arXiv:2005.12685v2 [cs.SE] 22 Oct 2020

ORIGINAL ARTICLE

Journal Section

Integrated Model-Driven Engineering of
Blockchain Applications for Business Processes
and Asset Management

Qinghua Lu! | AnBinhTran®" | Ingo Weber?" |
Hugo O’Connor! | Paul Rimba®" | XiweiXul | Mark
Staples! | LimingZhul | Ross Jefferyl

1Datab1, CSIRO, Sydney, Australia,

firstname.lastname@dataé1.csiro.au
2Technische Universitaet Berlin, Germany, applications. A typical class of applications uses blockchain
ingo.weber@tu-berlin.de

Blockchain has attracted broad interests to build decentralised

for the management of cross-organisational business pro-

3Deputy, Sydney, Australia, atran@deputy, . .
cesses as well as assets. However, developing such appli-

primba@deputy.com

cations without introducing vulnerabilities is hard for de-
Correspondence ..
Qinghua Lu velopers, not the least because the deployed code is im-
Data61, CSIRO, Sydney, Australia mutable and can be called by anyone with access to the

Email: ginghua.lu@dataé1.csiro.
mail: ainghua lu@data61.csiro.au network. Model-driven engineering (MDE) helps to reduce

Funding information those risks, by combining proven code snippets as per the
model specification, which is easier to understand than source
code. Therefore, in this paper, we present an approach for
integrated MDE across business processes and asset man-
agement (e.g. for settlement). Our approach includes meth-
ods for fungible/non-fungible asset registration, escrow for
conditional payment, and asset swap. The proposed MDE
approach is implemented in a smart contract generation
tool called Lorikeet, and evaluated in terms of feasibility,

functional correctness, and cost effectiveness.

KEYWORDS

blockchain, smart contract, model-driven engineering, business

* Majority of the work done while this author was with Data61, CSIRO.

BE

2 Qinghua Lu et al.

Modelling

Business process Asset registry
modelling modelling

Models Models

Smart contract (SC)
generation |

Business process Asset registry
SC translation SC generation

T T
[] . N

- - ~
lSm art contracts i ’,\ AR

P . - 2
Blockchain interaction '----.\-——--’__‘_"/ \ /

Blockchain network

FIGURE 1 Overview of our MDE approach.

process, asset, registry

1 | INTRODUCTION

Blockchain has attracted a wide range of interests from start-ups, enterprises and governments. Those interests have
been sparked by the possibility of using blockchain as a general, decentralised and trustworthy computing environ-
ment through the advent of smart contracts. A large number of projects have been conducted to explore how to use
blockchain to re-architect systems and to build new applications and business models [1].

A typical class of applications uses blockchain for the management of business processes across organisations
as well as for digital asset management, which are maintained and controlled on-chain. Assets can be classified into
fungible assets and non-fungible assets. Fungible assets are individual units that are interchangeable (e.g., company
share and gold), while non-fungible assets represent unique assets (e.g., cars, patents, houses). Both fungible and non-
fungible assets are traditionally managed by relying on a centralised trusted authority, which can cause trust issues
and introduce inefficiencies or counterparty risks (e.g., re-assigning ownership of goods before payment). However,
it is hard for developers to develop blockchain applications for business processes and asset management without
introducing vulnerabilities or bugs, not the least because the deployed smart contract code is immutable and can be
called by anyone with access to the network [2]. Model-driven engineering (MDE) [3] helps to reduce those risks, by
combining proven code snippets as per the model specification, which is typically easier to understand than source
code with all its implications.

Our previous efforts targeted MDE for business processes [4] and non-fungible asset registries [5] in isolation.
Fungible asset registries were not addressed in [4, 5]. Also, integration of business processes with registries is required
for asset management on blockchain since registering assets is often not as simple as only storing asset records. For
example, the authoritative organisation(s) may need to collect documents and check if the application is valid. Con-
versely, business processes that touch on asset registries, e.g., for creating assets or changing their ownership, need to
be integrated with registries. Therefore, in this paper, as shown in Fig. 1, we present an approach for integrated MDE

across business processes and asset management: business processes are supported, as are fungible (e.g., ERC20

Qinghua Lu et al. 3

tokens) and non-fungible (e.g., car/grain/land titles) assets. Business processes and asset management are integrated
in that business processes can control assets, and assets can make use of business processes. The value of this inte-
gration is managing processes for both fungible and non-fungible asset registration, escrow for conditional payment,
and asset swap in an efficient way using blockchain, which are not covered by our previous work. We design and
develop a tool called Lorikeet! that implements the proposed MDE approach and transforms models into smart con-
tracts in Solidity which can be compiled for Ethereum [6] and other blockchain platforms. We use Ethereum as the
blockchain technology platform, which can well be used for any types of deployment (i.e., public/private/consortium
deployments). In other words, our approach is by no means restricted to the public Ethereum network. Our evaluation
results show that the proposed approach is feasible and functionally correct.
The contributions of this paper are as follows.

e An MDE approach for development of blockchain applications for business processes and asset management.

- Modelling methods to specify models for integration of business processes with asset management, including
both fungible and non-fungible asset registration, escrow for conditional payment, and asset swap. We pro-
vide the templates for the developers to customize data schemas for both fungible and non-fungible assets
registries. We also extend the OMG standard Business Process Model and Notation (BPMN) 2.0 to specify
interactions between business processes and fungible/non-fungible asset registries.

- Smart contract generation methods to automatically transform models into smart contract programming lan-
guage - Solidity, which can be compiled for Ethereum and other blockchain platforms. The input models in-
clude business process models, and fungible/non-fungible registry data schemas, while the generated smart
contracts consist of business process execution smart contracts and standardised ERC-20/ERC-721 compliant
asset registry smart contracts. Interactions between business processes and asset registries (e.g., for escrow
or asset swap) are also implemented in the produced smart contracts.

- Blockchain interaction methods to handle compilation and deployment of smart contracts and communication
with the deployed smart contracts on blockchain.

e Feasibility and functional correctness evaluation using four industrial use cases which cover fungible and non-
fungible asset registration, escrow for conditional payment, and asset swap.
e An analysis of gas consumption and comparison with numbers from over 292 million transactions on the public

Ethereum blockchain.

The remainder of this paper is organised as follows. Section 2 discusses the background and related work. Sec-
tion 3 presents our MDE approach. Section 4 introduces our tool named Lorikeet. Section 5 evaluates the proposed
approach using use cases. Section 6 concludes the paper and outlines the future work.

2 | BACKGROUND AND RELATED WORK

In this section, we first introduce blockchain technology and smart contracts in Section 2.1. Then, we provide back-
ground knowledge of Model-Driven Engineering (MDE) and its benefits in Section 2.3. Finally, we explain why MDE
and blockchain can be a solution for addressing the trust issue in the business process domain (Section 2.4) and the

asset registry domain (Section 2.5), which has not been fully solved before.

1Rainbow Lorikeet is a species of parrots often encountered in Sydney, Australia - see https://en.wikipedia.org/wiki/Rainbow_lorikeet (accessed 26
July 2020)

https://en.wikipedia.org/wiki/Rainbow_lorikeet

4 | Qinghua Lu et al.

2.1 | Blockchain and Smart Contracts

A blockchain is an append-only store of transactions distributed across computational nodes and structured as a linked
list of blocks, each containing a set of transactions. The main purpose of structuring the data store into blocks is to
obtain manageable chunks of information, for communication as well as for achieving consensus. Blockchain was
introduced as the technology behind Bitcoin [7]. Its concepts have been generalized to distributed ledger systems that
verify and store any transactions without coins or tokens [8], without relying on any central trusted authority like
traditional banking or payment systems. Instead, all participants in the network can reach agreements on the states

of transactional data to achieve trust.

A smart contract is a user-defined program that is deployed and executed on a blockchain system [9], which can
express triggers, conditions and business logic [4] to enable complex programmable transactions. Smart contracts
can be deployed and invoked through transactions, and are executed across the blockchain network by all connected
nodes. The signature of the transaction sender authorizes the data payload of a transaction to create or execute a
smart contract. Trust in the correct execution of smart contracts extends directly from regular transactions, since (i)
they are deployed as data in a transaction and thus immutable; (ii) all their inputs are through transactions and the
current state; (iii) their code is deterministic; and (iv) the results of transactions are captured in the state and receipt
trees, which are part of the consensus.

When using a blockchain, there are different types of deployments, including public blockchain, consortium
blockchain or private blockchain. Public blockchains, which can be accessed by anyone on the Internet (“permission-
less”), have high information transparency and auditability, but sacrifice performance and a cost/incentive model. A
consortium blockchain is typically used across multiple organisations and the rights to read/write on the blockchain
may be restricted to specific participants. In a private blockchain network, write permissions are often kept within one
organisation, although this may include multiple divisions of a single organisation. Private blockchains are the most
flexible for configuration because the network is governed and hosted by a single organisation. A blockchain may
be permissioned in requiring that one or more authorities act as a gate for participation. This may include permission
to join the network and read information from the blockchain, to initiate transactions, or to create blocks. Permis-
sions can be stored either on-chain or off-chain. There are often tradeoffs between permissioned and permission-less
blockchains including transaction processing rate, cost, censorship-resistance, reversibility, finality and flexibility in
changing and optimising the network rules.

Data privacy and scalability are two major challenges of public blockchains. Data privacy is limited because there
is no privileged user in public blockchain: everyone can join the public blockchain, access all the data, and validate
new transactions. The scalability limits on public blockchain include the size of the data, the transaction processing
rate, and the latency of data transmission and commits (e.g., around 1 hour on Bitcoin and 3 minutes on Ethereum).
The number of transactions included in each block is limited. The block size limit in Bitcoin is 1MB, while gas limit (gas
is the pricing unit for transaction execution and data storage in Ethereum) is applied in Ethereum to limit the number

and complexity of transactions to be included into a block.

2.2 | Asset management

A typical class of blockchain applications is digital asset management [10]. Assets can be classified into fungible assets
and non-fungible assets. Fungible assets are individual units that are interchangeable. For example, $10 notes are
interchangeable with other $10 notes and can be swapped for two $5 notes. Non-fungible assets represent unique

assets. For example, all diamonds have different sizes, shapes, and grades. It is difficult to find two diamonds with the

Qinghua Lu et al. 5

same value. Similarly, patents or houses are unique, due to their intrinsic properties like location.

The core of asset management comprises the processes of registering and transferring asset ownership in ac-
cordance with the terms of an underlying contract. This includes asset registry, escrow for conditional payment and
asset swap, as follows. Asset registry maintains a list of assets that belong to a party. Escrow is a financial arrange-
ment where a third party holds and regulates payment of the funds or other assets on behalf of two parties involved
in a transaction. Payment is kept in an escrow account and only released when all the obligations of an agreement
are fulfilled. Asset swap is the ideally atomic exchange of assets based on an amount agreed by both parties of the
transaction.

Assets are traditionally managed by relying on a centralised trusted authority, which can cause trust issues and in-
troduce inefficiencies or counterparty risks (e.g., re-assigning ownership of goods before payment, expensive escrow
fees, etc.). Blockchain can replace the centralised trusted authority and provide a decentralised trusted infrastruc-
ture to maintain asset registries and facilitate asset transactions. To improve asset liquidity, Ethereum Request for
Comment (ERC) 2 defines a set of standard development interfaces that Ethereum-based tokens’ (i.e., assets) smart
contracts must comply with. ERC-203 and ERC-7214 are the most popular Ethereum token standards for fungible

and non-fungible assets respectively.

2.3 | Model-Driven Engineering

Model-driven engineering (MDE) is a methodology that uses models at various levels of abstraction to address soft-
ware development complexity [11]. Domain-specific MDE can help map the model of the problem domain to the
design of the software solution [12, 13]. The abstraction level for models can be at various degrees. For example,
some models can directly derive the production code while others can only be used to guide the developers in devel-
oping the software. In model-driven engineering, models can produce code or guide implementation, or conversely,
the code (or other artefacts) can generate models to help understand the software design, e.g. database schema. De-
pending on the purpose, various concepts can be captured in models, e.g. system/database structures or a sequence
of activities.

Specifically, MDE for code generation can be further classified into different types: once-off code generation
and repetitive code generation. Once-off code generation means that once the code is derived from the model, the
subsequent evolution of the code is independent of the model, whereas in repetitive code generation, the code is
re-generated from the model following subsequent changes to the model over time. The repetitive code generation
can be further classified into one-way model-to-code code generation and round-trip code generation. In one-way
model-to-code code generation, the code is updated if changes are made to the model, but not vice versa. While in
round-trip code generation, if the generated code is updated, the changes can be propagated back to the model level.

In the context of blockchain-based applications, MDE is of particular importance for the following reasons [10].
First, model-driven engineering tools can implement best practices and generate well-tested code, thereby avoiding
vulnerable code which may be easily attacked (e.g. the DAO exploit on the Ethereum blockchain®). Second, models can
avoid lock-in to specific blockchain technologies since they can be platform-agnostic, and a model-driven engineering
tool might be able to produce artefacts for multiple blockchain platforms. Third, models are easier to understand than

code, thus improving the development productivity. It is easier to check the correctness of a model and MDE tools

thtps://docs.ethhub.io/built—on—ethereum/erc—token—standards/what—are—erc—tokens
Shttps://eips.ethereum.org/EIPS/eip-20
“https://eips.ethereun.org/EIPS/eip-721

5http://www.coindesk.com/understandingfdaofhackfjournalists

https://docs.ethhub.io/built-on-ethereum/erc-token-standards/what-are-erc-tokens
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-721
http://www.coindesk.com/understanding-dao-hack-journalists

6 Qinghua Lu et al.

can ensure that the deployed code has not been modified after its generation from the model. Fourth, it can facilitate
communication with domain experts since domain experts can look at the model to understand how their ideas are
represented in the system.

2.4 | Business Processes

Trust issues in business processes [14] have been discussed over the last decade. [15] uses selective encryption and
restricts data access for both the broker and the service partners to achieve trust with untrusted broker. Mont and
Tomasi [16] design a trust service for cross-company collaboration based on a hybrid architecture mixing a trusted cen-
tralised control with untrusted peer-to-peer components. [17] present an agent-based architecture that can remove
the scalability bottleneck of a centralised orchestration engine and provides more efficiency by executing portions of
processes close to the data they operate on. [18] select partners on the basis of disclosure policies and credentials
(i.e. identity attributes issued by a “Credential Authority”) in virtual organisations. Various important concepts such
as conformance [19], reliability [20] and quality of services [21] have been studied for centrally controlled business
process execution. However, these works do not solve the trust issue as a collaborating party might have corrupted
their historic files to their advantage. There is no party that sees all the messages in the business processes.

To address the trust issue, similar to our previous work [4], blockchain has been adopted to define high-level
business process models in smart contracts that are deployed and executed on blockchain [22, 23] without taking into
account process instance data. The tool Caterpillar [24, 25] can support both control flow and instance data using
blockchain. The extension of Caterpillar adds the feature of supporting runtime adaptation of a business process [26].
However, Caterpillar is a Business Process Management System (BPMS) operating on blockchain, and does not support
asset management.

In this paper, our work focuses on using blockchain to address the trust issue in both the business process domain
and the asset registry domain. Lorikeet is an MDE tool that addresses the challenge of integrating asset registry with

business processes on blockchain.

2.5 | Registries

Aregistry is a list of data recorded and maintained by a trusted authority, which is an authoritative database for specific
entities and is used to manage many aspects of daily life, such as land titles, business names, books, marriages, births
and deaths, music, films and domain names. Traditionally, registries are maintained by a central authority. However,
such centralised architecture may cause a single point of failure for the whole registry system. Building registries on
a blockchain can guarantee data integrity, availability, transparency and immutability, which are key requirements for
registries [27]. Additionally, blockchain can be used as a unified infrastructure which enables multiple registries to
easily interact with each other.

There are registries being built on blockchain in ad-hoc ways, for example, Namecoin®, which is a domain name
registry that shares the same network with Bitcoin’, and Abscribe®, which is an artwork registry that enables artists
to maintain the ownership of their digital artwork. However, building a registry on blockchain is challenging since

developers need to understand in depth how particular blockchain platforms operate and learn smart contract pro-

Shttps://namecoin.org/
7https://bitcoin.org/
8https://www.ascribe.io/

https://namecoin.org/
https://bitcoin.org/
https://www.ascribe.io/

Qinghua Lu et al. 7

TABLE 1 Custom BPMN Elements

Element Description Notation
bcext BPMN meta-model name space N/A
—
SmartContractinterface Smart contract element —]
ConnectionOutgoingContractinvocation Connection to the smart contract e

gramming languages. Regis? is a smart contract generation tool on Ethereum© blockchain, but only provides basic
operations. We introduced our registry generator tool for blockchain in [5] and briefly discussed how to integrate

registries with business processes in a demo paper [28].

3 | AN INTEGRATED MODEL-DRIVEN BLOCKCHAIN APPLICATION DEVEL-
OPMENT APPROACH FOR BUSINESS PROCESSES AND ASSET MANAGE-
MENT

In this section, we present our Model-driven blockchain application development approach for business processes
and asset management. We first provide an overview of our MDE approach in Section 3.1. Then, we discuss the
modelling methods proposed for fungible/non-fungible asset registries and extensions of BPMN to support modelling
of interactions between business processes and asset registries in Section 3.2. After that, we propose the methods for
business process smart contract translation and registry smart contract generation in Section 3.3. Finally, we explain
the blockchain interaction methods for connecting with a blockchain node, and handling the compilation, deployment

as well as communication with smart contracts in Section 3.4.

3.1 | Overview of the Model-Driven Engineering Approach

Fig. 2 illustrates an overview of our model-driven engineering (MDE) approach for integrating business processes
with asset management on blockchain. The design of the approach consists of three parts: modelling, smart con-
tract (SC) generation, and blockchain interaction. For modelling, the approach provides templates for the developers
to customize fungible/non-fungible asset registry data schemas and extends BPMN 2.0 to support modelling of in-
teractions between business processes and asset registries (e.g. for fungible/non-fungible asset registration, escrow
for conditional payment, and asset swap). The approach then transforms the built models (i.e. models for business
processes, asset registries, and their integration) into blockchain smart contract implementations in a programming
language (such as Solidity) and handles interaction with smart contracts deployed on blockchain. There are three
types of users for this MDE approach (and the corresponding tool): 1) developers can use it to improve development
productivity and quality, 2) operators can use it to monitor the execution of generated smart contracts; 3) and domain

experts can use it to communicate with developers and understand how their ideas are represented in the system.

“https://regis.nu/
1Ot tps://www. ethereun. org/

https://regis.nu/
https://www.ethereum.org/

8 Qinghua Lu et al.

0 Business process modelling Asset registry modelling
% . Interaction Fungible asset Non-fungible asset
o Process modelling . . . " B
s modelling registry modelling registry modelling
BP model Fun‘glble asset Non-f‘unglble asset
registry model registry model
c A
S Business process SC translation "Registry SC generation|
©
o . Fungible asset Non-fungible asset
c . Interaction . N
F] Process translation . registry registry
oo translation . .
I8) SC generation SC generation
@

Fungible asset Non-fungible
registry SC asset registry SC

l

Compilation

Deployment

Communication —>

o

Execution

Blockchain node

Blockchain interaction

Monitoring

Blockchain network

FIGURE 2 Architecture of our MDE approach.

3.2 | Modelling

As shown in Fig. 2, we propose modelling methods for asset registries, business processes, and their interactions. For
registry modelling, we provide different methods for modelling fungible assets (e.g. ERC20 tokens) and non-fungible
assets (e.g. car/grain/land titles) respectively. Business process modelling includes process modelling in BPMN 2.0

and interaction modelling using the newly extended BPMN elements.

3.2.1 | Registry Modelling

On the registry side, we provide modelling methods for users to design fungible and non-fungible assets via the
respective data registry template in UML. The fungible and non-fungible assets are represented using different data

registry templates since non-fungible assets require customised definition of attributes to describe uniqueness. Also,

Qinghua Lu et al. 9

FungibleAssetRegistry

name : String

symbol : String InitialDistributedAccount

) 1 1
decimals : Integer
isMintable : Boolean address : Address
minterAddresses : Address|[] amount : Integer

isBurnable : Boolean
burnerAddresses: Address[]
initiallyDistributedAccounts: InitiallyDistributedAccount(]

FIGURE 3 Fungible asset registry data model.

the templates ensure that the resulting registries comply with ERC-20/ERC-72 standards to facilitate development
and, due to wide-spread use of these de-facto standards, offer high liquidity. Fig. 3 shows the data model for fungible
asset registry, which consists of basic token details and advanced token features. The basic token details include token
name, symbol (an abbreviation, like “ETH” for Ether, usually 3 or 4 characters in length), and decimals (the number of
digits in the fraction part).

The advanced features describe token design details about minting (isMintable, minterAddresses), burning (isBurn-
able, burnerAddresses), and initial distribution (initiallyDistributedAccounts). Users can configure the accounts that can
mint or burn the token, the total supply of the token (the total number of tokens that have been or will be mined), and
the accounts that receive the initial distribution and the amount sent to each account.

A user can design a registry model for a new fungible token by providing the above inputs. For example, the token
name can be Lorikeet Coin, while the symbol is LRK. The decimals value can be set to 2. If isMintable and isBurnable are
set to true, the user needs to add the respective account addresses of accounts which are allowed to create or destroy
tokens, respectively. Finally, the user can set up the initiallyDistributedAccounts to identify which account addresses
will receive which share of the initial distribution of Lorikeet Coin.

Fig. 4 illustrates the data structure for non-fungible asset registry, which specifies basic information and advanced
features of non-fungible assets. Basic information includes registry name, type, and user-defined attributes. Registry
type can be ‘single’ or ‘distributed’. The ‘single’ registry type holds all records as values in the data store as a singleton
registry smart contract, which is suitable for simple registries. The ‘distributed’ registry type manages each record as
a separate smart contract, which is suitable for registries with complex operations, such as individual record-level per-
mission management. A main registry smart contract creates these contracts and stores pointers to them. Regarding
user-defined attributes, users can specify attribute name, type, whether a record is updatable, and maintain a detailed
history of changes made to every registry record.

The non-fungible asset registry modeller also supports advanced features including record lifecycle management
and access control. The registry record lifecycle (create, read, update, and delete) can be enabled to be managed via
a business process executed on the blockchain. In this case, only the business process instance is allowed to create
or update records, even though the registry is readable by the public (isOwnershipTransferEnabled, isRecordCreation-
RestrictedToBPMN, isOwnershipTransferEnabledToBPMN). For example, transferring ownership can be restricted to a
business process instance, which exchanges ownership of the registered items, such as grain title. Access control

can be enabled on registry functions (isRegistryFunctionAccessControlEnabled) and individual registry records (isReg-

10 Qinghua Lu et al.

NonFungibleAssetRegistry

name : String
attributes : Attribute([]
isRecordUpdatable : Boolean Attribute
isRevisionRecorded : Boolean 1 1
type : String

isOwnershipTransferEnabled : Boolean
isRecordCreationRestrictedToBPMN : Boolean
isOwnershipTransferEnabledToBPMN : Boolean
isRegistryFunctionAccessControlEnabled : Boolean
isRegistryRecordAccessControlEnabled : Boolean
isAccessControlBySmartContractEnabled : Boolean

type : String
name : String

FIGURE 4 Non-fungible asset registry data model.

istryRecordAccessControlEnabled), which can be implemented within the registry smart contract or using a separate

smart contract (isAccessControlBySmartContractEnabled).

A user can model a non-fungible asset by using the features listed in Fig.4. For example, to model a registry
of grain title, on the model side, the user can fill in GrainTitle as the name and select single as the registry type. For
attributes of GrainTitle, weight and quality can be set as the attribute name and units be selected as the type. Grain
title ownership can be transferred by setting isOwnershipTranferEnabledToBPMN as true. The user can enable isRecord-
CreationRestrictedToBPMN as true to specify that grain title creation and transfer will be managed by external BPMN

processes.

3.22 | BPMN Modelling

In BPMN modelling, there are three types of tasks we use here, namely default tasks, user tasks, and script tasks.
All three types of tasks are implemented as functions in the process smart contract generated. Script tasks are ex-
ecuted automatically when they are activated. All other tasks can be executed by calling the respective smart con-
tract function (e.g., through Ul elements generated). As such, default tasks behave from the smart contract point
of view like user tasks. The differentiation is only on the model level, e.g., to allow differentiating tasks that are in-
voked by people as opposed to off-chain software components. For user tasks, user task input parameters can be
bound to registry action’s input. For example, grain title ID and farmer account are provided as input in User Task
“Create Grain Title” and bound to record_id and owner. The user can write scripts to be executed in script tasks
through the task templates. For example, for script task “Calculate Grain Weight”, the consignment weight is calcu-
lated based on the truck weight with consignment and truck weight without consignment, which is represented as
consignmentWeight=truckWeightWithConsignment-truckWeightWithoutConsignment.

In addition to standard BPMN modelling, model-level integration of business processes with asset management
requires interface specification of smart contracts including asset/data registry smart contracts and escrow smart con-
tracts. A smart contract on a blockchain, among others, acts as a data store which tasks in a business process can
read data from, or write data to. However, the existing BPMN 2.0 elements (i.e. DataStoreReference and DataOut-

putAssociation) do not support representation of properties specific to smart contracts (e.g., registry smart contract

Qinghua Lu et al. 11

addresses and smart contract invocation). Thus, to support integration, we introduce custom elements to BPMN 2.0
and design respective graphical representations for them, which are shown in Table 1. The elements include bcext,
SmartContractinterface, ConnectionOutgoingContractinvocation. bcext is the custom namespace for blockchain smart
contract relevant BPMN meta-model. SmartContractinterface represents an interface for a smart contract which is ex-
ternal to the business process. ConnectionOutgoingContractinvocation is the custom connection which links business
process tasks with the external smart contract in the BPMN model. The graphical notation for SmartContractinterface
is extended from the existing BPMN notation for DataStoreReference, while the graphical notation for ConnectionOut-
goingContractlnvocation is designed extending the current BPMN notation DataOutputAssociation.

Fig. 5 shows the data structure of the proposed BPMN meta-model for smart contract-relevant extensions. Smart-
Contractinterface can represent any type of smart contracts, e.g., asset/data registry smart contract, escrow smart
contract, etc. When a smart contract is deployed on blockchain, it is uniquely identified and reachable via a smart
contract address. In order for the business process smart contract to interact with the smart contract, the smart con-
tract address can be made available to the BPMN model via the attribute contractAddress in SmartContractinterface. If
the smart contract address is provided, the address is fixed for all the instances of this business process and cannot
be changed. If it is not provided in the model, the translated business process smart contract allows users to spec-
ify the registry contract address each time a new business process instance is created. Each SmartContractinterface
can have multiple SmartContractFunctions, which are provided to inform the BPMN model of which functions are
available to interact with a given smart contract and how to invoke each smart contract function. Each SmartContract-
Function has one of each FunctioninputParameters and FunctionOutputParameters. Each of FunctioninputParameters
and FunctionOutputParameters consists of many FunctionParameters. To enable BPMN tasks to communicate with the
smart contract reference (i.e. retrieving data from and writing data to a smart contract), each SmartContractinterface
can have many ConnectionOutgoingContractinvocations. As aforementioned, interaction with a smart contract is per-
formed via invocations of smart contract functions. Therefore, ConnectionOutgoingContractinvocation specifies the
signature of the smart contract function to be invoked by the BPMN task via the attribute fnName. Each Connec-
tionOutgoingContractinvocation has one of each FunctionlnputBindings and FunctionOutputBindings element. Each of
FunctionlnputBindings and FunctionOutputBindings contains multiple ParameterBindings. Using the attribute values in
inputParameters and outputParameters, the model can specify bindings from the business process internal variables,
or the BPMN task’s own input parameters (if it is a user task), to the input parameters and return values of the smart
contract function, respectively.

Taking the grain title record creation as an example, a user can model the grain supply chain business process using
BMPN modeller. The SmartContractinterface icon can be used to represent the grain title registry smart contract, which
is generated based on the grain title registry model built earlier. In the BPMN modeller, the user first needs to click on
the grain title registry icon and input the deployed registry contract address for gain title registry. Then the user needs
to click on the arrow for invocation of registry action from the BPMN task Create Grain Title and bind the input weight
and quality for grain title registry to the respective BPMN process variables consignmentWeight and grainQuality.

3.3 | Smart Contract Generation

Smart contract (SC) generation consists of business process SC translation and registry SC generation. We previously
presented our basic business process SC translation algorithm in [4, 29] and basic registry SC generation in [5]. In this
paper, we extend the SC generation with ERC-20/ERC-721 standard compliance support, and integration between
business process execution and registry.

The registry SC generation takes basic information and registry types as fields (e.g., weight and quality) and op-

12 Qinghua Lu et al.

FunctionlnputParameters | |
DataStoreReference

values : FunctionParameter(]

1 ;

FunctionParameter | | SmartContractFunction | SmartContractinterface

name : String
inputs : FunctionlnputParameters
outputs : FunctionOutputParameters

isSmartContract : Boolean
contractAddress : String

type : String
name : String

* 1
1 *
FunctionOutputParameters | 1 FunctioninputBindings 1 1 ConnectionOutgoingContractinvocation

fnldx : String
fnName : String

: v

ParameterBinding DataOutputAssociation

values : FunctionParameter(] values : ParameterBinding[]

param : String
bindToProcessVar : String

*

1

FunctionOutputBindings |,

values : ParameterBinding(]

FIGURE 5 Meta-Model for Smart Contract Interfaces.

erations (e.g., record_create() and record_ownership_transfer()) as methods in the registry smart contract (e.g., GrainTi-
tleRegistry smart contract). To improve the interoperability between Ethereum blockchain applications that work with
fungible assets and non-fungible assets, we extend the registry SC generation to produce ERC-20/ERC-721 compli-
ant asset registry smart contracts which follows the rules and methods in the ERC-2011 and ERC-72112 interface. In
other words, the functions in the smart contracts generated by fungible/non-fungible asset registry SC generation
contain all the required ERC-20/ERC-721 functions respectively.

On the business process side, the business process SC translation component takes an existing BPMN model as an
input and outputs smart contracts. The output of the BPMN translator includes registry smart contract interfaces (e.g.,
GraintTitleRegistry) and a factory contract which contains information required for instantiating the business process.
The factory contract includes the instantiation methods and two types of artifacts, which are an interface specification

per role in a business process and a process instance contract. Once deployed, the smart contract functions in the

Uhttps://eips.ethereun. org/EIPS/eip-20
12pttps://eips. ethereum.org/EIPS/eip-721

https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-721

Qinghua Lu et al. 13

Algorithm 1: Integration between business processes and registries

1 for each SmartContractinterface element do

2 generate a Solidity smart contract interface with specified public functions

3 if contractAddress is set then

4 ‘ generate a variable containing hard coded address

5 else

6 ‘ generate a process contract constructor parameter for setting referenced smart contract address to a variable
7 end

8 end

9 for each ConnectionOutgoingContractinvocation element do
10 obtain source task, target smart contract interface
11 generate Solidity code for invoking given target smart contract interface function while mapping inputs and return parameters

to process variables as specified

12 inject generated invocation code to function body of source task

13 end

process instance contract can be executed as specified by the BPMN model; the smart contract enforces the process
flow, and only conforming instances are possible. For example, we cannot execute Create Grain Title before Grain
Weight Evaluated or Grain Quality Evaluated in grain title creation process. The interface specifications are distributed to
the respective triggers while the process instance contracts are deployed to the blockchain when the process instance
is created. The process instance contract contains the implementation of the business logic (e.g., Create_grain_title()),
reflecting the content of the original process specification.

To support the interaction between business process execution smart contracts and registry smart contracts, SC
generation is extended as illustrated in Algorithm 1. For each SmartContractinterface element in the business process
model, the algorithm produces a smart contract interface in Solidity (e.g., GrainTitleRegistry SC interface) with all public
functions specified in the element. If the contract address is set in the SmartContractinterface, the algorithm generates
a variable containing that hard-codes the address for this smart contract interface. Otherwise, the algorithm outputs
a process smart contract constructor parameter for setting the referenced smart contract address to a variable. For
each ConnectionOutgoingContractinvocation element, the algorithm obtains the source task and target smart contract
interface from the element and generates Solidity code for invoking the given target smart contract interface func-
tion, while mapping inputs and return parameters to process variables as specified. At last, the algorithm injects the
generated invocation code to the function body of the respective source task. Listing 1 presents an example of of
generated smart contract ProcessFactory.sol for the grain title creation process.

3.4 | Blockchain Interaction

The approach provides blockchain interaction methods for connecting with a blockchain node, and handling the
compilation, deployment as well as communication with smart contracts. Thus, users can monitor the execution of
smart contracts and interact with smart contracts directly. Specifically, the communication module comprises sending
blockchain tractions, querying smart contract states, and listening to transaction progress and smart contract events.
Sending blockchain transactions corresponds to write operations, while querying smart contract states applies to
read operations. The communication module obtains status of transactions and receives smart contract events via
the listening to transaction progress and smart contract events.

Once the smart contracts are successfully deployed, the users can use the smart contracts to execute the business

14 Qinghua Lu et al.

// - EXTERNAL SMART CONTRACT INTERFACES

contract LorikeetCoin {
function name () external returns (string memory);
function totalSupply() external returns (uint256);

contract GrainTitleRegistry {
function record_get_owner (address record_id) external returns (address record_owner);
function record_get_attrs(address record_id) external returns (uint256 weight,
uint256 quality);

contract ProcessFactory {
function createInstance (address[] memory _participants) public returns(address) {
ProcessMonitor instance = new ProcessMonitor(/* _participants*/);
createdInstances.push(address (instance));
emit instanceCreated(address(instance));

return address(instance);

}
}
contract ProcessMonitor {
/] —------=- PROCESS VARIABLES
uint _truckWeightAfter;
uint _grainWeight;
AR LT
/] === EXTERNAL SMART CONTRACT ADDRESSES
address addressOfLorikeetCoin = O0xD3E4EBe81b55EA73b559da31ADf2CAc3b254eall;
address address0fGrainTitleRegistry = 0xA9998dBe75D795556eA821E37cD2DE1F373BFd91;
A e
constructor () public {
_truckWeightAfter = 0;
_grainWeight = 0;
}
function Create_grain_title(uint preconditionsp) internal returns (uint) {
if ((preconditionsp & 0x44 == 0x44)) {
GrainTitleRegistry instanceOfGrainTitleRegistry = GrainTitleRegistry(
address0fGrainTitleRegistry);
instanceOfGrainTitleRegistry.record_create (address(this), _grainWeight,
_grainQuality);
return preconditionsp & uint (“0x44) | 0x10;
} else
return preconditionsp;
}
}

LISTING 1 Code fragment of a generated smart contract example

Qinghua Lu et al. 15

User interface (Ul) components

Blockchain | M
BP modeller Registry modeller K ockehal eta
interactor | Mask
7'y 7} 7}
\ 4 h 4 h 4
REST API gateway
7y X X
A 4 A4 A4
Container Container Container
ERC721 asset ERC20 token
BP SC translator registry SC registry SC
generator generator
Back-end components

FIGURE 6 Architecture of Lorikeet.

process instances and create records in fungible/non-fungible asset registries. The approach can furthermore generate
user interface (Ul) elements to interact with deployed smart contracts. Through these Ul elements, users can execute
smart contract functions as well as monitor smart contract events. Function invocation user interface forms are
automatically populated from smart contract interfaces. Users can retrieve previously emitted events or continuously
listen to new events. Process flow conformance is enforced by the approach: if an invocation to execute a task is
in conformance with the current process execution state, it takes place; otherwise the invocation is unsuccessful.
If a process task was successfully executed, a new event is emitted and the state is updated; if unsuccessful, the

information of this invocation is stored but the process state does not change.

4 | MDE TOOL: LORIKEET

We design and develop a model-driven engineering tool for business processes and asset management on blockchain,
named Lorikeet!3 . As illustrated in Fig. 6, the tool consists of the user interface (Ul) components and back-end
components that are designed adhering to a microservice architecture.

The Ul components are presented as web applications for users to build business process and registry models,
and interact with the smart contracts. The business process (BP) modeller is extended from the bpmn-js modelling
library!4. The user can model fungible/non-fungible asset registry references and action invocation easily by dragging
and dropping in the modeller Ul and providing the relevant registry information (e.g. registry smart contract address,
available registry actions, parameter binding information, etc.). The fungible/non-fungible asset registry modeller pro-
vides a form for users to fill in the information required by the registry model. The users can compile, deploy, and
interact with the smart contracts in the blockchain interactor. The supported interactions include deployment and
execution of smart contract functions as well as monitoring of smart contract events. The smart contract function

invocation Ul forms are automatically populated from the respective smart contract interface, while the smart con-

13| orikeet tool demo video: https://drive.google.com/file/d/1rpy- oHbDVkXabudFn73wSX8rINnlsv3U/view (accessed 26 July 2020)
Wyteps: //github.com/bpmn-io/bpmn- js

https://drive.google.com/file/d/1rpy-oHbDVkXa6u4Fn73wSX8rINn1sv3U/view
https://github.com/bpmn-io/bpmn-js

Qinghua Lu et al.

% Lorikeet Home Design Checking Ethereum connectivity... .

catRegstryDesin St CotractCutput

Digital Asset Name

Registry Type ® Single Distributed
Record ID Data Type
Record Attributes ~
New Attribute
Allow updates to this attribute
Data Type Attribute Name

uint weight

uint quality

FIGURE 7 Graphical interface of Lorikeet.

tract event monitoring Ul can display all previously emitted events or list any events by continuously listening to
the blockchain. The blockchain interactor component is written in TypeScript with Node.js version 10, implementing
the REST API using express.js server. Users can securely create and manage their identities via MetaMask!> which
connects to the blockchain interactor.

Back-end components, including business process (BP) smart contract (SC) translator, ERC721 asset registry SC
generator, and ECR20 token registry SC generator, are built and deployed independently as Docker containers. BP
SC translator automatically generates smart contracts from BP models, while ERC721 asset/ERC20 token registry
generator derives smart contracts based on the registry models. For Ethereum, the smart contracts are written in
Solidity, compiled with Solidity compiler version 0.4.24. We used Truffle framework v12 to compile and test smart
contracts.

The BP/registry modeller and blockchain interactor communicate with the back-end microservices via an API
gateway. The API gateway forwards API calls from the Ul, such as translating BPMN model to smart contract code,
to the corresponding microservice. In addition, the blockchain interactor sends information about the emitted events
in real-time using socket.io.

Fig. 7 shows the business process modeller Ul of our tool. Once the user makes changes to the BP model on the
left-hand side, it is translated to the corresponding smart contract code which is displayed on the right-hand side. The
Uls for ERC721 asset/ERC20 token registry modelling are similar to the BP modeller Ul: in both cases there is a form
on the left-hand side collecting the customised registry information.

15https ://metamask.io/

https://metamask.io/

Qinghua Lu et al. 17

No

& & g

Set exchange Deposit ETH
rate and caps

LRK token
distribution

End

is soft cap
reached?

FIGURE 8 ICO process model built using Lorikeet.

5 | EVALUATION

To evaluate the feasibility, functional correctness, and cost of our model-driven engineering approach, we use Lori-
keet to model four use cases and generate smart contract code based on the models. The selected use cases include
initial coin offering (ICO) process, quality tracing process, task outsourcing process, and grain title creation process.
They cover fungible/non-fungible asset registration, escrow for conditional payment, and asset swap respectively. We
encountered these use cases in projects or discussions with industry or government, and modelled them based on pub-
licly available information. According to the classification of experiments by Zelkowitz and Wallace [30], this evaluation
falls into the category of case studies since we do not have control over the experimental conditions: the processes
are taken from external units (industry or government). The selected use cases are modelled as cross-organisational
processes in a single pool, following the process model design philosophy for blockchain-based processes outlined in
[24].

5.1 | Feasibility

In this section, we evaluate the feasibility of our MDE approach using four uses, including ICO process (Section 5.1.1),
quality tracing process (Section 5.1.2), task outsourcing process (Section 5.1.3), and grain title creation process (Section
5.1.4).

5.1.1 | ICO Process

An Initial Coin Offerings (ICO) is a way to raise funds for new projects using cryptocurrency: essentially, investors can
buy tokens for a new startup / initiative / project and pay for those using an established cryptocurency like Ether or
Bitcoin. ICOs can be considered as fungible asset registration use cases, where the new token is the fungible asset.
Fig. 8 shows an ICO business process model built using Lorikeet. The process starts with setting up the token exchange
rate with Ether (i.e. ETH) and caps (including one soft cap and one hard cap). Once the token exchange rate and caps
are determined, investors deposit ETH to the business process smart contract. If the soft cap is reached, the bought
amount of tokens are transferred to the investors’ accounts, which are recorded in the token registry. The registry

smart contract address and actions to be invoked for the registry are specified as attributes of SmartContractinterface.

18 Qinghua Lu et al.

On the registry side, we built a fungible asset registry model for the token registry by filling the form provided by
Lorikeet. The token name is Lorikeet Coin, while the symbol is LRK. The decimal value we put is 2.

Lorikeet creates a smart contract for instantiating the ICO process taking the business process model as input,
while generating a token registry smart contract using the specified token information in the form as fields and the ERC-
20 standard methods as methods. The token registry smart contract interface defines the methods interacting with
the corresponding token registry smart contract while the process monitor smart contract implements the business
process instance.

The results show that Lorikeet can automatically generate an ICO business process smart contract and a ERC-20
standard compliant ICO token registry smart contract using the ICO BPMN model and token registry data schema
respectively. The output business process smart contract checks whether business process instances run compliant
with the BPMN model (e.g. only when soft cap is reached, LRK tokens are distributed), while the token registry smart
contract maintains the tokens in each investor’s account. Instead of writing those two complex smart contracts, devel-
opers only need to focus on designing and refining high-level models, which are easier to explain to ICO stakeholders
and to check for correctness. For example, the developers only need to specify the initially distributed accounts by
filling the respective field in the fungible asset registry form provided by Lorikeet for LRK token distribution. Also, as
the token registry smart contract is ERC-20 compliant, it can be easily integrated with other Ethereum applications
following the ERC-20 standard. The results show that Lorikeet can successfully support MDE of business processes

and registries concerning fungible assets.

5.1.2 | AQuality Tracing Process

Fig. 9 illustrates the quality tracing process models for import commodities in China [31] built using Lorikeet, which
can be viewed as a non-fungible asset registration use case. The quality inspection agency provides quality tracing
services and issues a traceability certificate of commodity if all requirements are fulfilled. The process starts when
a product supplier lodges a quality tracing application for each batch of products to the quality inspection company.
The administrator processes the paper work (e.g. invoices) and payment. Then the agency assigns a factory examiner
to check the factory address, production capability, quality control process, etc. After inspecting the factory, a freight
yard examiner is sent to check the products on freight yard and inspect on-site loading. The examiner attaches lead
seals to the product containers if the on-site loading processes meet requirements. In the meantime, a product sample
is sent to a lab for sample testing. Once the application passes the inspections and testing, the agency issues the
supplier a traceability certificate of commodity. All the relevant traceability information and certificates are stored in
the traceability registry.

The quality tracing process and traceability registry are modelled in a similar way as ICO use case discussed in
Section 5.1.1. The registry smart contract address and actions to be invoked for the registry are specified as attributes
SmartContractinterface. On the registry side, we built a non-fungible asset registry model for the certificate registry by
filling the Lorikeet registry template. The asset name is CertificateOfOrigin and the registry type is single. The record ID
represents certificatelD. The attributes in the registry model include factoryReport, testReport, and freightyardReport,
which store the hash values of respective documents.

Lorikeet outputs a smart contract for creating a quality tracing process instance based on the built business pro-
cess model and generates a ERC-721 compliant smart contract for the traceability certificate registry based on the
built registry model.

The generated quality tracing process smart contract can check whether the process instances are executed

consistently with the BPMN models (e.g. factory inspection, sample tests, and on-site loading supervision must be

Qinghua Lu et al. 19

e A
&3 - S
Process ——— .
o Inspect factory [Issue certificate [¢—
application @
\ J Certificate |
Registry
&) () &)
Submit Check product Supervise on- Seal
documents site loading
\. J \ J
&

Test sample =\+/

~—

FIGURE 9 Quality tracing process model built using Lorikeet.

done before issuing a certificate), while the certificate registry smart contract maintains the hash values of certificates.
Developers only need to specify a quality tracing process model and certificate registry data schema to achieve a smart
contract implementation. Also, other blockchain applications can easily interact with the generated certificate registry
smart contract since it follows the ERC-721 standard. These results show that Lorikeet can provide efficient MDE
support of non-fungible asset business processes and registries.

5.1.3 | Task Outsourcing Process

Fig. 10 illustrates a task outsourcing business process model, which is an escrow use case for conditional payment.
The process starts when a task requester lodges a task. The task requester selects a person from a list of matching
workers and deposits the negotiated amount of money to the token registry. If the amount of deposited money is
not correct or the recipient is wrong, the money is refunded back to the task requester. Otherwise, the money is
released to the worker if the task is assessed as complete. The task outsourcing process model specifies the Lorikeet
token registry using SmartContractinterface. On the registry side, we use the same fungible asset registry model for

the Lorikeet token registry.

Lorikeet creates a smart contract for instantiating the task outsourcing process, taking the business process model
as input while generating a token registry smart contract using the specified token information as fields and the ERC-

20 standard methods as methods.

This use case shows that conditional payment (i.e., escrow) can be implemented using Lorikeet. Developers only

need to model the payment process and token registry without writing Solidity code for complex escrow logic.

20 Qinghua Lu et al.

Refund to
requester
Failed
No
1)
&] X Complete the
Lodge a task 1l Yes task
correct amount 4 L)
deposited?
A
& 1 (& (A ES
Select a person Deposit money Assess the task Release money
\. J \. J

FIGURE 10 Task outsourcing process model built using Lorikeet.

5.1.4 | Grain Title Creation

Fig. 11 shows a simplified grain title creation process modelled using Lorikeet, which is focused on grain ownership
transfer [32] and can be considered an asset swap use case. There are two asset registries interacting with this selected
grain title creation process: grain title registry (non-fungible) and Lorikeet token registry (fungible).

The grain title creation process starts when a truck arrives and is weighed for the first time. The grain is dropped
into a silo and the truck is weighed again to determine the net weight of grain that has been delivered (weight of truck
before delivery minus weight of truck after delivery). Also, when the truck arrives, before dropping grain into the silo,
a grain sample is taken and quality assessment is conducted. The process then creates the grain title and assigns it to
the farmer, but puts it into escrow of the process. When the buyer pays the correct amount of money for the grain
into the process escrow, process transfers the grain title to the buyer and the money to the farmer. If the amount is
incorrect the money and the title are refunded to the buyer and the farmer, respectively.

The registry smart contract address and actions to be invoked for the grain title registry are specified as attributes
of SmartContractinterface. On the registry side, we use the same fungible asset registry model for the Lorikeet token
registry.

Lorikeet outputs a smart contract for the grain title creation process taking the business process model as input.
For registry smart contracts, Lorikeet uses the specified token and grain title information to generate an ERC-20
compliant smart contract and an ERC-721 compliant smart contract, which can be easily integrated and communicated
with other ERC smart contracts. The process of grain title creation involves various activities and interactions with
both fungible asset registry and non-fungible asset registry.

When using Lorikeet, developers only need to model the process and the two asset registries without writing
Solidity code for complex business logic, such as creating grain title, checking escrow balance, and asset swap. Also,
the business process implemented as a smart contract enforces conformance of any execution with the grain title

process, e.g., a grain title can only be created after grain weight is calculated and quality is evaluated.

Qinghua Lu et al. | 21

N
() s & 2 g
Truck carrying

Grain dropped off Truck is Calculate grain
grain is weighed at silo weighedagain weight

—

J/

Registration
request

submitted N

Grain quality N
evaluated g

Grain sample
taken

;L

& g

Interest to by title

E)uery balance
expressed

Check escrow

Create grain title
balance 9

T

No [Create grain title record
is enough
balance? X

Yes g
S

LorikeetCoin]]I[I | Refund I

- GrainTitleRegistry
| Asset Swap |
Transfer escrow balance to farmer o .
Transfer grain title ownership to buyer
End Failed

FIGURE 11 Grain title creation process model built using Lorikeet.

5.2 | Functional Correctness and Cost Analysis

We tested the functional correctness of Lorikeet by checking conformance of the generated business process, includ-
ing interactions between the registry smart contracts and the business process smart contracts, with a test suite in
the Given-When-Then structure [33]. We ran the experiment on Ganache, i.e. the blockchain client simulates an
Ethereum blockchain, and compiled all the Solidity smart contracts using solc v.0.5.8 with optimization enabled.

In our earlier work [4], we derived the set of permissible execution traces for each process model and randomly
modified these traces to obtain a larger set of not conforming traces. Then we tested the ability of the smart contracts
to discriminate between correct and incorrect traces, which it did perfectly. The control flow logic has not changed,
and thus there was no need to rerun the experiments for this paper.

In order to provide a concrete example, we used the grain title creation process as shown in Fig. 11. We started

22 Qinghua Lu et al.

TABLE 2 Grain title creation process conformance checking results

Tasks Gateways Trace type Traces Correctness
Conforming 77 100%

12 3
Not conforming 425 100%

with deriving two permissible execution traces for the grain title creation process model, so-called conforming traces
that adhere to the process model. One follows the successful Asset Swap path, while the other follows the failed
Refund path. For each of these two traces, we generated 250 traces with randomized noise injected to obtain a larger
set of traces (including both conforming and non-conforming traces) with the following manipulation operators: (i)
add a new log line, (ii) remove a log line, or (iii) switch the order of two log lines, such that the modified trace was
different from the two initial conforming traces. In total, there are 502 traces.

We investigated if our implementation accurately identifies the non-conforming traces that have been generated
for the grain title creation process model. The script tasks are executed with the preceding task. In the current version
of Lorikeet, function invocation Ul forms are automatically populated from the smart contract interface. The functions
can be called by sending the transaction with the click of a button on the Ul. The results are shown in Table 2. All log
traces were correctly classified. There are no assertion failures, which was our expectation. Any other outcome (i.e.
assertion failure) would have pointed at severe issues with our approach or implementation. Thus, we claim if a trace
is conforming, its execution will execute the correct logic that we expect. Our full test suite is available onlinelé.

We also investigated the cost of involving the blockchain in the process execution, since gas cost on Ethereum
reflects computational effort and determines throughput on a given network. Each bytecode instruction in a smart
contract consumes gas when it is executed in response to a transaction invoking the smart contract. The “size” of a
block in Ethereum is specified as a block gas limit, i.e., the sum of gas consumed by all transactions in a block may not
exceed this limit. As such, cost in gas affects all blockchain networks, regardless of whether they are public, private,
or consortium blockchain networks.

Table 3 shows the average, maximum, and minimum value of gas used by deployment and each activity. The first
three rows show the deployment cost of the three generated smart contracts. Note that the variability in gas cost
(difference between minimum and maximum) used by Grain_quality_evaluated and Truck_is_weighed_again is large.
The reason is that these two tasks are (eventually) followed by a parallel join gateway and thereafter a script task; only
once the second of the two tasks completes, the gateway and subsequent script task are executed. Therefore, the
cost depends on the execution order, resulting in the high variability. Also noteworthy is that Interest_to_buy_title is
consistently expensive. It too is followed by script tasks and a gateway, but regardless of the gateway decision there
are always two scripts executed. And all of the involved script tasks interact with the asset registries. Finally, both
Failed and End are end events of the BPMN process, and the generated Solidity code for both involves re-setting a
smart contract storage variable. This triggers a refund of 15,000 gas, which offsets the total gas consumption of the
rest of the transaction, and hence results in a low total cost.

The average gas cost per transaction an instance of the process model is 59,497 gas (taking into account that only
one of the outgoing branches of the XOR split is executed). For comparison, we used Google BigQuery’s Ethereum

dataset!” to determine the average cost of a transaction that invokes a smart contract, with the following query:

‘ SELECT avg(receipt_gas_used)

| |
1ohttps://drive.google.com/drive/folders/1gaWhCY2YK8n4MXUvoA69jzblboI8iTQZ?usp=sharing
17https ://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics

https://drive.google.com/drive/folders/1gaWhCY2YK8n4MXUvoA69jzbNboJ8iTQZ?usp=sharing
https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics

Qinghua Lu et al. 23

TABLE 3 Gas used by each task in the grain title creation process

Task Avg Min Max
GrainTitleRegistry_deployment 803278 803278 803278
LorikeetCoin_deployment 1486678 1486678 1486678
ProcessMonitor_deployment 1359815 1359815 1359815
Registration_request_submitted 49491 49491 49491
Truck_carrying_grain_is_weighed 49319 49319 49319
Grain_sample_taken 28983 28983 28983
Grain_dropped_at_silo 28938 28938 28938
Grain_quality_evaluated 93055 49296 146411
Truck_is_weighed_again 102321 69892 182007
Interest_to_buy_title_expressed 109523 104903 119986
Failed 14338 14338 14338
End 14349 14349 14349

FROM ’bigquery-public-data.ethereum_blockchain.transactions’
WHERE DATE(block_timestamp) <= "2019-12-11"
AND to_address is not null
AND to_address in
(SELECT address
FROM ’bigquery-public-data.ethereum_blockchain.contracts?’)
AND input != "Ox"

From this query, we obtained aggregate costs over 292,826,434 contract invocation transactions on the public Ethe-
reum blockchain up until 11 December 2019: on average 86,330 gas; median of approx. 45,647.18 By comparison,
transactions invoking functions of the smart contracts generated with Lorikeet use on average only 59,497 gas, or
68.9% of the global average; the median is 49,405 gas, which is about 8% higher than the global median.

6 | CONCLUSION AND FUTURE WORK

Model-driven engineering (MDE) is of particular importance for blockchain-based applications since MDE tools can
help developers focus on high-level modelling and generate well-tested smart contract code implementing best prac-
tices. A typical class of decentralised applications uses blockchain to manage business processes that interact with
asset registries, including processes for fungible/non-fungible asset registration, escrow for conditional payment, and
asset swap. This paper tackled the integration of business processes and asset management, which requires modelling
support for various types of integrations, and smart contract generation based on the build models.

We proposed methods to specify models for business processes and asset registries, to interconnect them, and
to generate smart contracts using the specified models. To support the proposed MDE approach, we designed and
implemented a tool named Lorikeet. The proposed approach was evaluated in terms of feasibility and functional

correctness using four industrial use cases. Code from the evaluation has been made available for reproducibility. The

18The median is approximate, since the large total number requires using approximate SQL functions like APPROX_QUANTILES.

24 Qinghua Lu et al.

results show that developers can use our MDE approach as implemented in the Lorikeet tool to generate functionally
correct smart contracts based on the business process and asset registry models.

A comparison of the gas consumption of a transaction to the generated smart contracts vs. over more than 292
million contract invocation transactions on public Ethereum shows that the former consumes less gas on average,
but at a slightly higher median. While this data is not suitable for drawing definitive conclusions from a comparison
of absolute numbers - after all, we do not know what functions are implemented by other smart contracts - they
give strong indication that Lorikeet smart contracts are not overly inefficient. Note that lower gas consumption corre-
sponds to higher throughput and, on public blockchains, lower monetary cost - therefore gas consumption is relevant
for private and consortium blockchains as well.

Although we focus on the domain of business processes and asset management in this paper, our approach can
be easily applied to a broad range of blockchain applications. In future work, we plan to extend our MDE approach to

support more comprehensive access control policies across all types of generated smart contracts.

references

[1] Bratanova A, Devaraj D, Horton J, Naughtin C, Kloester B, Trinh K, et al. Blockchain 2030: A Look at the Future of
Blockchain in Australia. Brisbane, Australia: Data61, CSIRO; 2019.

[2] Luu L, Chu DH, Olickel H, Saxena P, Hobor A. Making Smart Contracts Smarter. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security CCS '16, ACM; 2016. p. 254-269.

[3] Abrahdo S, Bourdeleau F, Cheng B, Kokaly S, Paige R, Stéerrle H, et al. User Experience for Model-Driven Engineering:
Challenges and Future Directions. In: MODELS'17; 2017. p. 229-236.

[4] Weber I, Xu X, Riveret R, Governatori G, Ponomarev A, Mendling J. Untrusted Business Process Monitoring and Execu-
tion Using Blockchain. In: BPM'16 Rio de Janeiro, Brazil: Springer; 2016. p. 329-347.

[5] Tran B, Xu X, Weber |, Staples M, Rimba P. Regerator: a Registry Generator for Blockchain. In: CAISE’17, Forum Track
(demo) Essen, Germany; 2017. p. 81-88.

[6] Wood G. Ethereum: A secure decentralised generalised transaction ledger;.

[71 Nakamoto S, Bitcoin: A Peer-to-Peer Electronic Cash System; 2009. Accessed: 31 July 2020. [Online]. Available:
http:/www.bitcoin.org/bitcoin.pdf.

[8] Tschorsch F, Scheuermann B. Bitcoin and Beyond: A Technical Survey on Decentralized Digital Currencies. |IEEE Com-
munications Surveys & Tutorials 2016;18(3):2084-2123.

[9] Omohundro S. Cryptocurrencies, Smart Contracts, and Artificial Intelligence. Al Matters 2014 Dec;1(2):19-21. http:
//doi.acm.org/10.1145/2685328.2685334.

[10] Lu Q, Weber I, Mark S. Why Model-Driven Engineering Fits the Needs for Blockchain Application Develop-
ment. |EEE Blockchain Technical Briefs;https://blockchain.ieee.org/technicalbriefs/september-2018/why-model-

driven-engineering-fits-the-needs-for-blockchain-application-development.
[11] Schmidt DC. Guest Editor’s Introduction: Model-Driven Engineering. Computer 2006 Feb;39(2):25-31.

[12] Evans EJ. Domain-Driven Design: Tackling Complexity In the Heart of Software. Boston, MA, USA: Addison-Wesley;
2003.

[13] Fowler M. Domain Specific Languages. 1st ed. Addison-Wesley; 2010.

http://doi.acm.org/10.1145/2685328.2685334
http://doi.acm.org/10.1145/2685328.2685334
https://blockchain.ieee.org/technicalbriefs/september-2018/why-model-driven-engineering-fits-the-needs-for-blockchain-application-development
https://blockchain.ieee.org/technicalbriefs/september-2018/why-model-driven-engineering-fits-the-needs-for-blockchain-application-development

Qinghua Lu et al. 25

[14]

[15]

(23]

[24]

[25]

[26]

Viriyasitavat W, Martin A. In the relation of workflow and trust characteristics, and requirements in service workflows.
In: Informatics Engineering and Information Science Springer; 2011. p. 492-506.

Carminati B, Ferrari E, Tran NH. Secure web service composition with untrusted broker. In: ICWS'14 IEEE; 2014. p.
137-144.

Mont MC, Tomasi L. A distributed service, adaptive to trust assessment, based on peer-to-peer e-records replication
and storage. In: FTDCS'01; 2001. p. 89-95.

Li G, Muthusamy V, Jacobsen HA. A distributed service-oriented architecture for business process execution. ACM
TWEB 2010;4(1):2:1-2:33.

Squicciarini A, Paci F, Bertino E. Trust establishment in the formation of Virtual Organizations. In: ICDE’0O8 Workshops
IEEE Computer Society; 2008. p. 454-461.

Aalst WMPvd, Dumas M, Ouyang C, Rozinat A, Verbeek E. Conformance Checking of Service Behavior. ACM Trans
Internet Technol 2008 May;8(3):13:1-13:30.

Subramanian S, Thiran P, Narendra NC, Mostefaoui GK, Maamar Z. On the Enhancement of BPEL Engines for Self-
Healing Composite Web Services. In: SAINT'08; 2008. p. 33-39.

Zeng L, Benatallah B, H H Ngu A, Dumas M, Kalagnanam J, Chang H. QoS-aware middleware for Web services compo-
sition. TSE 2004 May;30(5):311-327.

Garcia-Banuelos L, Ponomarev A, Dumas M, Weber |. Optimized Execution of Business Processes on Blockchain. In:
Carmona J, Engels G, Kumar A, editors. Business Process Management Cham: Springer International Publishing; 2017.
p. 130-146.

Nakamura H, Miyamoto K, Kudo M. Inter-organizational Business Processes Managed by Blockchain. In: Hacid H, Cellary
W, Wang H, Paik HY, Zhou R, editors. Web Information Systems Engineering - WISE 2018 Cham: Springer International
Publishing; 2018. p. 3-17.

Lopez-Pintado O, Garcia-Bafuelos L, Dumas M, Weber I. Caterpillar: A Blockchain-Based Business Process Management
System. In: BPM'17 Barcelona, Spain: Springer; 2017. p. 1-5.

Di Ciccio C, Cecconi A, Dumas M, Garcia-Baiuelos L, Lopez-Pintado O, Lu Q, et al. Blockchain Support for Collaborative
Business Process. Informatik Spektrum;.

Lépez-Pintado O, Dumas M, Garcia-Bafiuelos L, Weber I. Interpreted Execution of Business Process Models on
Blockchain. In: 2019 IEEE 23rd International Enterprise Distributed Object Computing Conference (EDOC); 2019. p.
206-215.

Downey P, The characteristics of a register; 2016. Accessed: 31 July 2020. [Online]. Available: https:/gds.blog.gov.uk/
2015/10/13/the-characteristics-of-a-register.

Tran AB, Lu Q, Weber |. Lorikeet: A Model-Driven Engineering Tool for Blockchain-Based Business Process Execution
and Asset Management. In: BPM Demo Track; 2018. .

Weber I, Xu X, Riveret R, Governatori G, Ponomarev A, Mendling J. Using Blockchain to Enable Untrusted Business
Process Monitoring and Execution. University of New South Wales; 2016.

Zelkowitz MV, Wallace DR. Experimental models for validating technology. IEEE Computer 1998 May;31(5):23-31.

Chen S, Zhu Z, Zheng J, Lu Z, Huang Y, Liang M, et al. Rules for quality tracing of import commodities (SN/T 4941-2017).
Beijing, China: General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of
China; 2017.

26 Qinghua Lu et al.

[32] Staples M, Chen S, Falamaki S, Ponomarev A, Rimba P, Weber ABTI, et al. Risks and opportunities for systems using
blockchain and smart contracts. Sydney, Australia: Dataé1 (CSIRO); 2017.

[33] Gottesdiener E. Discover to deliver: agile product planning and analysis. EBG Consulting, Incorporated; 2012.

	1 Introduction
	2 Background and Related Work
	2.1 Blockchain and Smart Contracts
	2.2 Asset management
	2.3 Model-Driven Engineering
	2.4 Business Processes
	2.5 Registries

	3 An Integrated Model-Driven Blockchain Application Development Approach for Business Processes and Asset Management
	3.1 Overview of the Model-Driven Engineering Approach
	3.2 Modelling
	3.2.1 Registry Modelling
	3.2.2 BPMN Modelling

	3.3 Smart Contract Generation
	3.4 Blockchain Interaction

	4 MDE Tool: Lorikeet
	5 Evaluation
	5.1 Feasibility
	5.1.1 ICO Process
	5.1.2 Quality Tracing Process
	5.1.3 Task Outsourcing Process
	5.1.4 Grain Title Creation

	5.2 Functional Correctness and Cost Analysis

	6 Conclusion and Future Work

