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Summary
RDFa, JSON-LD, Microdata, and Microformats allow to endow the data in 
HTML files with metadata tags that help software agents understand them. 
Unluckily, there are many HTML files that do not have any metadata tags, 
which has motivated many authors to work on proposals to synthesize them. 
But they have some problems: the authors either provide an overall picture of 
their designs without too many details on the techniques behind the scenes or 
focus on the techniques but do not describe the design of the software systems 
that support them; many of them cannot deal with data that are encoded using 
semistructured formats like forms, listings, or tables; and the few proposals that 
can work on tables can deal with horizontal listings only. In this article, we 
describe the design of a system that overcomes the previous limitations using a 
novel embedding approach that has proven to outperform four state-of-the-art 
techniques on a repository with randomly selected HTML files from 40 differ-
ent sites. According to our experimental analysis, our proposal can achieve an 
F1 score that outperforms the others by 10.14%; this difference was confirmed 
to be statistically significant at the standard confidence level.
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1 INTRODUCTION

The data in an HTML file can be easily endowed with semantics by means of metadata tags. Such tags link the HTML
elements that provide the data to either their corresponding entities in a knowledge graph or their corresponding types
in a schema. Simply put, they pave the way for software agents that can easily sift through the Web and understand the
data that it provides in human-friendly HTML files. The metadata tags are commonly encoded using RDFa, JSON-LD,
Microdata, or Microformats.1 For instance, Figure 1A shows a sample HTML file that uses RDFa: the vocab attribute
in the li elements indicates that they contain data that can be structured according to a type called Hotel in the schema
provided by example.org; the property attributes in the span elements indicate whether they provide the name of the hotel
or the postal code. Figure 1B shows how a browser renders this HTML file. Note that the metadata tags are not shown,
but software agents can read them to understand the data. Search engines are a particular kind of software agent that
benefits from these metadata tags because they help them build info-boxes that feed their question-answering systems.2

As of 2013-14, metadata tags had been adopted by roughly 50% of the 10 000 most popular web sites,3,4 which means
that there were billions of HTML files whose data could be easily understood by many software agents. Unfortunately,
that does not entail that they are so common in the general Web. Recently, an analysis of the 32.04 million domains in
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F I G U R E 1 Sample HTML file [Colour figure can be viewed at wileyonlinelibrary.com]

the November 2019 Common Crawl has revealed that only 11.92 million domains provide metadata tags,1 which clearly
argues for a method that helps software agents deal with the documents provided by the remaining 20.12 million domains.

In the literature, there is a software-engineering proposal by Dodero et al.5 that can be used only when the system that
produces the HTML files can be reengineered, which is not generally the case. The other proposals can be plugged into
existing systems without any reengineering. Some of them target content management systems and focus on files whose
content is written in natural language, namely: Adrian et al.6 and Ngomo et al.7 devised two components that intercept
the HTML files output by the system and endows them with metadata tags automatically; in addition, Eldesouky et al.8
and Guerrero-Contreras et al.9 devised two text editors that help authors add metadata tags to their text. There are also
some proposals that focus on data that are encoded in semistructured formats, namely: Burget10 and Efthymiou et al.11

presented two proposals that attempt to link the data records in an HTML file to the entities in a knowledge graph; that
is, they cannot provide metadata tags unless there is a matching in the knowledge graph. Very recently, Oulabi and Bizer
12 have presented a proposal that overcomes the previous problems since it can identify new entities that are not in the
knowledge graph and map their properties onto the corresponding schema; unfortunately, it can only work on tables in
which data records are arranged horizontally and the headers provide clues to find the metadata tags in the schema of
the knowledge graph.

In this article, we present a system to synthesize metadata tags that does not require any knowledge graph and is
not bound with a particular kind of layout. It was designed building on three components: a data processor, a learner,
and a tagger. They provide several services that communicate through message queues, which facilitates assembling a
microservice architecture that can be easily deployed and run on a distributed system. Its most novel component is the
learner; it helps learn a tagging model using a new graph embedding technique that, contrarily to the others in the litera-
ture, can find the length of the embeddings automatically, preserves the original attributes and their classification power
in the embeddings, and learns a reusable tagging model that can be applied to similar HTML files. We have experimented
with our proposal and four state-of-the-art embedders on a repository with HTML files that were randomly selected from
40 different web sites; our goal was to confront our proposal with as many layouts as possible and to learn the tagging
models from as few documents as possible. Our conclusion is that our proposal can learn tagging models from as few as
six random documents and it can attain an F1 score that is 10.14% better than with the other embedders. (The previous
difference was confirmed to be statistically significant using hypothesis testing.) Summing up: we provide a novel and
promising approach to synthesizing metadata tags for HTML files.

The rest of the article is organized as follows: Section 2 reports on the related work regarding systems that synthesize
metadata tags or compute embeddings, and then discusses on them and compares them to our proposal; Section 3 provides
an overall picture of our design and describes the details of its components, including their services, communication
diagrams, and data models; Section 4 describes the algorithms behind the key services of our design; Section 5 reports
on our experimental setting, the results of our experiments, and analyzes them using statistically sound methods; finally,
Section 6 presents our conclusions and some future work. There is an appendix that reports on the catalog of attributes
used to learn the tagging models.
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2 RELATED WORK

In this section, we first summarize the tagging proposals that we have found in the literature; we then report on the current
approaches to graph embedding; finally, we discuss on the related work in order to put our proposal in a proper context.

2.1 Tagging proposals

One of the earliest proposals was presented by Dodero et al.5 who described a methodology that can be used to reengineer
a software system so that it produces HTML files with metadata tags. It is a software engineering approach that is not
generally applicable, but only when a company is interested in updating their systems. Thus, we restrict our attention
to proposals that can be plugged into existing systems; simply put, proposals that help synthesize metadata tags for an
HTML file without reengineering the system that produces it.

The earliest such proposals focus on content management systems in which data are encoded in text that is writ-
ten in natural language. Adrian et al.6 presented a method that consists of matching the noun phrases found in an
HTML file to the values of the data properties in a knowledge graph. The complex part of their proposal is their heuris-
tic to resolve ambiguities, which selects the matchings that result in the highest possible number of related entities in
the knowledge graph. This idea lies at the heart of the more sophisticated approaches that have been published later.
Ngomo et al.7 presented the architecture of a component that, basically, cleans the input HTML files and then runs
some natural language processing tools to find words, sentences, named entities, or relations, which are fed into an
ensemble of feed-forward neural networks that synthesize the metadata tags. Eldesouky et al.8 and Guerrero-Contreras
et al.9 presented two proposals that are similar since they aim to produce an editor that helps content producers include
metadata tags in their text without requiring any technical knowledge of the underlying technologies. Unfortunately,
their articles describe the architecture and the functionality of their tools, not the details of the techniques behind the
scenes.

More recent approaches focus on semistructured data that are rendered using specification sheets, record listings, or
tables. Burget10 devised a proposal that decomposes the input HTML files into nonoverlapping rectangular areas. For
each area, it computes its boundaries, its text, some style attributes, and its inner boxes; then each area is assigned a
collection of candidate tags using DBpedia Spotlight, a regular pattern-based entity recognizer, and a classifier that was
trained using attributes like fonts, colors, positions, or lexical attributes. The tags are then disambiguated using some style
consistency and positioning heuristics. Another recent proposal by Efthymiou et al.11 focuses on data that are encoded
in tables. They presented three basic approaches to the problem and some combinations, namely: a look-up method, a
word-embedding method, and an ontology-matching method. The look-up method attempts to match the data in the
cells of a row to the values of the data properties of an entity in the knowledge graph; the disambiguation is addressed
by finding the minimal set of cells that almost univocally identify each record. The word-embedding method first finds
an embedding for the entities in the knowledge graph using random walks through their properties; it then finds an
embedding for the rows of the tables by catenating the corresponding columns; given the two previous embeddings, it is
relatively easy to find which entities correspond to each row using distance functions. The ontology-matching method
uses the column headers as candidate property names and then runs a third-party ontology-matching tool to find an
alignment among the columns and the properties in the knowledge graph. Very recently, Oulabi and Bizer12 presented a
proposal that also focuses on tables. It first performs schema matching in an attempt to find the class that best describes
a table and its columns; then, it uses a variety of scoring, grouping, selection, and fusion techniques to determine which
cells can be grouped and considered a single entity; finally, it checks which of the entities in the table cannot be mapped
onto any of the entities in the knowledge graph and can then be considered new.

2.2 Embedding proposals

Generally speaking, an embedding is a function that maps multidimensional objects onto lower dimensional objects that
preserve the distances among the original objects. Using embeddings has proven very useful to learn classifiers that are
impossible to learn using the original objects. Typically, machine learning techniques work on data sets that consist of
vectors of real numbers; there are also a few techniques that can work with vectors whose components are categorical
or ordinal; but there are not many proposals that can work with interrelated data. Embedding techniques can easily



transform those interrelated data into vectors of real numbers from which a classifier can be learnt using virtually any
machine-learning techniques.

We are interested in embedding techniques that work on graphs since HTML files can be naturally represented as
DOM trees, which are a particular kind of graph. Note that synthesizing metadata tags for an HTML file basically amounts
to finding the tags that best describe its DOM nodes. (Without any loss of generality, we can assume that nodes that have
irrelevant data are tagged with a null tag). That is, graph embedding techniques may in theory help learn the corresponding
classifiers. Unfortunately, we have not found any records in the literature regarding applying graph embedding techniques
to synthesizing metadata tags for HTML files, which makes our research original. (Recall that Efthymiou et al.11 tried an
approach in which embeddings were used to find similar text, not to synthesize metadata tags.)

The proposals in the literature work on graphs of the form (N,E,A), where N denotes a set of nodes, E denotes a
set of edges between some nodes, and A is a function that endows each edge with an attribute. Wang et al.13 published
a survey whose focus is on techniques to embed graphs in which the edge attributes are labels that endow them with
semantics; Goyal and Ferrara14 presented a similar survey with a focus on techniques to embed graphs in which the
edge attributes are weights that indicate how similar the connected nodes are; Cai et al.15 presented an additional survey
in which the focus is on formalizing the different kinds of graphs and embedding representations in the literature. The
three surveys agree in that the most common approaches to computing the embeddings rely on so-called factorization
methods, structure-preservation methods, random-walk methods, and deep-learning methods, but there are also some
hybrid methods; unfortunately, none of them is generally superior to the others, which means that it is necessary to
perform some experimentation to find out the most appropriate for each scenario.

2.3 Discussion

It is a bit surprising that only the proposal by Dodero et al.5 describes the solution from an engineering point of view.
The others provide shallow descriptions of the tools that the authors have devised or focus on the techniques behind the
scenes, without a clue on how they can be turned into working systems. Unfortunately, Dodero et al.’s5 proposal is only
appropriate in a context in which the system that produces the HTML files can be reengineered to produce metadata
tags, which is not generally the case. Our proposal is a system, for which we present a microservice architecture and
a comprehensive description of its core component to learn metadata taggers; it does not require any reengineering of
existing systems.

Adrian et al.’s6 proposal seems to be the seminal one since they introduced the idea of finding pieces of text in an HTML
file that match an entity in a knowledge graph. The more recent proposals by Ngomo et al.,7 Eldesouky et al.,8 Burget,10

Efthymiou et al.,11 or Oulabi and Bizer12 basically differ regarding the mechanism that they use to find the matches and/or
to resolve ambiguities. Unfortunately, Adrian et al.’s,6 Ngomo et al.’s,7 or Eldesouky et al.’s8 proposals cannot be applied in
our context because they all require the data to be rendered using sentences in natural language. In our context, we have
to deal with semistructured data in specification sheets, record listings, or tables, which are nongrammatical encodings.
The proposal by Burget10 is the only that can work in such a context because it uses the DBpedia Spotlight component
to provide an additional clue on the candidate tags that it generates, but their technique can use other clues from their
regular-pattern entity recognizer and from their classifier, which assumes that the data are rendered using semistructured
layouts. The problem is that it requires a knowledge graph that provides entities for every piece of data in the input HTML
files. Not only is this a problem when dealing with very specific domains, but also when dealing with general domains for
which the existing knowledge graphs are not complete enough. For instance, Oulabi and Bizer12 analyzed three general
domains that are well supported by the DBpedia knowledge graph; unluckily, they found 206 690 entities in their HTML
files for which they could not find any matches in the knowledge graph. The proposals Efthymiou et al.11 and Oulabi and
Bizer’s12 can also be used in a semistructured context; unfortunately, they can only deal with tables that have headers at
the top and arrange the data records horizontally. Our proposal was specifically tailored to working with semistructured
data that are encoded using HTML and it does not assume that they are arranged using any particular layouts.

Graph embedding techniques are particularly interesting in this context because synthesizing metadata tags can be
interpreted as a node classification problem. Graph embedding techniques allow to map the DOM nodes of a graph onto
embeddings from which it is relatively easy to learn a classifier using many existing machine-learning techniques.16 We
have implemented a tagger using some state-of-the-art graph embedders and many machine-learning techniques, but the
results were not good at all since the best F1 score attained in our experimental study was 0.69. We think that the problem
with such embedders is manyfold, namely: first, they require the user to preset the length of the embeddings, which is



problematic insofar it requires to perform grid search to find a good length that is not typically optimal; second, they
attempt to preserve the distance between the DOM nodes that are connected by edges, which requires to transform the
original attributes into real-valued attributes that miss their original classification power; third, but not less important:
they do not learn reusable embedding models, but embedding models that can only be applied to the graphs from which
they were learnt; simply put: each HTML file for which we need to synthesize metadata tags must be analyzed indepen-
dently. Our proposal computes the optimum embedding length automatically, it preserves the original attributes, and it
learns reusable tagging models.

Summing up: we describe our proposal and how to turn it into a working system, we address semistructured data that
are not required to be encoded using a particular layout, we use a new embedding technique that does not require to preset
the length of the embeddings, preserves the original attributes, and can learn reusable tagging models; furthermore, our
experiments confirm that our proposal outperforms other state-of-the-art techniques and the differences were confirmed
to be statistically significant.

3 DESIGN OF OUR PROPOSAL

In this section, we describe the design of our proposal. First, we provide an overall picture and then report on its three
main components. For every component, we provide a detailed description of its services, their communications, and
their data models. In the sequel, we use notation C::S to refer to service S as provided by component C; in the service and
communication diagrams, the message queues are identified using notation W.M, where W refers to the number of the
workflow and M is a sequence number in that workflow.

3.1 The overall picture

Our design revolves around three main components, namely: the DataProcessor component, which provides a number of
utilities to transform HTML files, the Learner component, which is used to learn a tagging model from a set of HTML files,
and the Tagger component, which is used to apply a tagging model to an HTML file in order to synthesize its corresponding
metadata tags. Each component provides a number of services that communicate with each other by means of message
queues. The services can be considered microservices because each of them provides a simple functionality within a
complex workflow. This design was intended to facilitate deploying the components to a distributed system in which
services can be easily scaled depending on the workload. Furthermore, distribution increases fault-tolerance, which is a
key feature in real-world systems.

Regarding the technologies used to implement our design, we decided to use Spring technologies to implement the
components and RabbitMQ to implement the message queues because they have proven to work well in many indus-
trial projects. To implement most of the services, we used industrial-strength toolkits that are readily available, for
example, Headless Chrome or Weka; the only exception was the service to learn tagging models and two ancillary ser-
vices that rely on the new embedding technique that is presented in this article. We describe their details in the following
section.

Figure 2 sketches our design. Please note that the only purpose is to provide an overall picture that helps understand
the details that are described in the following subsections. Our focus here is on the three main components of our design
and their interactions. There are two workflows involved, namely: the workflow that learns a tagging model from a set of
HTML files and the workflow that applies a tagging model to an HTML file to synthesize its metadata tags.

The first workflow starts when the user sends a set of HTML files to the learner component. This component forwards
the set to the data processor component, which computes a ground truth and returns it to the learner. The ground truth
is composed of two sets, namely: a learning set from which a tagging model is learnt and a validation set that helps
guide the learning process. Both sets are composed of documents with annotations; the documents are DOM-tree-based
representations of the input HTML files and the annotations are mappings in which each DOM node gets an associated
metadata tag that endows its contents with semantics. (We assume that there is a predefined null tag that is assigned to
the DOM nodes that do not provide any data.) Then, the learner infers a tagging model, which is composed of a path
and a classifier; the path is a specification of a walk through a DOM tree that selects the DOM nodes that provide the
best attributes to learn the classifier from the ground truth. The component searches the space of paths and classifiers



F I G U R E 2 Overall picture [Colour figure can be viewed at wileyonlinelibrary.com]

incrementally; when it finishes the exploration, it assembles a tagging model from the best path and classifier that it has
found and returns it to the user.

The second workflow starts when the user sends an HTML file and a tagging model to the system, which are received
by the tagger component. This component sends the input HTML file to the data processor, which transforms it into an
embedding set and returns it. An embedding is a vector that represents a DOM node using its attributes plus the attributes
of its neighbors along the path in the tagging model. Then, the tagger applies the classifier in the tagging model to the
embedding set and predicts a metadata tag for every node (including the null tag for the DOM nodes that do not provide
any interesting data). The tags that are not null are then introduced in the corresponding elements of the input HTML file,
which is returned to the user.

Our main innovation is regarding the learner component, which implements a new embedding technique that has
proven to be superior to other state-of-the-art embedding techniques from an empirical point of view. However, the data
processor component is a central part of the system since it is responsible for transforming the inputs to the system into
data structures that facilitate implementing the services. This is the reason why we describe the data processor component
first, then report on the learner component, and finally present the tagger component. The methods behind the key
services are described in the following section.

3.2 The DataProcessor component

The DataProcessor component provides three services that help transform the input HTML files into the data struc-
tures required by the Learner and the Tagger components, namely: the DataProcessor::Parser service, the DataPro-
cessor::GroundTruthGenerator service, and the DataProcessor::EmbeddingSetGenerator service. Figure 3 presents its
services-and-communications diagram and Figure 4 presents its data model.

The DataProcessor::Parser service transforms the input HTML files into documents. An HTML file has the text that is
downloaded from a given URL, whereas a document represents the HTML file in a structured format that is amenable for
further processing. The DataProcessor::Parser service can be used by the DataProcessor::GroundTruthGenerator service (1.3,
1.4) or the Tagger component (2.2, 2.3). Note that the former requires to transform a set of HTML files, whereas the latter
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F I G U R E 3 The data processor: services and communications

F I G U R E 4 The data processor: data model [Colour figure can be viewed at wileyonlinelibrary.com]

only requires to transform one HTML file, which is the reason why we implemented two independent message queues.
Parsing is a complex process that requires to tokenize the input HTML files, to analyze and correct their grammar so that
it adheres to the HTML5 recommendation, and to execute the scripts so that the file can be rendered on a virtual canvas
where a number of predefined attributes related to the DOM structure, the HTML, and the rendering can be computed,
as well as a number of user-defined attributes. Our choice to implement the parser service was Headless Chrome, which
is a solid industrial-strength headless browser. The model of the HTML files is very straightforward: note that an HTML
file set is a collection of HTML files, each of which has a URL and a piece of text. The model of the documents is a bit
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more involved: each document has a DOM tree and a collection of attribute maps. The DOM tree provides the collection
of DOM nodes in an input HTML file plus some methods to fetch their left, right, or parent DOM nodes. The attribute
map is a collection of mappings that can be interpreted as a vector that provides the values of the attributes of a particular
DOM node.

The DataProcessor::GroundTruthGenerator service is used by the Learner component to transform the input HTML files
(1.2) into ground truths (1.5). First, it transforms the input HTML files into documents by means of the DataProces-
sor::Parser service (1.3, 1.4). It then splits the set of documents into a learning set and a validation set. The learning set
provides sample documents from which a tagging model must be learnt; the validation set provides sample documents
that help guide the search for the best possible tagging model. Simply put: our proposal learns several tagging models
from the learning set and returns the one that attains the best score on the validation set. The documents in the ground
truth have annotations, which are mappings that make it explicit the metadata tag that corresponds to each DOM node
(including the null tag in cases in which a DOM node does not provide any relevant data).

The DataProcessor::EmbeddingSetGenerator service transforms a set of documents or a single document into an
embedding set that provides a vector-based representation of the DOM nodes in the documents. The embeddings are
vectors with the attributes of the DOM nodes plus the attributes of their neighbors along a given path. The DataProces-
sor::EmbeddingSetGenerator service can be used by the Learnercomponent (1.7, 1.8) and the Tagger component (2.4, 2.5).
In the first case, it gets a document set, a ground truth that provides the annotations to the DOM nodes in the input doc-
uments, and a path and computes the embedding set; in the second case, it gets only a document and a path. Realize that
the first case corresponds to a situation in which the Learner component is going to learn a tagging model, which implies
that it has a ground truth; but the second case corresponds to a situation in which the Tagger component is used to synthe-
size the metadata tags of an input HTML file, which means that there is not a ground truth available. The embedding sets
are typically represented as tables in which the columns refer to the attributes of the DOM nodes along a particular path
and the rows correspond to the DOM nodes and their neighbors along that path. This representation is required to apply
common machine-learning techniques to learn a classifier, to assess how well it performs using a performance scorer,
or to apply it to a new HTML file. Note that our embedding model has two attributes called id and meta-data-tag, which
provide a unique identifier to each DOM node and its corresponding metadata tag, respectively. Note that the id attribute
is used to identify the DOM nodes during debug sessions only; note, too, that the metadata tag is optional because it must
be present in the input HTML files used for learning purposes, but not in the HTML files for which the system must syn-
thesize them. The materialization of an embedding is a collection of mappings in which each attribute in each DOM node
along a path has an explicit name and an explicit value.

Example 1. Figure 5 sketches the data structures that we construct from the sample document in Figure 1. We represent
it using a table in which each row corresponds to a DOM node of the HTML file; the columns report on the DOM nodes,
their annotations, the DOM tree, and its attributes. Regarding the DOM nodes, we show the identifier of each DOM
node and its text in order to facilitate the references; note that we do not require the identifier to adhere to a particular
format, just to identify each DOM node univocally; note, too, that the text refers to the text in each node, not its children.
Regarding the annotation, we use the sample metadata tags Hotel, name, and postalCode, plus the null metadata tag. The
next column sketches the DOM tree using a visual representation that makes it clear which elements correspond to each
DOM node and how they are connected. The remaining columns show a map with some sample attributes, namely: the
tag of the node (tag), its HTML class (class), the co-ordinates of the upper-left corner of its bounding box (x-pos and y-pos),
its depth in the DOM tree (depth), and an indication on whether it contains a number or not (is-number). Appendix A1
reports on the catalog of attributes used in our proposal.

Example 2. Figure 6 sketches two sample embedding sets. The embedding set at the top represents the embeddings
where the learning process starts; note that the initial path is empty (p = ⟨⟩), which implies that the initial embeddings
consists of the attributes of the DOM nodes only. The embedding set at the bottom corresponds to a stage in which the
learning process is exploring path p = ⟨Link.PARENT, Link.PARENT⟩; intuitively, the path is composed of links that relate
every node to some of their neighbors; in this example, every node is related to its parent and its grandparent and its
embedding consists of its attributes, the attributes of its parent, and the attributes of its grandparent node. The nota-
tion pi, where p is a path and i is an integer in range [0..|p|] denotes the partial path up to the ith link. The blank cells
indicate undefined values in cases in which a node does not have a parent or a grandparent node; in our implementa-
tion, we deal with such cases using a special value that is specifically generated to ensure that it can be unambiguously
identified.



F I G U R E 5 Sketch of a sample document with annotations [Colour figure can be viewed at wileyonlinelibrary.com]

3.3 The Learner component

The Learner component provides four services that help learn a tagging model from a set of input HTML files,
namely: the Learner::TaggerLearner service, the Learner::ClassifierLearner service, the Learner::BaseLearner service, and the
Learner::PerformanceScorer service. Figure 7 presents its services-and-communications diagram and Figure 8 presents the
details of its data model.

The core is the Learner::TaggerLearner service. It implements a new technique to learn a tagging model from a set of
input HTML files that have sample metadata tags. A tagging model has a path and a classifier. The path is a sequence of
links that connect every DOM node in an input HTML file with some neighbors whose attributes allow to learn the best
possible classifier. The links can be either Link.LEFT, Link.RIGHT, or Link.PARENT, which indicate the left sibling, the right
sibling, or the parent of a DOM node, respectively. The classifiers are learnt by means of service Learner::BaseLearner,
which provides an array of machine-learning techniques to learn the classifiers. We implemented it using Weka,16 which is
a well-known machine-learning toolkit that integrates smoothly with Java technologies. The performance of the classifiers
is measured using the Learner::PerformanceScorer service, which is also implemented using Weka.

The workflow starts when a user sends a set of HTML files to the system. The set is received by the Learner::
TaggerLearner service (1.1). First, it sends the input HTML files to the DataProcessorcomponent to create a ground
truth (1.2, 1.5). Then, it starts a loop with an empty path; in each iteration, it sends the ground truth and the path
to the Learner::ClassifierLearner service (1.6), which works in three steps: first, it sends the ground truth and the path
to the DataProcessor component, which transforms the learning and the validation document sets into the corre-
sponding embedding sets and returns them (1.7, 1.8). Then, the Learner::ClassifierLearner service forwards the learning
embedding set to the Learner::BaseLearner service (1.9), which applies a machine-learning method to infer a classifier
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(B)

F I G U R E 6 Sample embedding sets

and returns it (1.10). Finally, the Learner::ClassifierLearner service forwards the classifier and the validation embed-
ding set to the Learner::PerformanceScorer service (1.11), which computes a performance score and returns it to the
Learner::ClassifierLearner service (1.12). Our choice was to use the F1 score, which combines precision and recall homo-
geneously. The Learner::ClassifierLearner service simply returns the classifier and the score to the Learner::TaggerLearner
service (1.13), which must check if the previous partial path was improved, in which case it initiates a new cycle, or not,
in which case it assembles the tagging model using the best path and the best classifier that it has found and returns it to
the user (1.14). To extend the paths, it appends new links to the left sibling, the right sibling, and the parent of the DOM
nodes.

Example 3. Figure 9 sketches a sample tagging model for our running example. In this case, the path is p= ⟨Link.PARENT,
Link.PARENT⟩, which means that the classifier was learnt from an embedding set in which each DOM node was embed-
ded using its attributes, the attributes of its parent node, and the attributes of its grandparent node. The classifier helps
discern which of those attributes are really important regarding the embedding. In our running example, these attributes



F I G U R E 7 Learner: services and communications

F I G U R E 8 Learner: data model [Colour figure can be viewed at
wileyonlinelibrary.com]

(A) (B)

F I G U R E 9 Sample tagging model [Colour figure can be viewed at wileyonlinelibrary.com]
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are the tag, the y-pos, the x-pos, and the is-number attribute of the DOM nodes, plus the classattribute of their parents
and grandparents. In this example, the classifier can be easily represented using a decision table in which each row cor-
responds to a rule that is executed in sequence; the initial columns refer to the attributes of the DOM nodes along the
path, the last column refers to the synthesized metadata tag, and the cells are of the form 𝜃v, where 𝜃 denotes an operator
and v a value. For instance, the first rule indicates that a DOM node can be tagged as postalCode as long as its horizontal
position is greater than or equal to 60 and it can be parsed as a number. The last rule is a catch-all rule, that is: if none of
the previous rules can be applied to a DOM node, then it is tagged with a null metadata tag to indicate that it is irrelevant.

3.4 The Tagger component

The tagger component provides two services that help apply a tagging model to an HTML file, namely: the Tag-
ger::Synthesiser service and the Tagger::BaseSynthesiser service. Figure 10 presents its services-and-communications
diagram. This component relies on the data models provided by the other components, which means that it does not
require any specific-purpose data structures.

The workflow starts when the user sends an HTML file and a tagging model to the system. The request is received by
the Tagger::Synthesiser service (2.1), which forwards the input HTML file to the DataProcessor::Parser service (2.2) so that
it transforms it into a document (2.3). Then, the Tagger::Synthesiser service sends it together with the path in the input
tagging model to the DataProcessor::EmbeddingSetGenerator service (2.4), which returns a set with the corresponding
embeddings (2.5). Then, it only remains to send this set of embeddings and the classifier provided by the input tagging
model to the Tagger::BaseSynthesiser (2.6). This service uses Weka16 to interpret the model and to apply it to the embedding
set. It returns an embedding set to the Tagger::Synthesiser service in which each embedding is extended with an additional
attribute that indicates which metadata tag describes its semantics (2.7). Finally, the Tagger::Synthesiser service rewrites
the input HTML file to make it explicit the metadata tags that are not null. The result is returned to the user (2.8).

Example 4. Figure 11 sketches the results of a sample synthesis. The HTML file in the upper left corner is similar to
the one that we have used in the previous examples for learning purposes, which means that the tagging model learnt
previously can be applied to it. We assume that this HTML file does not have any metadata tags; the synthesis process
concludes with the HTML file on the upper right corner, in which the li elements have metadata tags that indicate that their
data are structured according to type Hotel in the schema provided by example.org and the span elements, but the last one,
provide the values for the name and the postalCode attributes. The lower part shows the embedding set computed from
the input HTML file using the path in the tagging model after the classifier in Figure 9 is applied; the only difference with
respect to the initial embedding set is that the cells in column meta-data tag are set to the metadata tags predicted by the
classifier. Note that we present all of the attributes of the nodes for the sake of completeness only; in our implementation,
it suffices to store the attributes that are used by the classifier since this may save much storage space when dealing with
many HTML files.

F I G U R E 10 Tagger: services and
communications
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4 THE KEY SERVICES

In this section, we focus on describing the method that implements the Learner::TaggerLearner service. We also describe
the methods that implement the ancillary services Learner::ClassifierLearner and DataProcessor::EmbeddingSetGenerator,
which are well supported by industrial software components, but have some logic that is specific to our system.

4.1 Learning a tagger

Figure 12 presents the method that is implemented by the Learner::TaggerLearner service. It gets an HTML file set F as
input and returns a tagging model t as output. It works in three steps that we describe below.

http://wileyonlinelibrary.com
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service

The first step initializes the variables used by the algorithm. First, it invokes the DataProcessor::GroundTruthGenerator
service to transform the input HTML file set F into a ground truth G. Next, it initializes variable p to an empty
sequence, which represents the empty partial path at which the learning process starts. Immediately after, it invokes the
Learner::ClassifierLearner service to learn a classifier and compute its performance score using ground truth G. The results
of this service are stored in variables c and s, respectively. Finally, variable E is initialized to an empty set; later, this vari-
able will be used to store the paths that have been explored in an attempt not to reexplore any redundant paths. The last
statement initializes variables p*, c*, and s*, which store the path, the classifier, and the score computed previously. In the
second step, these variables are updated to record the best alternatives found by the method.

The second step explores the neighbors of the DOM nodes in sequence. The exploration basically amounts to extending
the current path p with links to the left sibling, the right sibling, and the parent node, as long as the extensions are not
redundant. A path is redundant if it results in an embedding that uses the same DOM nodes as a path that was explored
previously. (We do not provide a pseudo-code to this method since it is straightforward.) The non-redundant paths are
added to set E and a new classifier is learnt for each of them; variables c*, p*, and s* are updated accordingly if the score
of any of the new classifiers is greater than the best score found so far. Recall that the classifier is learnt from the learning
set in the ground truth G and the score is computed from the validation set. Summing up: the second step implements
a hill climbing strategy in which the goal is to extend the current path to the neighbor DOM node that helps learn a
better classifier. The strategy stops when no extension to the current path can learn a better classifier. (Note that it is not
necessary to make it explicit the case in which no extension can explore a new node because such extensions do not help
learn a better classifier; that is, that case is implicitly included in the previous general stopping criterion.)

The third step is quite simple, since it assembles the tagging model that is returned by the method using the best path
and the best classifier that have been found in the main loop.
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4.2 Learning a classifier

Figure 13 shows the method of the Learner::ClassifierLearner service. It gets a ground truth G and a path p as input and
returns a classifier c and a score s as output. It works in three steps that we describe below.

The first step is an initialization step that simply retrieves the learning set L and the validation set V from the ground
truth G. Recall that the former is used to actually learn the classifier, whereas the latter helps make decisions that help
learn the best possible classifier from the former.

The second step invokes the DataProcessor::EmbeddingSetGenerator service to compute the embedding sets for the
documents in the learning set and the validation set. Note that this method takes the learning or the validation set and the
path as parameters, but it also requires the ground truth as an input parameter because it needs to fetch the annotations
that correspond to their DOM nodes.

The third step uses the Learner::BaseLearner service to learn a classifier from the learning embedding set and then
uses the Learner::PerformanceScorer service to compute a score on the validation embedding set. Regarding the base
learner, our proposal supports any techniques that can work with multiple metadata tags and numeric, categorical, and
ordinal attributes, namely: Bayes Networks, k-Nearest Neighbors, C4.5, Repeated Incremental Pruning to Produce Error
Reduction, Naive Bayes, PART Decision Lists, Random Forests, and Sequential Minimal Optimization. Regarding the
performance scorer, there are also a variety of choices,17 including the well-known F1 score. In the following section, we
report on the results of our experimental analysis, which helped us make a recommendation regarding which of the base
learners performs the best.

4.3 Creating an embedding set

Figure 14 shows the method of the DataProcessor::EmbeddingSetGenerator service. It gets a set of documents D, a ground
truth G, and a path p as input. It returns an embedding set with the embeddings of the DOM nodes of the documents in
D and their neighbors along path p as output. Note that the ground truth G is required so that the method has access to
the annotations of the documents. The method works in two steps that we describe below.

The first step initializes the local variables of the method. It simply stores the annotation in the ground truth in variable
M and then initializes the resulting embedding set E to an empty set. Note that the annotation behaves as a map; that is:
given a DOM node it returns its corresponding metadata tag.

The second step computes the embeddings. It iterates over the input documents in D and their DOM nodes. In each
iteration, it gets the attribute map of the document and then computes the embedding as vectors of the form {ai = vi}z

i=1,
where each ai denotes an attribute name and vi its corresponding value. Realize that the embedding of DOM node n is
computed as the union of three maps, namely: the first one provides an identifier and a metadata tag to every embedding;
the second one provides a vector with the predefined attributes, cf Table A1, and the user-defined attributes of the DOM
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node, cf Table A2; and the third one is the union of A.get(m) for every DOM node m that is reachable from n along subpaths
p1, p2, … , p|p|, where pi denotes the partial path up to the ith link.

5 EXPERIMENTAL ANALYSIS

In this section, we first describe the experimental setting, then report on the performance results, and finally analyze
them using statistically sound methods. We assembled a package that is available at https://tinyurl.com/aquila-system; it
provides the repository, the HTML files, and the tools required to repeat our experimentation, including a stand-alone
version of our services to learn a tagging model and to apply it.

5.1 Experimental setting

Table 1 describes the repository of HTML files that we used to evaluate our proposal. It provides HTML files from 40
different web sites on eight different topics, namely: books, cars, doctors, events, films, jobs, players, and realty; we down-
loaded 30 HTML files from each web site. The categories were randomly selected from The Open Directory and the web
sites were randomly selected from the 100 best-ranked web sites in each category according to Google’s search engine;
the HTML files in each set were also sampled randomly from each web site. There were many cases in which we could
not download enough HTML files from a web site due to a variety of problems, for example, server request limits, URLs
that expire a little after they are generated, unrecoverable HTML markup errors, difficulties to reach the HTML files due
to complex navigation paths that require too much user interaction, difficulties to generate the HTML on the client side
due to scripts that fetch data from external resources, or difficulties to check whether two HTML files are the same or
not; in such cases, we just selected another random web site and repeated the download procedure. The HTML file sets
were split into learning sets with four HTML files, validation sets with two HTML files, and testing sets with 24 HTML
files. Since the majority of nodes have a null tag, we balanced the resulting learning sets using Weka’s class balancer.16

We selected four state-of-the-art graph embedders as competitors, namely: ComplEx,18 HolE,19 Node2Vec,20 and
TransD.21 We used the following procedure to transform the input HTML files into labeled graphs: both the DOM nodes
and the values of their attributes were transformed into graph nodes; they were connected according to their links in the
DOM tree or the values of their attributes; that is, the labels of the edges denote the corresponding link or attribute in the
original DOM tree. The procedure to transform the input HTML files into weighted graphs was as follows: each DOM node
was transformed into a graph node; the graph nodes were connected according to the links of their corresponding DOM
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Category Schema (from Schema.org) Site URL
# DOM
nodes

# Attr.
values

# Node
edges

# Attr.
edges

Books Book{name, author, isbn} Abe Books www.abebooks.com 30 078 14 837 28 225 20 0636

Awesome Books www.awesomebooks.com 20 513 10 873 53 805 411 709

Better World Books www.betterworldbooks.com 66 209 23 573 4342 32 003

Many Books www.manybooks.net 20 211 17 679 73 635 448 305

Water Stones www.waterstones.com 38 738 16 310 38 697 261 400

Cars Car{color, numberOfDoors,
vehicleEngine, model,
mileageFromOdometer,
numberOfForwardGears}

Auto Trader www.autotrader.com 74 154 21 961 52 773 278 143

Car Max www.carmax.com 45 601 10 562 23 432 147 573

Car Zone www.carzone.ie 28 364 10 900 9782 31 024

Classicals for Sale www.classiccarsforsale.co.uk 59 162 20 424 10 924 6543

Internet Auto Guide www.internetautoguide.com 48 541 15 434 9676 52 387

Doctors Doctor{name, address, telephone,
additionalType}

Web MD www.webmd.com 49 622 10 455 10 748 50 137

Ame. Medical Association www.ama-assn.org 26 304 7298 113 170 522 377

Dentists www.dentists.com 13 881 6452 1505 9638

Dr. Score www.drscore.com 14 620 7297 28 975 155 784

Steady Health www.steadyhealth.com 39 367 11 652 33 292 176 229

Events Event{name, startDate, location, url} Linked In events.linkedin.com 11 671 12 888 7785 37 949

All Conferences www.allconferences.com 21 887 10 052 5 853 28 680

M-Bendi www.mbendi.com 8310 2361 41 547 268 066

RD Learning www.rdlearning.org.uk 5538 6737 129 721 530 739

Wiki CfP www.wikicfp.com 11 851 8009 46 226 216 358

Films Movie{name, director, actor,
copyrightYear, duration}

Albanian Movies www.albaniam.com 11 693 4262 13 356 49 958

All Movie www.allmovie.com 43 607 26 570 8237 27 394

CIT-WF www.citwf.com 11 682 8292 2852 15 312

Disney Movies www.disneymovies.com 23 681 10 744 49 643 317 042

IMDB www.imdb.com 80 524 44 100 81 588 391 091

Jobs JobPosting{company, jobLocation,
ocupationalCategory}

Insight into Diversity careers.insightintodiversity.com 25 558 13 307 14 101 105 239

4Jobs www.4jobs.com 33 399 21 271 1658 10 907

6-Figure Jobs www.6figurejobs.com 49 810 14 375 73 730 233 436

Career Builder www.careerbuilder.com 32 123 14 601 116 474 543 057

Job of Mine www.jobofmine.com 17 920 12 274 38 255 166 876

Players Person{name, birthDate, height,
weight, nationality}

Player Profiles baseball.playerprofiles.com 31 170 14 372 12 184 30 830

UEFA en.uefa.com 7191 6189 6764 39 951

ATP World Tour www.atpworldtour.com 85 614 19 074 84 278 579111

National Football League www.nfl.com 80 333 14 561 1481 7736

Soccer Base www.soccerbase.com 96 013 14 465 154 822 525 299

Realty Property{address, numberOfRooms,
floorSize}

Yahoo! Real Estate realestate.yahoo.com 36 749 13 396 22 370 145 167

Haart www.haart.co.uk 38 672 12 594 32 538 220 465

Homes www.homes.com 34 826 14 198 12 202 69 870

Remax www.remax.com 62 865 15 046 14 015 82 100

Trulia www.trulia.com 158 042 35 230 97 098 55 8793
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nodes; the weights were computed by measuring the distance between the attributes of the corresponding nodes. Since
the DOM nodes have real-valued, categorical, and ordinal attributes, we resorted to Foss et al.’s22 approach to compute
the distances among them.

We used Weka16 to implement the base learners. In this context, we need base learners that can deal with multiclass
problems (since typical HTML files require to synthesize more than two metadata tags) and numeric, categoric, or ordinal
attributes (since both the predefined and the user-defined attributes are of many different types). Weka provides many
different base learners that fulfill the previous requirements, namely: Bayes Networks (BN), k-Nearest Neighbors (IBK),
C4.5 (J48), Repeated Incremental Pruning to Produce Error Reduction (JRIP), Naive Bayes (NB), PART Decision Lists
(PART), Random Forests (RF), and Sequential Minimal Optimization (SMO).

We selected the F1 score (F1) as the performance score since it balances precision (P), which measures the fraction of
DOM nodes that must actually be assigned a particular metadata tag among the DOM nodes that are assigned that tag,
and recall (R), which measures the fraction of DOM nodes that are assigned a particular metadata tag among the DOM
nodes that must actually be assigned that tag. Weka16 provides good support to compute these scores, as well.

5.2 Performance results

Table 2 shows the performance results that we computed from running the competitors and our proposal on our
repository. (The figures are the averages across the different metadata tags in each schema.)

Regarding the competitors, they seem to help learn taggers that can attain good average recall (as high as 0.99 when
combining Node2Vec and Random Forest), but poor average precision (as low as 0.10 when combining ComplEx and
JRIP); in other words, the taggers learnt from their embeddings tend to return many nodes for each metadata tag and
have little ability to make them apart. The best F1 score for the competitors is 0.69, which was attained using HolE and
Naive Bayes.

The empirical ranking of the competitors according to the best F1 score they achieved is the following: HolE combined
with Naive Bayes, which attained an F1 score of 0.69, TransD combined with k-Nearest Neighbors, which attained an
F1 score of 0.57, Node2Vec combined with either C4.5, PART Decision Lists or Sequential Minimal Optimization, which
achieved an F1 score 0.29, and then ComplEx combined with k-Nearest Neighbors, which attained an F1 score 0.29.

The results using our proposal are clearly better in every case: our precision ranges from 0.71 to 0.81 and the average is
0.78, our recall ranges from 0.67 to 0.81 and the average is 0.78, and our F1 score ranges from 0.68 to 0.79 and the average
is 0.76. The best result was attained using the Naive Bayes base learner and its net improvement is 10.14% regarding the
F1 score.

Our conclusion is that the embeddings computed by the competitors do not capture well the attributes of the original
HTML files so that a good tagger can be inferred from them, whereas the embeddings computed by our proposal do. This
conclusion is statistically confirmed in the following subsection.

5.3 Analysis of the results

Table 3 shows the results of our statistical analysis. Each chart corresponds to a different base learner; the first column
identifies the graph embedder used; the second column shows the empirical ranking attained.

Following the results by García and Herrera,23 we have first used Iman-Davenport’s test to find out if there are statisti-
cally significant differences in the empirical ranks. The third and the fourth columns show the corresponding statistic and
P-values; note that the P-values are nearly zero in every case, which is a strong indication that the experimental results
support the hypothesis that the differences in rank are statistically significant at the standard confidence level (𝛼 = .05).

Therefore, we have to use Hommel’s test to compare our proposal, which is the best-ranking one, to the others. The
fifth and the sixth columns show the statistic and the P-value that result from every comparison. (We use dashes in the
case of the first comparison since it does not make sense to compare our proposal to itself.) Note that the P-values are
nearly zero in every case, which is a strong indication that the differences in rank between our proposal and the others
are statistically significant at the standard confidence level (𝛼 = .05).

The previous statistical results confirm our empirical conclusion: our embedding technique captures the features of
the attributes of the original HTML files better than the other embedders, which results in taggers whose F1 score can
improve on its competitors as much as 10.14%.
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Approach Category BN IBK J48 JRIP NB PART RF SMO

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1
ComplEx Books .14 0.80 0.24 .33 0.80 0.26 .14 0.77 0.24 .07 0.22 0.11 .14 0.80 0.24 .14 0.77 0.24 .14 0.80 0.24 .14 0.80 0.24

Cars .10 1.00 0.18 .10 0.99 0.18 .10 0.95 0.18 .10 0.61 0.17 .10 1.00 0.18 .10 0.95 0.18 .10 1.00 0.18 .10 1.00 0.18

Doctors .17 1.00 0.29 .17 0.99 0.28 .17 0.94 0.28 .11 0.39 0.17 .17 1.00 0.29 .17 0.94 0.28 .17 1.00 0.29 .17 1.00 0.29

Events .17 1.00 0.29 .17 0.98 0.29 .17 0.93 0.28 .05 0.24 0.09 .17 1.00 0.29 .17 0.93 0.28 .17 1.00 0.29 .17 1.00 0.29

Films .12 0.80 0.21 .12 0.79 0.21 .12 0.76 0.21 .05 0.26 0.09 .12 0.76 0.21 .12 0.76 0.21 .12 0.80 0.21 .12 0.75 0.21

Jobs .19 1.00 0.32 .19 0.99 0.32 .19 0.97 0.32 .19 0.64 0.29 .19 1.00 0.32 .19 0.97 0.31 .19 1.00 0.32 .19 1.00 0.32

Players .14 1.00 0.24 .14 1.00 0.24 .14 0.98 0.24 .10 0.36 0.14 .14 1.00 0.24 .13 0.98 0.24 .14 1.00 0.24 .14 1.00 0.24

Realty .12 0.75 0.20 .37 0.75 0.20 .37 0.74 0.21 .09 0.15 0.10 .12 0.75 0.20 .37 0.74 0.20 .12 0.75 0.20 .12 0.75 0.20

Average .14 0.92 0.24 .20 0.91 0.25 .17 0.88 0.24 .10 0.36 0.14 .14 0.91 0.24 .17 0.88 0.24 .14 0.92 0.24 .14 0.91 0.24

HoIE Books .14 0.80 0.24 .36 0.80 0.29 .26 0.80 0.32 .37 0.80 0.32 .74 0.77 0.75 .29 0.82 0.36 .36 0.80 0.29 .29 0.81 0.29

Cars .10 1.00 0.18 .15 1.00 0.26 .14 0.97 0.24 .14 0.85 0.24 .62 0.61 0.60 .13 0.97 0.22 .15 1.00 0.25 .12 0.93 0.21

Doctors .17 1.00 0.30 .18 0.81 0.30 .23 0.84 0.35 .27 0.60 0.36 .67 0.70 0.68 .22 0.84 0.35 .20 0.89 0.32 .17 0.88 0.28

Events .17 1.00 0.29 .19 0.99 0.32 .25 0.93 0.39 .24 0.88 0.38 .87 0.78 0.82 .25 0.93 0.39 .19 0.99 0.32 .18 0.99 0.30

Films .15 1.00 0.26 .18 0.99 0.31 .22 0.95 0.35 .34 0.84 0.47 .80 0.61 0.65 .23 0.96 0.37 .17 0.99 0.29 .16 0.94 0.27

Jobs .20 1.00 0.34 .22 0.98 0.36 .23 0.90 0.37 .39 0.82 0.51 .62 0.66 0.63 .23 0.97 0.37 .21 1.00 0.35 .21 1.00 0.35

Players .14 1.00 0.24 .16 1.00 0.27 .18 0.98 0.30 .15 0.84 0.25 .74 0.78 0.76 .18 0.98 0.30 .15 1.00 0.26 .15 0.97 0.26

Realty .09 0.60 0.16 .10 0.60 0.17 .11 0.59 0.18 .17 0.45 0.23 .63 0.59 0.60 .11 0.59 0.18 .30 0.60 0.17 .29 0.59 0.16

Average .15 0.92 0.25 .19 0.89 0.28 .20 0.87 0.31 .26 0.76 0.35 .71 0.69 0.69 .20 0.88 0.32 .22 0.91 0.28 .19 0.89 0.26

Node2Vec Books .18 1.00 0.31 .18 1.00 0.31 .19 0.96 0.31 .22 0.75 0.33 .16 0.58 0.25 .19 0.96 0.31 .18 1.00 0.31 .19 0.98 0.31

Cars .10 1.00 0.18 .10 1.00 0.18 .10 0.96 0.19 .12 0.94 0.22 .14 0.66 0.22 .10 0.95 0.19 .10 1.00 0.18 .10 0.97 0.19

Doctors .16 1.00 0.28 .16 1.00 0.28 .17 0.92 0.29 .12 0.45 0.19 .23 0.74 0.33 .16 0.93 0.28 .16 1.00 0.28 .17 0.97 0.28

Events .17 1.00 0.29 .17 1.00 0.29 .20 0.91 0.32 .23 0.74 0.35 .21 0.86 0.34 .20 0.87 0.32 .17 1.00 0.29 .18 0.97 0.31

Films .15 1.00 0.26 .15 1.00 0.26 .16 0.93 0.27 .13 0.63 0.22 .15 0.68 0.25 .16 0.93 0.27 .15 1.00 0.26 .16 0.93 0.27

Jobs .20 1.00 0.33 .20 1.00 0.33 .21 0.96 0.34 .24 0.85 0.38 .19 0.65 0.28 .21 0.96 0.35 .20 1.00 0.33 .21 0.97 0.34

Players .18 0.94 0.27 .17 0.94 0.28 .17 1.08 0.29 .19 0.81 0.30 .18 0.67 0.26 .19 0.92 0.31 .18 0.92 0.29 .17 0.95 0.30

Realty .17 1.00 0.29 .17 1.00 0.29 .17 0.97 0.29 .15 0.66 0.25 .19 0.77 0.30 .17 0.96 0.29 .17 1.00 0.29 .17 0.99 0.29

Average .16 0.99 0.27 .16 0.99 0.28 .17 0.96 0.29 .18 0.73 0.28 .18 0.70 0.28 .17 0.93 0.29 .16 0.99 0.28 .17 0.97 0.29

TransD Books .14 0.80 0.24 .59 0.96 0.70 .34 0.82 0.41 .32 0.82 0.36 .41 0.94 0.50 .30 0.82 0.41 .36 0.81 0.28 .57 0.92 0.65

Cars .10 1.00 0.18 .38 1.00 0.51 .17 0.98 0.29 .19 0.93 0.32 .13 1.00 0.23 .21 0.97 0.34 .11 1.00 0.20 .30 1.00 0.43

Doctors .16 1.00 0.28 .41 0.80 0.54 .31 0.84 0.44 .21 0.84 0.33 .20 0.89 0.33 0.30 0.83 0.43 .17 0.87 0.29 .35 0.80 0.48

Events .17 1.00 0.29 .41 1.00 0.58 .27 0.94 0.41 .23 0.96 0.37 .21 1.00 0.34 0.31 0.92 0.46 .19 1.00 0.32 .40 1.00 0.57

Films .15 1.00 0.26 .33 1.00 0.49 .25 0.97 0.40 .28 0.93 0.42 .20 0.99 0.33 0.27 0.97 0.42 .17 1.00 0.29 .29 1.00 0.45

Jobs .20 1.00 0.33 .35 0.89 0.50 .28 0.92 0.42 .29 0.88 0.44 .25 0.92 0.39 0.27 0.90 0.42 .22 1.00 0.35 .30 0.91 0.45

Players .14 1.00 0.25 .59 1.00 0.72 .26 0.99 0.40 .25 0.94 0.40 .22 1.00 0.35 0.25 0.99 0.40 .17 1.00 0.29 .48 1.00 0.62

Realty .10 0.60 0.17 .42 0.60 0.49 .18 0.59 0.28 .15 0.59 0.24 .32 0.65 0.32 0.18 0.59 0.28 .13 0.60 0.21 .37 0.60 0.46

Average .15 0.93 0.25 .44 0.91 0.57 .26 0.88 0.38 .24 0.86 0.36 .24 0.92 0.35 0.26 0.87 0.40 .19 0.91 0.28 .38 0.90 0.51

Ours Books .75 0.77 0.73 .82 0.88 0.81 .81 0.86 0.80 .85 0.87 0.80 .88 0.82 0.82 0.78 0.77 0.79 .84 0.84 0.76 .82 0.82 0.81

Cars .85 0.81 0.77 .75 0.79 0.80 .75 0.81 0.70 .82 0.74 0.71 .82 0.82 0.74 0.75 0.78 0.81 .81 0.73 0.77 .82 0.72 0.78

Doctors .81 0.85 0.84 .77 0.84 0.79 .74 0.77 0.85 .75 0.73 0.71 .89 0.79 0.84 0.86 0.73 0.78 .76 0.83 0.76 .84 0.78 0.74

Events .77 0.77 0.77 .82 0.79 0.84 .79 0.76 0.84 .77 0.81 0.81 .79 0.80 0.77 0.85 0.78 0.78 .78 0.75 0.80 .77 0.69 0.70

Films .84 0.76 0.77 .78 0.86 0.76 .81 0.83 0.83 .83 0.83 0.83 .79 0.81 0.80 0.83 0.69 0.74 .73 0.76 0.75 .45 0.43 0.45

Jobs .79 0.64 0.71 .73 0.67 0.68 .72 0.72 0.68 .70 0.75 0.76 .83 0.74 0.80 0.68 0.71 0.63 .73 0.75 0.78 .75 0.66 0.72

Players .85 0.86 0.85 .87 0.80 0.81 .79 0.81 0.78 .76 0.85 0.83 .77 0.87 0.86 0.79 0.79 0.83 .85 0.88 0.78 .62 0.70 0.69

Realty .72 0.79 0.78 .83 0.86 0.70 .77 0.77 0.76 .84 0.82 0.77 .74 0.76 0.71 0.75 0.81 0.75 .81 0.83 0.78 .58 0.55 0.54

Average .80 0.78 0.78 .80 0.81 0.77 .77 0.79 0.78 .79 0.80 0.78 .81 0.80 0.79 .79 0.76 0.76 .79 0.80 0.77 .71 0.67 0.68



T A B L E 3 Analysis of results

(a) Bayes Networks (BN) (b) k-Nearest Neighbors (IBK)

Iman-Davenport Hommel Iman-Davenport Hommel

Embedder Ranking Statistic P-value Statistic P-value Embedder Ranking Statistic P-value Statistic P-value

Ours 1.00 — — Ours 1.25 — —

HolE 3.34 6.61 3.81E−11 TransD 2.05 2.26 2.37E−02

Node2Vec 3.34 41.01 1.86E−23 6.61 3.81E−11 HolE 3.78 72.07 1.81E−34 7.14 1.84E−12

TransD 3.56 7.25 1.27E−12 Node2Vec 3.78 7.14 1.84E−12

ComplEx 3.76 7.81 2.22E−14 ComplEx 4.15 8.20 9.42E−16

(c) C4.5 (J48) (d) Rep. Incr. Prun. Prod. Error Red. (JRIP)

Iman-Davenport Hommel Iman-Davenport Hommel

Embedder Ranking Statistic P-value Statistic P-value Embedder Ranking Statistic P-value Statistic P-value

Ours 1.00 — — Ours 1.00 — —

TransD 2.28 3.61 3.11E−04 TransD 2.44v 4.07 4.79E−05

HolE 3.54 140.39 1.26E−50 7.18 1.42E−12 HolE 3.47 109.17 3.56E−44 7.00 5.11E−12

Node2Vec 3.54 7.18 1.42E−12 Node2Vec 3.47 7.00 5.11E−12

ComplEx 4.65 10.32 2.20E−24 ComplEx 4.61 10.22 6.61E−24

(e) Naïve Bayes (NB) (f) PART Decision Lists (PART)

Iman-Davenport Hommel Iman-Davenport Hommel

Embedder Ranking Statistic P-value Statistic P-value Embedder Ranking Statistic P-value Statistic P-value

Ours 1.05 — — Ours 1.00 — —

TransD 2.50 4.10 4.11E−05 TransD 2.39 3.92 8.69E−05

HolE 3.79 59.95 1.40E−30 7.74 1.94E−14 HolE 3.51 112.20 7.38E−45 7.11 2.38E−12

Node2Vec 3.79 7.74 1.94E−14 Node2Vec 3.51 7.11 2.38E−12

ComplEx 3.88 7.99 5.38E−15 ComplEx 4.59 10.15 1.37E−23

(g) Random Forests (RF) (h) Sequential Minimal Optimization (SMO)

Iman-Davenport Hommel Iman-Davenport Hommel

Embedder Ranking Statistic P-value Statistic P-value Embedder Ranking Statistic P-value Statistic P-value

Ours 1.00 — — Ours 1.44 — —

TransD 2.61 4.56 5.09E−06 TransD 2.18 2.09 3.70E−02

HolE 3.69 61.53 4.09E−31 7.60 5.86E−14 HolE 3.52 46.94 7.47E−26 5.90 7.08E−09

Node2Vec 3.69 7.60 5.86E−14 Node2Vec 3.52 5.90 7.08E−09

ComplEx 4.01 8.52 6.35E−17 ComplEx 4.34 8.20 9.42E−16

6 CONCLUSIONS

Metadata tags are an effective means to endow the data in an HTML file that was only intended to be user-friendly with
semantics that help software agents understand them. Current trends suggest that the number of web sites that provide
them increases year-after-year, but there are many web sites that dot not provide any such tags, yet. This motivates the
research regarding systems that can synthesize such metadata tags.

In this article, we present a system that synthesizes metadata tags for HTML files. Our design revolves around three
components that provide a number of services that communicate by means of message queues; this design facilitates



deploying our proposal to a distributed system. The core is a service that learns a tagging model from a small set of HTML
files. It differentiates from other proposals in the literature in that it does not require the data in the input HTML files to
exist in a knowledge graph and can work with arbitrary layouts, not only tables. It relies on a new embedding technique
that differentiates from the others in the literature in that it does not require to preset the length of the embeddings,
it works on the original attributes, and it can learn reusable tagging models. Our experimental results prove that our
approach can attain an F1 score that outperforms four state-of-the-art embedders by 10.14% in the best case, which is a
difference that was confirmed to be statistically significant at the standard confidence level.

In future, we are planning on doing additional research regarding the following ideas: exploring additional links (eg,
the ith child or the ancestor links), changing the paths into trees (ie, analyzing the links from every node in a path, not
only the last one), and exploring different strategies to compare the scores (ie, analyzing the impact of different heuristics
to guide the search process). The first two ideas are intended to expand the search space, which is expected to find better
taggers; the last one is intended to cut many useless search branches so that the overall process remains efficient.
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APPENDIX A. CATALOG OF ATTRIBUTES

Our proposal relies on a number of predefined and user-defined attributes that are used to learn the tagging models. The
former are computed automatically by Headless Chrome from the DOM tree, the HTML source, or the rendering; the
latter were designed building on our intuition and our preliminary experimental results.

Tables A1 and A2 show the listings of predefined and user-defined attributes, respectively. There is a row per attribute
and the columns report, respectively, on their category (in the case of predefined attributes), their names, how frequently
they were used in our experimentation, their description, and some sample values. The catalog is larger; we have inten-
tionally omitted the attributes that did not prove to be useful in our experimentation. Note that none of the attributes has
a very high frequency, which means that none of them can individually help learn a good tagging model; it is typically
the combination of many such attributes that helps learn them.

T A B L E A1 Predefined attributes

Category Name Frequency (%) Description Examples

DOM index 3.02 Index of node among its siblings 0, 1, 2

count-children 2.64 Count of DOM children nodes 0, 1, 2

depth 2.48 Depth in the DOM tree 0, 1, 2

count-siblings 2.44 Count of sibling DOM nodes 0, 1, 2

has-siblings 0.01 Has any siblings? true, false

is-text-node 0.01 Contains only text? true, false

HTML width 2.46 Width of the bounding box 50%, 25px, 4.5in

height 2.20 Height of the bounding box 50%, 25px, 4.5in

tag 2.20 HTML tag p, em, table

Rendering display 2.42 Kind of display inline, block, flex

border-bottom-color 2.22 Color of the bottom border red, rgb(1, 2, 3), # 1234

border-top-color 2.20 Color of the top border red, rgb(1, 2, 3), # 1235

border-left-color 2.19 Color of the left border red, rgb(1, 2, 3), # 1236

border-right-color 2.18 Color of the right border red, rgb(1, 2, 3), # 1237

(Continues)



T A B L E A1 (Continued)

Category Name Frequency (%) Description Examples

vertical-align 1.94 Kind of vertical alignment baseline, top, middle

font-weight 1.73 Weight of the font 100, bold, normal

font-size 1.69 Size of the font 10px, small, 50%

line-height 1.52 Line height. 50%, 25px, 4.5in

x-pos 1.41 X co-ordinate of the upper left bounding
box corner

10px, 20px, 30px

background-color 1.40 Color of the background red, rgb(1, 2, 3), # 1237

text-decoration 1.36 Kind of text decoration overline, line-through, wavy

y-pos 1.04 Y co-ordinate of the upper left boudning
box corner

10px, 20px, 30px

float 1.01 Kind of floating positioning none, left, right

white-space 0.80 Kind of white-space handling normal, no-wrap, wrap

background-image 0.77 Image to show in the background none, url(Şpaper.gifŤ), url(up.png)

margin-bottom 0.67 Margin at the bottom. 10px, 20px, 30px

background-repeat 0.66 Kind of background image repetition repeat, no-repeat

clear 0.65 How the node besides floats left, middle, none

background-position 0.63 Position of the background image top, 0px 0px, right 35%

padding-left 0.58 Left padding 50%, 25px, 4.5in

padding-top 0.56 Top padding 50%, 25px, 4.5in

padding-right 0.54 Right padding 50%, 25px, 4.5in

font-style 0.53 Style of the font normal, italic, oblique

border-left-style 0.50 Style of the left border none, solid, dotted

padding-bottom 0.49 Bottom padding 50%, 25px, 4.5in

border-top-style 0.48 Style of the top border none, solid, outset

margin-left 0.44 Margin on the left 10px, 20px, 30px

border-bottom-style 0.44 Style of the bottom border none, solid, outset

border-right-style 0.43 Style of the right border none, solid, outset

border-top-width 0.40 Width of the top border 50%, 25px, 4.5in

list-style-type 0.39 Kind of list item marker none, square, disc

margin-right 0.36 Margin on the right 50%, 25px, 4.5in

border-right-width 0.32 Width of the right border 50%, 25px, 4.5in

border-left-width 0.30 Width of the left border 50%, 25px, 4.5in

border-bottom-width 0.27 Width of the bottom border 50%, 25px, 4.5in

text-transform 0.27 Kind of text transformation uppercase, lowercase, capitalize

letter-spacing 0.16 Spacing in between letters 1px, 0.01in, normal

font-family 0.15 The family of the font Arial, Verdana, Calibri

text-indent 0.13 Indentation of the first line 50%, 25px, 4.5in

text-align 0.09 Kind of horizontal alignment left, center, right

font-variant 0.04 Variant of the font normal, small-caps, initial

list-style-position 0.01 Position of the list item markers inside, outside, initial



T A B L E A2 User-defined attributes

Name Frequency (%) Description Examples
count-tokens 2.95 Count of tokens 10, 20, 30
count-letters 2.84 Count of letters 10, 20, 30
count-trigrams 2.82 Count of 3-grams 10, 20, 30
count-uppercase-bigrams 2.79 Count of 2-grams whose tokens are uppercased 10, 20, 30
count-blanks 2.71 Count of blanks (whitespace, tabulators, carriage returns) 10, 20, 30
count-alphanum 2.71 Count of alpha-numeric tokens 10, 20, 30
count-bigrams 2.69 Count of 2-grams 10, 20, 30
count-uppercase-trigrams 2.61 Count of 3-grams whose tokens are uppercased 10, 20, 30
count-lowercase-trigrams 2.61 Count of 3-grams whose tokens are lowercased 10, 20, 30
count-capitals 2.61 Count of tokens that start with a capital letter 10, 20, 30
count-digits 2.25 Count of digits 10, 20, 30
count-integers 2.23 Count of tokens that represent an integer 10, 20, 30
last-token 2.20 Last token web, $10.95, !
count-uppercase-tokens 2.16 Count of tokens that are uppercased 10, 20, 30
first-token 2.15 First token free, quantity, date
count-lowercase-tokens 2.10 Count of tokens that are lowercased 10, 20, 30
second-token-last-bigram 1.28 Second token in the last 2-gram free, quantity, date
second-token-first-bigram 1.25 Second token in the first 2-gram free, quantity, date
count-floats 1.01 Count of tokens that are float numbers 10, 20, 30
count-capitalised-bigrams 0.53 Count of capitalized 2-grams 10, 20, 30
count-capitalised-trigrams 0.50 Count of capitalized 3-grams 10, 20, 30
first-token-last-bigram 0.44 First token in the last 2-gram free, quantity, date
first-token-first-bigram 0.41 First token in the first 2-gram free, quantity, date
is-digit 0.03 Are all characters digits? true, false
is-uppercase 0.03 Are all characters uppercased? true, false
starts-with-parenthesis 0.02 Does it start with a left parenthesis? true, false
is-url 0.02 Is it an URL? true, false
is-money 0.02 Is it an amount of money? true, false
count-currencies 0.02 Count of currency symbols 10, 20, 30
starts-with-capitalised-token 0.01 Is the first token capitalized? true, false
has-bracketed-number 0.01 Is there a number in brackets? true, false
is-number 0.01 Is it a number? (including natural, integer, and real numbers) true, false
is-lowercase 0.01 Is it lowercased? true, false
is-notblank 0.01 Are all character non-blank? true, false
is-isbn 0.01 Is it an ISBN? true, false
starts-with-punctuation 0.01 Does it start with a punctuation symbol? true, false
starts-with-number 0.01 Does it start with a number? true, false
starts-with-currency 0.01 Does it start with a currency symbol? true, false
ends-with-currency 0.01 Does it end with a currency symbol? true, false
ends-with-parenthesis 0.01 Does it end with a right parenthesis? true, false
ends-with-punctuation 0.01 Does it end with a punctuation symbol? true, false
is-date 0.01 Is it a date? true, false
is-email 0.01 Is it an e-mail address? true, false
is-blank 0.01 Does it consist solely of blanks? (Whitespace, tabulators, carriage

returns)
true, false

is-alphanum 0.01 Are all tokens alphanumeric? true, false
is-year 0.01 Is it a year? true, false




