MCC offers insights for such current efforts for scheduling and re-
source provisioning.

2.3 Scheduling on HPC Clusters vs. Cloud Computing

Traditionally, scheduling has been an important aspect for operating systems,
high performance computing (HPC) and supercomputing clusters, and comput-
ing Grids [71, 163]. Grid computing offers shared distributed resources for which
scheduling strategies are crucial, and these have been reviewed in detail [50, 172].

In contrast, cloud computing is a distributed computing capability offered
by data center operators using a service-based model [16], while edge and fog
computing operate on a wide-area network, and these affect how applications
are scheduled upon them [57].

We summarize key resource distinctions of HPC that impacts application
design and scheduling, and motivates the need to separately explore scheduling
on edge, fog and cloud resources.

HPC centers traditionally have captive cluster infrastructure that are ac-
cessed by the center users using a batch queue that schedules jobs based on
arrival time. The emphasis is on how best to allocate the available resources to
the waiting jobs from 10-100’s of users. In contrast, public cloud infrastructure
offer access to Virtual Machines (VM), on-demand without delay, and give the
illusion of “infinite” resources to 1000’s of users [8]. It also allows the number
of VMs requested to be elastically scaled up and down [75]. At the same time,
each application request 10’s of VMs rather than 100-1000’s of cores common
in HPC clusters.

Grids and HPC clusters use high-end fault-tolerant servers and high-performance
networks to support Floating Point Operations per Second (FLOPS) and com-
munications numerical applications.

Clouds on the other hand use commodity and virtualized hardware, run on
Ethernet, and are not as resilient to hardware failure. They also offer VMs of
different resources capacities unlike HPC nodes that are typically homogeneous.
As a consequence, HPC clusters can host tightly-coupled large-scale applications
with high throughput and reliability [117]. Application Makespan is the primary



1. System 2. Application 4. Scheduling
Design Model 3.QoS Goal Algorithm

Figure 1: Taxonomy of concepts and approaches for scheduling applications on
Edge, Fog and Cloud resources

measure of success for scheduling. Uniform nodes also limit the degrees of
freedom when scheduling applications on such clusters [149].

Clouds are popular for loosely-coupled applications that run from seconds
to days each and have variable resource needs [77]. Fault-tolerance is built in
software due to weaker hardware robustness, and applications are more delay
tolerant. Also, VMs may have variable performance due to virtualization and
multi-tenancy [76]. Factors like VM acquisition lag and diverse VM sizes add
to the scheduling complexity [102, 31, 78].

Lastly, Grids and HPC clusters encourage full use of their high-end infras-
tructure by their users to amortize the high capital costs. There is little or no
financial cost to the users and at best quotas are imposed for fairness. As a
result, scheduling algorithms prioritize the performance and makespan of the
applications rather than conserve the resource usage [124].

Public clouds follow a pay-as-you-go model [16] with resources billed only
for resources acquired on-demand, and diverse costing models.

These offer scheduling algorithms a different parameter space to optimize
upon.

3 The Taxonomy

Our taxonomy takes a holistic view of application scheduling on edge, fog and
cloud resources, and offers a classification of the conceptual model of system
models, application models, and their goals, required to design scheduling al-
gorithms. We categorize the scheduling algorithm design themselves, and ap-
proaches used to evaluate them. Specifically, the top levels of our taxonomy
are: System design (§ 3.1), Application Model (§ 3.2), QoS Goal (§ 3.3), and
Scheduling Algorithm design (§ 3.4), as shown in Fig. 1. A full view of the
taxonomy is provided in the Appendix, in Fig. 23. In the following sections, we
discuss each category in detail.

3.1 System Design

Edge, fog and cloud provide various types of computing resources with diverse
capabilities and different pricing models. System design is concerned with the
resource capacities, pricing features, and other system characteristics (Fig. 2).
For the cloud layer, we base our characterization on the capabilities of popular
public Infrastructure as a Service (IaaS) clouds from Amazon Web Services
(AWS), Microsoft Azure and Google Cloud Engine in defining these dimensions.
For the edge and fog resources, these are based on current research and early
commercial offerings such as Amazon Greengrass and Azure IoT Edge. We



distill the essential and generic capabilities of such systems, and avoid transient
capabilities offered in this fast-changing landscape.

3.1.1 Resource Abstraction Layer

In this section, we offer a relative overview of the three resource layers on which
the applications are scheduled, as highlighted in Fig 5 and examined before [156].
We have already introduced these resource classes, and now we contrast their
resource and performance characteristics.

We base these on existing definitions [27, 132, 155, 105, 30], among many,
which place fog computing as a resource layer that fits between the edge devices
and the cloud data centers, with features that resemble both.

The intrinsic distinction is the network distance between the edge/leaf of the
Internet, where edge and fog resources are present, and the core of the Internet
where large cloud data centers are located. This affects the latency and available
bandwidth between the different layers. This combined with where the data is
generated, analytics are computed, decision signals are sent, and what QoS is
required can affect the scheduling problem.

In addition, it is also worth considering the physical distance between the
three computing paradigms, and their accessibility by clients. In Fig. 3a, four
quadrants are formed from considering whether the resources within a layer are
physically centralized or distributed (Y Axis), and whether their access is global
or restricted (X Axis).

Resources in a cloud data center are centrally located, but depending on
whether the cloud is public or private, are available to anyone in a pay-as-you-
go model, or only to users of the private corporation [95]. That said, public
cloud providers host geographically distributed data centers, sometimes several
in a country or continent, while the number of large private data centers for an
enterprise is more limited.

Edge resources such as smart phones and set top boxes are distributed far
and wide, but their access is restricted to individual users or managed applica-
tions [25, 170]. Fog resources are also physically distributed to be close to the
edge, but not as dispersed. Additional specializations, on whether there is a fog
for each city block, one for the whole city or other variants, depend on the busi-
ness models and applications that will evolve. One also expects the fog to offer
as a shared, pay-as-you-go Iaa$S or Platform as a Service (PaaS) model [21, 170].

Edge and fog resources are distributed which increases the probability of
attacks and failures as discussed in § 3.1.6. The access restrictions on private
clouds and edge devices translates to a zone of trust for applications and ser-
vices hosted on them, which enables sensitive data and services to be hosted on
them. Fog and public clouds, however, are designed as shared resources with
multi-tenancy, which require higher measures of security and sandboxing. That
said, there may be fog architectures where the resources are deployed for spe-
cific applications or organization (e.g., a Smart City municipality), similar to a
private cloud [95]. Further, the fog may sit at the boundary between public and
private networks, and run proxy services that translate from one zone of trust
to another, one service layer to another (e.g., CoAP to HTTP), or one network
protocol to another (e.g., IPv6 to IPv4).

It helps to understand the impact of mobility on these three resource lay-
ers, as illustrated in Fig. 3b, as this impacts the communications, applications
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Figure 3: Physical presence, access limits and mobility of Cloud, Fog and Edge
resources [156]

and platform design. We distinguish between mobility of the physical resource,
discussed here, and mobility of the logical applications, which we examine later.

Cloud data centers, obviously, are not mobile though their platforms can
ease the mobility of data and applications among their data centers. Spatial
mobility at edge devices is frequent, though not universal, e.g., mobility is seen
in ubiquitous smart phones and autonomous vehicles, while they remain static
in traffic cameras and smart power meters [144, 94]. This is more so in the con-
text of mobile cloud computing that is concerned with offloading computations
from mobile edge devices like smart phones to cloud to save battery, speedup
computations and for data/software backup [19]. Likewise, the fog layer can also
be manifest as a static or mobile resource [95]. A fog server can be installed at
fixed sites such as a coffee shop or the airport, or on mobile vehicles such as taxi
cabs or trains. This mobility can cause these resources to be unavailable which
is discussed later in § 3.1.6.

Mobility at edge and fog layers also necessitates device discovery, as devices
join/leave/rejoin different parts of the network and resource fabric. This will on-
board and make them available as part of the resource pool, and similarly remove
them when they leave. The Open Fog Reference Architecture [40] suggests a P2P
model where a new fog node broadcasts its information to a fog cluster. Other
have proposed a publish-subscribe model for edge and fog devices to announce
themselves on arrival/departure [104]. This can be extended to a Distributed
Hash Table (DHT) as well, for notifying arrival and departure, as well as for
scheduling tasks [62]. Some also suggest a hierarchical discovery approach for
edges partitioned into fog parents, and fogs themselves reporting to higher-level
fogs, all of which is accumulated at a discovery server [128]. Some also use
the transport-level protocols [142], e.g., by having a leader device broadcast a



802.11 WiFi beacon frame to notify spatially proximate devices that wish to join
about the location of the leader to contact [119]. Discovery using the Software
Defined Networking (SDN) layer is possible as well, as has been suggested for
fog resources in a vehicular network [150].

As a result, depending on the mobility of the edge and fog layers, the ap-
plication and platform will need to be designed based on permanent, transient,
periodic, or ephemeral connectivity between the layers and within the layers
which can determine the reliability of access to data, storage, network and com-
puting resources.

The application definition needs to be scheduled and coordinated in order to
meet various QoS goals such as latency, energy and monetary constraints. This
coordination can be done using different strategies, across edge, fog and cloud
resource layers. Three common orchestration models that are relevant in such a
multi-layered and distributed resource environment are centralized, hierarchical
and peer-to-peer (P2P). We also distinguish between scheduling decisions, the
flow of control signals and the flow of data, and different coordination models
could be applied to these.

Centralized orchestration has a single service, either per application or for
the platform, that is located in one of the three resource layers, makes scheduling
decisions, and coordinates the transfer of control signals and/or data items [44].
This is simple to design but can suffer from high latencies and transfer costs,
and is a single point of failure. While this orchestrator often runs in the cloud
(to coordinate across edge devices) or the edge (to interact with different cloud
services), the fog layer could offer a sweet-spot for such a centralized coordina-
tor [4].

A hierarchical architecture is a generalization of the centralized model, and
allows only vertical communication of data and controls to take place between
adjacent layers. This is a natural fit for fog computing as it leverages both the
bandwidth and latency benefits of the fog layer in accelerating these flows, as
well as the compute benefits closer to the observation source [166, 170, 144, 44,
70]. Often, the cloud forms the root of this tree and is used for global data
aggregation and coordination. Local data analytics is delegated to Cloudlets
and further to the edge devices. This allows a federated behavior that has
shown to scale.

P2P is a form of distributed coordination that avoids a single point of failure.
Here, peers in the same edge or fog layer can pass control and data directly
among each other [155]. The horizontal communication channels may initially
be setup by an entity that has a global picture of the resources. This is typically
done at the cloud or the fog, or one of the edge devices that serves as a leader.
There are simple component-based models for composing and executing P2P
applications, as well as complex ones that use Distributed Hash Table (DHT)
to maintain an overlay network over peers that frequently enter and leave the
system [95, 143].

In a hybrid model, there are no strict limitations on the flow of control or data
flows, and all layers are seen as having resources of heterogeneous characteristics.
While there can be interconnections among resources within each layer (cloud,
fog, edge), communication can also take place vertically [21]. This can require
more complex coordination, but can potentially improve the resilience of the
application when network connectivity between specific layers is interrupted [98].

10
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Figure 5: Resource characteristics of Cloud, Fog and Edge computing sys-
tems [156]

3.1.2 Resource Capacities and Variability

Next, we consider the variability of the resource capacities offered on the dif-
ferent abstraction layers, with the shown in Fig. 4. Schedulers often leverage
the ability to acquire resources of variable types and capacities as it allows a
best-fit between the application resource requirements and resources. Resources
can vary in their types, sizes and capacities across edge, fog and cloud layers.
This is illustrated in Fig. 5 as inverted /upward pyramids that form a continuum
across the layers, in increasing and decreasing order as applicable.

o Homogeneous resources: Cloud computing resources are standardized
within a service provider, and offered in different capacities based on a pay-as-
you-go pricing model. TaaS providers offer Virtual Machines (VM) as their com-
puting resource, characterized by their different compute capacities (CPU cores,
clock speed, architecture generation), physical memory, and network bandwidth,
with associated pricing. These VM sizes are crucial in the context of scheduling
cloud applications, and one can rely on the cloud provider to offer numerous
homogeneous instances of a single resource size.

Homogeneity may be possible in large scale deployments of edge and fog, as
a commercial service operation or by city utilities. Edge devices that are part
of city-scale IoT infrastructure, such as net-connected smart power meters and
traffic cameras for machine-to-machine (M2M) interactions, may have uniform
specifications [137]. Fog resources such as Nvidia Jetson TX1 and Dell Edge
Gateway can also be deployed as a standard across the city for commercial use,
such as Barcelona city’s “street-side cabinets” [167].

o Heterogeneous resources: At the cloud layer, a wide variety of VM sizes
and configurations are offered, with AWS, e.g., offering 42 different Elastic Com-
pute Cloud (EC2) VM configurations. Besides resource capacities, these also
vary in types of disks (SSD or HDD), presence of accelerators (GPUs), and
higher-end architectures (DDR4 memory, latest CPU generation).

While in the cloud, heterogeneity is a choice offered by the provider, on the
edge and fog, this variability may be a necessity of the infrastructure deploy-
ment model. Heterogeneity is increased when the resources are consumer-owned
instead of being available as part of commercial deployment, such as

smart phones, smart watches, Virtual Reality (VR) headsets, etc. Edge
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1.8 Virtualization
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Figure 6: Taxonomy of virtualization of resources

platforms also tend to be constrained devices, with battery or memory capacity
often being the limiting factor rather than even compute capability [43, 156].
The fog layer offers compute resources with a higher capacity than the edge
but to a smaller scale than clouds [144, 25]. However, their resource capacity
can vary [136], with Raspberry Pi devices at one end, to “micro” or “nano”
data-centers (MDC) on the other [36, 60]. The latter allow fogs to serve as a
“reverse CDN” to let edge devices stage data on them and eventually push them
to the cloud for archival, after some pre-processing [26, 127, 44]. Resources may
also have variable network characteristics [156]. While the Fog is close to the
edge in the network topology, whether it is at a 1-hop or multi-hop depends
on the deployment [126]. The fog is also expected to have a reliable and high
bandwidth Internet link [143], but its connectivity to the edge may be less robust
due to the use of wireless links for the last mile [95].

However, such diversity explores the dimensions that the scheduling algo-
rithm has to examine. To mitigate this, some algorithms assume a uniform,
homogeneous resource capacity (and price) for simplicity, which is more feasible
on cloud resources [97]. Algorithms may also limit themselves to leveraging just
the compute diversity (e.g., different VM or container sizes) [31, 38, 115, 70].

3.1.3 Virtualization

Various types of virtualization (or lack of it) is possible within the different
resource types, as shown by the taxonomy in Fig. 6. Clouds expose every
resource “as a Service” using fabric software for infrastructure management,
and this in part is a reason for its success [21, 144, 156]. Virtualization using
hypervisors offers two key benefits: (1) custom OS and software environments,
and (2) sandboxing of VMs from each other using hardware-level support. The
former allows user applications and Big Data platforms to work equally well
on different clouds. They latter provides dependable resource allocation and
security.

Resource-rich fog devices may be able to support hypervisors, and this can
hasten their adoption for IaaS similar to clouds [21, 156]. On the other hand,
resource-light fogs can use containers like 1xc and Docker which offer users the
control over the software environment and limited resource sandboxing [166, 21].
However, security within multi-tenant containers on a host is still a concern.
That said, containers have limited memory overheads and rapid bootup time
compared to VMs, and this makes them preferred even for application manage-
ment in the cloud. Containers launched within VMs is a growing practice, with
VMs offering the resource and security sandboxing and billing units, while con-
tainers (potentially 10’s in a VM) allow application environment management.

Application management on the edge is a challenge, and done in either ad
hoc or tightly coupled to a platform like Android using sandboxed “apps” [156].
Lastly, even these light-weight wrappers may not be viable on severely con-
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Figure 7: Taxonomy of pricing model of resources.

strained edge platforms. Hence, application may run on bare-metal, or within a
platform (rather than infrastructure) as a service.

There are also software fabrics that help manage such virtualized or con-
tainerized computing infrastructure, on the cloud, fog and edge. These serve
as a form of distributed OS. While public clouds like Amazon, Microsoft and
Google run their proprietary TaaS fabrics, OpenStack [3] offers a full-suite of
compute, data and network virtualization services for private clouds. Kuber-
netes from Google focuses on container and compute management on large-
scale clusters [28]. Both have also been extended to operate on fog and/or
edge computing devices. While some have tried to use OpenStack as is on fog
resources [169], others extend its features to be customized for specific limita-
tions of edge and fog resources. Lebre, et al. [89] propose a decentralized P2P
variant of OpenStack’s Nova compute service to enable wide-area computing
resources, while Chang, et al. [34] extend the Quantum virtual network net-
working to support devices present on a Network Address Translation (NAT)
network. OpenStack is also natively working on porting their capabilities to
edge, fog and Micro Data Center (MDC) [112]. Similarly, Kubernetes has been
used for compute containers on Raspberry Pi-class edge devices [152], and used
to deploy software on the fly on fog resources [69]. Besides these, there are
also open-source fabrics specialized for edge and fog, such as Eclipse Kura and
EdgeXFoundry [52, 20, 59] that are evolving.

3.1.4 Pricing Model

The monetary cost for accessing edge, fog and cloud resources is variable. While
clouds offer a mature pay-as-you-go pricing model, edge and fog resources as
yet have evolving business models. Typically, resource pricing is proportional
to its compute capacity on a given resource abstraction. However, there are
also pricing differences due to the variable access guarantees that are provided.
One can broadly categorize the pricing model based on resources that are non-
preemptible and those that pre-emptible (Fig. 7). In the former, resources once
provided are retained (and billed) until the application relinquishes them. In
the latter, resources may be taken back by the service provider at any time, and
the application is optionally compensated monetarily.

o Non-preemptible: These are the most common form of cloud resources
where VMs have an associated fixed price per unit billing time based on their
compute capacity. Clouds further distinguish this between on-demand VMs
which are acquired and released by the application flexibly, based on their cur-
rent compute needs, and their billing intervals are as low as 1 second. Reserved
VMs are those that are acquired in bulk for longer periods of time (e.g., 1
month) at a cheaper unit rate, but billed in full irrespective of their usage.
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These are well-suited for users having a predictable long-term workload. The
diversity in cloud VM sizes also implies an associated diversity in the pricing
of the resources. Variable sized on-demand VMs allow scheduling algorithms
to make smart choices in trading off price to performance for their applica-
tion [178, 8, 97, 102, 31].

Commercial fog providers may use consumption-based pricing where the
users are billed as per their usage, or subscription based pricing where the
users pay a monthly fixed price and can use the fog resources network-wide,
without being pinned to a particular instance [21, 156]. These are similar
to the on-demand and reserved models in clouds. The infancy of fog deploy-
ments and their potential providers has implications on the operational costs as
well [136, 155, 170]. Alternatively, smart cities may make them available as a
utility service for free or based on payment [167, 95, 136]. This may also extend
to edge devices that are part of the city’s deployment.

o Pre-emptible: Cloud providers may have spare capacity in their data
center which are rented at a lower price than their on-demand counterparts,
even 10x cheaper [9]. This allows providers to increase the utilization and
revenue of their data centers to offset the static operational overheads. While
these VMs offer the same performance as a similarly sized on-demand VM, they
are not guaranteed to be available for the user’s required duration and may be
revoked by the provider. This requires scheduling algorithms to actively manage
application checkpointing for reliability.

There are two models of such VMs available commercially. Amazon’s Spot
VMs use an auction-based model that considers the highest price bids per billing
interval for a VM size, with prices vary even within minutes. Amazon has
recently started providing a 2 min warning when spot VMs are going to be
revoked. Schedulers using such VMs must be aware of the current spot price
and these revocation notices, but can in turn reduce application execution costs
by over 80% [9, 37, 88, 159, 145]. Google and Microsoft offer pre-emptible VMs
which have a fized discounted price that is significantly cheaper than their on-
demand equivalents. This makes scheduling decisions easier than Amazon’s spot
VMs with variable pricing. However, such VMs are currently limited to being
used for a maximum of 24 hours. Google gives a 30 sec warning before such
VM are pre-empted.

Most edge devices and many non-commercial fog deployments are unreliable
and transient, due to mobility, device uptime and network connectivity issues.
As a result, these resources have similarities to pre-emptible cloud resources
where availability is not guaranteed. Here, the edge and fog resources are avail-
able opportunistically and often for free, with no assurance that one can acquire
them at a given time, or retain them for the required period. Applications
may utilize the resources while they are in proximity but lose all progress if
they go out of range or due to network unavailability. Mobile edge devices like
smartphones are one such example of opportunistic computation, and schedulers
like Serendipity [131] offload tasks to neighboring edge devices to minimize the
execution time and save energy.

o Hybrid: Scheduling strategies may take advantage of a mix of resources
with different pricing schemes. One hybrid approach is to use captive resource
capacity, such as reserved VMs or private clouds/clusters which are already paid
for, along with on-demand resources that are pay-as-you-go. Here, there are two
possibilities: “Cloud-bursting” or “Cloud-firsting”. In the former, the scheduler
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Figure 8: Taxonomy of pricing characteristics of resources.

gives priority to maximizing the use of the free captive resources before moving
to on-demand (cloud) resources [23, 66, 51]. In cloud-firsting, the on-demand
(cloud) resources are used by default and the limited captive resources used for
instantaneous capacity access by the scheduler [38].

A second approach is to use a mix of on-demand and pre-emptible resources
to reduce the cost of execution. [37] use spot instances along with on-demand
instances to speed up the MapReduce jobs on the cloud, while others propose
strategies to manage the job’s life-cycle on spot, on-demand and captive re-
sources [38, 116, 145].

A third approach is to use resources from different resource abstraction layers
that may have variable prices. While cloud and fog resources are reliable and
available, they have higher costs as well. Opportunistic edge devices may be free
but unreliable. So, when end users want the benefit of both cost reduction and
reliability, scheduling algorithms may need to use more than one abstraction
layer.

Further, any free edge or fog devices may also play the role of captive or
pre-emptible resource, and mimic the first two approaches. E.g., MCC uses
unreliable but cheap mobile devices along with reliable clouds for offload its
computations/software/data when the edge runs low on compute, storage or
battery [19, 107].

3.1.5 Pricing Characteristics

There are other pricing characteristics of resources besides the pricing model
that should be considered, as shown in Fig. 8.

o Billing Interval: In a pay-as-you-go model, users are charged per billing
interval for which they use a resource. Cloud providers such as Amazon used
to have a billing granularity of 60 mins, where each whole or partial VM hour
was billed as a full hour. But this has drop down to per-second billing over the
last few years, sometimes with some minimum time, such as 10 mins, that is
charged. This has a consequence on the sizes of applications that are scheduled
on VMs, the temporal granularity of control required by the scheduler, and the
price paid. E.g., in [8], two different time intervals of 1 hour and 5 mins are
considered to evaluate the cost of scheduling, and as expected the normalized
cost is lower when considering the shorter billing interval.

Billing models for edge and fog resources are still evolutionary and there are
not many commercial deployments that exist. They may under go a similar
pricing evolution as cloud, over time.

o Network Pricing: While the pricing models above focus on compute re-
sources, the cost of network bandwidth into and out of a resource layer may be
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charged, say, for GigaBytes of data transferred. This can be between Edge-Fog,
Fog-Cloud, Edge-Cloud, or between resources in the same layer.

Network pricing can either be symmetric or asymmetric. In the former, the
price for both moving data in and out of a resource layer is charged equally,
while in the latter the bandwidth charges are different based on the direction.
Often in cloud data centers, data-in and intra-data center bandwidth are kept
free to encourage hosting data in the cloud. These impact the costs for moving
input/output data to/from the application on the cloud and the user’s machine,
as well as decisions regarding using captive off-cloud resources that require mi-
grating application state over the network.

If edge and fog are deployed by the same provider or are a part of the same
private network, such as a WiFi access point, then there may be no pricing costs
for the network usage [136]. The data transfer within a layer and between these
layers will be free. However, if edge and fog are part of different networks or the
capacity of a constrained network is being saturated, then the data transfers
may be chargeable. Also, connectivity among edge devices on different net-
works may be through gateways and proxies present on the fog or the cloud,
to account for firewalls and network visibility. There can be additional charges
for such redirection. Network pricing between edge or fog and the cloud layer
is dependent on the deployment scenario. E.g., edge/fog can be connected to
the cloud with a broadband connection or 4G network which the local ISP may
charge for.

o Energy pricing: The energy profile can influence the capability and avail-
ability of some resources [156]. Cloud data centers reduce their energy footprint,
but to limit operational costs [21]. The fog is expected to run off grid power
and, like the cloud, be energy conscious to lower pricing [155, 94, 44]. But there
may be remote places where the fog runs on renewables like solar, when energy-
aware usage is a key goal. Edge devices are often concerned with battery life,
and the choice of using specific edge features can depend on the current bat-
tery level [108]. While resource providers usually include energy costs as part
of the operational cost of a resource when pricing it, it may be possible to bill
the energy costs separately based on the power consumed by an application.
Alternatively, energy usage may be an application constraint or optimization
specification when they run on edge and fog resources [44, 25].

o Price to performance ratio: Trade-off between resource performance and
its price is important while selecting a resource. Clouds leverage economies
of scale and usually have the lowest operational cost per resource unit [156].
The elastic nature of VMs means that cloud providers attempt to raise prices
linearly with the VM size, but the performance of larger VMs may be super-
linear due to reduced network latency and resource contention on the same host.
Scheduling algorithms can exploit these size differences [148], normalize price to
performance [122], or leverage pricing arbitrage on spot VMs [38]. Prices of edge
and fog resources are dependent on the deployment scenario. The economies of
scales will come into play if fog deployments are done at large scales. Consumer
edge devices have lower capital costs due to their mass production, and zero
operational costs if maintained by the user. However, fog/edge resources in the
field, such as for IoT, may have higher operational costs due to maintenance
and hence higher price to performance.
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3.1.6 Other System Characteristics

Besides resource pricing, types and sizes, several other resource characteristics
impact the design of scheduling algorithms (Fig. 9), as we discuss below.

o Acquisition lag: It might take some time for a resource to be ready for
use after it is requested by a user. This delay varies with the type of resource
requested and can affect the performance adversely if the scheduling algorithm
frequently instantiates and switches between resources [97].

Cloud VMs take 10’s of seconds or minutes to be provisioned, booted up,
and ready for use by the end-user, and this can vary with the number of VMs
requested [76]. Cloud scheduling algorithms may explicitly consider this lag in
their planning [38, 102].

Edge or fog resources that run on bare-metal or on containers avoid the
bootup time of hypervisor-based VMs, but may not always have adequate on-
demand capacity. This can cause queuing delays which add to the acquisition
time. Some scheduling algorithms may be able to plan deferred acquisition (or
advanced reservation) where a slot is assigned for the execution of a task on a
resource at some later point of time, and is available for the task with no lag at
that time.

o Performance variations: Virtualized resources may not offer deterministic
performance in terms of execution and data transfer time. These variations are
often due to multi-tenancy where VMs collocated on the same host compete
for resources or due to fabric management overheads [76]. This can occur in
containers too as the resource sandboxing is done by the OS and may not be
as effective as hardware virtualization [18]. These can cause the expected and
observed makespan of the workflow to diverge by as much as 30%, and hence
affect the performance of static schedules [78].

Some scheduling algorithms consider performance variations as a first-class
characteristic when allocating resources on the cloud [31, 120, 115, 35, 87].

o Multi-tenancy: Multi-tenancy allows different users to run their applica-
tions on the same host resource [136]. The tenants may be separated from each
other by VMs, containers, platforms, or not at all. Besides causing performance
variations as mentioned above, these also impact the security and privacy of the
applications and the data they process [155, 43]. Also, edge and fog devices
may not be physically secured like a cloud data center, adding to the attack
surface [36]. Containerization offers less sandboxing between applications than
virtualization, and data and applications in the fog and edge operate within a
mix of trusted and untrusted zones [60, 25]. This can affect the scheduling of
sensitive tasks in an application to be limited to trusted resources.

o Failures: Cloud resources are prone to occasional failures, which may hap-
pen due to disk and memory module failures, transient errors in network, cloud
fabric and hypervisor failures, and power issues [158]. These failures are rare,
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with commercial providers promising a monthly uptime of at least 99.95%. How-
ever, such infrequent failures can still affect the execution of mission-critical ap-
plications adversely, with some algorithms addressing such situations. Clouds
being more centralized are single points of failures, but offer redundancy zones
and alternate data centers.

The wide area distributed nature of edge and fog resources increases their
failure surface further [156]. There is a higher chance of an edge device or
fog server failing, their battery draining, or their network link dropping, and
resiliency may need to be built into the scheduling strategy [98].

o Awailability: Immediate availability of resources is a key feature of public
clouds. While on-demand VMs have seemingly infinite availability, these are in
practice limited to about 1000 VMs per customer ',2. However, during periods
of high demand, it is possible that a specific type of VM instance in a specific
data center may not be available. Availability for pre-emptible VMs is naturally
intermittent, while reserved instances offer guaranteed availability.

Edge and fog resources may become unavailable due to transient network
failures or a discharged battery, but be back online eventually (as opposed to a
failure) [156, 131]. This can cause a transient loss of access to data or compute on
the edge or fog. Application running across all three resources may be affected
by the weakest link.

3.2 Application Model

A scheduling unit is the unit of application submitted by the user for resource
allocation on the abstraction layers, along with QoS requirements. The appli-
cation model we discuss here defines the constituent members of this scheduling
unit, how it arrives, and when it is scheduled, as categorized in Fig. 10. The
scheduling algorithm may itself use a coarser or a finer granularity of scheduling.
Also, the scheduling unit can have specific characteristics which help decide the
resource mapping and techniques for fault tolerance.

Lhttps://aws.amazon.com/ec2/faqs/#How_many_instances_can_I_run_in_Amazon EC2
2https://azure.microsoft.com/en-in/documentation/articles/azure-subscription-service-
limits
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3.2.1 Structure of Scheduling Unit

The execution environment offered by edge, fog and cloud is inherently dis-
tributed, and the application space is vast [156]. There are many application def-
initions in use, such as control flows, data flows, and event-driven models [138].
Latency sensitive applications may prefer an event-driven model that reacts
rapidly to changing situations [170]. Events streams are also light-weight [144].
An application unit can have different structures (Fig. 11).

o DAG: Workflows, represented as a Directed acyclic graph (DAG), are
popular for capturing flow dependencies in complex distributed applications,
and are widely used as a scheduling unit provided by the user for cloud, fog and
edge computing [131]. A workflow DAG is a graph G=(T,E), where T is the set
of task vertices, each of which form an atomic unit of scheduling, and FE is a set of
control or data dependency edges between tasks. A single workflow can consist
of one, a few, or thousands of tasks. Fig.13a shows a sample workflow with seven
tasks and nine dependency edges. The number on each edge indicates the data
size between the corresponding tasks, say, in MegaBytes. The dependencies can
be used to identify the order of execution of the tasks.

Workflows also offer additional information to guide their scheduling, such
as the ezxecution time for each task on a standard resource or on each resource
size [31, 8], or the number of instructions required by that task [115]. The edges
may be annotated with the size of the data transferred between the tasks to
account for network transfer time and cost [122, 149, 120]. The data flowing
between tasks may be based on streams, micro-batches or files. The ability to
define specialized data structures, compression and transport mechanisms for
distinct stream types such as video may be necessary too. State associated with
a task offers a context for execution, and needs to migrate across resources [21,
156]. Tasks may also use location-awareness or resource context in determining
actions [94].

o Task: An application may be monolithic, specified as a single task. Such
as task degenerates to a singleton DAG. There are many application scheduling
algorithms that limit themselves to scheduling just tasks rather than DAGs [38,
157, 159]. For the purposes of the scheduler, a task structure is an opaque
logic unit that is the smallest atomic unit of scheduling with no other task
dependencies.
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(a) A sample workflow DAG

(c) A sample Bag of DAGs with 5 DAGs (d) A sample Bag of Tasks and DAGs

Figure 13: Types of scheduling units. Fig. 13b, 13c are examples of homogeneous
scheduling units. Fig. 13d is an example of heterogeneous scheduling units

3.2.2 Mode of Submission

Besides the unit of scheduling provided by the user, schedulers themselves may
schedule individual or multiple units at a time, as shown in Fig. 12. A user may
provide a single scheduling unit (e.g., DAG, task), whose QoS requirements
are independently specified and the scheduler schedules just this single unit.
On the other hand, users may provide a set or series of units, with associated
requirements, and the scheduler needs to meet the QoS across these multiple
scheduling units. These can further be classified as homogeneous, where all the
units have the same structure, as illustrated in Figs. 13b and 13c, or hetero-
geneous where units can have a mix of DAGs and tasks, as seen in Fig. 13d.
This distinction helps in generating more efficient schedules. Heterogeneous
scheduling units, while intuitive, are less common in existing literature. [162],
for example, consider both tasks of DAGs and individual tasks while generating
mapping between the tasks and VMs.

Further, when multiple units are submitted for scheduling, all units may
arrive at once as a batch or may arrive over time, in a transactional model, as
shown in Fig. 15. This interval of submission decides the information available
to the scheduling algorithm. E.g., in a batch mode, the resource needs and QoS
for all units can be used to decide a “globally optimal” schedule. But if the
units arrive continuously, the scheduler may take individual decisions which can
affect the effectiveness of the schedule of future units.

Typically, a batch has a shared QoS requirement defined on it, rather than
individual QoS for each unit within. A batch may also be called a bag if there
is no specific order in which the units need to be processed. Ensembles are a
special type of homogeneous batch where all DAGs have a similar or the same
structure, but different parameters (e.g., a parameter sweep), number of tasks
or task sizes [33, 45]. A bag of tasks (BoT) consists of a homogeneous batch of
tasks which can be executed in any order. BoTs can achieve a high degree of
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Figure 15: The top illustrates a user submitting 10 scheduling units in a batch
mode, while the bottom shows submission of 10 scheduling units in a transac-
tional mode.

task parallelism and efficiency across VMs and devices since they do not have
inter-dependencies [7, 148, 157].

A transactional mode is common when multiple users share the same appli-
cation deployed on a resource (e.g., FaaS), or a stream of micro-batches arrive
from an input source for processing by the application. Since requests arrive
continuously, future workloads are hard to predict and resources needs to be
dynamically allocated and deallocated [178, 102, 99, 63].

3.2.3 Granularity of Scheduling

The taxonomy for granularity of scheduling is shown in Fig. 14, and it identifies
the various ways in which an algorithm processes the scheduling units after
the user submits them. Single unit of scheduling means that the schedule is
generated for one unit without considering other units which may be present,
while in case of a collection granularity, a schedule is generated for a collection of
units as a whole, considering the impact of all units within the collection. This
granularity of scheduling is related to the mode of submission. The natural
choice is to schedule transaction mode of submissions as single units as they
arrive, and batch mode of submissions as collections [102, 103, 148].

That said, it is possible for a scheduler to buffer units in a transactional
workload for a certain period of time and generate a schedule for the collection,
thereby increasing the resources efficiency, albeit at a higher latency [178, 164].
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Similarly, if units within a batch do not have any collective QoS specified on
them, the scheduler can “flatten” these units and consider then individually
for scheduling. in [164], workflows are submitted by the users transactionally,
and the ready tasks from the workflows are stored into an ordered queue where
the tasks are sorted according to some rules. In [140], IoT applications arrive
at any time but the scheduling is done periodically, for applications which are
closer to their deadlines.

3.2.4 Scheduling unit characteristics

We identify other characteristics of the scheduling unit that can impact the
scheduling strategies, particularly under dynamic or failure conditions (Fig. 16).

o Resubmission: This allows a task (either individually, or as part of a
DAG) that has failed to be re-executed completely from the start, without any
side-effects. This statelessness or idempotence property is minimally required
to ensure fault-tolerance of tasks on unreliable resources [139].

o Replication: This feature allows multiple copies of a task to be run si-
multaneously on different resources, without any side-effect. This can enhance
the guarantees for timely completion of a task even if one of the copies fail
due to resource loss [116, 145]. This is particularly valuable for pre-emptible
cloud resources, or transient or unreliable edge or fog. It can also be used to
opportunistically replicate a task on spare (free) resources so that the first to
complete wins, and can address resource under-performance [31].

o Checkpointing: This allows the scheduler to save the state for a partially
executed task, and resume it from the latest checkpoint to meet deadline con-
straints. This can also useful when switching resources to improve the cost
or time for execution. Checkpointing may require migration of the state to a
persistent storage (e.g., a cloud storage service) or a different reliable resource
before resumption, since the original device or VM may be transient.

Checkpointing is leveraged when scheduling on pre-emptible VMs [168, 80,
38, 159]. On transient edge devices, CloneCloud uses trigger points to snapshot
and migrate local state from the edge to its clone on the cloud to resume exe-
cution [39]. [21] migrates the user’s data from one Cloudlet to another based
on the user mobility, in order to minimize latency [156].

The frequency of checkpointing is important. It balances the progress lost
after the last checkpoint when a resource fails with the time and cost overhead
for taking a checkpoint. Authors have used hourly or user-defined periods [159,
115], the current and expected spot prices [38], the slack time allowed [145],
the mobility and connectivity loss [131], and the job’s progress to decide this.
Failure handling can be done at task level, DAG level and bag/ensemble level.
However not all techniques can be used at all levels. E.g., while a workflow may
be resubmitted upon failure, it may not be possible to resubmit an entire bag or
ensemble. Also, while some critical tasks in a DAG may be replicated, it may
be impractical to replicate the entire workflow.

o Predictable Runtime: The execution time of a task or DAG is deter-
ministic if there is no uncertainty in its expected runtime on different resource
sizes. In real world scenarios, the actual runtime might vary due to performance
variations and acquisition lag on edge, fog and cloud resources (§ 3.1.6). The
execution times may also change based on specific input parameters. These
uncertainties affect the performance of scheduling algorithms [102].
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Figure 17: Taxonomy of Quality of Service (QoS) Goal of scheduling algorithm

While many scheduling algorithms rely on the accurate runtime for schedul-
ing units being available [8] , others use initial estimates for the workflow tasks
but later use real-time monitoring to revise the execution time and replan the
schedule dynamically [97, 103, 85, 35].

o Data Transfer time: Workflows and tasks may have large input and output
data parameters that need to be transferred between tasks, within a DAG, or
between a persistent storage location and the input/output interface to a single
task or a DAG.

These transfers can consume time and cost, both when moved between tasks
on different resources in one layer, or between resources on different layers, using
local or wide area networks. The application may specify these transfer sizes as
part of its definition, and scheduling algorithms may consider them if provided.
Data movement also requires storage and network to be available [156].

In [31], VMs are prematurely started to allow time to transfer in the data
for a task scheduled on it. Others include the data transfer time to calculate
the length of the critical path in a DAG [8, 116]. Some applications that pin the
tasks on specific layers, such as the data pre-processing on the edge and analytics
on the fog and/or cloud may force additional network latencies [166, 26].

3.3 Quality of Service (QoS) Goals

The goal of the scheduling algorithm is to determine a schedule that meets
specific Quality of Service (QoS) requirements for the given

scheduling unit. The QoS is characterized by the type of constraint that is
imposed, the guarantees necessary in achieving the constraints, the optimization
goal to evaluate the performance, and the scheduling granularity at which these
requirements have to be met, as shown in the taxonomy tree in Fig. 17. Besides
these, Quality of Experience (QoE) has been proposed as an alternative user-
centric metric to QoS [5]. It considers the user requirements and perceptions
for a service in a particular context, and calculated using prediction based or
feedback-based approaches. As such, this is a recent evolution, and not consid-
ered in our review.
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Figure 18: Taxonomy of QoS Constraint specified by user

3.3.1 QoS Constraint

Constraints indicate that the generated schedule must meet the constraint spec-
ification, while an optimization goal determines the performance of the schedule,
provided the constraints are met. time, cost, energy and robustness are com-
mon metrics that are used as constraints and as optimization goals, as seen in
Fig. 18.

o Time: Temporal constraints are specified on the makespan of the schedul-
ing unit, which is the time between it being submitted and it completing execu-
tion. Makespan includes any queue waiting time and transfer time, besides the
actual task execution time. Users can require that the scheduling unit should
complete its execution within a given deadline from the submission, based on its
importance. Related to makespan is the concept of throughput, where the num-
ber of scheduling units executed per second is the metric. This is relevant for
transactional mode of submission where the current or a target rate of requests
must be supported.

o Cost: For pay-as-you-go resources, the monetary cost is a key factor,
and users may specify a budget constraint to bound the cost for running the
scheduling unit. Schedulers may migrate applications to reliable but costlier
resources when a deadline is imminent, but end up overpaying. So, rather than
specify either or both of these constraints independently, users may include a
utility function that combines both time and cost into a single dimension. The
QoS specification can require that this given utility function fall within a certain
bound [61, 55, 8].

o Energy: The overall power consumption by the execution may be specified
as a constraint. This may be important for edge devices whose cost may be free
but have a limited battery life that should not be exhausted. The energy use
may be due to both compute and communication. Edge or fog resources on the
field may also run on renewables like solar, which have recharge cycles as well
that factor into the energy constraint when scheduling [63].

o Spatial: Geo-spatial constraints may be imposed on applications must
be processed on a device close to where the data is generated, e.g., on the
same device, the same private network, or some geo-fenced region, to ensure
privacy and comply with security policies [166]. While the physical security
and network access are concerns on edge and fog, the geographical location and
legal jurisdiction are factors on the cloud [27, 156]. These are complementary
to resource locality required due to performance. Some applications may also
pin specific tasks to specific resources, for physical access to on-board sensors
or for access to a specific user or device context [21, 94, 170].

o Robustness: Mission critical applications may require guaranteed comple-
tion. This may pose a higher burden than just completing within a deadline,
and may require that failures not happen at all, rather than just be able to
recover from failures within the deadline. Examples include
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Figure 19: Taxonomy of Constraint Guarantees specified by user

power grid management or traffic signaling [144, 166].

3.3.2 Constraint Guarantee

The constraint specified by the user can be hard or soft (Fig. 19). A hard
constraint is inviolable, and its failure is catastrophic for the end-user. [79]
refers to applications with hard time constraints as inelastic applications, and
they require real-time processing, typically to meet safety of humans, such as in
autonomous vehicles [25]. Soft requirements, on the other hand, need not strictly
be achieved and a best effort is sufficient [102]. In such cases, penalty functions
may be used when the constraints are not satisfied. Such elastic applications
(different from cloud elasticity) have flexibility in latencies and can perform
batch processing, e.g., for analyzing surveys from drones [94, 156]. In scheduling
literature, the auto-scaling mechanism in [102] considers soft deadlines for the
workflows while RTBA [38] enforces hard deadlines. LOSS and GAIN use hard
budget constraint to find a schedule that gives the shortest makespan [122].

3.3.3 Optimization Goal

The QoS optimization goal attempts to minimize or maximize an objective func-
tion for the application’s schedule, as shown in Fig. 20. The metric for the objec-
tive function is similar to the ones for the QoS constraint, such as the makespan,
throughput, monetary cost, energy, utilization, faults, or a functional combina-
tion of these.

o Minimization: Typically, the makespan, the cost or energy consumption,
or the number of task failures are used as the objective function when minimizing
it. A deadline constrained application may attempt to minimize the cost, with
a number of such scheduling algorithms available [8, 120, 102, 178, 116, 38].
Similarly, under a budget constraint, the makepsan may be the minimization
goal [122, 148]. Others may lack a constraint, and only aim to minimize, say,
the makespan, the energy consumption, or both time and cost [149, 70, 131, 39,
46, 63, 162, 53].

o Mazimization: Common objective metrics used when maximizing include
the application throughput and the utilization of resources. [141, 140] maximize
the utilization of cheap fog resources by trying to place more applications on
it instead of the cloud to reduce the monetary cost. [134] schedules BoTs to
maximize the survivability given a deadline constraint, with task priorities used
as a proxy for user-specific maximization goals.

[97] maximizes the number of high-priority workflows from an ensemble that
complete, given a fixed budget and deadline constraint.

o Neither: It is also possible that no optimization goal is specified. In [31],
the user specifies a preferred deadline and a variable budget, and the goal is to

25



3.3. Optimization
Goals

Maximization

Figure 20: Taxonomy of Optimization Goals of scheduling algorithms

meet the soft deadlines of workflows. Kushwaha, et al. [88] analyze the trade-
offs between cost savings over fixed price VMs and resilience when tasks are
run on spot VMs. In [27], users specify the hardware, software, bandwidth and
latency requirements for tasks, and aim to enumerate all valid deployments on
the fog and cloud.

3.3.4 Granularity

The QoS optimization goals and constraints can be specified at various granu-
larities, with the default being at the granularity of the single scheduling unit
or the batch, depending on the mode of submission.

However, other variations in specifying the granularity of constraints and
optimizations exist as well, as seen in Fig. 21.

o DAG: Placing the QoS on the DAG means that it has to be met for the
DAG as a whole without regard to the QoS for individual tasks. In such cases,
the constraints and the optimization goals are specified at the same granular-
ity [120, 116, 8]. However, these may be different as well. E.g., the makespan
constraint may be specified at the DAG level, but the goal of minimizing cost
specified for a batch of DAGs [178, 102, 140].

When constraints are specified for a DAG, the tasks lying on its critical path
are essential to manage the makespan of the workflow. Scheduling algorithms
may estimate and assign sub-deadlines for each task to decide their mapping to a
suitable resource, with tasks in the critical path having the least flexibility. E.g.,
the IC-PCPD2 algorithm distributes the sub-deadline of a path in a DAG to
each task in the path, in proportion to its minimum execution time [8] while [91]
uses the average execution time.

Sub-deadlines can be used to select the best resource that can execute the
task within its sub-deadline. In Serendipity [131], sub-deadlines on each task are
assigned to minimize the overall time and the energy consumed for executing
the DAGs.

o Batch: QoS can also be specified on a batch of scheduling units, be
they a Bag of Tasks or an ensemble of workflows. The constraints and/or
goals have to be met for the entire collection, without regard to individual
units. E.g., Varshney and Simmhan [157] define a deadline constraint and a
cost minimization goal to schedule a Bag of Tasks executing on pre-emptible
and on-demand VMs. It is possible that the scheduler may not compute the sub-
constraints for the individual units of the batch [97]. In [46], a delay constraint
is specified for the batch of task and the goal is to minimize the overall power
consumption on fog resources.

[141] periodically schedule a batch of tasks with the goals of minimizing the
makespan for the batch and maximizing the resource utilization.

o Task: The user may also specify goals or constraints for individual tasks,
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Figure 21: Taxonomy of Granularity of QoS Goals

be they tasks of a DAG, tasks within a bag or single tasks [38, 88, 159]. It is also
possible for users to indicate the constraints and optimization goals individually
for different stages of the DAG. In such cases, different algorithms can be used
to schedule the tasks of different stages according to the constraints and goal at
each stage [48]

3.4 Scheduling Algorithms

Given the edge, fog and cloud resource environment, and the application model
and QoS requirements, the scheduling algorithm is designed to schedule the
application onto the resources to meet the QoS goal and meet the constraints.
Solving this scheduling problem is computationally complex for non-trivial prob-
lem sizes. As a result, there is a large body of literature on techniques and algo-
rithms to solve this problem, often to get an approximate rather than an optimal
solution. Existing surveys classify scheduling algorithms based on various tech-
niques that they employ, and these determine the quality of the schedule that
is generated, and the time taken to generate the same [161, 171, 73, 175, 92].

As such, there are no intrinsic reasons why these prior classifications, as
illustrated in Fig. 22, are not equally applicable to application scheduling on
edge, fog and clouds. However, having multiple resource layers across a wide
area network also brings in the opportunity for delegating the scheduling hi-
erarchically (e.g., cloud delegating a subset of the scheduling unit to a fog for
scheduling on itself and its neighboring edges) [166, 144, 170, 70], or to make
federated decisions [155], rather than just a centralized decision. We examine
these and, to be holistic, also summarize outcomes from prior taxonomies in
this section; we refer readers to these external sources for a detailed review of
the algorithmic strategies.

3.4.1 Scheduling Techniques

Finding the optimal schedule is a combinatorial optimization problem and a
variation of the classic “job shop scheduling” problem, the solution to which is
NP Hard [165]. Brute force algorithms try all possible mappings of the schedul-
ing units to the compute resources to arrive at a globally optimal solution while
meeting the constraints. E.g., a simple case of optimally placing M tasks to
R resources has a brute force computational complexity of O(RM). This is in-
tractable for practical applications with 10—100’s of tasks and resources [41, 64].

In some cases, one can stop the brute force search once a “good enough”
solution is found and thus bound the cost of the algorithm, while not getting
an optimal solution.

There are also approaches that use dynamic programming (DP), wherein
the original scheduling problem is decomposed into a set of overlapping sub-
problems, each of which can be solved optimally in tractable time. Then the
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Figure 22: Taxonomy of the techniques used and types of schedules generated
by scheduling algorithms

solutions to the sub-problems are directly reused using “memoization” when
exploring the search space. E.g., RTBA uses DP to construct a strategy table
for a task of a given size and deadline constraint, which is used to schedule all
tasks that fall within this size and deadline [38]. This has a time complexity
of O(C*Ty) where Ty is the deadline and C is the compute time, and this
is faster than the brute force approach which has a complexity of O(]A|Tat),
where A is the set of possible scheduling actions. As we see, DP gives optimal
solutions much faster than brute force. But it is still unlikely to be fast enough
for practical use in online scheduling.

Divide and conquer algorithms partition the scheduling problem into smaller
non-overlapping sub-problems, and solve these sub-problems recursively. The
solutions to the sub-problems (tasks) are combined into a solution to the original
problem.

In practice, such optimal solutions are used for small problem that then con-
tribute to an overall approximate solution. [46] decomposed the overall problem
of distributing a workload among fog and cloud resources into sub-problems
using an approximate, and solve these sub-problems individually using different
optimization techniques.

Alternatively, the optimal solution, while impractical, offers a theoretical
baseline against which to empirically compare their proposed approximate so-
lution [41, 38].

Consequently, scheduling problems are often solved using sub-optimal algo-
rithms that resort to heuristics or meta-heuristics that, in practice, come close
to optimal solutions but within a reasonable time. Greedy algorithms select the
most promising option from the solution space at any given stage. It makes
a series of locally optimal choices with the expectation of finding the global
optimum. Greedy DAG scheduling heuristics such as HEFT schedule DAGs
over Grid resources [149], and have been reused for scheduling on heteroge-
neous cloud VMs to give short makespan [177, 90]. HEFT has a complexity of
O(E.R) where E is the number of edges in the DAG and R is the number of
resources. These have also been extended to include cost/time budgets/goals
using functions like GAIN and LOSS [122, 102, 48].

There are greedy algorithms for scheduling BoTs on cloud resources [68]
and DAG scheduling on edge devices [131, 63, 27]. They use heuristics such as
predicting the proximity between mobile edge devices for deadline planning, pri-
oritizing tasks with the most resource constraints, and incrementally co-locating
tasks on the same resource to avoid network latency. More sophisticated heuris-
tics have also been proposed, such as the ToF planner and AutoBoT that uses a
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greedy approach to minimize the monetary cost for executing a bag of workflows
or tasks on clouds [178, 157].

Similarly, backtracking algorithms follow one of many possible alternatives,
and backtrack if it does not look promising [35, 27].

Workflow scheduling problems are often reduced to Integer Linear Program-
ming (ILP) and its mixed variant [39]. E.g., CloneCloud [39] uses ILP to find
partition points between edge and cloud in the application which minimize the
overall execution time or energy consumption.

While standard techniques exist to provide optimal solutions to ILP prob-
lems, they can only be used for small size problems due to their prohibitive
computational cost. So, heuristics are used to solve these ILP problems as
well [48, 81, 100].

Meta-heuristics are a class of high level guidelines that can be used to define
heuristics to solve a wide class of optimization problems [24]. Specific scheduling
problems are refactored to fit the higher-order problem after which the heuristic
guidelines can be applied to explore the solution space. Meta-heuristics have
been categorized into trajectory-based and population-based methods, with sim-
ulated annealing falling in the former category, and genetic algorithm (GA), par-
ticle swarm optimization (PSO) and ant colony optimization (ACO) featuring
in the latter method.

E.g., in [120], a deadline-constrained workflow scheduling on clouds is mapped
to a PSO problem. A particle’s coordinates encode the mapping between the
task and a resource, and the dimension of the particle matches the number of
tasks. The fitness function for the PSO, which has to be minimized, is the total
execution cost, and the schedule is generated by solving this PSO problem with
a complexity of O(P.M?.R) per iteration, where P is the number of particles,
M is the number of tasks and R is the number of resources. In [64], a DAG
scheduling problem across edge and cloud has been reduced to GA formulation.
Each chromosome represents a mapping function from a task to an available
edge or cloud resource. The chromosome which gives the minimum makespan,
among all the solutions that do not violate compute and energy constraints, is
selected from across generations.

Scheduling heuristics are also tuned for operating across resource abstraction
layers, such as tasks across mobile edge and cloud layers [39], or DAGs across
fog and cloud [140]. Some also use locality of tasks to layers. Bittencourt, et
al. [22] schedule DAGs that are submitted to a Cloudlet, and scheduler can
execute it on the “local” or a remote fog, and/or cloud resources.

Likewise, Ghosh and Simmhan [63] schedule transactional DAGs on edge
and cloud resources, but pin the source tasks to the edge and the sink tasks to
the cloud.

3.4.2 Type of Schedule

The scheduling algorithm can be designed as a static (offline) algorithm that
is run once when the scheduling unit arrives, or a dynamic (online) algorithm
that actively decides the schedule based on the current conditions through the
lifetime of the unit.

o Static schedule: In a static approach, the mapping from the scheduling
unit to resource(s) is generated once before the unit starts, based on the infor-
mation about other units and the resources available to the scheduling algorithm
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a priori. This allocation is retained for the lifetime of the task or DAG, and
does not respond to changes in the resources or tasks at runtime. It assumes
that the prior knowledge is perfect. It also does not make use of checkpointing
and resubmission.

Abrishami, et al. [8] generate an offline schedule for a deadline constrained
DAG. It assigns a partial deadline to tasks in the critical path of the DAG, along
with their Farliest Start Time (EST), Earliest Finish Time (EFT), and Latest
Finish Time (LFT) [149]. The algorithm then recursively assigns all the tasks
on the path to a single VM which can finish each task before its LFT, with the
minimum price.

SPSS also uses static scheduling to schedule an ensemble of workflows [97].
They use admission control to prevent scheduling of workflows which cannot
complete within the deadline and budget constraints.

While static algorithms do not consider runtime dynamism, [31] mitigates
the effects of variations in performance using task replication. It uses the budget
surplus and the idle slots in the allocated resources, after performing a static
schedule, for task replication. This increases the chances of the deadline being
met.

Static scheduling is also possible for a transactional mode of submission.
Many cloud providers including Amazon, Google and Azure offer users rule
based auto-scaling for transactional tasks. Here, incoming tasks are routed,
typically, in a round-robin manner to a pool of active VMs based on user rules
that decide when and how to increase or decrease the number of VMs in this
pool based on their utilization. These can efficiently handle the dynamic task-
based transactional workloads if the user is able to select the right threshold
value [102, 106]. Similarly, sensor and event based applications have a dynamic
workload pattern that schedulers adapt to on edge and fog resources [70, 63].

However, some auto-scaling mechanisms use future workload prediction by
monitoring current resource utilization to perform proactive auto-scaling [109].

Static schedules are useful when the workload is known in advance and the
performance of resources is deterministic. Real-time applications, those with
a closed control loop, and those sensitive to mobility require careful design.
These may prefer a static schedule to ensure determinism, preclude the use
of mobile resources, and/or retain the decision logic in a single resource [121].
However, static planning, exclusively, cannot respond to faults and to dynamism
in compute and network performance, acquisition time, and spot prices on edge,
fog and cloud resources. These can cause sub-optimal QoS performance or,
worse, violation of hard constraints.

o Dynamic schedule: Dynamic algorithms use runtime knowledge about
the resource performance and application behavior, besides static knowledge, to
make scheduling decisions at the start and during the lifetime of the scheduling
unit.

This information helps them adapt their schedule on the fly to avoid QoS
constraint violations, and/or to improve the optimization goals. Dynamic algo-
rithms can either be just-in-time, where the scheduling decision for a task in a
workflow is made just once before the task’s execution (but after the DAG itself
has started executing), or fully dynamic where running tasks can be remapped
from one resource to another during its execution.

DPDS maintains a priority queue of ready tasks from a batch of DAGs,
ordered by the workflow priority, that are scheduled just-in-time [97].
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Whenever a VM is idle, the ready task at the head of the queue is assigned
to it. Once a task completes, other dependent tasks in the DAG which are ready
are added to this queue and the scheduling continues.

A similar strategy is used for scheduling multiple workflows that are sub-
mitted in a transactional mode [164].

The tasks in the queue are mapped just-in-time to the best VM to ensure
sub-deadline and sub-budget are not violated.

Other just-in-time heuristics schedule workflow tasks onto both spot and
on-demand VMs [115]. At runtime, it decides for each ready task whether to
schedule it on a spot VM or an on-demand VM based on its Latest Time to
On-demand (LTO), i.e., the slack time before which they must be executed,
to avoid exceeding the deadline. Tasks that are ready before their LTO are
scheduled on spot VMs while ones that arrive after their LTO are mapped to
on-demand VMs.

Elsewhere, the progress of each task is continuously monitored and if one gets
delayed, it is dynamically rearranged and future tasks rescheduled to prevent
an increase in the overall makespan of the application [35].

RTBA uses a fully dynamic algorithm which actively manages the life-cycle
of individual tasks on spot and on-demand VMs [38]. Tt statically constructs a
strategy table, as discussed earlier, and performs dynamic lookups on this table
to decide actions based on the current spot price and task progress. The actions
can checkpoint and migrate the task, change the bid price, or even pause the
task for the bid price to drop.

Similarly, CloneCloud [39] initially builds a partition database for the appli-
cation, and a partition configuration is selected from this at runtime based on
the current resource availability and network conditions.

The ToF planner combines both static and dynamic strategies to schedule
transactional workflows [178]. It accumulates workflows arriving for a certain
time period and statically assigns a provisional set of VMs to their tasks. How-
ever, the VM instance itself is only decided (or started) at runtime to enable
the reuse of running VMs.

Applications that are scheduled on edge and fog resources need to be par-
ticularly responsive to resource dynamism that are more acute on these plat-
forms [156, 131]. This also requires the runtime capabilities for monitoring to
determine when such adaptation is required [44]. This may even require chang-
ing the coordination strategy from, say, centralized to a federated or P2P one.

3.4.3 Algorithm Evaluation

Lastly, we consider how the proposed scheduling algorithm is evaluated for its
ability to meet the QoS for the application and system models. Others [42]
already identify some of these categories of evaluations, such as experimental,
analytical, simulation and combinations of these. These used in our classification
for completeness.

Some papers offer both analytical proofs and experimental validation to mea-
sure the efficiency of their scheduling algorithm [53].

Several others consider only an empirical evaluation using real world scien-
tific applications like Cybershake, Genome, LIGO, and Montage [97, 8, 115, 178],
or domain-specific workloads [133]. For scheduling across edge, fog and cloud,
mobile applications such as virus scanning, image search and video analytics
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have been used for empirical evaluation [131, 39, 84]. But the predominant
choice of validation in literature is limited to simulations based on synthetically
generated BoTs and DAGs [68, 90, 63].

During simulation, various probability distributions can be used to generate
synthetic BoTs and to model the arrival rates of tasks in case of transactional
mode [68, 99, 63, 131]. Random DAG generators are also used to generate DAGs
with parameters and distributions to control the number of tasks, number of
dependency edges, range of task length, depth and width of DAG, outdegree,
and communication to computation ratio [35, 174, 162].

Alternatively, publicly available cloud workloads, such as the Google Cluster
Workload also offer the choice of realistic DAG and BoT simulations [118, 157].
The CloudSim [32] and iFogSim [67] simulation frameworks can model applica-
tion execution on cloud infrastructure, and edge and fog infrastructure respec-
tively, and are often used to evaluate scheduling algorithms [115, 97, 141, 140,
22].

Many algorithms consider system models that are realistic, and similar to
those provided by major cloud providers. Amazon AWS is a popular choice here,
with many considering different EC2 on-demand VM types, and their prices and
configurations in their simulation [102, 31, 116]. Some [63, 131] also use real-
world benchmarks and distributions of network and compute performance of
edge and cloud resources.

Algorithms which use pre-emptible VMs simulate the fluctuation in spot
prices using historic spot price data provided by Amazon [115, 157], and to train
their price bidding models and expected lifetime estimation models [37, 38].
The acquisition lag for VMs may be based on a distribution of past startup
times [129, 120], or limited to a constant value [97, 102]. Similarly, the mobil-
ity of edge and fog devices can be captured using real-world mobility traces or
generated synthetically using mobility models [131]. [70] simulate random ve-
hicle motion for a vehicle-to-vehicle streaming application, where each vehicle
randomly picks another vehicle to start streaming a video to it.

4 Classification of Scheduling Algorithms using
Taxonomy

Table 1 classifies 36 key publications on application scheduling, based on the
taxonomy we have proposed. 25 of these papers propose scheduling exclusively
on cloud resources, while 11 use a mix of edge, fog and/or cloud. The skew
toward cloud-based scheduling reflects the decade-long period of maturity of this
resource, relative to edge and fog resources that are more recent. The footnotes
of the table indicate the short-hand of the taxonomy terms used within the
columns for brevity.

In summary, on the system model dimension, 23 of the 25 papers consider
cloud infrastructure with heterogeneous VM sizes, 17 use on-demand VMs with
fixed prices, 2 use pre-emptive VMs, and 5 use a mix of both. For the mix
of edge, fog and cloud, almost all the papers have considered heterogeneous
resources and only 1 paper considers homogeneous cloud resources.

A majority of the cloud scheduling publications — 19 to be exact — use hourly
billing that was common among cloud providers, while 2 others use more current
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fine-grained billing intervals. Further, 12 of the papers cataloged consider VM
acquisition lag in their schedule planning. Three of these papers also constrain
the availability of resources from the provider, which is more representative of
Grid and HPC systems than public clouds which provide seemingly unlimited
resources on-demand. For edge, fog and cloud resources, most of the papers do
not consider resource pricing at all. Only 2 papers consider hourly billing and
that too only for the cloud resources. Also 1 paper has considered deployment
lag and 1 has considered deferred acquisition. All these papers constrain the
availability of edge and fog resources, either on account of mobility or limited
resources capacity, while 2 limit the number of available cloud resources as well.
3 papers consider spatial mobility of edge and fog resources, while two others
are have spatial locality between the client and the edge or fog.

The reviewed papers have diverse application characteristics as well. Out of
all the papers, 25 use a DAG structure while 12 use a task structure; 7 publica-
tions allow batch submission while 14 have a transactional mode of arrival; and
15 consider applications that are scheduled as a collection rather than individ-
ually. As many as 13 of the papers use time deadline as a constraint and cost
as the optimization goal when specifying their QoS requirements. However, 8
articles use cost budget as a constraint as well. Most of the papers that in-
clude edge and fog resources aim at minimizing the power consumption, overall
latency or network usage.

Most of the research papers use a heuristic or greedy algorithm for scheduling,
of which 16 schedule the applications statically, 19 schedule them dynamically
while 2 use a mix of both approaches. Simulations based on synthetic DAGs
or tasks tend to be the predominant means of evaluating these scheduling al-
gorithms, though 5 of the papers reviewed use real or realistic applications for
validation.

This diversity in the surveyed literature indicates the rich classes of prob-
lem definitions and corresponding research outcomes in this area of application
scheduling on edge, fog and cloud. It also justifies the need for a detailed taxon-
omy such as ours to categorize and analyze this body of work — both what has
been done and future work that can benefit from these learnings, particularly
for a mix of these resource abstractions.

5 Related Work

Several existing literature offer generic reviews of edge, fog or clouds, either
independently or in comparison. They also offer complementary aspects of
application models on each resource independently, or scheduling for other levels
of the cloud abstractions. But none offer a holistic survey on the approaches to
application scheduling on these distributed infrastructure, with structure and
rigor as we have presented here.

5.1 Resource Characterization

There are several surveys on the characteristics of edge, fog and cloud resources.
These describe the capabilities of the individual resource platforms, and their
features that benefit both end users and service providers. This is necessary to
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examine application scheduling, but needs to be substantiated with applications
models and scheduling techniques that leverage these features.

A recent manifesto on cloud computing offers an overarching review of con-
temporary cloud capabilities, and future potential and challenges [29]. Our
cloud resource characteristics are not as detailed, but focus on specific features
of relevance to application scheduling. [42] offers a more specialized bibliomet-
ric survey on elasticity of cloud resources, along with the journals where the
publications appear, country of origin of authors, and year of publication. A
taxonomy of methods used to leverage as well as QoS metrics is also provided.
While some of our resource characteristics, application characteristics and QoS
topics overlap with this, we do not exclusively focus on elasticity but rather
examine other dimensions of clouds such as pricing and resilience as well, in
addition to application scheduling.

Similarly, there have been several papers that conceptualize the idea of fog
computing and Cloudlets [156, 25, 126].

Others examine specific applications that benefit from the fog layer, to
complement edge and cloud computing, with smart cities and IoT being key
drivers [43, 166, 144]. Some also prescribe different types of interactions be-
tween the edge, fog and cloud layers [143]. These are similar to our resource
taxonomy, but fail to compare common and contrasting features across edge,
fog and cloud, and how application models and schedulers leverage them.

There are articles which discuss the use of edge, fog and cloud layers in a
hierarchical architecture. [104] consider mobility to be a characteristic feature
of both the edge and fog layers, with challenges to resource discovery, service
scheduling, QoS guarantee and security. A medical emergency use case is used
to illustrate the relative benefits of using a cloud-only application deployment
design, with one that uses all three. Latency is seen as a QoS goal, but they
omit concerns on monetary cost and energy usage. Similarly [173] highlight
the security and privacy issues in including edge resources for storage and com-
putation of IoT applications, besides the cloud. A fog layer is not explicitly
considered, and resource pricing is mentioned in passing.

The benefits for different IoT applications such as smart grid, smart city and
smart transportation are mentioned.

Our survey goes beyond exemplars and considers how generic application
can be conceptually specified in terms of their structure, mode of submission
and QoS. We also provide a categorization of possible scheduling algorithms in
literature. Individual and combined resource layers are included in our review,
without limiting to a hierarchical model.

Mobile Edge Computing (MEC) has received particular attention due to
early mobile phones that were resource constrained. [96] surveys the existing
research on computation offloading in MEC and how it is integrated with the
mobile network architectures. They illustrate use cases that benefit from MEC
and their application characteristics, such as whether the application can be
partitioned and offloaded, dependencies between parts, predictability of the in-
put data size. These affect how an application can be executed locally on the
phone, partially offloaded or fully offloaded to the cloud to meet the QoS goals,
such as minimization of delay or energy consumption. Techniques for respond-
ing to the device’s mobility, like changing transmission power, VM migration,
and communication route selection are suggested. [6] offers a conceptual model
of computing that moves between a mobile edge device and the cloud, with the

38



intelligence on application scheduling present between them on the Radio
Access Network (RAN). This communication-centric view considers fog and
edge computing as the same resource layer. They review literature on com-
putation offloading in MEC, with low latency processing, storage issues, and
energy efficiency being QoS goals. Our survey while similar in spirit to these
takes a more holistic and forward-looking view of the resource characteristics
of edge, fog and cloud, including pricing and performance, and generalizes the
application structure and their QoS.

5.2 Scheduling Techniques

Scheduling for different aspects cloud computing have been examined in the
past. [175] present a taxonomy of scheduling algorithms at various layers: ap-
plication, virtualization and infrastructure. Algorithms are classified based on
the specific objectives that should be met at each layer. Scheduling at the vir-
tualization layer has the goal of mapping VMs on to physical machines, which
is of particular interest to service providers. This been addressed by other spe-
cialized surveys such as [113, 101]. The goal of scheduling at the infrastructure
layer is to place the resources and services at different locations in various data
centers. [65] drill-down into this layer and offer a taxonomy for inter-cloud
architectures, with application brokering in these systems. At the application
layer, the problem is to schedule the user’s application on VMs, and three goals
are discussed by [175]: user QoS, provider efficiency, and negotiation.

In contrast, our survey focuses on just the application layer but goes in-depth
by offering a detailed classification of edge, fog and cloud resources based on
pricing models and system characteristics essential for scheduling algorithms.
Moreover, we also categorize the structure of workflows, their characteristics
and mode of submission. We further identify fault tolerance as a user QoS
with scheduling techniques designed for application resilience on these resource
layers.

Our work is of broader interest to middleware and application developers
using these distributed resources, who, arguably form a larger population that
can put this survey to practical use, compared to commercial resource service
providers who are less influenced by such research outcomes.

Similarly, [83] also discuss scheduling at the three levels — service, task and
VM — for public and private clouds. We limit our focus to public clouds that
are exceedingly popular and where issues of elasticity and costing offer clear
challenges and opportunities to end users, and complement this with emerging
edge and fog resource layers. Our work also emphasizes the application layer, a
subset of which is the task level considered by [83], with the objective of meeting
QoS requirements and/or budget constraints for the application. We also offer
greater detail on various aspects of the unit of scheduling, which is lacking in
these surveys.

Likewise, [73] limits itself to resource allocation in clouds in the presence
of system failures, with various ACO and GA based dynamic scheduling meta-
heuristics to handle faults being explored. We go beyond system failure and
also examine literature that handle failures due to pricing (out of bid) for pre-
emptible and opportunistic resources.

We also discuss several other scheduling algorithms that address diverse QoS
constraints and goals.
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[161] presents several categories of workflow scheduling algorithms on clouds,
including static and dynamic scheduling, to meet constraints such as budget,
deadline and robustness.

Similarly, [92] offers a brief summary of workflows and their objective criteria
for scheduling on the cloud, and review literature on scheduling algorithms to
achieve the same. Others have surveyed meta-heuristic techniques for scheduling
workflows on the cloud [151]. These techniques include hill climbing, simulated
annealing, tabu search, GA, PSO and ACO, and these have been used to gen-
erate a schedule for workflows on clouds. While these surveys consider multiple
classes of scheduling algorithm and system characteristics that lie at the inter-
section of several dimensions we introduce, they do not offer a taxonomy of the
dimensions themselves which is essential for a rigorous analysis of this space.
Edge and fog resources which have gained prominence off-late are omitted as
well.

Some early research investigates platform and application models for edge
and fog computing [156]. [70] propose a 3-level strictly hierarchical model where
the computation is rooted in the cloud, resources are elastically acquired in the
cloud and fog layers, and communication is possible between cloud and fog, or
fog and edge. But their example applications do not use the cloud, and this
degenerates to a client-server model between the edges and their fog parent. The
role of virtualization in enabling cloud computing is discussed in [21], and they
see a similar role for the fog as well. They conceive of a VM encapsulating all
dependencies for an edge application or user to be hosted on a Cloudlet within
1 hop of the edge, with this VM migrating to remain at 1-hop distance from the
edge user.

Such articles offer potential architectures for interactions between edge, fog
and cloud, while out survey more broadly characterizes these resources and
examines their impact on applications and how they are scheduled.

6 Discussion

This detailed review of application scheduling characteristics on edge, fog and
cloud resources, along with the feature matrix, highlight several open problems,
whose solutions require a mix of research, development and business models.
There are also rapidly emerging technologies that can influence these directions.
We discuss these along similar categories that we have proposed.

6.1 Evolution in Resource Abstractions

Public cloud providers are highly agile and respond rapidly to evolving tech-
nologies and market dynamics.

One challenge is being addressed is light-weight application sandboxing, in
contrast to hypervisor based VMs. Cloud providers like Amazon EC2 and Mi-
crosoft Azure are offering Docker containers, which have minimal resource over-
heads and offer rapid instantiation compared to virtualization, and are useful
when OS heterogeneity is not required. They even support basic migration
between hosts. These containers however use kernel-based controls to enforce
security and resource allocation, which are less effective than hardware virtu-
alization. This can open up opportunities for trade-off between the ability to
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respond rapidly to application dynamism, multi-tenant container security, and
handling performance variability.

Recent work on minimalist OS like VM Ware’s PhotonOS, light-weight virtu-
alization like AWS Firecracker, and even web-standards like W3C’s WebAssem-
bly offer alternatives to containers and hypervisors. Some of these are motivated
by the popularity of a serverless Function-as-a-Service (FaaS) model, based on
stateless micro-services that encapsulate user-defined functions that can be com-
posed and executed [10]. This is similar to task scheduling in a transactional
model. Besides cloud data centers, FaaS is also being pushed to the fog and
edge layers using SDK’s like Amazon Greengrass and Azure Edge IoT offered
by the cloud providers. These cloud fabrics extend to edge devices, and allow
for more centralized management of distributed edge and fog resources on the
wide area network [2, 1, 29]. These are currently limited to running applications
using a FaaS model, with their scheduling managed exclusively by the provider.
But the ability to expose IaaS resources on the edge and fog can help further
leverage scheduling designed for the cloud to be extended to the edge and fog,
and ease the design of practical edge, fog and cloud applications.

Besides the push of existing cloud providers, there are also alternative busi-
ness and technology models for edge and fog computing that can be sustain-
able [155], both for infrastructure deployments and platform support [156].

They are more obvious in vertically integrated “private” scenarios rather
than horizontal, reusable “public” ones, much in the way of cloud data centers
evolving from private use by Amazon, Google and Microsoft to a commercial
business model of a public cloud [170, 29]. Potential providers of

on-demand public fog computing are operators of cell-phone towers who have
captive power, communications and space, and Smart Cities deployments with
captive compute capacity as part of the city deployments of verticals like smart
power grid or smart transportation [144, 25, 17].

Likewise, the advent of energy-efficient and high-performance accelerators
like GPUs and Tensor Processing Units (TPUs), and low-power ARM64 servers
as cloud and fog resources, introduces further resource diversity and application
opportunities that impacts scheduling [82, 86, 29]. Part of this is driven by the
rapid adoption of machine learning models and deep neural networks, which
analyze multimedia data (e.g., video surveillance from smart cities) and have
high computing costs [130]. Novel edge and fog devices such as drones and other
autonomous vehicles are starting to become a reality as well [125], and intro-
duce new challenges in the energy and compute-constrained mobile resources
with transient communications. Likewise, the adoption of 5G communication
technology can translate into wide-spread deployment and accessibility of edge
and fog devices, offering a high-bandwidth and pervasive last-mile link [146].
These technology-shifts will require us to revisit many of the assumptions on
the system models used for scheduling.

At the same time, there is also a lack of standardized infrastructure and
platform interfaces for edge and fog computing, with much of the advances
in fabric management, programming models, power and network management,
fault tolerance and pricing models being limited to research prototypes [156].
However, initiatives such as OpenFog Consortium (which recently merged with
the Industrial Internet Consortium) [40] and EdgeX Foundry [58] championed
by various industries are starting to offer reference architectures and software
stacks to address this gap. These will serve as the vehicle to incorporate and
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enact the scheduling models that are developed.

6.2 Application Models and QoS

Application models tend to evolve more slowly than hardware and communi-
cations technologies, which are driven by the industry. Research has tended to
focus more on batch execution of workflows as the unit of scheduling. However,
the growth in streaming data and online decision-making applications means
that transactional workloads and event-driven models need to be better exam-
ined.

In fact, processing streaming data and having a control-loop between sensors
and actuators, with analytics scheduled in-between, is a common pattern in IoT
applications [135]. A few of the literature we have tabulated consider such an
event-driven or transactional model [154, 64]. Similarly, BoTs are a common
abstraction that are inadequately examined for scheduling, even as they make
good candidates for off-loading to the cloud pr fog partitions for execution [74,
157]. The popularity of FaaS also pushes data to the compute, rather than
the typical model of moving compute to the data, while easing weak-scaling of
stateless micro-services [10].

The increasing importance of machine learning applications means that
scheduling that is sensitive to the goals of training and inferencing will be bene-
ficial [176, 14]. In particular, the QoS goals and constraints may need to include
the quality of the training and inferencing accuracy as first-class metrics, be-
sides the time taken. Further, with increasing personally identifiable data being
collected and processed from the edge, privacy and trust start playing a key
role. This may impose limitations on where to run what applications, and if ad-
ditional operations such as anonymization or masking is required before placing
specific tasks on specific resources [160]. This can require the application to be
re-composed on the fly before being scheduled.

Scheduling across different resource layers also introduces independent con-
straints and priorities on each layer that need to be met. E.g.,

energy is a key concern for scheduling on edge and fog, while pricing and
latency are user concerns when using the cloud. Additional research is required
into capturing these resource-specific factors into the optimization goals or con-
straints.

6.3 Scheduling Approach

While there has been a lot of conceptual work on making use of edge, fog and
cloud resources, there is a lack of literature on novel scheduling approaches that
consider all the 3 layers together while leveraging their relative merits. Further,
the interactions between the layers currently tends to be limited to a hierarchy
of cloud—fog—edge, or just a flat logical structure composed of heterogeneous
resources across them.

This is a need to examine distributed scheduling strategies rather than cen-
tralized ones to ensure scaling to thousands of resources on the local and wide
area network, and also resilience to avoid a single point of failure. Techniques
from P2P can play a role here [93].

Given the challenges in access to large scale edge and fog deployments, much
of the validation of scheduling approaches for these resources are based on sim-
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ulations, using frameworks like iFogSim [67]. However, there has been work on
virtual environments like VIOLET [18] that use containers running on VMs or
clusters to replicate the behavior of edge, fog and cloud resources using con-
tainer resource allocations. It can also control the network topology between
the resources, and the resource dynamism and failures. These have the benefit
of allowing real applications to be scheduled, executed and the schedule eval-
uated for realistic edge, fog and cloud resources, and offer a balance between
empirical and simulation-based approaches. More such efforts are required to
model communication diversity, device reliability, etc.

7 Conclusion

In this survey, we have offered a comprehensive taxonomy for defining and de-
signing application scheduling algorithms on edge, fog and cloud infrastructure,
based on a detailed literature review. These span the system model for the
three layers, application model with an emphasis on DAG and task-based ap-
plications, and the QoS goals and constraints to be met, which collectively help
define scheduling as an optimization problem. We also categorize existing ap-
proaches to solving this optimization problem and evaluating it, based on prior
reviews. This taxonomy has been used to tabulate the characteristics of 36 re-
search papers on scheduling on edge, fog and/or cloud resources. The taxonomy
presents designers of scheduling algorithms for edge, fog and cloud applications
with a clear set of system and application features they should consider for
their target infrastructure and workload. The table provides architects of ap-
plication runtimes with the relevant classes of scheduling algorithms that they
can leverage to meet the needs of their end-users. Learning from this body
of work is essential as applications are increasingly designed for edge and fog
environments, rather than just the cloud, and scheduling challenges are set to
emerge within newer application platforms that can operate on these resources.
To this end, we have also explored various emerging technology trends that will
require us to re-examine current system and application models, and develop
novel scheduling techniques for the next generating of computing.
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