
Interventions for Long Term Software Security
Creating a Lightweight Program of Assurance Techniques for Developers

Charles Weir
Security Lancaster

Lancaster University
United Kingdom

c.weir1 @lancaster.ac.uk

Ingolf Becker
Security and Crime Science
University College London

United Kingdom
i.becker @ucl.ac.uk

James Noble
Engineering and Computer Science
Victoria University of Wellington,

New Zealand
 kjx @ecs.vuw.ac.nz

Lynne Blair
Computing and Communications

Lancaster University
United Kingdom

l.blair @lancaster.ac.uk

M. Angela Sasse
Computer Science

University College London
United Kingdom

 a.sasse @ucl.ac.uk

Awais Rashid
Bristol Cyber Security Group

Bristol University
United Kingdom

awais.rashid @bristol.ac.uk

Abstract— Though some software development teams are highly effective at delivering

security, others either do not care or do not have access to security experts to teach them
how. Unfortunately, these latter teams are still responsible for the security of the systems
they build: systems that are ever more important to ever more people. We propose that a
series of lightweight interventions, six hours of facilitated workshops delivered over three
months, can improve a team’s motivation to consider security and awareness of assurance
techniques, changing its security culture even when no security experts are involved. The
interventions were developed after an Appreciative Inquiry and Grounded Theory survey of
security professionals to find out what approaches work best. We tested the interventions in
a Participatory Action Research field study where we delivered the workshops to three soft-
ware development organizations, and evaluated their effectiveness through interviews be-
forehand, immediately afterwards, and after twelve months. We found that the interventions
can be effective with teams with limited or no security experience, and that improvement is
long lasting. This approach and the learning points arising from the work here have the
potential to be applied in many development teams, improving the security of software
worldwide.

Keywords— Developer centered security; software security; software developer; interven-

tion; action research; cyber security

1 INTRODUCTION
Software security and privacy are becoming major issues: almost every week we hear that yet
another organization’s software systems have been compromised1. While there are many aspects
to security and privacy, the security of an organization’s software clearly has a substantial impact

on whether such breaches happen. Therefore, the effectiveness of development teams at creating
secure software is vital*.
Many if not most developers, unfortunately, consider software security to be ‘not their problem’2.
Developers may expect security to be handled by a different team; or consider it too expensive to
incorporate without a significant drive from product management. In the past, many organizations
have addressed the issue with prescriptive instructions for development teams to follow or speci-
fications of tools for developers to use; this approach of giving instructions to ‘passive’ developers
has not been widely adopted3.
Existing research has identified a range of well-understood assurance techniques4 used by security
professionals to help improve the security of a system. Yet if we are to improve software security
in a wide range of teams, we need approaches that work where resources may be limited and
security expertise unavailable. So, in this paper we explore:

1. What are inexpensive ways to introduce assurance techniques within a software develop-
ment team?

2. How can these techniques be introduced in situations where there are no security experts
directly involved?

This paper presents research into these questions: a survey of security professionals who work
with software developers to address the first question; and based on the results, the subsequent
creation and trials of a package, ‘Developer Security Essentials’, to address the second. It expands
on an earlier paper by the authors5, incorporating new ‘longitudinal’ data from interviews one year
after the intervention (section 6.7), a comparison of the activities of different teams (section 5.3),
a more extensive literature survey (section 2), and a discussion of ‘Blockers and Motivators’ en-
countered by the different teams (section 6.7).
The contribution of this paper is:

• Industry evidence that motivating developers to introduce security changes is a primary
way of introducing security improvements in development teams;

• Identification of eight assurance techniques widely used in interventions, including two
types of motivational workshop not previously identified; and

• Proof that a package based on these techniques can provide long term improvements in the
security of code delivered by a development team that has no access to security experts.

The structure of this paper is as follows: Section 2 establishes the existing literature on the subject;
Section 3 explains the research and analysis methods; Section 4 describes the results and conclu-
sions from the survey; Section 5 describes the Developer Security Essentials package, plus the
companies and developer teams who participated in the trials; Section 6 gives the results of the
trials; and Section 7 summarizes and identifies future work.

2 BACKGROUND
This section examines the existing academic literature and related publications on the subject of
helping and encouraging developers to improve their software security: ‘Developer-centered Se-
curity’.
Research on assurance techniques to improve developer security has taken a variety of approaches.
In this section, we explore several areas in turn: first research to support developers, moving from
technical to more sociological approaches; and then support for researchers.

* Throughout this paper we use ‘secure’ and ‘security’ to refer to the security and privacy aspects of software development; and ‘devel-
opers’ to refer to all those involved with creating software: programmers, analysts, designers, testers, and managers.

2.1 Exploring the Problem
Olivera et al.6 used psychological manipulation in a study on 47 developer volunteers to explore
what caused them to include vulnerabilities in software, concluding that main causes were devel-
opers’ focus on ‘normal cases’ and a lack of priority for security. They concluded that, more than
security training, the solution is targeting security reminders to the points in development when
they were most needed.
Several researchers have investigated the difficulties around security fixes. Derr et al.7 investigated
the extent to which Android app developers keep library versions up to date, with a survey of app
developers and analysis of app binaries. They found huge scope for solving vulnerabilities by li-
brary updating without changes in code, but that frequent backward incompatible changes and
incorrect Semantic Versioning in libraries currently make such updates problematic. Others looked
at the necessity for fixes: Nayak et al.8 found that less than 15% of known vulnerabilities were
actually used in attacks, suggesting an opportunity for a more nuanced approach than just fixing
everything. Vaniea and Rashidi9 used a survey to analyze user thinking around the update proce-
dure, deriving advice for developers planning such mechanisms including a recommendation for
a ‘recovery path’.
Some researchers have investigated security requirements, especially related to privacy. A litera-
ture survey by Turpe10 found a range of research related to security requirements, mainly exploring
Threat Modelling techniques, but no agreement on terminology or approach. Senarath and Arach-
chilage11 used a programming task given to 35 developers to explore issues related to user privacy,
finding it to be difficult to understand such requirements and translate them into engineering tech-
niques, and recommending solutions in the specification of privacy requirements. Similar research
by the same authors12 found that developers use their own privacy expectations to guide software
privacy decisions; these differ from the expectations of non-developer users, though the authors
point out there is no easy solution for this problem.
We conclude that there is a need for ways to support developers in determining wider security
needs, such as privacy and update procedures; and a need for ways to encourage developer to use
tools to support just-in-time detection of possible issues.
2.2 Code Analysis Tools
Addressing this second need, many research groups13–17 have created security defect detection
tools to help developers improve code, using feedback via IDEs or elsewhere. Tabassum et al.18
used a student developer study to compare the learning from using their tool with that from a short
code review session by an expert; they found the expert more effective. Nguyen et al.16 explored
the impact of their tool on Android developers, concluding a high value for ‘quick fixes’: changes
requiring little effort on the part of the programmer. Christakis and Bird19 surveyed Microsoft
developers’ opinions about such tools, finding that they consider security defects the most im-
portant for a code analysis tool to find, and that the key features they need are relevant results,
speed, and the ability to suppress earlier warnings in incremental changes. Xie et al.20 explored the
impact of their IDE-based security analysis tool for web applications on a sample of 21 students
and 6 professionals and found two interesting conclusions:

[Developers] do not mind real-time warnings, but do not seem to want them to persist, even
if they choose to ignore them. And even when creating secure code is relatively easy … [de-
velopers] still need to be motivated to make the needed changes.

Exploring tool adoption, Witschey et al.21 surveyed around 50 developers to quantify the factors
that caused them to adopt automated security tools, finding that the most important factor was
seeing peers using them.

Such tools, therefore, are not a solution in their own right; they require a suitable culture and
day-to-day motivation for developers to use and make the changes they recommend.
2.3 Adoption of Security-Enhancing Activities
To achieve such motivation and culture changes, one possibility is changes in development pro-
cesses, and there has been significant research into applying such changes to software security
improvement. Indeed, prior to about 2010 the accepted way of improving software security was a
‘Secure Development Lifecycle’ (SDL), a prescriptive set of instructions to managers, developers
and stakeholders on how to add security activities to the development process. A paper by De Win
et al. compares the three major SDLs of that time, OWASP’s CLASP, Microsoft’s SDL and
McGraw’s Touchpoints, contrasting their features in the context of a simple project22. However,
other research from that time suggests resistance from development teams to adopting a prescrip-
tive methodology. For example Conradi and Dybå found in a survey that developers are skeptical
about adopting the formal routines found in traditional quality systems23; others came to the same
conclusion24–26. Indeed Geer’s online survey of 46 developers recruited from those already spe-
cializing in secure software development found only 30% of them using SDLs27; Xiao et al.’s later
survey of 40 developers3, found only 2 using them. While these sample sizes were fairly small, the
findings provide a plausible explanation for the abandonment of SDLs. Since 2010, SDLs have
been replaced by ‘Security Capability Maturity Models’, such as BSIMM28, which measure the
effectiveness of corporate security enhancements rather than mandating how they are achieved.
Caputo et al.29 used three case studies to explore several theories about what changes in software
development might lead to more usable security, concluding a need for the alignment of security
goals with business goals. Recently Assal and Chiasson 30 interviewed developers from 13 differ-
ent teams and organizations about their security practices, concluding ‘a need for new, lightweight
best practices that take into account the realities and pressures of development’.
Taking a different approach, Such et al. investigated the economics of software security, surveying
150 security specialists to analyze the economics of different assurance techniques4. The survey
generated a taxonomy of twenty assurance techniques and found wide variations in the perceived
cost-effectiveness of each.
We conclude a need to identify lightweight, cost-effective, enhancements to development practices
to improve security.
2.4 Consultancy and Training Interventions
Turning to the question of how to promote security enhancements, several research teams have
explored the impact of training and external involvement on teams’ delivery of secure software.
Türpe et al.31 explored the effect of a single penetration testing session and workshop on 37 mem-
bers of a large geographically-dispersed project. The results were not encouraging; the main reason
was that the workshop consultant highlighted problems without offering much in the way of solu-
tions.
Poller et al.’s later study32 followed an unsuccessful attempt to improve long term security prac-
tices in an agile development team of about 15 people. The study investigated the effect of security
consultants whose task ‘was not to advise the product group on how to change their organizational
routines, but to challenge and teach them about security issues of their product’. This proved
insufficient, for two reasons. First, pressure to add functionality meant that attention was not given
to security issues. Second, developers had trouble ‘improving security’ because their normal work
procedures and ways of structuring their work did not support that kind of quality goal. The authors
concluded that successful interventions would need “to investigate the potential business value of
security, thus making it a more tangible development goal;” and that security is best promoted as
a team, not individual, effort.

In terms of practical support for developers, a recent book ‘Agile Application Security’ by Bell et
al.33 provides guidance, a discussion of tools and detail on a range of assurance techniques; regret-
tably it is not selling widely*.
The research findings do leave, as an alternative to traditional training, books or interventions
based on penetration tests, the possibility of a discussion-based intervention emphasizing the pos-
itive business value of security enhancements.

2.5 Improving Security Experts’ Interactions with Developers
Other work has investigated the impact of stakeholder relationships on software security: Wer-
linger et al.’s ethnographic study and survey34 explored the relationships of security practitioners
(mainly operations staff) on the effectiveness of security, and proposed several tool enhancements
to improve this, particularly in the control of information being communicated to other stakehold-
ers. Haney and Lutters found from a survey of security practitioners35 that the role is service-
oriented and involves both customer service and advocacy skills. Ur Rahman and Williams36 sur-
veyed web-based information and nine teams of developers to investigate how DevOps—the in-
tegration of operations procedures into code—incorporates security into projects, finding in-
creased collaboration between developers and security specialists, and security benefits in the au-
tomation of testing, configuration and deployment.
Ashenden and Lawrence37 took a proactive approach, using an Action Research method to inves-
tigate and improve the relationships between security professionals and business people in a single
company, and found the approach effective in improving communication, though no evidence is
yet available of longer-term impact. Their Action Research approach offers a suitable methodol-
ogy for trialing other forms of intervention.
2.6 Motivators and Blockers of Secure Software Development
Moving to the organizational aspects of security, in many organizations security has been an af-
terthought to an otherwise successful business model, where security is ‘bolted on’ based on poli-
cies, and is often treated as a compliance exercise38. This leads to suboptimal resource allocation:
the security tasks are not integrated in the primary productive task of individuals, and professionals
are often faced with a choice between following the rules or getting the job done39.
Looking for an alternative to enforcing security compliance through policies, security researchers
have been working together with behavioral scientists to change security behaviors. Pfleeger et al.
observe that the key to enabling good security behavior is good motivators40. Assal and Chiasson
explored types of security blocker and motivator in development teams41, finding the most salient
blocker to be ‘being unequipped for security’, and the most effective motivator to be ‘identifying
with security importance.’
There is a wider literature around such motivators and their negative counterpart, blockers. Fogg
found that individuals also need to have the ability to perform the required behavior and be trig-
gered to perform it42. And Myers and Titgjen report that positive aspects to behavior change do
not cancel out existing negative blockers; blockers to secure behavior need to be tackled at the
same time to achieve lasting behavior change43.
2.7 Supporting Developer-Centered Security Research
One constraint on research in this area has been the difficulty of experimental trials with profes-
sional developers. To address this, Stransky et al.44 have trialed a ‘Developer Observatory’, to
allow experimental coding engagements with large numbers of developers. Acar et al.45 used a
programming study with Python open source developers to explore the extent to which findings

* Amazon rank 252,000, July 2019

from such studies might depend on the background of the developers chosen, finding the determi-
nant to be participants’ experience using the language, rather than status as a student or profes-
sional, or security experience. This supports future experiments with student participants, to the
extent that results will be similar to those that would be obtained with professionals.
Another constraint has been the wide range of venues and journals covering the topic making
research topics difficult to identify; a recent systematic literature survey by Tahaei and Vaniea46
provides an introduction for researchers.
2.8 Limitations of Existing Literature
There is a notable absence from this literature. There is relatively little research discussing suc-
cessful security interventions to support development teams, even though the security track records
of many large companies suggest that such interventions must exist. In the research discussed
above, even code analysis tools required other interventions to get them adopted; and other ap-
proaches required both security professionals and interventions that were costly in terms of effort
involved.
We are aware of no academic literature investigating lightweight approaches to encourage devel-
opers to adopt successful security practices. Based on the previous discussion such an approach
could be based on developer discussions and would need to:

• Be cost-effective, and not require security professionals;
• Support developers in determining wider security needs;
• Encourage developers to investigate security code analysis tools, especially just-in-time

solutions; and
• Address the resulting blockers and motivators impacting on the teams.

This work offers one such approach.

3 METHODOLOGY
The research described in this paper was in two phases: an interview survey of security profes-
sionals who work with software developers; and based on the results, the creation and trials of a
package, ‘Developer Security Essentials’. This section introduces the methodology used in each
phase.
3.1 Interview Survey Methodology
The open nature of the first research question ‘What are inexpensive ways to introduce assurance
techniques within a software development team?’ required an inductive approach. We therefore
interviewed a range of professional software security practitioners to ask how they achieved suc-
cessful security-enhancing interventions to software development teams. Interviewees were cho-
sen opportunistically; our connections in industry provided introductions to a number of success-
ful, and mostly senior, practitioners with considerable experience of helping teams achieve soft-
ware security. We interviewed 15 different experts from 14 different organizations. 12 were based
in the UK, 2 in Germany, and one in the USA. They are described briefly in Table 1, which assigns
an identifier, P1 to P15, to each.
The successfulness of their interventions was self-reported; all the organizations involved, how-
ever, have strong track records in achieving secure software. Specifically, P3, P4, P5, P6, P8 and
P10 are from well-known organizations associated with effective security; P1, P2, P7, P9, P11,
P12, P14, P15 and P16 are in businesses successfully selling secure services; and P13 is respected
in the security research community. The survey was not looking for certainty that the interventions
led to secure software; instead it sought the most promising techniques.

We wanted a firm basis on which to postulate theories, and therefore adopted Grounded Theory47,
which provides an academically rigorous basis, and has been widely used to investigate software
development practice48.
To achieve as effective communication as possible, all the interviews were face-to-face, usually at
the interviewee’s workplace. Our questions aimed to draw out what participants had found most
effective, and what they had seen to be most effective in other teams. To emphasize the positive,
we used open questions about successful techniques known to the interviewees, avoiding asking
questions about perceived problems or unsuccessful approaches. This approach relates to the Ap-
preciative Inquiry school of Action Research49, and indeed we used questions based on Apprecia-
tive Inquiry’s ‘Discovery’ of best past practice, and ‘Dream’ of ideal future practice. Appendix A
lists the questions.
3.2 Interview Survey Analysis
Our Grounded Theory analysis involved line by line textual analysis of research data, in this case
of transcriptions of the interviews along with notes and comments made by the interviewer. We
used guidelines from a survey of previous software engineering Grounded Theory studies48 to
guide the research. As is typical in such work, we recorded the interviews and transcribed them
manually. The lead author did the coding, categorizing and sorting operations on the data using
the commercial tool NVivo. The final code book consisted of 4 families of codes and a total of
132 codes, applied to 1125 quotations in total.
In our coding, we were looking for the assurance techniques used by our interviewees and their
ways of introducing them; and for comments and strategy related to them and their effectiveness.
We also wanted a ‘core category’ to cover the widest possible scope of concepts discussed by the
interviewees.
Section 5.1 describes how we then used the learning, from this ‘core category’ and the identified
techniques, as a basis to construct an ‘intervention package’ to be delivered by the researchers to
development teams, based on the best practice described by the interviewees.
3.3 Package Trials Methodology
Given that the researchers themselves directly influence the behavior of the research participants—
the researchers provide the intervention—an ethnographic research approach was deemed inap-
propriate. Instead an accepted methodology, used in many forms of academic social research, in-
cluding software engineering50,51, is Action Research52. This is an approach to research in commu-
nities that emphasizes participation and action; Action Research aims at understanding a situation
in a practical context and aims at improving it by changing the situation.
Specifically, we used Participatory Action Research53, with the lead author working as ‘inter-
vener’, directly with the participants*. We had a Pragmatic approach, since the intention was pri-
marily to trial the impact of the interventions. This stage of the project involved only a single
feedback cycle54.
The key research question was: ‘What security effects did the intervention package have?’ To
measure an effect, we needed a baseline with no intervention. A-B testing, requiring a different
team working in parallel, was not practical. Instead, we used a longitudinal approach, deducing a
baseline (‘no intervention situation’) from the initial situation plus a knowledge of the original
plans by the team leaders to improve security over the same timescale.
First, we interviewed a selection of the future participants to establish a baseline in terms of their
current understanding, practice and plans related to secure software development. We then carried

* The Action Research is ‘Participatory’ in that research subjects worked with researchers to create security outcomes; the subjects did not influ-
ence the intervention design.

out a series of intervention workshops with members of the development teams, led by the inter-
vener. Then, a month after the final intervention workshop, we carried out ‘Exit Interviews’ with
the same participants as before. The interviews were semi-structured using open questions without
explicitly mentioning techniques or requirements, in order to explore the participant’s knowledge
and motivations. The interview questions are given in Appendix B.
Academic feedback from an early report on this research55 questioned whether the security impact
of the intervention was long-term rather than just over the three months. Accordingly, about a year
after the initial workshops, we attempted ‘One Year Interviews’ by telephone with the leaders of
each team, to find out to what extent the security effects of the package were long-lasting, using
the same questions as the earlier exit interviews. Only two of the three leaders responded to our
requests for interview.
3.4 Package Trials Analysis
The recordings of all the interviews and most of the workshops—a total of 20 hours of audio—
were transcribed and qualitatively analyzed. In an iterative process, two of the authors coded all
transcripts. Initially both authors used open coding47 on the first two hours of material, then agreed
on a coding scheme based on that and the research questions. Then both authors independently
coded all the remaining material and compared the results. Differences in coding were discussed
and resolved between us.
Following the one-year interviews, both authors again independently coded the transcribed inter-
views and compared the results. The final code book consisted of 5 families of codes, making a
total of 41 codes, applied to 1465 quotations in total.
In all this coding we were looking for aspects of security improvement—including in learning and
attitude—implied by statements from the speakers. We analyzed the kinds of interaction involved
in the workshops, and looked for ‘Motivators and Blockers’: aspects that helped and hindered such
security improvement. We particularly sought signs of new knowledge in the team, new activities
related to security, and evidence of improvements in the security of developed software; we also
recorded evidence of security activities and awareness before the start of the interventions.
Given that the teams were prepared to work with us, we knew that at least some of them had some
prior interest in security. In the interviews and our analysis, therefore, we were careful to distin-
guish new security activities and enhancements attributable to the interventions from those that
had been planned or contemplated before the trials and those due to other external factors such as
customer demand or other security specialists.
Both the survey and the intervention trials research were approved by the Lancaster University
Faculty of Science and Technology Research Ethics committee.

4 SURVEY RESULTS
This section describes the results of the Grounded Theory analysis of our interview survey of pro-
fessional software security practitioners, as discussed in sections 3.1 and 3.2. From the analysis
we derived an overview theme (‘core category’), and also the experts’ successful intervention
practices.
4.1 Overview Theme
In our analysis, the key theme we found was the perception of developers themselves as the drivers
of security adoption. This is different from the perception of developers as agents to be controlled
by a ‘Secure Development Process’.

Figure 1 illustrates the difference. In the Secure Development Process approach, the role of the
intervener is to tell the developers what to do, and to provide the techniques and tools that the
developers are required to use22. Instead we found our interviewees promoted a ‘Developer Cen-
tric’ approach, with role of the intervener as sensitizing the developers to their security needs,
allowing them to choose for themselves which tools and techniques to use.
One interviewee described the difference as follows:

It’s not just about educating the developers, well, I guess it was, but we had to get the devel-
opers on side, the developers had to understand why we were doing this, as well as what it
was that we needed them to do, so it was a kind of two-pronged thing. (P2)

Most implied security motivation as a fundamental requirement:
I think the learning component is a very strong thing, and the second thing is they are proud
people, and they want to produce code they are proud of, and also producing security needs
to be part of that. (P6)
So, working with Dev Teams ... you can’t go in and say, “you must do it this way,” it would
never work… What you have got to do is go in there, and you have to convince them that it is
to their advantage to do it that way. (P8)

4.2 Intervention Practices
The coding process generated a set of intervention techniques, as shown in Table 1. Throughout
this paper we shall refer to these in bold. The majority of these are already well known and docu-
mented; for these we have used the taxonomy defined by Such et al.4. However, three of the prac-
tices—On-the-job Training, Incentivization Session, and Product Negotiation—are new in the
context of security assurance techniques. These, shaded diagonally in the table, are specific to
motivating and empowering developers to make their own security decisions. These techniques
are not novel, since they are in use in industry; they are however seldom discussed in developer
security literature.
Table 1 also provides an indication of the share of the interviewees’ discussion taken by each
technique. The numbers indicate the percentage of identified quotations for each interviewee that
discussed each intervention technique; cells are highlighted based on their values.

Figure 1: Developer as Driver of Adoption

All interviewees but one discussed Automated Static Analysis tools, many in some depth, though
few described them as particularly valuable. Several warned about the risk of developers believing
that using a tool on its own would achieve security.

To a degree, yes, they are useful. … But the danger with them is that you think that is making
your code secure, and it is not. It is just finding a certain class of problems in it. (P2)

Many interviewees stressed the importance of Penetration Testing. As discussed in Section 2.4,
this can be part of an Incentivization Session; however, it is more often used as a supporting
technique.

If the team has developed something new… and it is a significant change, we might get it
externally pen tested, if we think that we can’t test it ourselves. (P12)
I fairly often get rolled out to persuade clients that [a pen test] is necessary. It is quite expen-
sive. (P1)

Code Review, scheduled meetings or pair programming to analyze code for security defects, was
also popular. It requires a particular culture in the programming team:

It is in the culture. We do reviews; we always have to do reviews. We set things up, and it is
not regarded as a second class. (P6)

Table 1: Percentage Discussion Share for Each Interviewee about Each Intervention. Deeper shades of blue
are higher percentage values; shading shows items not normally considered assurance techniques.

ID Role Organization Auto-

mated
Static
Analysis

Penetra-
tion Test-
ing

Code Re-
view

On-the-
job Train-
Ing

Incentivi-
zation
Session

Product
Negotia-
tion

Threat
Assess-
ment

Configu-
ration Re-
view

P1 CEO Outsourced software
developers 4 23 7 2 3 6

P2 Consultant Security
consultancy 7 2 2 7 2

P3 Team leader Security and military
supplier 14 2 13 10 1

P4 Researcher Research organization 4 4 4 2
P5 Security team

leader
Operating System Sup-
plier 7 5 3 7 8 5 2

P6 Security expert Security and military
supplier 2 4 4 1 1

P7 CEO Software security tool
supplier 33 2 4 2

P8 Security expert Telecommunications
provider 12 1 1 3 2

P9 Consultant Security
consultancy 5 6 1 1 3 3 2 3

P10 Security expert Software package sup-
plier 7 1 8 4 4 1

P11 Trainer and
consultant

Software security ser-
vice supplier 17 8 5 8 8 2 2

P12 Security team
lead

Telecoms service pro-
vider 4 3 5 4 4 8 1

P13 Researcher Research organization 12 6 6 2 6
P14 Principal engi-

neer
Outsourced software
developers 8 2 2

P15 Security team
manager

Outsourced software
developers 25 20 2 2

On-the-Job Training was widely used. This could be informal training (only P11 provided formal
training),

[Our security specialist] will … provide a show and tell … a few times a year. (P1)
We send people on site, and we embed them into other teams. Our processes … [are] then
taken up by the customer [developer] teams. (P3)
Security Champions, … one person in the team more interested in security. ... You need that
person in a team, you actually do. (P11)

The Incentivization Session, to motivate developers might be a one-to-one talk,
Everyone who joins [this company] gets a security talk… And it includes examples of things
that have gone wrong and why, and how badly these things can go wrong, and how easy it is
to screw it up, and some pointers on things to read about, to learn about. (P1)

or a one-to-many informational session:
So, we run a very large-scale education program … where we … tell developers exactly what
happens in the real world, how TalkTalk was hacked, how Sony was hacked… Then we also
show them all the stuff that our red teams do—our internal hackers—which really scares
them! (P5)

Surprising for us was the importance of the technique of Product Negotiation, empowering prod-
uct management to make security decisions.

[A security enhancement] will go into a planning cycle. You can’t just … say ‘everyone has
to do this tomorrow’ because people are already maxed. It has to be planned. (P5)
We don’t normally struggle with getting developers to do things; we do struggle with man-
agement to understand that security has an implementation cost, and if you want security
features you need different sprints to be allocated. (P11)

Threat Assessment, or ‘threat modelling’ was seen as important not just for its innate value:
Your answer to any kind of security question anywhere should almost always start with a
threat model. (P9)
Threat modelling: what I see as the big benefit here is… putting the team into the perspective,
to think about the functionality from a different aspect, from a different point of view. (P10)

Configuration Review, choosing secure components and frameworks, and keeping them up-to-
date, was the last of the techniques described:

So, from an attacker’s point of view, you look at whatever the system is, you don’t need to look
at the code at all, what [components] would they have used to produce this... And you’ll find
code exploits! You’ll find the OWASP top ten [types of vulnerability] in one [component]
alone! (P9)

5 CREATING AND TRIALLING THE INTERVENTIONS PACKAGE
As our next step, we wanted to translate these findings into practical support for development
teams, including those where resources may be limited and security expertise unavailable. This
section explores how we developed a package of activities, ‘Developer Security Essentials’, to
provide a low-cost intervention for such teams, and describes the commercial development teams
who trialed it.
To trial the package, we arranged to work with three different commercial development teams, to
find out the impact of the package on each.

5.1 Creating the Package
Each intervention identified from the survey had a variety of forms, suitable for different develop-
ment budgets, team sizes, and team cultures. Looking at the list of interventions, we observed that
three—Incentivization Session, Threat Assessment, and On-the-Job Training—are ‘process
interventions’ and can be implemented for limited cost by an external facilitator. Three more—
Automatic Static Analysis, Configuration Review, and Product Negotiation—require commit-
ment by the developers to go ahead. The last two—Penetration Testing and Code Review—are
often considered relatively expensive4 and outside the range of activities affordable for some de-
velopment teams; the authors’ experience as consultants suggested that persuading teams to spend
several thousand pounds on commercial Penetration Testing, or to change culture to support
Code Review, would both be difficult. We, therefore, concentrated on the first three, and used
opportunities within the consultancy to promote the remaining interventions. Note that the re-
searchers carrying out the interventions were not themselves ‘security experts’, and lacked specific
knowledge of the issues and solutions for each of the domains and applications involved; we
needed approaches that drew on the knowledge and expertise of the developers themselves.
Our biggest challenge was to find a suitable way to provide the Incentivization Session. The
versions described by our interviewees were not suitable for a lightweight intervention. Instead we
used the ‘Agile Security Game’, invented by the lead author56. This was based on the ‘Mumba’
role-playing game, invented by Frey et al.57 to help elicit participants’ prior experience of real-life
security attacks.
Threat Assessment, too, was also challenging to implement. Much of the literature58,59 describes
a heavyweight process taking a while to set up and requiring considerable knowledge of possible
technical threats, preferably with support from a professional with a detailed understanding of both
the industry sector and current cyber threats to it. Neither knowledge nor expert were available.
However, as technical lead for a major mobile money project the lead author had faced this prob-
lem and developed a lightweight brainstorming process to identify threats and mitigations. This
had delivered a banking product with successful security60. Accordingly, we decided to trial the
same approach here.
From the authors’ own consultancy experience, and the experience of Türpe et al. and Poller et
al.31,32, we knew that a single intervention was unlikely to be successful on its own. Therefore, we
added monthly meetings, as our On-the-job Training; their main purpose was to act as a regular
‘nudge’ of the importance of security.

Table 2: Description of the Package Workshops
Session Description
Incentiviza-
tion Session

The facilitator leads the Agile Security Game, in which teams of participants
each act as a product manager, deciding which security improvement ‘sto-
ries’ to incorporate into a given product (a payment app and its cloud infra-
structure). After each round, the facilitator describes attacks that have hap-
pened and the mitigations for each, and participants find out which they’ve
addressed.

Threat
Assessment

The facilitator leads an ideation system using a flip-chart to record sugges-
tions. The session explores possible attackers, harms they might do, and ap-
proaches they might use. The facilitator then leads a discussion of risk of each
threat and possible mitigations.

On-the-job
Training

In follow-up sessions by videoconference the facilitator discusses, with as
many of the team as are available, what security changes they have made, and
addresses issues and questions arising from the changes.

Table 2 describes the resulting full set of intervention workshops.
To introduce the remaining interventions, we used an ad-hoc approach, as shown in Figure 2. The
facilitator mentioned and discussed each of these interventions with the developers during the
Threat Assessment, the mitigation discussions, and the subsequent On-the-job Training ses-
sions, using comments from the developers as cues.

5.2 The Development Teams Involved
We trialed the package with three development teams in three different companies, selected op-
portunistically; the following were the teams involved. The individual members we interviewed
are identified using the team letter and a number: ‘A1’.

 Team A
Team A works for a company employing around 50 people in the UK. Their software product
manages sensitive management data, and is used by some large organizations, including several
that are household names.
The company development teams show some of the enthusiasm and characteristics of a start-up.
We observed a culture of technological improvement, and a willingness to embrace change. We
worked with some dozen developers, including team lead A1 and programmers with a wide range
of experience (such as A2, A3, A4).

 Team B
Team B is a tiny non-profit start-up, run on a part-time basis by two professionals: an educationalist
and a software project manager. Their purpose is to provide work experience for promising young
people who would otherwise be unable to get initial jobs in Information Technology. They under-
take pro-bono software development projects for charities.
The development team constituted the educationalist as team lead (B1), the project manager (B2),
and two student developers (B3, B4).

 Team C
Team C work for a well-known and long-established multi-national company, providing services
via the Internet to a range of companies and individuals. The product is mature software, with a
policy of continuous improvement.
We worked with a dozen team members including Quality Assurance (C1, C4), managers (C2)
and programmers (C3, C5). All the team were competent and experienced professionals; in con-
trast to Team A we noted more emphasis on inter-departmental politics.

Figure 2: Structure of the Interventions

Incentivization
Session

Threat
Assessment

Configuration
Review

Automated Static
Analysis

Source Code
Review

Penetration
Testing

Product
Negotiation

On-the-job
Training

Motivates

M
ay justify…Justi

fie
s…

During the interventions, Team C’s company changed policy on testing and three of our partici-
pants took redundancy. The changes meant that we managed only one ‘continuous reminder’ ses-
sion after two months, though we achieved exit interviews with all of the participants except C4.
After one year, only one of the initial interviewees was still with the company and we received no
response to our interview requests.

5.3 Using the Package
Figure 3 shows how the nature of the workshops differed with different teams. It charts the pro-
portion of words from each set of intervention workshops coded as corresponding to different
activities.

A substantial portion of each session was Presenting Knowledge: one or more participants describ-
ing systems or known security issues. In particular, we observed many examples of an effective
way of presenting knowledge, ‘Storytelling’ (shown separately in the diagram), narrating how a
participant addressed or was affected by security issues61.
The workshops varied considerably in the proportions of time devoted to the main activities:
knowledge presentation, to finding issues and vulnerabilities, and to addressing the issues discov-
ered. This reflects differences in culture, structure and projects between the teams.
A particular revealing measurement in terms of culture is the amount of Banter, friendly joshing
and jokes, involved: Team A’s high performing and relaxed culture had a good deal; Team C’s
more formal culture evinced little, and Team B, with a large disparity in status between partici-
pants, had none.
The differing proportions reflect different emphasis in the workshops. For Team A, the novelty
was discovering the true nature of their security threats, while addressing them would be business
as usual and so required less discussion. For Team B, starting from virtually no security knowledge
and working on less security-critical projects, it was more important to find ways to deal with the
smaller set of risks they did identify. And for Team C, with good security expertise but poor com-
munication between teams, most of the benefit was in pooling knowledge fragmented among the
participants, and hence discussion was fairly evenly spread between the three main activities.

Figure 3: Discussion in the Intervention Workshops

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Team A Team B Team C

Presenting Knowledge

Storytelling

Indentifying assets,
detection mechanisms,
threats
Banter

Quantifying risks and
identifying mitigations

6 TRIAL RESULTS
This section describes the results of the Action Research-based trials in terms of cost, impact on
the development process, and learning by the participants.

6.1 Intervention Time Requirements
Figure 4 shows the timeline for the program. It will be seen that, despite three months elapsed
time, the total effort required from the intervener was only a total of two days, of which four hours
were research interviews and not part of the intervention itself. So, including preparation, the total
time spent by the intervener was less than two working days for each company. In terms of team
effort, the approximate participant numbers and times involved were as shown in Table 3. There
were no significant financial costs apart from travel costs for the researcher.
We can therefore summarize the cost of this set of interventions as follows:

Intervention facilitator: 15 person hours
Development team: 20 - 70 person hours
Financial cost: minimal

The following sections identify the concrete outcomes attributable to the interventions for each
team in turn. Quotations are attributed to the speaker where identifiable, or else to the appropriate
session.
Note that where we discuss techniques such as Code Review, we are referring to security focused
aspects of the techniques, rather than more general use.

Table 3: Participant Time Cost in Person Hours
 Elapsed Team A Team B Team C
Incentivization session 1.5 18 6 18
Threat modelling workshop 1.5 18 6 18
Follow-up 1 1 6 4
Follow-up 2 1 6 4 8
Exit workshop 1 10 4
Total 58 24 44

Figure 4: Intervention Timescales

Month 1 Month 2 Month 3 Month 4

10:00

12:00

14:00

16:00

18:00

Entry
interviews

Incentiviz-
ation

Threat
assessment

On-the-job
training

On-the-job
training

Exit
interviews

6.2 Security Outcomes for Team A
There were at least two significant improvements in Team A’s product and process security as a
result of the interventions. Beforehand, the developers had been thinking of security improvements
as line by line improvements in the code they themselves had written. Afterwards, they understood
that their most effective security improvements were likely to be elsewhere:

I find it a little concerning that there are so many attacks that we traditionally haven’t miti-
gated against. (A Workshop)

Specifically, they made three changes. First, in a form of Configuration Review, they introduced
a component security checker to their build cycle and embarked on a program of updating and
replacing components according to their security vulnerabilities.

We [have built] the OWASP dependency checker into our build process, … and established a
process for how we deal with new vulnerabilities in existing libraries or adding new libraries
or upgrading libraries. (A1)

Second, they identified their own existing customers as competitors with each other, and therefore
potential ‘attackers’, and identified that the permissions functionality was therefore a major pri-
vacy issue; making fixes in this area was likely to give security wins:

I have a … task to check user permissions, and check that a user has access to that specific
entity or a set of those entities (A2)

Thirdly, they introduced a monthly focus on the OWASP ‘Top Ten’ vulnerabilities, one at a time.
This approach had been mooted prior to the interventions but was only carried out after the initial
workshops.

[A team architect] puts out a ‘we’re working through this one this week’, and he puts up a
link and it has got everybody’s name next to it, and you read through it, and then there is more
information if you want. You can ask questions, and we have got a good internal issue tracking
board. Any kind of potential thing, big or small, goes on there, and it can get prioritized into
our work properly. (A4)

And in later On-the-job Training sessions they established that the prioritization of security fea-
tures required product management, not development, decisions.

That is where the priority call would come from. I think [Product Management] do understand
it, … but there is always going to be that element of weighing up (Group Session)

An unusual and intriguing approach they also tried was having one of the team be a covert ‘sabo-
teur’, occasionally introducing security defects to see if the review process would find it; in prac-
tice, though, they found it problematic:

One team did the saboteur exercise … It was a bit mixed. The saboteur didn’t enjoy being a
saboteur... (Group Session)
 Outcomes after One Year for Team A

A year later, secure development had become increasingly important to sales (Product Negotia-
tion):

With every sale we will get stringent questions around security. … I think, increasingly, there
are more questions around development processes, and application security. And clearly,
without being able to answer those questions satisfactorily, we wouldn’t be able to sell. (A1)

Configuration Review is now part of their development process:
The OWASP dependency checker is very much embedded in our process. We have never yet
got it to the point where all the dependencies are green! But we do now appear to be at the
point where it is a regular part of our process to check for new vulnerabilities that have been

found, and to add upgrades for those libraries that contain known vulnerabilities, within, ei-
ther, the next release, or the release after that, depending on how much other pressure there
is on our road map. (A1)

Disappointingly, the two innovative forms of On-the-job Training instigated by the teams inde-
pendently of the workshops had not continued:

Sprint by sprint [we were] picking up one of the OWASP Top Ten, and getting all the devel-
opers to review it, and identify issues where we weren’t meeting those things. That, sadly, has
fallen by the wayside … [because] we didn’t have the bandwidth on our road map to deal with
the things that people were highlighting. (A1)
[The secret saboteur] carried on for a few sprints, I think it didn’t work out quite so well,
when somebody got accused of being the saboteur, when actually it was just a genuine mistake
they made! It then became very embarrassing for that person. I think that fell by the wayside,
slightly! (A1)

They were, however, considering using an Automated Static Analysis tool:
One of the things on our backlog is bringing in SonarQube which might potentially identify
security issues in the code. (A1)

6.3 Outcomes for Team B
Team B, with very little prior security experience, had more potential improvements in process
and in product security. As a result of the first Threat Assessment process they made several
changes. They abandoned plans to store personal data in a website server database:

We said about the form, that it would send an email [instead of saving personal data on the
server]. (B1)

In addition, they introduced improved security and backup for development workstations and code
repositories, against the threat of malicious code modifications or access to personal data:

[We did] an audit on our computer systems: on our laptops… and the laptops that the students
are bringing. We do scans, and make sure that the antivirus and anti-malware protection is
all up-to-date. (B1)
I also update my data a lot more, I back it up, not just to a file server but with a USB. (B2)

Later, as they started further projects, they introduced their own Threat Assessments:
We developed a threat model at the start of our [later] project, and it is used in the code
reviews and testing. (B1)

These seem to have been effective; for example, they identified a need to secure their API key
management, an example of Configuration Review:

We need to make sure that … those [API] keys don’t become public, and that all students know
that we have to do that. (B1)
 Outcomes for Team B after One Year

Since the emphasis for Team B is on training, it was encouraging to find after one year that they
had continued finding ways to instigate development security. Specifically, they now had Incen-
tivization Sessions, and they were teaching Threat Assessment:

We are just starting a new project, so part of the induction, and part of the on-boarding for
all the students, is that we do a little bit of security training, and we do a threat modelling
exercise. (B1)

Their Code Reviews included security:
And then, as far as our code reviews are concerned, [we are] actually looking at security
aspects, at every stage. So, each time we are doing a code review, security is one of the things
on the form to tick. (B1)

And they had various forms of On-the-job Training:
We had a few other students who come in at a later stage, and [B4] did a nice ‘Brown Bag’
talk on security. And we are passing that on. (B1)

Particularly gratifying for us was that the intervention helped identify an aptitude in one participant
for security work, and to inspire a choice of career:

And [B4] who was going to be a struggle because of his Maths and English, his options going
forward are quite limited, but he is… about to start a Level 2 Traineeship in Cybersecurity!
Something that came out of your research was really how interested he is in it. (B1)

6.4 Outcomes for Team C
There were no identifiable improvements to Team C’s process or product directly attributable to
the interventions. The primary reason for this is that their security knowledge and practice as a
team were already good: better than they may have realized.

I’m not sure too many changes were made. (C1)
While some changes were made as a result on ongoing security improvements,

I’m much happier because we started working with Two Factor Authentication… for our cli-
ent… admins… (C5)

the participants did identify improved communication and understanding as resulting from the
interventions:

I think it got everyone talking about security a bit more, especially within our team... There
was a lot of security things going on that I didn’t know about. (C1)

6.5 Summary of Techniques Adopted
Table 4 summarizes the above outcomes: shaded cells indicate new assurance techniques in use as
a result of the intervention process. As discussed in Section 3.4, throughout the analysis we were
careful to distinguish changes arising from the interventions from those due to pre-existing plans
or other external factors; so, for example, Team A’s trial of On-the-job Training and plans for
Automated Static Analysis are not credited to the interventions.

Table 4: Summary of Techniques Adopted after One Year
 Team A Team B Team C

Incentivization Session In regular use
Threat Assessment In regular use
On-the-Job Training Introduced, but aban-

doned
In regular use Already in place

Product Negotiation In regular use Already in place
Configuration Review In regular use In regular use Already in place
Automated Static Analysis Planning introduc-

tion
 Already in place

Penetration Testing Already in place Already in place
Code Review Already in place In regular use Already in place

6.6 Security Learning as a Result of the Interventions
The outcomes in the previous section are valuable, but even more important for long term impact
is the ability of the teams and individuals within them to implement secure software in future. To
assess this, the Exit Interviews included an open question to elicit whether the participants appre-
ciated the need for Threat Assessment and other interventions. We coded statements that showed
evidence of an appreciation and internalization of the various techniques.

Table 5 shows the results of that analysis, along with brief descriptions of each participant. The
top lines (A1–C5) consider the exit interviews for each participant and identify how many state-
ments indicated internalized understanding of each assurance technique. The bottom three lines
consider group discussions towards the end of the process and show the number of participant
statements that showed similar understanding.
There was little discussion of Penetration Testing and Code Review, and only A1 showed ap-
preciation of the Incentivization Session; these are not shown in the table.
As Table 5 shows, though both teams B and C implemented many of the assurance techniques,
many of the individuals we interviewed did not evince a strong understanding of the reasons and
approach to do so for future projects. Note however that since there were no explicit interview
questions about each technique, the omission may not reflect the true understanding of the partic-
ipants involved.

Table 5: Evidence of Learning. Deeper shades of blue indicate higher counts

ID Ro
le

Ex
pe

ri
en

ce

(y
ea

rs
)

Au
to

m
at

ed

St
at

ic
 A

na
ly

si
s

Pr
od

uc
t

Ne
go

tia
tio

n

Co
nf

ig
ur

at
io

n
Re

vi
ew

O
n-

th
e-

jo
b

Tr
ai

ni
ng

Th
re

at

As
se

ss
m

en
t

A1 Architect 17 1 4 3 3 3
A2 Programmer 2 2 2
A3 Programmer 14 1 3 2
A4 Programmer 3 2 1
B1 Manager 25 1 2
B2 Manager 13
B3 Programmer <1
B4 Programmer <1
C1 QA 7 1 1 1 1
C2 Manager 13 1
C3 Programmer 3
C5 Programmer 10 1 3
A Team discussion 6 1 11 6 2
B Team discussion 2 3 4
C Team discussion 4 1

However, members of the Team A gained a good understanding of the techniques; we can con-
clude they did not implement Automatic Static Analysis as a positive decision based on discus-
sion. The leaders of teams A and B indicated they had learned aspects of future Product Negoti-
ation:

I guess, one challenge, as always, is playing what we, as architects, believe are the most
pressing security concerns, against what customers are asking for in terms of dealing with
security concerns. (A1)
I would …feel confident to be able to talk to people about our security policies and how we
manage security (B1)

And that they appreciated the need for Threat Assessment:
[If I was advising a team on security] I think brainstorming threats and vulnerabilities and
assets is really helpful. (A1)
And one of the things that I think we probably are doing, as a result of being part of this
process, is that auditing, that thinking things through first, what are our security issues, what
are our risks, and how we are going to deal with those, in terms of the design. (B1)

6.7 Blockers and Motivators Encountered by the Teams
Using the same open coding as before, we analyzed the interviews and workshops to identify
‘blockers’, problems that threatened to prevent adoption of the practices; and ‘motivators’, incen-
tives for practicing secure software development. In total, we identified 44 mentions of blockers
and 27 mentions of motivators. They fit broadly into the following categories: organizational as-
pects, supporting tools and the product/business themselves. Figure 5 shows to what extent each
was referenced by participants from each company.

 Organizational Blokers and Motivators

Under organizational aspects we found blockers in management issues such as no clear ownership
of security in the organization, and time and workload management. This is essentially the key
scarce resource in organizations, and poor management of employees’ time and workload will
override any personal, positive factors62. Participants from Team C described a dysfunctional re-
lationship with a security team that was required to sign off on products but gave no guidance to
developers and was not approachable for help. Their security team apparently practiced an internal

Figure 5: Mentions of Blockers and Motivators, by Company

40 30 20 10 0 10 20

Product and Business

Tools and Games

Organization

Team A Team B Team C

Motivators:

Blockers:

‘security through obscurity’ approach, which makes learning from security issues difficult for de-
velopers.

It was almost as if this information was kept confidential, on a need to know basis, and unfor-
tunately it means that [development] teams will find it difficult to learn from the event. (C2)

This is reflected in the substantial number of organization blockers identified by Team C in Figure
5. Two participants from Team A also noted that while the security education received in the or-
ganization was interesting and helpful, it was frustrating that there was no space for reflecting on
it or practicing it when developing.
At the same time, management can also provide a motivator. In Team B security aspects were
integrated into the development processes and acknowledged in planning:

“We needed to put it into our procedures, not just into our thoughts, but into our ... you know,
'this is the way we work; this is what we do'. This is what I have got out of it.” (B1).

One participant in Team C reiterated this point by considering holistic thinking about the product
to generate security understanding and motivation. Another participant suggested that security tar-
gets should be part of performance indicators for employees in order to motivate work on security.

 Supporting Tools as Blockers and Motivators
In terms of supporting tools, Teams A and C used a large number of tools, games and procedures
to support their secure software development processes. A few of these approaches were aban-
doned due to their poor design: one game in Team A caused embarrassment to individuals, and
made employees feel uncomfortable (see Section 6.2). Two participants noted the complexity of
their infrastructures and the difficulty to integrate and configure off-the-shelf security solutions,
especially when legacy software is involved. In particular, encryption, key management and cloud
computing platforms were mentioned as aspects where achieving security was unreasonably diffi-
cult.
Yet at the same time, outside influences were also perceived as motivators for security. In Team
C, compliance checks, certification and recent relevant legislation have all caused an increased
interest in security in the organization, and this has driven security improvements. The participants
also mentioned changes in architectures as motivators for security improvement, as in the partici-
pant’s opinion improved features and improved security often co-occur. The developers are also
keen to release their code to the public, motivating a greater focus on security:

Our problem, I think, here is that we have a tendency to want to make our code repositories
public, as a means of helping the wider world. The problem with that is that you automatically
put yourself in a vulnerable position. (C2)
 Business Function Blockers and Motivators

The third category of issues center on the team’s business function. Team A noted that customer’s
security policies and requests for customization of the product are significant barriers to maintain-
ing secure code and good policies. In Team C security was reported to be difficult to sell. Yet in
Team A security customers were actively requesting security, making them a motivator for secure
software development. The recent increase in news coverage on security is also seen as a motivator
in both companies:

Some of it could be good old-fashioned scaremongering due to what has happened in the
press, but if that is what works, then fine, we'll take that. Because the reality is, it was the stuff
that needed to be done.” (C2)
 Tension Between Blockers and Motivators

All three organizations had motivators in the categories where blockers were present. But these
motivators where not created in response to the blockers, but rather as independent encourage-
ments for secure software development.

The implication for development teams is the need both to encourage the motivators, and to resolve
the blockers. Since most were outside the immediate control of the developers, this is an organi-
zational, rather than a developer, opportunity for improvement.

7 DISCUSSION AND FUTURE WORK
This research shows that an affordable program of interventions, costing limited effort on the part
of a facilitator and a development team—and not requiring the involvement of a security expert—
can substantially improve the ability of that team to deliver secure software. Specifically, we con-
clude from Table 4 that such a program can be effective with teams with limited or no security
experience, and that the improvement is long lasting.
7.1 How the Interventions Worked
The impact of the interventions differed between teams: not only in the nature of the security issues
addressed; but also, in the teams’ responses to the interventions and in how they benefitted. Team
A introduced better development processes; Team B gained an awareness of several specific se-
curity improvements and the need for Threat Assessment; and for Team C the interventions
prompted better communication and understanding. Sections 5.3 and 6 explored the differences in
the ways the teams responded to these interventions.
The successes identified came through the developers’ choices. As the expert survey concluded
(see Figure 1 in Section 4.1), to be effective a program needs to motivate rather than simply direct
the teams involved. And, indeed, the interventions were successful to the extent that they could
change the developers’ thinking, understanding and motivation. The interventions involved, pre-
dominantly, conversations between developers, allowing them to learn mainly from each other,
and to motivate themselves rather than respond to outside pressures. Table 4 and Table 5 suggest
that this was an effective motivation and learning approach.
Indeed, by contrast to the results of earlier studies based on interventions using Penetration Testing
as a motivator31,32, in this study Table 4 shows that for both Teams A and B the long term impact
after one year was still important.
7.2 Interaction with Other Stakeholders
The analysis of blockers and motivators identified during the interventions (section 6.7) found
that a large majority of both involved interactions with either the business function or other as-
pects of the organization. It follows to improve development security it will help to work explic-
itly on these interactions.
Of the key assurance techniques identified by the expert survey (section 4.2), two are related to
such interactions: Product Negotiation, and to a lesser extent, Threat Assessment. We con-
clude that exploring ways to enhance these two techniques by addressing blockers and encourag-
ing motivators has the potential to deliver further improvements.
7.3 Learning for Software Development Teams
We highlight several learning points for software developers: the effectiveness of team activities,
key assurance techniques, and the importance of organizational issues.

 Apply Team Activities to Security
All the workshops derive their effectiveness more from discussions between participants than from
any information provided by the intervener, and as Section 5.3 shows the nature of these discus-
sions was different for each team. So, the success of these interventions can be attributed to the

team nature of the activities, and on the participants bringing their own unique range of expertise
and knowledge to them.
Whether or not a given team uses the specific workshops described here, we conclude that there is
benefit in regarding software security as a team, as much as an individual developer, process.

 Focus on Key Assurance Techniques
In an example of the Pareto Principle, that 80% of the benefit often derives from 20% of the input63,
sections 5.1 and 6 show that introducing three assurance techniques that are within the scope of
most development teams, out of out of twenty in use by industry, are together capable of delivering
a large impact. We conclude that teams will benefit most from concentrating first on these tech-
niques, namely Threat Assessment, Automated Static Analysis, and Configuration Review.
Section 6 shows that those three techniques can motivate a development team to add five further
techniques, equipping them with all the most important assurance techniques (Table 1) in use in
industry.

 Address Organizational Issues
As Figure 5 shows, some 40% of mentions of issues by participants, both of Motivators supporting
security improvement, and Blockers discouraging it, are ascribable to organizational issues. Whilst
this finding will not surprise any security professional, it emphasizes the need to regard the pro-
motion of software development security as a systemic, rather than purely a development team,
matter.
7.4 Future Work
This research opens up possibilities for future work in two directions: improvement of the inter-
ventions themselves, and support for the adoption of the key assurance techniques.

 Future Work on Interventions
We identified two key areas for future work on the interventions. First, the participant-driven na-
ture of the workshops meant that not every technique was covered for every team: Team B did not
discuss Automated Static Analysis, Penetration Testing, nor Code Review, for example. One
participant suggested a checklist or take-away sheet after the first day’s presentation:

I think maybe some sort of tick sheet in terms of “have you got these things in place?” to take
away, that might be a good addition (A1).

Second, for the program to scale to a wider number of participant teams, we need intervention
leaders who appreciate the aims of the different sessions, such as the importance of motivation to
achieve team empowerment hence Incentivization Session. Yet Table 4 suggests that this
knowledge was not successfully conveyed to many of the participants. Nor did the participants
learn how to use the program themselves. Also, to use the techniques, participants will need to
facilitate some of the sessions.
We plan to address this problem in a second Action Research cycle, by providing the interventions
program materials in book form, and by coaching ‘interveners’ to provide the training workshops
and techniques in their own development teams, merely supported by the researchers. As a longer-
term goal, we plan to make the interventions self-sufficient, by providing materials so that inter-
venors can teach themselves how to carry out the interventions.
Considering the design of the trials, the limited number of development teams involved offers
scope for improvement. Furthermore, the changes resulting from the interventions were self-re-
ported: the trials do not provide certainty to what extent the techniques were indeed implemented;
nor that they improved the security of the resulting code.
To address the first issue, our next Action Research cycle will involve a larger number of teams;
to address the second, we plan to request details of improvements made and vulnerabilities re-
moved.

The data set from this larger set of teams may also permit analysis of which assurance methods
can be applied successfully in which kinds of software engineering practice.

 Future Work on Assurance Techniques
The importance suggested by Section 4.2 of a small number of assurance techniques provides an
incentive for further research on those techniques. While Automated Static Analysis and Pene-
tration Testing have received a good deal of research attention, participant comments, especially
Blockers and Motivators, suggest areas for inquiry for others:
Threat Assessment Participants requested example expert assessments for different do-

mains and types of software, to act as a basis for their own assessments.
Configuration Review Several Blockers suggest a need for improvements to tools and to vul-

nerability databases to support more fine-grained component analysis.
Code Review Traditional line-by-line code review may not be optimal for security is-

sues: one participant, for example, described instead asking developers
to show in their code how they addressed specific security issues. There
is a need for experimentation investigating the merits of different ap-
proaches.

Product Negotiation Participants requested methods to express specific security improve-
ments as organization benefits; and ways to identify the probability of
different security breaches. From Section 7.2, we also conclude a need
also to find ways to identify and address blockers and motivators during
the process.

Incentivization Ses-
sion

Alternatives to the Agile Security Game include Capture-the-flag
games, Penetration Test-based sessions, and case study-based training.
While this work proves the success of the first, research would be valu-
able to compare other approaches in differing situations.

On-the-job Training The interventions provide only a one-off security improvement. Games
such as the “covert saboteur” in Team A offer opportunities for devel-
opers to develop their skills further. However, as we saw, the effective-
ness of such approaches depends on personal aspects and team dynam-
ics (Section 6.2.1). Research is needed to provide low-time-cost ways
to continue the team security improvement process.

8 CONCLUSION
In this paper we have studied the effectiveness of a series of lightweight interventions to promote
secure software development. We facilitated six hours of workshops with each of three teams, and
conducted interviews beforehand, immediately afterwards and after twelve months.
This paper proves that low-cost interventions by facilitators who are not security experts can pro-
vide long-term security improvements within development teams. It identifies a shortlist of effec-
tive assurance techniques that such interventions may aim to introduce, and highlights aspects of
the intervention that support their introduction. We found ample motivators for secure develop-
ment for organizations to provide, and a range of blockers for them to address.
Lightweight, facilitation-based, interventions of the kind reported here offer the potential to help
software development teams with limited current security skills to improve their software security.
Widescale adoption of programs of this kind will empower developers to play a much-needed role
in improving software security for all end users.

REFERENCES
1. Forbes. Top 2016 Cybersecurity Reports Out From AT&T, Cisco, Dell, Google, IBM,

McAfee, Symantec And Verizon. Forbes.
https://www.forbes.com/sites/stevemorgan/2016/05/09/top-2016-cybersecurity-reports-
out-from-att-cisco-dell-google-ibm-mcafee-symantec-and-verizon/. Published 2017.
Accessed September 25, 2017.

2. Xie J, Lipford HR, Chu B. Why Do Programmers Make Security Errors? In: IEEE
Symposium on Visual Languages and Human Centric Computing. 2011:161-164.
doi:10.1109/VLHCC.2011.6070393

3. Xiao S, Witschey J, Murphy-Hill E. Social Influences on Secure Development Tool
Adoption: Why Security Tools Spread. In: ACM Conference on Computer Supported
Cooperative Work. 2014:1095-1106. doi:10.1145/2531602.2531722

4. Such JM, Gouglidis A, Knowles W, Misra G, Rashid A. Information Assurance
Techniques: Perceived Cost Effectiveness. Comput Secur. 2016;60:117-133.
doi:10.1016/j.cose.2016.03.009

5. Weir C, Becker I, Noble J, Blair L, Sasse MA, Rashid A. Interventions for Software
Security: Creating a Lightweight Program of Assurance Techniques for Developers. In:
Proceedings of the 41st International Conference on Software Engineering: Software
Engineering in Practice. IEEE; 2019. doi:10.1109/ICSE-SEIP.2019.00013

6. Oliveira D, Rosenthal M, Morin N, Yeh K-C, Cappos J, Zhuang Y. It’s the Psychology
Stupid: How Heuristics Explain Software Vulnerabilities and How Priming Can
Illuminate Developer’s Blind Spots. In: Proceedings of the 30th Annual Computer
Security Applications Conference (ACSAC14). 2014. doi:10.1145/2664243.2664254

7. Derr E, Bugiel S, Fahl S, Acar Y, Backes M. Keep Me Updated: An Empirical Study of
Third-Party Library Updatability on Android. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security - CCS ’17. New York, New York,
USA: ACM Press; 2017:2187-2200. doi:10.1145/3133956.3134059

8. Nayak K, Marino D, Efstathopoulos P, Dumitraş T. Some Vulnerabilities Are Different
Than Others: Studying Vulnerabilities and Attack Surfaces in the Wild. In: International
Symposium on Research in Attacks, Intrusions and Defenses (RAID). 2014.
doi:10.1007/978-3-319-11379-1_21

9. Vaniea K, Rashidi Y. Tales of Software Updates: The Process of Updating Software. In:
Proceedings for Computer Human Interaction (CHI) 2016. 2016:3215-3226.
doi:10.1145/2858036.2858303

10. Turpe S. The Trouble with Security Requirements. In: Proceedings - 2017 IEEE 25th
International Requirements Engineering Conference, RE 2017. 2017:122-133.
doi:10.1109/RE.2017.13

11. Senarath A, Arachchilage NAG. Why Developers Cannot Embed Privacy into Software
Systems? In: Proceedings of the 22nd International Conference on Evaluation and
Assessment in Software Engineering (EASE18). 2018:211-216.
doi:10.1145/3210459.3210484

12. Senarath AR, Arachchilage NAG. Understanding User Privacy Expectations: A Software
Developer’s Perspective. Telemat Informatics. 2018;35(7):1845-1862.
doi:10.1016/j.tele.2018.05.012

13. Smeets YR. Improving the Adoption of Dynamic Web Security Vulnerability Scanners.
2015.

14. Xie J, Chu B, Lipford HR, Melton JT. ASIDE: IDE Support for Web Application
Security. In: 27th Annual Computer Security Applications Conference. 2011:267.
doi:10.1145/2076732.2076770

15. Pribik I, Felfernig A. Towards Persuasive Technology for Software Development
Environments: An Empirical Study. In: International Conference on Persuasive
Technology. Springer; 2012:227-238. doi:10.1007/978-3-642-31037-9_20

16. Nguyen DC, Wermke D, Backes M, Weir C, Fahl S. A Stitch in Time: Supporting
Android Developers in Writing Secure Code. In: ACM SIGSAC Conference on Computer
& Communications Security. ACM; 2017. doi:0.1145/3133956.3133977

17. Do LNQ, Ali K, Livshits B, Bodden E, Smith J, Murphy-Hill E. Just-in-time Static
Analysis. In: 26th ACM SIGSOFT International Symposium on Software Testing and
Analysis. 2017:307-317. doi:10.1145/3092703.3092705

18. Tabassum M, Watson S, Lipford HR. Comparing Educational Approaches to Secure
Programming : Tool vs. TA. In: Thirteenth Symposium on Usable Privacy and Security
(SOUPS17). 2017.

19. Christakis M, Bird C. What Developers Want and Need From Program Analysis: An
Empirical Study. In: Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering - ASE 2016. New York, New York, USA: ACM Press;
2016:332-343. doi:10.1145/2970276.2970347

20. Xie J, Lipford HR, Chu BB-T. Evaluating Interactive Support for Secure Programming.
In: SIGCHI Conference on Human Factors in Computing Systems. CHI ’12. New York,
NY, USA: ACM; 2012:2707-2716. doi:10.1145/2207676.2208665

21. Witschey J, Zielinska O, Welk A, Murphy-Hill E, Mayhorn C, Zimmermann T.
Quantifying Developers’ Adoption of Security Tools. In: Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering - ESEC/FSE 2015. New York,
New York, USA: ACM Press; 2015:260-271. doi:10.1145/2786805.2786816

22. De Win B, Scandariato R, Buyens K, Grégoire J, Joosen W. On the Secure Software
Development Process: CLASP, SDL and Touchpoints Compared. Inf Softw Technol.
2009;51(7):1152-1171. doi:10.1016/j.infsof.2008.01.010

23. Conradi R, Dybå T. An Empirical Study on the Utility of Formal Routines to Transfer
Knowledge and Experience. ACM SIGSOFT Softw Eng Notes. 2001;26(5):268-276.
doi:10.1145/503271.503246

24. Hardgrave B, Davis F, Riemenschneider C. Investigating Determinants of Software
Developers’ Intentions to Follow Methodologies. J Manag Inf Syst. 2003;20(1):123-151.
doi:10.1080/07421222.2003.11045751

25. Lavallee M, Robillard PN. The Impacts of Software Process Improvement on Developers:
A Systematic Review. In: 34th International Conference on Software Engineering, ICSE
2012. 2012:113-122. doi:10.1109/ICSE.2012.6227201

26. Riemenschneider CK, Hardgrave BC, Davis FD. Explaining Software Developer
Acceptance of Methodologies: A Comparison of Five Theoretical Models. IEEE Trans
Softw Eng. 2002;28(12):1135-1145. doi:10.1109/TSE.2002.1158287

27. Geer D. Are Companies Actually Using Secure Development Life Cycles? IEEE Comput.
2010;June:12-16.

28. Building Security In Maturity Model | BSIMM. https://www.bsimm.com/. Accessed April
14, 2019.

29. Caputo DD, Pfleeger SL, Sasse MA, Ammann P, Offutt J, Deng L. Barriers to Usable
Security? Three Organizational Case Studies. IEEE Secur Priv. 2016;14(5):22-32.
doi:10.1109/MSP.2016.95

30. Assal H, Chiasson S. Security in the Software Development Lifecycle. Fourteenth Symp
Usable Priv Secur {SOUPS} 2018, Balt MD, USA, August 12-14, 2018. 2018:281-296.

31. Türpe S, Kocksch L, Poller A. Penetration Tests a Turning Point in Security Practices?
Organizational Challenges and Implications in a Software Development Team. In: Second
Workshop on Security Information Workers, Twelfth Symposium on Usable Privacy and
Security (SOUPS 2016). USENIX Association; 2016.

32. Poller A, Kocksch L, Türpe S, Epp FA, Kinder-Kurlanda K. Can Security Become a
Routine? A Study of Organizational Change in an Agile Software Development Group.
In: ACM Conference on Computer Supported Cooperative Work. 2017:2489-2503.
doi:10.1145/2998181.2998191

33. Bell L, Brunton-Spall M, Smith R, Bird J. Agile Application Security: Enabling Security
in a Continuous Delivery Pipeline. Sebastopol, CA: O’Reilly; 2017.

34. Werlinger R, Hawkey K, Botta D, Beznosov K. Security Practitioners in Context: Their
Activities and Interactions with Other Stakeholders within Organizations. Int J Hum
Comput Stud. 2009;67(7):584-606. doi:10.1016/j.ijhcs.2009.03.002

35. Haney JM, Lutters WG. Skills and Characteristics of Successful Cybersecurity Advocates.
In: Third Workshop on Security Information Workers. USENIX Association; 2017.

36. Ur Rahman AA, Williams L. Software Security in DevOps: Synthesizing Practitioners’
Perceptions and Practices. In: Proceedings of the International Workshop on Continuous
Software Evolution and Delivery - CSED ’16. New York, New York, USA: ACM Press;
2016:70-76. doi:10.1145/2896941.2896946

37. Ashenden D, Lawrence D. Security Dialogues: Building Better Relationships between
Security and Business. IEEE Secur Priv. 2016;14(3):82-87. doi:10.1109/MSP.2016.57

38. Kirlappos I, Beautement A, Sasse MA. “Comply or Die” Is Dead: Long Live Security-
Aware Principal Agents. In: Financial Cryptography and Data Security. Heidelberg:
Springer Berlin; 2013:70-82. doi:10.1007/978-3-642-41320-9_5

39. Kirlappos I, Parkin S, Sasse MA. Shadow Security as a Tool for the Learning
Organization. ACM SIGCAS Comput Soc. 2015;45(1):29-37.
doi:10.1145/2738210.2738216

40. Pfleeger SL, Sasse MA, Furnham A. From Weakest Link to Security Hero: Transforming
Staff Security Behavior. J Homel Secur Emerg Manag. 2014;11(4):489-510.
doi:10.1515/jhsem-2014-0035

41. Assal H, Chiasson S. Think Secure From the Beginning: A Survey With Software
Developers. In: CHI2019. 2019. doi:10.1145/3290605.3300519

42. Fogg BJ. A Behavior Model for Persuasive Design. In: Proceedings of the 4th
International Conference on Persuasive Technology. Persuasive ’09. ACM; 2009:40:1--
40:7. doi:10.1145/1541948.1541999

43. Tietjen MA, Myers RM. Motivation and Job Satisfaction. Manag Decis. 1998;36(4):226-
231. doi:10.1108/00251749810211027

44. Stransky C, Acar Y, Nguyen DC, et al. Lessons Learned from Using an Online Platform
to Conduct Large-Scale , Online Controlled Security Experiments with Software
Developers. CSET ’17 (USENIX Work Cyber Secur Exp Test). 2017.

45. Acar Y, Stransky C, Wermke D, Mazurek ML, Fahl S. Security Developer Studies with
GitHub Users: Exploring a Convenience Sample. In: Proceedings of the Thirteenth
Symposium on Usable Privacy and Security (SOUPS17). 2017.

46. Tahaei M, Vaniea K. A Survey on Developer-Centred Security. In: Third European
Workshop on User-Centered Security (EuroUSec2019). 2019:14.
doi:10.1109/EuroSPW.2019.00021

47. Glaser BG, Strauss AL. The Discovery of Grounded Theory: Strategies for Qualitative
Research. Chicago: Aldine Transaction; 1973.

48. Stol K, Ralph P, Fitzgerald B. Grounded Theory in Software Engineering Research: A
Critical Review and Guidelines. In: 38th International Conference on Software
Engineering. ACM; 2015:120-131. doi:http://dx.doi.org/10.1145/2884781.2884833

49. Cooperrider DL, Whitney D. Appreciative Inquiry: A Positive Revolution in Change.
ReadHowYouWant; 2005.

50. Sharp H, Dittrich Y, De Souza CRB. The Role of Ethnographic Studies in Empirical
Software Engineering. IEEE Trans Softw Eng. 2016;42(8):786-804.
doi:10.1109/TSE.2016.2519887

51. Dittrich Y, Rönkkö K, Eriksson J, Hansson C, Lindeberg O. Cooperative Method
Development: Combining Qualitative Empirical Research With Method, Technique and
Process Improvement. Empir Softw Eng. 2008;13(3):231-260. doi:10.1007/s10664-007-
9057-1

52. Whyte WF. Participatory Action Research. Sage Publications, Inc; 1991.
53. Baskerville RL. Investigating Information Systems with Action Research. Commun AIS.

1999;2(3es):4. doi:10.17705/1cais.00219
54. Petersen K, Gencel C, Asghari N, Baca D, Betz S. Action Research as a Model for

Industry-Academia Collaboration in the Software Engineering Context. In: International
Workshop on Long-Term Industrial Collaboration on Software Engineering. ACM;
2014:55-62. doi:10.1145/2647648.2647656

55. Weir C, Blair L, Becker I, Sasse MA, Noble J. Light-touch Interventions to Improve
Software Development Security. In: Yao D, Chong S, eds. IEEE Cybersecurity
Development Conference. Boston, MA, USA: IEEE Computer Society; 2018:12.
doi:10.1109/SecDev.2018.00019

56. Weir C. The Agile App Security Game – Leader’s Instructions.
https://www.securedevelopment.org/resources/agile-security-game/. Accessed April 14,
2019.

57. Frey S, Rashid A, Anthonysamy P, Pinto-Albuquerque M, Naqvi SA. The Good, the Bad
and the Ugly: A Study of Security Decisions in a Cyber-Physical Systems Game. IEEE
Trans Softw Eng. 2017:1-16. doi:10.1109/TSE.2017.2782813

58. Shostack A. Threat Modeling: Designing for Security. John Wiley & Sons; 2014.
59. Microsoft. Microsoft Secure Development Lifecycle. https://www.microsoft.com/en-

us/sdl/. Accessed March 29, 2018.
60. EE. Cash On Tap from EE. YouTube. https://www.youtube.com/watch?v=51CJNfRDuiI.

Published 2014. Accessed September 19, 2018.
61. Haney JM, Lutters WG. It’s Scary… It’s Confusing… It’s Dull: How Cybersecurity

Advocates Overcome Negative Perceptions of Security. In: Fourteenth Symposium on
Usable Privacy and Security (SOUPS 2018). 2018:411-425.

62. Shah AK, Mullainathan S, Shafir E. Some Consequences of Having Too Little. Science
(80-). 2013;338(6107):682-685. doi:10.1126/science.1222426

63. Cheng R. Genetic Algorithms and Engineering Optimization. Wiley-Interscience; 2000.

APPENDIX A: SURVEY INTERVIEW QUESTIONS
Introduction – establish context

• What is your current role, and what do you find yourself doing day-to-day? Tell me about a typ-
ical day at work?

• Briefly, how did you first get involved with secure software development?
Exploration

• What’s your interest in security? What do you do about it, and how do you deal with it day-to-
day?

• What do you want to achieve when you’re helping a team improve software security? How do
you define and measure success?

• What is the most successful intervention technique you’ve found? Where do you concentrate
your efforts?

• Can you think of a particular triumph in your work – where you’ve worked with a team that has
improved their security? How did you achieve that?

• Have any of your teams used code checking tools? How happy were you with their effectiveness
at finding problems; and their ease of use?

• What do you find effective as motivation for secure development?
• How do you frighten developers into security, or emphasize the positive aspects?
• To what extent are laws and standards helpful in getting teams to be effective at software secu-

rity? How do you find out about them and keep up to date?
• When new people join an existing team, how do you motivate them and how do they learn

what’s required? Do you encourage double checking of contributions from new people or treat
them “as usual”

• What are the best ways you’ve found to get teams to tackle specific things:
• Security coordination with other teams;
• Reviews and penetration testing;
• Designing to get feedback from the users?
• What else?

• Have you had a nightmare scenario? Or consider this nightmare scenario. You’re working with
a team that’s just learned they have a security flaw in a website that’s very heavily used. Have
you even had a situation like that (no details required)? What did or would you do to help the
team tackle it?

Vision
Let’s imaging we’re a few years in the future, and the problem of getting teams up to speed with app
security has been licked; it’s now a part of everyday software development life. How was it done?
What were the first small steps?

Clarification (as appropriate)
• And how did you achieve that?
• Oh, I see. Could you give an example?

APPENDIX B: PACKAGE TRIALS INTERVIEW QUESTIONS

Entry Interview
Introduction – establish context

• What is your current role, and what do you find yourself doing day-to-day? What’s your involve-
ment with this project?

Exploration
• Have you considered security for this project yourself? What’s been done so far?
• In what ways do you consider security important for this product?

Experience
• What’s the last time you came across a security issue in a project? Can you describe the issue?
• How did you deal with that issue?
• How confident are you about that solution?

Vision
• Let’s imagine the project’s finished, and it’s been an excellent piece of work. What do you feel

you’ll have done related to security and privacy to get it that way?
Clarification (as appropriate)

• Oh, I see. Could you give an example?

Exit Interview
Introduction – establish context

• Now that we’ve been working together for a while, this is a discussion to see how things have
progressed in the project.

Exploration
• What do you think has changed?
• What are your feelings about the change in the project?
• What did you make of the three activities we did: game, workshop, follow-ups?
• In what way might you have a better story on security now?

Experience
• What changes did you make as a result of the workshops and discussion?
• What exactly did you do?
• How did you go about implementing the changes?
• Why you chose to do those things?
• What is it that’s better now as a result?
• Would you do something similar again?
• What would you do differently?
• How does this relate to these specific threats you’ve identified (from the threat modelling work-

shop)?
Vision

• Let’s imagine there’s a team starting a similar project now, and you’re advising the team com-
ing in to help them improve their security. What would you recommend that’s the same as we
did, and how would you recommend improving it?

