
R E S E A RCH ART I C L E

Validating UTF-8 In Less Than One Instruction PerByte
John Keiser1* | Daniel Lemire2*
1Microsoft, Redmond, WA, 98052, USA
2DOT-Lab Research Center, Université du
Québec (TELUQ), Montreal, Quebec, H2S
3L5, Canada
Correspondence
Daniel Lemire, DOT-Lab Research Center,
Université du Québec (TELUQ), Montreal,
Quebec, H2S 3L5, Canada
Email: lemire@gmail.com
Funding information
Natural Sciences and Engineering Research
Council of Canada, Grant Number:
RGPIN-2017-03910

The majority of text is stored in UTF-8, which must be vali-
dated on ingestion. Wepresent the lookup algorithm, which
outperformsUTF-8 validation routines used inmany libraries
and languages bymore than 10 times using commonly avail-
able SIMD instructions. To ensure reproducibility, our work
is freely available as open source software.
K E YWORD S
Vectorization, Unicode, Text Processing, Character Encoding

1 | INTRODUCTION
Unicode is the ubiquitous standard for text representation in software. It assigns a code point (a number from 0 to
1 114 112) to almost every character in every language, as well as formatting and symbols like whitespace characters
and emojis. UTF-8, in turn, is the dominant format used to encodeUnicode text—to store or send it in a series of bytes
via memory, disk or network [1]. For example, UTF-8 is in widespread use in XML and JSON documents, as well as in
database systems likeMySQL. Evenmore fundamentally, many recently introduced programming languages represent
strings as UTF-8 by default (e.g., Rust, Go) while established languages have migrated to UTF-8 (Swift, Ruby). UTF-8
is more concise than other alternative Unicode formats such as UTF-16 and UTF-32.

All of these systems have to validate UTF-8 on ingestion. Invalid UTF-8 strings can cause various functions such
as search or sort to fail; they may cause display problems in applications or web sites. More critically, invalid UTF-8
is a security risk [2]: e.g., Microsoft’s web server (IIS) failed to validate the UTF-8 string used as URI which allowed
attackers to access otherwise forbidden paths. Whenever a database system or software program receives bytes that
are meant to be UTF-8, they run a validation function.

Validation is not a straightforward problem. UTF-8 uses between 1 and 4 bytes to encode each character, and
there are many distinct error cases to check. In our experience, most systems validate UTF-8 using relatively compli-
cated sequences of branches. The speed of a branch-based approach depends on the input. We can exceed speeds
of 2GiB s−1, going as fast as 4GiB s−1 on ASCII content. Though such speeds may seem satisfactory, recent disks can

1

ar
X

iv
:2

01
0.

03
09

0v
2

 [
cs

.D
B

]
 1

0
O

ct
 2

02
0

2 John Keiser and Daniel Lemire
sustain higher throughput (e.g., 5GiB s−1) with networking speeds being even higher. Generic compression libraries
such as LZ4 can decompress text data at 5GiB s−1 [3]. An engineer behind the high-performance ScyllaDB database
system [4] concluded that UTF-8 validation can become a bottleneck under heavy loads [5].
Going Faster
Starting with the Pentium 4 launched at the beginning of the century, commodity processors have acquired single-
instruction-multiple-data (SIMD) instructions capable of working on wide registers (e.g., 128-bit, 256-bit or even 512-
bit). These SIMD instructions have become ubiquitous, being available in nearly all mobile processors and in all x64
processors. These instructions enable an efficient form of single-core parallelism that comes in addition to multi-core
and memory-level parallelism [6].

There are many different ways to benefit from these SIMD instructions. Optimizing compilers often try to rewrite
tight loops so that they use SIMD instructions, a process called autovectorization [7]. Though autovectorization is
a powerful approach, the compilers often fail to autovectorize complex routines. Furthermore, compilers cannot
produce compiled code that deviates from the semantics of the original source code. The programmer may also rely
on libraries that were written with SIMD instructions in mind. Finally, a programmermay design algorithms specifically
for SIMD instructions. Though such an approach requires in-depth knowledge of the available instructions and of their
performance, our experience is that it provides the best performance, at the cost of greater development time.

Ourmain contribution is a novel SIMD-based algorithm to validate UTF-8 bytes at high speed. We consistently ex-
ceed 10GiB s−1 on x64 processors. To achieve these good results, we have extended an existing technique, vectorized
classification, to do most of the validation using few instructions.

2 | UTF-8
UTF-8 encodes a sequence of Unicode characters into variable-length sequences of bytes. We use the word “charac-
ter” as defined by the Unicode standard: a single character from theUniversal Character Set, which has been assigned a
single code point. However, this convention does not always correspond to a single letter in a word, or a single visible
“glyph.” Not only are some Unicode characters invisible (e.g., new-line and control characters), glyphs are sometimes
formed by combining multiple Unicode characters into a grapheme. The distinction is irrelevant to UTF-8 validation.
Variable-Length Characters
UTF-8 achieves complete ASCII backward compatibility by encoding ASCII characters (U+00...7F) as-is. Further, it
ensures that all non-ASCII bytes have a high order bit of 1, so ASCII characters can always be identified by a most
significant bit of 0. The character “9” is 00111001 in both ASCII and UTF-8.

Non-ASCII characters (U+000080...10FFFF) start with a leading byte indicating whether the character is encoded
using two, three, or four bytes. It denotes this character length with the number of header bits—where the most
significant bits are a series of 1’s followed by a 0.1 Thus, 110 |00010 is the leading byte of a two-byte character,
1110 |1001 starts a three-byte character, and you may expect three more bytes after 11110 |000.

The 1–3 remaining bytes of a multi-byte character are called continuation bytes, and have exactly one header
bit. The choice to use up the twomost significant bits with 10was a deliberate tradeoff, preserving ASCII compatibility
at the cost of space: because their most significant bit is 1, continuation bytes are never mistaken for ASCII. The
four-byte character “ ” has leading byte 11110 |000 followed by three continuation bytes: 10 |011111, 10 |011000 and

1We adopt the convention that ASCII bytes are leading bytes with no header bits.

John Keiser and Daniel Lemire 3
TABLE 1 Valid Unicode characters and corresponding UTF-8 ranges [1]

UTF-8 Bytes Bits Description Code Point UTF-8
1 7 ASCII U+0000 00000000

U+007F 01111111

2 11 Latin U+0080 110 |00010 10 |000000

U+07FF 110 |11111 10 |111111

3 16 Asiatic U+0800 1110 |0000 10 |100000 10 |000000

U+D7FF 1110 |1101 10 |011111 10 |111111

U+E000 1110 |1110 10 |000000 10 |000000

U+FFFF 1110 |1111 10 |111111 10 |111111

4 21 Supplementary U+010000 11110 |000 10 |010000 10 |000000 10 |000000

U+10FFFF 11110 |100 10 |001111 10 |111111 10 |111111

10 |000000.
UTF-8 tries to concisely represent as many frequently used languages as possible in as few bytes as possible.

Two-byte characters (up to U+07FF) can represent most Latin alphabets, and other alphabets like Hebrew and Arabic.
Most characters in natural languages (including Chinese and Japanese) fit into at most 3 bytes (up to U+FFFF). Unicode
uses 4-byte characters to represent “supplementals” such as emojis.
Encoding the Value
The character value itself is stored by disassembling it bitwise and inserting its bits into the unused (non-header) bits
of the byte sequence. The bits are inserted in reverse (“big-endian”) order, with the most significant bits in the leading
byte, and the lowest bits in the last continuation byte. See Table 2. Decoding UTF-8 is just reassembling the character
value, validating that sequences are well-formed. Thus UTF-8 is independent from the endianness of the processor
and system. It is still allowed to prefix the string with a byte-order-mask (the byte sequence 0xEF,0xBB,0xBF) but it
does not add any difficulty to the validation since this sequence is valid UTF-8 [8].
UTF-8 Sortability
UTF-8 is normalized: there is only one way to write a Unicode string in UTF-8. Because of this byte-for-byte stability,
UTF-8 strings are byte-sortable and byte-comparable. Two strings form the same sequence of characters if and only
if their bytes are all the same. A string is likewise considered larger than another in Unicode lexicographical order if
its first non-equal byte is larger.

This helps with compatibility: existing libraries like hash tables, and programs like grep, can be easily adapted to
UTF-8, and often work without modification. It is also a security feature. There is only one way to represent a given
character (such as the null character or the / character) and so validating the content of strings for security is easier.2

2A single visual character, or glyph, may be represented by more than one sequence of Unicode characters. This is not relevant to UTF-8, which operates at
the Unicode character level.

4 John Keiser and Daniel Lemire
TABLE 2 UTF-8 Character Examples: ASCII, two, three and four-byte characters

Label Byte 1 Byte 2 Byte 3 Byte 4
Text 9 (U+0039)
Binary 00111001

UTF-8 00111001

Text ¢ (U+00A3)
Binary 10 100011

UTF-8 110 |00010 10 |100011

Text 鏡 (U+93E1)
Binary 1001 001111 100001

UTF-8 1110 |1001 10 |001111 10 |100001

Text (U+1F600)
Binary 00 011111 011000 000000

UTF-8 11110 |000 10 |011111 10 |011000 10 |000000

3 | VALIDATING UTF-8

A validator must step through each character in a UTF-8 document, checking for violations of each of these rules:

a) 5+ Byte. The leading byte must have fewer than 5 header bits.
b) Too Short. The leading byte must be followed by N-1 continuation bytes, where N is the UTF-8 character length.
c) Too Long. The leading byte must not be a continuation byte.
d) Overlong. The decoded character must be above U+7F for two-byte characters, U+7FF for three-byte characters,

and U+FFFF for four-byte characters.
e) Too Large. The decoded character must be less than U+10FFFF.
f) Surrogate. The decoded character must be not be in U+D800...DFFF.

The rules can be usefully separated into three kinds: malformed byte sequences, invalid Unicode characters, and
overlong byte sequences.

Malformed Byte Sequences

Any UTF-8 character must either be an ASCII byte, or a byte with 2–4 header bits followed by 1–3 continuation
bytes—no more, and no less. The easiest such error to detect is 5 or more header bits. These include 111110 |,
1111110 |, 11111110 | and 11111111 |. Out-of-order sequences and sequences with the wrong number of bytes are
also invalid. See Table 3.

John Keiser and Daniel Lemire 5
TABLE 3 Examples of Malformed Byte Sequences
type byte sequence
Too Long 00111001 10 |000000 The continuation byte is a “stray”, that is

not a part of any character.
Too Short 1110 |1001 10 |001111 00111001 There are only 2 bytes in a 3-byte charac-

ter.
5-Byte 111110 |10 10 |010000 10 |010000 10 |000000 10 |000000 5-byte character sequences are disal-

lowed.

TABLE 4 Invalid Unicode Character Examples
type byte sequence
Surrogate 1110 |1101 10 |111000 10 |000000 U+D83D U+DE00 is the surrogate pair for “ ” (U+1F600).
Too Large 11110 |100 10 |010000 10 |000000 10 |000000 U+110000 is larger than the largest Unicode character.

Invalid Unicode Characters
A well-formed byte sequence can always be decoded into a code point, but even then, some code points represent in-
validUnicode characters. For example, Unicode only supports characters from U+000000...10FFFF. Anything outside
that range is too large and therefore invalid. Since 4-byte characters can encode anything up to U+1FFFFF, characters
from U+110000...1FFFFF are too large.

Additionally, UTF-8 disallows Unicode surrogate characters (U+D800...DFFF), which were designed to encode
values larger than 16 bits in UTF-16. UTF-8 disallows these because it already has a way to encode characters larger
than 16 bits, and surrogate support would break the normalization rule that there is only one way to encode a given
code point. See Table 4.

Overlong Byte Sequences
UTF-8 mandates that each character be encoded in the smallest number of bytes possible. Larger sequences would
be well-formed, and represent valid Unicode characters, but they break the normalization rule.

Overlong byte sequences are violations of this rule. For example, the character “a” (U+61) in a 3-byte character,
padding it with zeroes: 1110 |000010 |000001 10 |100001. This is the only category of invalid UTF-8 that can occur
even when the byte sequence is well-formed and represents a valid Unicode character.

4 | BRANCHY RANGE VALIDATOR
A Branchy Range Validator validates without decoding, walking the input character by character and checking that
each byte in the character is in a specific range. It branches on the value of the first byte of each character, using it
to decide how many continuation bytes are expected, and what range of values those continuation bytes may have.
Anything outside these ranges is considered invalid and terminates the algorithm. See Algorithm 1.

Such a relatively simple algorithm is commonly found inside popular software. As a reference, we use the val-

6 John Keiser and Daniel Lemire
idation function from the Fuchsia operation system [9] by Google. The Fuchsia engineers have benchmarked this
function with some care. It follows closely our description.
Algorithm 1 Branchy Range Validator algorithm. Byte values are treated as integers in [0, 255].
for each byte b in the UTF-8 sequence do

switch b do
case 0b | {00000000 . . . 01111111} Continue the loop. end case . ASCII U+0...7F
case 0b110 | {00010 . . . 11111} do . 2-Byte U+80...7FF

Load the next byte c1, returning an error if it is not a continuation (0b10 |).
case 0b1110 |0000 do . 3-Byte Low U+800...FFF

Load the next two bytes c1 and c2, returning error on EOF or if not continuations (0b10 |).
if c1 ∈ 0b10 | {000000 . . . 011111} then Return error (Overlong). end if

case 0b1110 |1101 do . 3-Byte U+D000...D7FF
Load the next two bytes c1 and c2, returning error on EOF or if not continuations (0b10 |).
if c1 ∈ 0b10 | {100000 . . . 111111} then Return error (Surrogate). end if

case 0b1110 | {0001 . . . 1100} or 0b1110 | {1110 . . . 1111} do . 3-Byte U+1000...CFFF, U+E000...FFFF
Load the next two bytes c1 and c2, returning error on EOF or if not continuations (0b10 |).

case 0b11110 |000 do . 4-Byte U+10000...3FFFF
Load the next three bytes c1, c2 and c3, returning error on EOF or if not continuations (0b10 |).
if c1 ∈ 0b10 | {000000 . . . 011111} then Return error (Overlong). end if

case 0b11110 | {001 . . . 011} do . 4-Byte U+40000...FFFFF
Load the next three bytes c1, c2 and c3, returning error on EOF or if not continuations (0b10 |).

case 0b11110 |100 do . 4-Byte U+100000...10FFFF
Load the next three bytes c1, c2 and c3, returning error on EOF or if not continuations (0b10 |).
if c1 ∈ 0b10 | {100000 . . . 111111} then Return error (Too Large). end if

else Return error end else . Too Long, 5+ Byte
Return that the sequence is valid.

ASCII Optimization

In many practical instances, UTF-8 contains long strings of ASCII, where a vectorized ASCII check can save us many
loop iterations. If there are at least eight bytes to read, we load them into an 8 byte register and quickly check whether
any of the characters are non-ASCII (i.e., if they have header bits). This can be done with a simple AND operation
against the 8 byte integer value 0x8080808080808080, followed by a comparison with zero. If we have found eight
consecutive ASCII characters, we just advance the byte pointer by eight and resume the loop, checking again for the
presence of eight more bytes. We find in practice that it is better to go even wider: we check that the next 16 bytes
are ASCII by loading the next 16 bytes into two 8-byte registers, computing their bitwise OR and then using the same
8-byte mask 0x8080808080808080. We refer to this algorithm, with 16-byte ASCII test, as branchy-ascii. Though we
could further widen this approach, we observe poorer performance with wider ASCII checks (i.e., 32 bytes) on realistic
data.

John Keiser and Daniel Lemire 7
5 | FINITE-STATE MACHINE
Even on completely valid input, the Branchy Range Validator branches based on the width of each character. This can
cause processor stalls when character widths vary (a frequent occurrence in non-ASCII text). To eliminate this issue,
we consider a finite-state machine-based approach.

We could not find an existing finite-stateUTF-8 validator. We adapt aUTF-8 decoder proposed byHoehrmann [10].
This state machine can be in one of nine possible states:
• State valid indicates the file is valid to this point. We always begin with valid.
• States “1 more”, “2 more” and “3 more” indicate the number of remaining bytes in the character, and that they can

be any value.
• Range error states “3-Byte Overlong” and “3-Byte Surrogate”, “4-Byte Overlong”, and “4-Byte Too Large” indicate

that there are 2 or 3 bytes remaining in the character, but that the next byte must be checked against a specific
range to ensure we do not accept certain invalid values (i.e., it must be a continuation byte, but cannot be just
any continuation byte).

• The error state indicates we have detected an error. Once it reaches this state, it never leaves.
Table 5 describes the transitions. As previously stated, the error state is “sticky”, with any byte leading back to error.
When the state is valid, the byte is treated as the first byte of a character: it is possible for the state to transition
to any of the nine possible states. From states “3 more”, “4-Byte Overlong”, and “4-Byte Too Large”, we always either
transition to an error or to the state “2 more”. When the state is “2 more”, “3-Byte Overlong” or “3-Byte Surrogate”,
we always either transition to an error or to the state “1 more”. When the state is “1 more”, we always transition to
an error or to the state valid

To quickly compute the transition, we need to classify any new byte into one of these categories:
1. Continuation Low (10 |000000...001111),
2. Continuation (10 |010000...001111),
3. Continuation High (10 |100000...111111),
and each of the nine categories corresponding to the last column of Table 5 (ASCII,110 |00010...11111, etc.). Thus
only twelve categories in total are needed. To map any of the 256 possible byte values to one of these twelve cate-
gories without branching, we use a 256-entry lookup table. We combine efficiently the resulting category (e.g, as an
integer between 0 to 11) with the state (e.g., as a multiple of 12, from 0 to 108) with an addition, so that state + class
is always a distinct value. Finally, the combined value is used to look up the next state in another table.

Each byte processed requires two memory loads from small tables: one to categorize the byte and one to de-
termine the new state. The first lookup in the 256-entry table only depends on the character value and may begin
before we have the new state.3 However, there is a critical data dependency between the successive table lookup
that update the state.

We could also combine the two small tables into a single large one (with 9 × 256 entries) to halve the number of
memory loads: in our tests, it is no faster and uses more memory. This lack of benefit is expected since we do not
remove the critical data dependency tied to state updates.

3Current commodity processors can have several memory requests in flight at the same time.

8 John Keiser and Daniel Lemire
TABLE 5 Finite-State Machine Transitions. We distinguish between three types of continuation bytes:
Continuation Low (10 |000000...001111), Continuation (10 |010000...001111), and Continuation High
(10 |100000...111111). When in valid and encountering a non-continuation byte, we determine the next state by
using the last column (1st Byte).

State Leading
Byte

Continuation
Low

Continuation Continuation
High

1st Byte

valid 1st Byte error error error 00000000. . .01111111
1 more error valid valid valid 110 |00010...11111

2 more error 1 more 1 more 1 more 1110 |0001...1100
1110 |1110...1111

3 more error 2 more 2 more 2 more 11110 |001...011

3-Byte Overlong error error error 1 more 1110 |0000

3-Byte Surrogate error 1 more 1 more error 1110 |1101

4-Byte Overlong error error 2 more 2 more 11110 |000

4-Byte Too Large error 2 more error error 11110 |100

error error error error error 110 |00000...00001
1111 |0101...1111

Such table-based algorithms are crucially dependent on the latency of loads: at least three cycles on x64 pro-
cessors. To compensate, when the input string is sufficiently long (32byte), we divide the strings into three distinct
regions of nearly equal size, all of them starting with a leading byte. We then run three interleaved versions of the
algorithm, loading three distinct bytes from the three regions, and updating three distinct states. We arrived at the
number three experimentally, by trying the different variants (1, 2, 3, 4, . . . interleaved versions). We call the resulting
algorithm finite-state.

It would be possible to add branching to finite-state to accelerate ASCII decoding. However, we would then lose
the core conceptual benefit of the finite-state approach: the lack of branches.

6 | THE LOOKUP ALGORITHM
The lookup algorithm mitigates the finite-state machine’s memory latency using small lookup tables that fit in SIMD
registers. It also vectorizes the problem, validating many bytes of input at a time.

We rely on a key property of the validation problem: nearly all invalid UTF-8 cases can be detected by looking
at the first two bytes of a character (in fact, the first 12 bits—see Table 6). The only cases that cannot be detected in
2 bytes are sequences with extra or missing third, fourth or fifth bytes. All those can be detected with 4 bytes (see
Table 7).

SIMD registers on a given architecture might span w = 16 bytes (e.g., ARM NEON, Intel SSE2), w = 32 bytes
(e.g., AVX/AVX2) or even wider (e.g., AVX-512), allowing the algorithm to check more bytes at once, but the width is
irrelevant for algorithmic purposes.

We load the file w bytes at a time into SIMD register v1. The previous input is kept in register v0. On the first
iteration, v0 is filled with zero (the ASCII null character).

John Keiser and Daniel Lemire 9
TABLE 6 Invalid 1–2 byte UTF-8 Sequences.

Error UTF-8
Overlong (2–Byte) 110 |00000...00001

Overlong (3–Byte) 1110 |0000 10 |0

Overlong (4–Byte) 11110 |000 10 |0

Too Short (Missing 2nd Byte) 11 | 0 |

Too Long (ASCII + Continuation) 0 | 10 |

Surrogate 1110 |1101 10 |1

Too Large 11110 |100 10 |1

Too Large 11110 |101...111

Too Large (5+–Byte) 111111 |

TABLE 7 Invalid 3–4 byte UTF-8 Patterns.
Error UTF-8
Too Long (Extra 3rd Byte) 11 | 10 | 10 |

Too Long (Extra 4th Byte) 111 | 10 | 10 | 10 |

Too Long (Extra 5th Byte) 10 | 10 | 10 | 10 |

Too Short (Missing 3rd Byte) 111 | 10 | 0 |

Too Short (Missing 3rd Byte) 111 | 10 | 11 |

Too Short (Missing 4th Byte) 11110 | 10 | 10 | 0 |

Too Short (Missing 4th Byte) 11110 | 10 | 10 | 11 |

Instead of branching on a error conditions, we use an “error register” that is non-zero if and only if an error is
detected. The error register is similar to the state variable in the finite-state algorithm (§ 5). To modify the error
register, we use a bitwise OR between an expression that is non-zero if and only if an error is detected. In this manner,
we avoid branches. A single check at the end can determine whether there was an error.

6.1 | Invalid 2–Byte Sequences
After loading v1, we detect all invalid 2-byte sequences at once using vectorized classification, a concept we docu-
mented in earlier work [11]. In this scheme, we classify several values at once by doing combining vectorized table
lookups. Compared to earlier work, this particular application of vectorized classification uses three different table
lookups, instead of merely two. Both ARM and x64 systems have vectorized lookup tables allowing us to use a 4-bit
value (nibble) stored in byte as an index into a 16-byte register (e.g., vpshufb in AVX2). Even when the source register
has 16 or 32 bytes, the 16 or 32 lookups can occur at once, using a single instruction.

For UTF-8, we create three 16-entry lookup tables that map to 8-bit values. Bits 0–6 of these values, when set,
indicate a partial match against one of seven error patterns. These patterns were chosen to encompass all possible

10 John Keiser and Daniel Lemire
TABLE 8 List of 2-Byte error patterns. Any pair of bytes matching one of these patterns is considered invalid
except for the last row (bit 7).

Error Bit Error Byte 1 Byte 2
0 Too Long (ASCII + Continuation) 0 | 10 |

1 Too Short (Missing 2nd Byte) 11 | 0 |

+ 11 | 11 |

2 Overlong (2–Byte) 110 |00000...00001 10 |

3 Surrogate 1110 |1101 10 |1

4 Overlong (3–Byte) 1110 |0000 10 |0

5 Overlong (4–Byte) 11110 |000 10 |00

+ Too Large 1111 |0101...1111 10 |00

6 Too Large 1111 |0100...1111 10 |01...11

7 Two Continuations (Not An Error) 10 | 10 |

2-byte errors (Table 8). The high and low nibbles of each byte, as well as the low nibble of the next byte, are looked
up in their respective tables. To get the low nibble of a byte, we mask an existing register (AND 0xF). To get the high
nibble of each byte in a register, we shift its bytes right by 4 bits.4

If a bit in the range 0–6 is set in all three looked-up patterns for a byte as checked with the AND instruction,5
that byte (and the UTF-8) is considered invalid. Bit 7 is used to identify a pair of continuation bytes, which is used in
§ 6.2 to evaluate long invalid 3–4 byte sequences, but by itself, bit 7 is not considered an error.

There will always be a pair of bytes straddling the two SIMD registers, which need to be validated as well. To get
the correct first byte to match against each second byte, we shift the input one byte to the right, “shifting in” the last
byte of the previous input as we do so. Under ARMNEON, we use the ext instruction. Under x64, a single instruction
in the 128-bit case (palignr) or two in the 256-bit case (vpalignr and vperm2i128) suffice.

The original Table 6 contains nine error patterns. We consolidated these into seven error patterns that cover
all possible errors, so that we could save a bit for continuation pairs. The problem of finding a minimal cover is NP-
hard [12], but is thankfully inexpensive with only seven patterns. Fig. 1 illustrates our routine using pseudocode. It
closely matches our C++ code. Table 9 provides a processing example, with the corresponding variable names, starting
with the null-terminated string “9¢鏡 ”. Because we assume that it begins the stream, we set the previous input to
zeroes. We compute three vectors made of nibbles and from these three vectors we derive three lookup results
(byte_1_high, byte_1_low, byte_2_high). The final result is the bitwise AND of the three lookup results. It is made
entirely of zeroes except at three locations corresponding to the last byte of the character 鏡 and to the last two
bytes of the character .

4Under x64, we lack a byte-wise vectorized shift but we can shift 16-bit words with a vector instruction (e.g., vpsrlw) and apply a mask to select the low
nibble.

5We use two vector AND instructions to combine the three patterns, but for processors supporting it, a single AVX-512 instruction (vpternlog) would suffice.

John Keiser and Daniel Lemire 11
TABLE 9 Vectorized classification example using the notation of Fig. 1 for the null-terminated string “9¢鏡 ”.
We use hexadecimal byte values.

’9’ ’¢’ ’鏡’ ’ ’ 0
input 39 C3 A7 E9 8F A1 F0 9F 98 80 00
previous_input (set to zero) 00 00 00 00 00 00 00 00 00 00 00
prev1 (shifted input) 00 39 C3 A7 E9 8F A1 F0 9F 98 80
high nibbles: prev1.shift_right<4>() 00 03 0C 0A 0E 08 0A 0F 09 09 08
low nibbles: (prev1 & 0x0F) 00 09 03 07 09 0F 01 00 0F 08 00
high nibbles: input.shift_right<4>() 03 0C 0A 0E 08 0A 0F 09 09 08 00
lookup result: byte_1_high 02 02 21 80 15 80 80 49 80 80 80
lookup result: byte_1_low E7 CB 83 CB CB CB A3 E7 CB CB E7
lookup result: byte_2_high 01 01 BA 01 E6 BA 01 AE ae E6 01
(byte_1_high & byte_1_low & byte_2_high) 00 00 00 00 00 80 00 00 80 80 00

6.2 | Invalid 3–4 Byte Sequences
All remaining checks are invalid 3–4 byte sequences, which either have too many continuations, or not enough (Ta-
ble 7). We first get a list of byte indexes where we expect to find two continuations in a row, which can only be found
in 3–4 byte sequences. We can compute these indexes with a pair of shifts and comparisons: we expect two contin-
uations if the previous byte matches 111 |, or if the byte before that matches 1111 |. We then compare these indexes
to the locations where we have two consecutive continuations, as detected by bit 7 from our vectorized classification
(see § 6.1). If these two lists differ in any respect, the UTF-8 is invalid.

Under x64, we lack unsigned comparison instructions, which are needed to check the 111 | and 1111 | ranges.
However, we can emulate them in various efficient ways. For example, to compute the equivalent of m3 (vi−1,vi) ≥
0xF 0, we can use the saturated subtraction of m3 (vi−1,vi) with 0xF 0 − 1 which results in a number greater than 0
where and only where m3 (vi−1,vi) ≥ 0xF 0. Thus we can compute two saturated subtraction, combine the two
results using one bitwise OR. We are then left to apply a mask to set just the most significant bit of each byte where
a continuation byte should appear.

simd8 <uint8_t > classify(simd8 <uint8_t > input , simd8 <uint8_t > previous_input) {

// shift the input by 1 byte , shifting in the last byte of the previous input

auto prev1 = input.prev <1>(previous_input);

auto byte_1_high = prev1.shift_right <4>().lookup_16(table1);

auto byte_1_low = (prev1 & 0x0F).lookup_16(table2);

auto byte_2_high = input.shift_right <4>().lookup_16(table3);

return (byte_1_high & byte_1_low & byte_2_high);

}

F IGURE 1 Pseudocode corresponding to the vectorized classification routine

12 John Keiser and Daniel Lemire
6.3 | Incomplete Stream
At the end of the stream, we may not have enough bytes to fill an entire SIMD register. If that is the case, we may
simply virtually fill the leftover bytes with any ASCII character (such as zero). But even when we have enough bytes
to fill a whole register, we still have to check that the data stream does not terminate with an incomplete code point.
Furthermore, the 2-byte check (§ 6.1) may allow a byte value larger than the maximum (0xF4) if it occurs as the last
byte of a stream. Thankfully, it not difficult to guard against both problems. We just have to check that the last byte
in the last register is strictly smaller than 0xC0 (using an unsigned comparison), that the second last byte is strictly
smaller than 0xE0, and that the third last byte is strictly smaller than 0xF0. A single vectorized unsigned comparison
is sufficient. On x64 processors, there is no unsigned comparison instruction, but we can use an efficient alternative
such as an unsigned vectorized maximum instruction followed by a comparison.

6.4 | ASCII
Because a lot of content might be ASCII, it sometimes pay to check whether the current register is made of ASCII
bytes. We can efficiently check whether a given register is made of all ASCII bytes: we can check that the byte
values are all negative (using two’s complement). When they are ASCII, we may then use a fast path: we omit the
vectorized classification and the check on the continuation bytes. However, before we do so, we need to check that
the previous register did not end with an incomplete code point (§ 6.3). Doing such checks vector register by vector
register might be too expensive. When the location of the ASCII blocks is hard to predict, these checks could create
many mispredicted branches. Instead, we group the registers in blocks of 64 bytes.6 We check whether the whole
block (64 bytes) is ASCII. In such a case, we also need to verify that the preceding block finished with complete code
points (§ 6.3), and if so we do not need any further checks. To validate a whole block of SIMD registers, we could
do one comparison per register and then aggregate the result of the comparisons with a bitwise OR. This results
in roughly two instructions per register.7 Instead, it is more advantageous to compute the bitwise OR between all
registers and then to do one comparison: the block is all ASCII if and only if the bitwise OR are non-negative.8 This
results in nearly half the number of instructions.

When our input is made entirely of either ASCII characters, or of sequences containing non-ASCII characters, the
fast ASCII path is either always called or never called. Thus the branches are easily predicted with high accuracy. In
other scenarios, we have to rely on the processors’ sophisticated branch predictor for performance.

7 | EXPERIMENTS
We wish to benchmark our algorithms on common x64 processors. Recent Intel processors are often based on the
Skylake microarchitecture or similar variations. AMD recently introduced a competitive microarchitecture (Zen 2); we
use a server version of this architecture. We summarize the characteristics of our hardware platforms in Table 10.
The Intel processor has a slightly higher frequency, but the AMD processor has a more recent microarchitecture. Both
processors have 32 kB of (data) L1 cache. The AMD processor has more L2 cache (512 kB vs. 256 kB).

Our software is written using C++ (GNU GCC 9.3) and we use Linux Ubuntu (20.10). We compile the code for
6A 64-byte block size matches the length of a cache line on most x64 processors.
7A single AVX-512 instruction (vpternlog) might also replace two bitwise OR.
8Checking that the register is entirely non-negative requires few instructions: e.g., a pmovmskb/vpmovmskb instruction under x64 or a umaxv instruction under
ARM NEON, followed by a comparison.

John Keiser and Daniel Lemire 13
TABLE 10 Hardware

Processor Base Frequency Max. Microarchitecture Memory Compiler
Intel i7-6700 3.4GHz 3.7GHz Skylake (x64, 2015) DDR4 (2133MT/s) GCC 9.3

AMD EPYC 7262 (Rome) 3.2GHz 3.4GHz Zen 2 (x64, 2019) DDR4 (3200MT/s) GCC 9.3

best performance with the -O3 flag. All code is single-threaded and free from disk or network access. We expect
all processed inputs to be in CPU cache, by design. Our software, including benchmarking code and corresponding
instructions, is freely available.9

Our benchmarking code is instrumented: we use the performance counters of the processors to record the number
instructions retired, the number of cycles and the number of mispredicted branches. Performance timings are heavily
skewed to the right and they do not follow a normal distribution [13]. Following our earlier work [11], we run each
test many times (1000) and compute both the best (smallest) and the average timing. We find that the average and
the smallest timing coincide (within 1%).

Nevertheless, we still slightly overestimate the number of elapsed cycles and the duration of the tests (by about
10ns to 30ns). In effect, we get slightly worse performance numbers. When the tests last a sufficient long time, we
can simply ignore the effect since the overhead is negligible. However, we cannot ignore this measurement overhead
on small inputs (e.g., less than 1KiB) when using fast functions like lookup. To compensate, we use the following
strategy when necessary: we select a string that is twice as long as the desired size, and then we select a valid
substring having nearly (within a few bytes) the desired size. We run both benchmarks and subtract the timings. We
report the difference as a compensated measure.

We use the AVX2 instruction set and 256-bit vector registers. The Intel processor is subject to downclocking:
with AVX2 instructions using floating-point operations and multiplications, the processor may reduce its frequency
temporarily. However, the lookup algorithm does not use multiplication or floating-point operations, and it therefore
does not trigger downclocking. We consistently achieve the maximum frequency of the processors. We record the
effective processor frequency and find it to be constant within a small margin of error (≈1%).

7.1 | Mispredicted Branches
When benchmarking functions involving branches, we must consider the ability of the processor to learn branches.
When executing the same function, over the same data, repeatedly, we may expect the processor to eventually learn
to predict the branches. This is unlikely to happen if the input is large and irregular, but a poorly constructed benchmark
made of small or predictable input can lead to spurious results and conclusions.

We generated random UTF-8 strings of various lengths, using random code points. We pick each successive
code point to have either one or two-byte length in UTF-8. Once we have generated a string of a given length, we
repeatedly validate it (in a tight loop) while measuring speed and number of mispredicted branches. We pick the
run with the best speed for each given length. We find that branchy is faster on small inputs: see Fig 2. The reason
becomes clear when looking at the number of mispredicted branches (Fig. 3). Because of howwe designed our inputs,
we should expect a mispredicted branch every three bytes, so ≈333 mispredicted branches per kilobyte.

We find that both the AMDRome and the Intel Skylake processors have far fewer than 333mispredicted branches
per kilobyte on short inputs, an indication that the branch predictor has learned the content of the string. The branch

9https://github.com/lemire/validateutf8-experiments

14 John Keiser and Daniel Lemire

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40 45

sp
e
e
d
 (

G
B

/s
)

input size (KB)

branchy
finite-state

lookup

(a) AMD Rome (Zen 2; 3.4GHz)

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40 45

sp
e
e
d
 (

G
B

/s
)

input size (KB)

branchy
finite-state

lookup

(b) Intel Skylake (3.7GHz)
F IGURE 2 Processing speed for random UTF-8 inputs of various lengths (one-and-two-byte code points).

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30 35 40 45

m
is

p
re

d
ic

te
d
 b

ra
n
ch

 (
/K

B
)

input size (KB)

branchy
finite-state

lookup

(a) AMD Rome

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30 35 40 45

m
is

p
re

d
ic

te
d
 b

ra
n
ch

 (
/K

B
)

input size (KB)

branchy
finite-state

lookup

(b) Intel Skylake
F IGURE 3 Number of mispredicted branches per kilobytes for random UTF-8 inputs of various lengths.

predictors work well up until about 30 kB. Observe that the AMD Rome processor is better at predicting branches
than the Intel Skylake processor.

7.2 | Realistic Inputs
Of course, the validation performance depends on the input. We use two sizeable input files: a JSON file (twitter.json,
617KiB) produced from the Twitter API and an HTML file (hongkong.html, 1.8MiB) captured from the corresponding
Wikipedia entry. See Table 11.

The speed of the branchy and of the finite-state validators are similar on the two test files, at roughly 2GiB s−1.
These files are an instance where branchy-ascii is advantageous because they contain long sequences of ASCII strings.
It is almost twice as fast as branchy. Though the Intel processor has a higher clock speed (by about 10%), the AMD
processor is more than 50% faster when running the branchy validator. We also find that the AMD Rome has fewer
mispredicted branches per kilobyte: 3.9 versus 4.6 (Intel) for twitter.json and 8.2 versus 7.6 for hongkong.html.

Under both AMD Rome and Intel Skylake, we find that lookup retires slightly under 0.4 instructions per byte for
both files. Yet the throughput of lookup is higher under twitter.json than under hongkong.html. The explanation for

John Keiser and Daniel Lemire 15
TABLE 11 Throughput in GiB s−1 to validate UTF-8 files. The original files are valid UTF-8. We also benchmark
the C function memcpy, copying the content to a temporary buffer.
(a) AMD Rome (Zen 2; 3.4GHz)
validator twitter.json hongkong.html
memcpy 48 48
branchy 2.5 2.3
branchy-ascii 4.4 4.3
finite-state 2.0 2.0
lookup 28 18

(b) Intel Skylake (3.7GHz)
validator twitter.json hongkong.html
memcpy 36 36
branchy 1.6 1.6
branchy-ascii 4.0 4.4
finite-state 1.8 1.8
lookup 24 17

this apparent contradiction lies in the fact that the hongkong.html file triggers many more branch mispredictions.
The number ofmispredicted branches per byte is tinywith twitter.json under both processors. For hongkong.html,

we observe 2.0 mispredicted branch per kilobyte on AMD Rome, and slightly more on Intel Skylake (2.6). We find that
the AMD processors is faster than the Intel processor when running lookup (5% to 15%) despite a lower clock speed.
Under the Intel processor, the lookup validator comes close to matching the speed of the memcpy function when
processing the file twitter.json: 24GiB s−1 versus 36GiB s−1.

7.3 | Randomized Inputs
To test our functions with different inputs, it is useful to generate synthetic UTF-8 data. If we select to generate code-
point values spanning 1–3 bytes, we randomly pick, for each code point, a byte length in the range 1–3, uniformly at
random. The generator produces bytes by adding new code-point values until we have generated 16 kB. In general,
the final string may exceed 16 kB by up to 3 bytes. A data input 16 kB is long enough to prevent the branch predictor
from learning the input, but short enough to fit in L1 CPU cache. See Table 12.

The finite-state approach offers a flat performance of 1.8GiB s−1 irrespective of the input source. Such data
independence is expected given that the algorithm is essentially free from branches. The branchy-ascii approach
does well on the ASCII-only inputs (14GiB s−1 to 15GiB s−1) and roughly as well as branchy on non-ASCII synthetic
inputs. The lookup algorithm dominates, being 30 times faster than branchy and branchy-ascii on non-ASCII inputs,
and six times faster than finite-state.

On ASCII inputs, the lookup function is faster than the memcpy function, achieving 66GiB s−1 on the AMD pro-
cessor and 59GiB s−1 on the Intel processor. In the special case where we expect our strings to be pure ASCII, we
could design even faster functions with and without SIMD instructions but our purpose is UTF-8 validation.

In Table 13, we present the number of retired instructions per byte. The retired instructions are counted by the
processor by excluding speculative execution. That is, the instructions part of a mispredicted branch are not counted.
The processors count some fused instructions such as the comparison and jump of a branch as two instructions. It is
therefore possible for some code executing tight loop with branches to have high numbers of instructions retired, if
these branches are correctly predicted with high probability.

The AMD Rome and Intel Skylake processors have similar instructions counts, so we only present the numbers
for the AMD Rome processors. The reason for the good performance of the lookup algorithm is clear: it requires

16 John Keiser and Daniel Lemire
TABLE 12 Throughput in GiB s−1 to validate UTF-8 randomized inputs where code-point values have different
byte lengths. We also benchmark the C function memcpy, copying the content to a temporary buffer.

(a) AMD Rome (Zen 2; 3.4GHz)
validator ASCII 1–2 bytes 1–3 bytes 1–4 bytes
memcpy 53 53 53 53
branchy 1.7 0.41 0.39 0.60
branchy-ascii 14 0.33 0.42 0.63
finite-state 1.8 1.8 1.8 1.8
lookup 66 13 13 13

(b) Intel Skylake (3.7GHz)
validator ASCII 1–2 bytes 1–3 bytes 1–4 bytes
memcpy 39 39 39 39
branchy 1.8 0.36 0.35 0.40
branchy-ascii 15 0.30 0.30 0.43
finite-state 1.8 1.8 1.8 1.8
lookup 59 12 12 12

TABLE 13 Instruction per byte to validate UTF-8 randomized inputs where code-point values have different
byte lengths. As a reference we use the AMD Rome processor.

validator ASCII 1–2 bytes 1–3 bytes 1–4 bytes
branchy 6.0 11 12 12
branchy-ascii 0.75 16 17 16
finite-state 7.0 7.0 7.0 7.0
lookup 0.21 0.97 0.97 0.97

far fewer instructions than the alternatives (often ten times fewer). In all our tests, irrespective of the input, lookup
requires fewer than one retired instruction per byte.

The number of retired per cycle (Table 14) differs between the two processors with an advantage for the AMD
Rome processor with branchy, branchy-ascii and lookup. Except for the pure ASCII inputs, the lookup function
achieves a high 3.6 instructions per cycle on AMD Rome. In all cases, the lookup function benefits from a relatively
high number of instructions per cycle (at least 3).

We also find that the finite-state function has a consistently high number of instructions retired per cycle (3.5).
However, it suffers from a high number of instructions per byte (7).

John Keiser and Daniel Lemire 17
TABLE 14 Instructions per cycle to validate UTF-8 randomized inputs where code-point values have different
byte lengths.

(a) AMD Rome (Zen 2; 3.4GHz)
validator ASCII 1–2 bytes 1–3 bytes 1–4 bytes
branchy 3.0 1.3 1.4 2.2
branchy-ascii 4.7 1.4 1.8 2.7
finite-state 3.5 3.5 3.5 3.5
lookup 3.2 3.6 3.6 3.6

(b) Intel Skylake (3.7GHz)
validator ASCII 1–2 bytes 1–3 bytes 1–4 bytes
branchy 3.0 1.0 1.1 1.3
branchy-ascii 4.7 1.2 1.2 1.7
finite-state 3.5 3.5 3.5 3.5
lookup 3.0 3.1 3.1 3.1

8 | RELATED WORK
There has beenmuchwork on the acceleration of text content using SIMD instructions (e.g., base64 [14, 15], JSON [11],
XML [16], HTML [17], CVS [18]). We are not aware of any published work directly related to Unicode validation using
SIMD instructions other than our own [11]. Cameron [19] has worked on the related problem of UTF-8 to UTF-16
transcoding using SIMD instruction, but their approach is not applicable to high-speed validation. There has been
some research on the parallelisation of finite-state machines [17, 20] which could be applied to UTF-8 validation.

9 | CONCLUSION
The relatively simple algorithm (lookup) can be several times faster than conventional algorithms at a common task
using nothing more than the instructions available on commodity processors. It requires fewer than an instruction
per input byte in the worst case. This new algorithm has been adopted by the simdjson library with good results.10 A
SIMD-based approach like lookup is especially advantageous in a context where the data is loaded in vector registers
in any case—as happens in simdjson.

Intel has produced a new family of instruction sets with wider vector registers and more powerful instructions
(AVX-512). Future research should assess the benefits of AVX-512 instructions to the problem of UTF-8 validation. In
principle, we could expect the performance to double [15]. Similarly, commodity ARM processors may soon benefit
from more powerful instructions and wider registers (e.g., SVE and SVE2) [21, 22].

10https://simdjson.org

https://simdjson.org

18 John Keiser and Daniel Lemire
Acknowledgements
The authors would like to thank T. Downs for discussions on finite-state validation. Our work is inspired by an early
high-speed SIMD validator written by K. Willets that served as a proof-of-principle. We thank Z. Wegner for demon-
strating that our early designs were suboptimal and for proposing inspiring new designs. Part of our benchmarking
code is derived from code by W. Muła.

references
[1] Yergeau F, UTF-8, a transformation format of ISO 10646; 2015. Internet Engineering Task Force, Request for Comments:

3629. https://tools.ietf.org/html/rfc3629 [last checked July 2020].
[2] The MITRE Corporation, CAPEC-80: Using UTF-8 Encoding to Bypass Validation Logic; 2019. https://capec.mitre.

org/data/definitions/80.html [last checked July 2020].
[3] Collet Y, et al., LZ4 - Extremely fast compression; 2020. https://github.com/lz4/lz4 [last checked July 2020].
[4] Suneja N. ScyllaDB optimizes database architecture to maximize hardware performance. IEEE Software 2019;36(4):96–

100.
[5] Cai Y, Utils: optimize UTF-8 validation; 2019. https://bit.ly/2VrlQ37 [last checked July 2020].
[6] Cebrián JM, Natvig L, Meyer JC. Improving Energy Efficiency through Parallelization and Vectorization on Intel Core i5

and i7 Processors. In: 2012 SC Companion: High Performance Computing, Networking Storage and Analysis; 2012. p.
675–684.

[7] Nuzman D, Rosen I, Zaks A. Auto-vectorization of interleaved data for SIMD. ACM SIGPLAN Notices 2006;41(6):132–
143.

[8] Xia X, Lo D, Zhu F, Wang X, Zhou B. Software internationalization and localization: An industrial experience. In: 2013
18th International Conference on Engineering of Complex Computer Systems IEEE; 2013. p. 222–231.

[9] Singh T, Bhardwaj R. Fuchsia OS-A threat to Android. IITM Journal of Management and IT 2019;10(1):65–67.
[10] Höhrmann B, Flexible and Economical UTF-8 Decoder; 2010. http://bjoern.hoehrmann.de/utf-8/decoder/dfa/ [last

checked July 2020].
[11] Langdale G, Lemire D. Parsing gigabytes of JSON per second. The VLDB Journal 2019;28(6):941–960.
[12] Karp RM. Reducibility among combinatorial problems. In: Complexity of computer computations Springer; 1972.p.

85–103.
[13] Hoefler T, Belli R. Scientific benchmarking of parallel computing systems: twelve ways to tell the masses when reporting

performance results. In: Proceedings of the international conference for high performance computing, networking,
storage and analysis; 2015. p. 1–12.

[14] Muła W, Lemire D. Faster Base64 encoding and decoding using AVX2 instructions. ACM Transactions on the Web
2018;12(3):1–26.

[15] Muła W, Lemire D. Base64 encoding and decoding at almost the speed of a memory copy. Software: Practice and
Experience 2020;50(2):89–97.

[16] Cameron RD, Herdy KS, Lin D. High Performance XML Parsing Using Parallel Bit Stream Technology. In: Proceedings of
the 2008 Conference of the Center for Advanced Studies on Collaborative Research: Meeting of Minds CASCON ’08,
New York, NY, USA: ACM; 2008. p. 17:222–17:235.

https://tools.ietf.org/html/rfc3629
https://capec.mitre.org/data/definitions/80.html
https://capec.mitre.org/data/definitions/80.html
https://github.com/lz4/lz4
https://bit.ly/2VrlQ37
http://bjoern.hoehrmann.de/utf-8/decoder/dfa/

John Keiser and Daniel Lemire 19
[17] Mytkowicz T, Musuvathi M, Schulte W. Data-parallel Finite-state Machines. In: Proceedings of the 19th International

Conference on Architectural Support for Programming Languages and Operating Systems ASPLOS ’14, New York, NY,
USA: ACM; 2014. p. 529–542.

[18] Mühlbauer T, Rödiger W, Seilbeck R, Reiser A, Kemper A, Neumann T. Instant Loading for Main Memory Databases.
Proc VLDB Endow 2013 Sep;6(14):1702–1713.

[19] Cameron RD. A case study in SIMD text processing with parallel bit streams: UTF-8 to UTF-16 transcoding. In: Proceed-
ings of the 13th ACM SIGPLAN Symposium on Principles and practice of parallel programming ACM; 2008. p. 91–98.

[20] Jiang P, Agrawal G. Combining SIMD and Many/Multi-core parallelism for finite state machines with enumerative spec-
ulation. In: Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming;
2017. p. 179–191.

[21] Stephens N, Biles S, Boettcher M, Eapen J, Eyole M, Gabrielli G, et al. The ARM scalable vector extension. IEEE Micro
2017;37(2):26–39.

[22] Pohl A, Cosenza B, Juurlink B. Vectorization cost modeling for NEON, AVX and SVE. Performance Evaluation 2020;140–
141:102106.

	1 Introduction
	2 UTF-8
	3 Validating UTF-8
	4 Branchy Range Validator
	5 Finite-State Machine
	6 The lookup Algorithm
	6.1 Invalid 2–Byte Sequences
	6.2 Invalid 3–4 Byte Sequences
	6.3 Incomplete Stream
	6.4 ASCII

	7 Experiments
	7.1 Mispredicted Branches
	7.2 Realistic Inputs
	7.3 Randomized Inputs

	8 Related Work
	9 Conclusion

