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Abstract

Runtime scheduling and workflow systems are an increasingly popular algorithmic component in HPC because they allow full
system utilization with relaxed synchronization requirements. There are so many special-purpose tools for task scheduling,
one might wonder why more are needed. Use cases seen on the Summit supercomputer needed better integration with
MPI and greater flexibility in job launch configurations. Preparation, execution, and analysis of computational chemistry
simulations at the scale of tens of thousands of processors revealed three distinct workflow patterns. A separate job scheduler
was implemented for each one using extremely simple and robust designs: file-based, task-list based, and bulk-synchronous.
Comparing to existing methods shows unique benefits of this work, including simplicity of design, suitability for HPC centers,
short startup time, and well-understood per-task overhead. All three new tools have been shown to scale to full utilization of
Summit, and have been made publicly available with tests and documentation. This work presents a complete characterization
of the minimum effective task granularity for efficient scheduler usage scenarios. These schedulers have the same bottlenecks,
and hence similar task granularities as those reported for existing tools following comparable paradigms.
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Abbreviations Used
API application programming interface
HPC high-performance computing
DAG directed acyclic graph
DFM distributed free monoid
REST representational state transfer
METG minimum effective task granularity

1 Introduction

There can be no doubt that task scheduling is one of the
core infrastructure components of HPC. At a system-level,
an effective scheduler fills up the parallel computer with
work, and obtains statistics on resource utilization. At a
program-level, algorithms are constantly being re-written
for task parallelism. For example, job dispatching is a key
component of the OpenMP runtime, and C++ standards
are expanding with parallel constructs like threads, co-
routines, and futures.[1]

One of the major difficulties facing the widespread adop-
tion of task scheduling methods is the lack of uniformity in
their intended usage and user interface. This is especially
important for task systems, because task completion is a
synchronization event that we would ideally like to exploit
for a variety of other work such as logging, network and
disk I/O, and, of course, inspection of results and creation
of new tasks. This requires strong guarantees that all the
expected outputs of a task are visible before completion
events are triggered.

From this perspective, run-time task schedulers that
make specific assumptions about task outputs can be-
come easier to use and implement. This work introduces
three new scheduling implementations that provide fully
functional, minimal archetypes for user interactions with
workflow schedulers. The major distinctions between them
come from alternative assumptions about where and how
task outputs are specified. The pmake tool is file-based, and
uses a single managing process to push jobs to workers. The
global view of jobs allows an earliest-finish-time priority. It
synchronizes based on presence or absence of output files.
The dwork tool is network-service based. Worker processes
interact with a task-list server to retrieve and record com-
pletion of tasks by name. Its view of the task graph lends it-
self to a FIFO scheduling strategy. It synchronizes through
a single server that guarantees all dependencies of a task

are complete before serving that task to any worker. The
mpi-list tool maintains a unique assignment of data ele-
ments to processes, so that no synchronization is needed for
local operations. It targets single-program, multiple-data
operations within the MPI (message-passing) paradigm of
synchronization.

These concepts have all appeared before in multiple
forms. What is new and novel here is that they have been
stripped to their essentials and made as simple as possible.
Limiting each tool to implement only a single synchroniza-
tion mechanism makes the assumptions clear and simplifies
the user interface, debugging process, and system installa-
tion.

Task scheduling systems are productivity tools when
they are easy to use, and so fitness-for-purpose is most im-
portant. However, they can also be sources of overhead for
a large computation. I quantify the overhead of each task
scheduling tool in order to understand the ‘minimum ef-
fective task granularity’ (METG). This measure was intro-
duced by Ref [2] to measure the overhead incurred during
actual task processing. Basically, it measures (in seconds)
the task difficulty needed to equally divide total execution
time between scheduling overhead and actual work done
on the task. Any task taking a bit longer than this will
spend the majority of its time in the computation phase.
They found that there are large number of scheduling sys-
tems that achieve METG values of 0.01 to 0.1 milliseconds
(ms). However, general-purpose task schedulers like Spark,
Dask, and Swift/T require hundreds of ms, likely due to
maintaining additional job metadata.

The results section of this work will show that the un-
derlying assumptions of the task distribution method can
change the key parameters in the scaling equation. Specifi-
cally, the METG can depend on the machine size. The de-
sign of the task manager determines the functional form of
that dependence. At the configurations tested here (1-6912
ranks), the METG varied between 0.5 ms and 5 seconds
depending on the tool used. In practice, this means that
certain types of schedulers require larger batches of work
to be practical.

The tools presented here have already proven useful on
several projects underway on the Summit supercomputer,
including managing hundreds of molecular dynamics sim-
ulations and analysis steps pmake,[3] running docking and
AI-based rescoring (dwork),[4] and summarizing results
(mpi-list).[5] This work shows that, when used correctly,
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they achieve full parallelism with negligible run-time over-
head.

Section 1.1 provides a brief classification of some pop-
ular runtime task schedulers, showing key distinctions in
their implementation ideas. Section 2 presents the design
of three new task schedulers, pmake, dwork, and mpi-list.
Section 3 presents the details of this work’s evaluation
method to quantify METG. Section 4 provides numerical
results, which are discussed further in sections 5 and 6.

1.1 Review of existing schedulers

There are multiple trade-offs implicit in the design and
selection of schedulers. Ref. [6] provides a taxonomy and
Ref.[6] gives an extensive feature comparison. Table 1 com-
pares features of schedulers considered for the applications
motivating this work.[3] Note that the list is heavily biased
toward applications intended to run datacenters because I
am interested in tracking progress of ‘campaigns’ in a fault-
tolerant way. For this work, I define a simulation campaign
as a collection of many compute-intensive tasks. In some
cases, the entire campaign can collectively require more re-
sources than available from the batch scheduler (e.g. due
to limits on available nodes and run-times). Task managers
can achieve fault tolerance over campaigns by tracking the
list of pending tasks and tasks resulting in errors. The first
three columns in the table show that most workflow man-
agers built for campaigns also provide database backends
and an API to query task status. This fault tolerance comes
at the cost of increased latency for tracking and assigning
tasks.

Setting up and interacting with the task manager is also
important. The ‘Language’ column shows what program-
ming languages are available to create task graphs. Most
task systems are focused tasks forming a directed acyclic
graph (DAG), and interface with Python. Most scientific
computing programs, however, use a mix of C, C++, For-
tran, and Python, and not all computations can be ex-
pressed as a DAG. The ‘Dynamic’ column shows how the
task manager implements updates to the task graph from
the computation itself (while in-progress). Most task man-
agers support appending tasks to the graph, but few con-
sider this as a design feature. Some have a loop construct
to explicitly support iterating a task multiple times. Fire-
works allows general rewrites of the task graph, but does
not provide a consistent execution semantics. Regent pro-
vides constructs to dynamically utilize hierarchical proces-
sor groups.

The last column describes the way tasks are assigned to
workers. In pull-based systems, the workers request tasks
from the manager. These systems are easier to setup than
push-based managers, since the manager process does not
need a node-list at startup. Push-based systems like Spark
and Dask attempt to optimize task placement. Signac and
RADICAL-Pilot use a push system so that groups of nodes
can be allocated at once.

In operational terms, the three task schedulers intro-
duced in this work, (pmake, dwork, and mpi-list) are clos-
est to SnakeMake, RADICAL-Pilot, and py-sparkling[20],
respectively. Key differentiating features of the present
tools include a smaller API and better integration with
the MPI-inside-batch job paradigm appropriate for Sum-
mit and Andes systems. pmake uses all resources within
a single batch job, avoiding indefinite batch queue wait-
ing times and maximizing multi-node usage. dwork has a
single client and server. This relies on the user to launch
clients with the appropriate resources instead of specify-
ing them to the workflow system. Neither py-sparkling nor
Spark distribute datasets over MPI ranks.

Apache Airflow, dwork, Signac/flow, SnakeMake, Fire-
works, Pegasus, and Dask.distributed are all built around
the basic idea of providing a central database of tasks with

task-dependencies forming a DAG. Most provide a pro-
grammatic way of constructing tasks and specifying their
dependent tasks. Python and yaml fit naturally into this
level of abstraction because of Python’s design goal as an
easy shell interface and its large ecosystem of libraries.
Most tasks at this level of abstraction are expected to
last around tens of seconds. dwork also implements the
DAG idea. It allows for dynamic tasks by implementing
a ‘rewrite’ mechanism to add new dependency edges to a
running task. This replaces the running task back into the
queue to be re-run when the newly added dependencies are
complete.

Resque, RADICAL-Pilot, and MetaQ do not maintain
graph dependencies for tasks. Instead, tasks are expected
to be trivially parallel. Resque and RADICAL-Pilot do
provide the option of submitting other, follow-on, tasks.
Resque tasks interface well with Ruby, since they can be
yaml-serialized Ruby function code. Its intended use case
is to carry out long-running tasks needed to manage files,
eventually updating github’s web databases. RADICAL-
Pilot is intended to run Python and shell tasks. MetaQ
provides a Slurm-like syntax for specifying resources. It is
intended to bundle multiple batch-queue jobs into a single
batch job to reduce overall queue wait times and increase
(outer) batch job sizes.

Spark and mpi-list are unique in that they do not use
the DAG-of-tasks concept. Instead, work distribution is
based on a globally known assignment of data to processors
where computations are carried out. Because of this, its
programming model is bulk-synchronous single-program,
multiple data. Their method of task-addition is described
as ‘interactive’, since the program dynamically chooses its
execution path at the top-level of execution.

Regent and Parsec target HPC workloads. These are
not expected to out-live a job allocation, so do not have
database backends. They also employ special distribution
strategies to optimize for minimal latency between tasks.
Specifically, both Regent and Parsec use a shared execu-
tion model where every worker explicitly models (at least)
the local task graph and its mapping to compute resources.
Leaving out a central database reduces communication la-
tencies.

Compared to the existing runtime task scheduling sys-
tems, pmake fits into the class of file-directed, make-like
job schedulers. This design decision is a natural parallel to
the Make build tool. The mpi-list tool follows the general
ideas of Spark, but is more compatible with HPC environ-
ments. In particular, it is based on mpi4py[21], simplifying
job launch. Instead of a resilient distributed dataset hold-
ing a list of partitions, mpi-list uses a DFM, which holds
a list of arbitrary objects. This makes it operate equally
well holding lists of plain integers, numpy or cupy arrays
or pandas DataFrames. The DAG-of-tasks concept under-
lying dwork is not unique. Instead, what dwork provides
is a less obtrusive management layer. The only purpose of
dwork is to define a network API for creating and assign-
ing tasks. This borrows a design idea from resque, and
provides a much simpler framework for feature expansion
than other available options.

2 Description of the Design and User
Interface

This section describes the design and implementation of
three separate task schedulers. The designs differ based on
their intended use pattern.

2.1 pmake

Pmake is a parallel version of the ‘Makefile’ concept. Every
task corresponds to one or more output files, which deter-
mine whether the task needs to be run. Rules describe
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Target Query Persistence Language Dynamic Push/Pull

Apache Airflow[7] datactr REST/CLI SQL Py modify globals[8] pull from broker
Apache Spark[9] datactr CLI checkpoint Scala/Py/R/Java interactive push
mpi-list∗ datactr no no Py interactive push
Resque[10] datactr REST Redis Ruby append pull
RADICAL-Pilot[11] modeling ? Mongo Py append push
MetaQ[12] modeling no file shell no push
Signac/flow[13] modeling CLI/WebUI file or Mongo Py append push
SnakeMake[14] modeling CLI file shell/Py no push
pmake∗ modeling CLI file shell no push
Fireworks[15] modeling CLI/WebUI Mongo Py rewrite pull
Pegasus[16] modeling CLI/WebUI SQL DSL/Py ? push
dwork∗ modeling ZMQ/CLI TKRZW Proto+ZMQ replace pull
Dask.distributed[17] analytics Py API no Py ? push/steal
Regent[18] HPC no no Regent hierarchical shared
Parsec[19] HPC no no DSL loop shared

Table 1: Feature comparison of present work (∗) with popular workflow schedulers. Missing entries (?) indicate features that
were not able to be determined from the tool’s documentation. datactr: cloud or HPC datacenters, REST: HTTP interface,
CLI: command-line interface, WebUI: web user interface, Py: Python, DSL: domain-specific language

how to create output files from input files. Pmake is a sin-
gle Python program that reads a list of rules and a list of
target files and runs all tasks in the task-graph.

Because the pmake process views the entire task graph,
it is able to assign earliest start times to all tasks by
traversing the DAG from leaf (immediately executable) to
root (most dependent) nodes. Instead of using the time
directly, it uses the total node-hours consumed by a task
and all its transitive successors to assign a priority to every
task. Then, it uses a greedy strategy to choose the highest
priority task from those runnable at each time point.

In place of the Makefile, pmake employs a rules.yaml

file. An example rules.yaml is shown in listing 1a. The
two rules form a sequence simulate → analyze, which
eventually produces files like an 1.npy, an 2.npy, and so
on. In operation, pmake will generate simulate.n.sh from
the setup and script section and execute it in the back-
ground sending its stderr and stdout to simulate.n.log.
It continues until it runs out of available allocated compute
nodes. Exiting scripts release their nodes. Scripts exiting
with a zero-return value trigger any waiting rules.

There are several important design decisions shown from
this example. Rules have extra meta-data compared to
standard makefiles: i) a resource set, ii) a list of multiple
input and output files, iii) a setup script, and iv) automatic
creation of an {mpirun} command, which expands to the
appropriate srun or jsrun, depending on whether Slurm or
LSF scheduler is used. Also, the syntax for variable substi-
tution is determined by Python’s format() function. For
rules that can make multiple output files, one variable is
allowed, and is defined by matching on names in the out

section.
A resource set specifies a division of the allocated nodes

for a job into equally-sized resources – each with a fixed
number of CPUs and GPUs. Usually, one MPI rank is as-
signed to each resource set, but it is also possible to set
ranks = R to launch R MPI ranks on each resource set
instead. Resources in pmake also include time (specified in
minutes). This is used by pmake to prioritize tasks ready to
be run on the machine by estimating earliest-finish time.

The inp section lists files required before the rule can be
triggered. Like make, pmake stops searching for rules when
it finds all the files needed to build its outputs. Inputs can
also be specified using a loop directive (not shown), which
lists input files generated by filling in a template with a
Python iterable.

Often the same set of operations are run across multiple
problem instances. Listing 1b shows a targets.yaml file.
This file lists out the top-level targets the user would like
to build. Each target has an arbitrary name and attributes
available to be substituted into rules that run for the tar-
get. Reserved keywords for the target are dirname, out,

and loop. All the target files are relative to the dirname.
The out and loop file lists have the same format as for
inputs to rules.

When a rule is run, its setup and job-scripts are con-
catenated together and pre-pended by a set -e and a cd

into the target’s dirname. The result is written to a shell
script ‘rulename.n.sh’ named after the rule name and its
template variable, n, (if present). That shell script is exe-
cuted locally by a call to popen, and its output stored in
a logfile, also named ‘rulename.n.log’ after the rule.

The use of Python’s format function allows Python code
to be spliced into the script. Substitution happens in or-
der from targets to rules, so that variable references will
only work for variables declared earlier. The order is: i)
members of the target (other than loop – these are first,
so not substituted), ii) variables in the loop directive are
substituted sequentially, iii) members of the rule (other
than script), iv) script directive (which also gets ‘mpirun‘
defined from the scheduler). One drawback is that braces
({}) must be escaped.

2.2 dwork

dwork is a client/server API implementing a bag of tasks.
Because tasks can have dependencies, these tasks can form
a directed acyclic graph (DAG). When tasks insert new
tasks, the computation expressed by the graph can create
loops. Table 2 lists the key messages implemented by the
dwork API. For the implementation, each of these mes-
sages is encoded in Google protocol buffers[22] and passed
through ZeroMQ.[23]

Because the server is not assumed to have a complete
view of the task graph, it uses a first-in-first-out assignment
strategy for tasks. Workers that request a task are served
with the oldest task inserted into the database that is ready
to run (based on completed dependencies). On the other
hand, tasks that are re-inserted back into the graph are
added to the front of the priority queue. This double-ended
queue setup is exactly the same one used for work-stealing,
where remote workers resume the ‘oldest’ task, while the
local processor executes the ‘newest’.

The server for dwork (dhub) uses a TKRZW[24]
database to store the task graph. Like Redis[25] it can save
and restore the database to file for persistent state. Unlike
Redis, its API is centered around creating tasks and as-
signments. The task database internally contains only two
tables: a table of join counters and successors for each task
and a table of task metadata (name, originator, etc.) for
each task. Other run-time information, such as the list of
tasks ready to run, can be generated from these tables on
startup.
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s imulate :
r e s o u r c e s : { time : 120 , nrs : 10 , cpu : 42 , gpu : 6}
inp :

param : ”{n } . param”
out :

t r j : ”{n } . t r j ”
setup : module load cuda
s c r i p t : |

{mpirun} s imulate { inp [ param ]} out { [ t r j ]}

analyze :
r e s o u r c e s : { time : 10 , nrs : 1 , cpu : 1}
inp :

t r j : ”{n } . t r j ”
out :

npy : ” an {n } . npy”
setup : module load Python/3
s c r i p t : |

{mpirun} Python compute averages . py { inp [ t r j ]} {out [ npy ]}

(a) Example rules.yaml file with make-rules for executing parallel programs.

sim1 :
dirname : System1
out :

npy : ” an 0 . npy”
loop :

n : ” range (1 , 11 ) ”
tg t :

npy : ” an {n } . npy”

(b) Example targets.yaml file listing out high-level output files.

Fig. 1: Pmake program inputs for a typical simulate, then analyze workflow. This workflow creates System1/an 0.npy, . . .,
System1/an 10.npy by running the simulate and analyze rules multiple times from the System1 directory.

I also provide a command-line tool (dquery) as an exam-
ple client that can interact with the API from shell scripts.
Usually, users write their own software to interact with
dhub. This works well in practice, since tasks are software
anyway, and protobuf and ZeroMQ are supported in a very
wide variety of programming languages.

The API is consumed both by users of the system (who
create tasks), and processing nodes (who call Steal, Com-
plete and Transfer). Figure 2 provides pseudocode for the
operation of the client and server around these API calls.
Internally, the scheduler maintains the successors of ev-
ery task, along with a join-counter. The join counter goes
to zero when all the task’s dependencies are marked com-
pleted. It also maintains a mapping from Worker-s to sets
of Task-s assigned to that worker. The scheduler will not
assign a task (via responding to Steal) unless all of the
task’s dependencies have been marked completed.

If workers have unique hostnames, calls to ‘Exit’ can be
run by the worker or by the user to recover from a node
failure or abort. When receiving such a notification, the
queuing system moves tasks assigned to the exited worker
back into the pool of ready tasks.

This implementation signals completion of the task
graph by responding three different ways to ‘Steal’. Usu-
ally, a task is provided to the worker. In case no tasks are
ready, the manager responds with a ‘NotFound’ message.
In case all tasks are complete, the manager responds with
‘Exit.’

Valid task graphs do not contain cycles. This is mostly
guaranteed by the syntax for creating tasks. The only po-
tential way to add a cycle is during ‘Transfer’. The trans-
fer operation moves a task back from a worker (where
it was assigned) to the manager. New dependencies (pre-
requisites) can be added to the task at this point. If the new
dependencies are waiting for a task that transitively de-
pends on the transferred Task itself, this is a user-error that
creates deadlock. Observationally, such tasks will never en-
ter the ‘ready’ state, and thus never be served to workers.

2.3 mpi-list

The mpi-list tool is a Python package that provides a
functional API for manipulating lists. The syntax and de-
sign is inspired by Spark,[9] although the startup and com-
munication mechanisms of mpi-list are purely based on
mpi4py.[21] Because all MPI ranks execute the same oper-
ations on their local portion of the dataset, its scheduling
model is bulk-synchronous-parallel.

Mpi-list provides only two classes - a ‘Context’ to hold
the MPI communicator information, and a ‘DFM’ object
to represent distributed lists. DFM stands for distributed
free monoid. The ‘DFM’ object stores only the set of list el-
ements local to each rank. The global list is logically main-
tained in an ordered state, with a contiguous and ascend-
ing subset of the list assigned to each rank. New ‘DFM’
objects are created with ‘Context.iterates(N)’, which cre-
ates a distributed list of N sequential integers. Rank p
of P stores the subsequence starting at p int(N/P ) +
min(p,N mod P ).

It is not usually necessary to index local list elements di-
rectly. Instead, operations like ‘DFM.map(f)’. Create new
lists by applying the function, f , to each list element.
There are also functions for both full reduction and paral-
lel prefix-scan reduction. To move elements between ranks,
a ‘DFM.repartition’ and ‘DFM.group’ are implemented.

The ‘repartition’ function does not simply move list el-
ements, but instead treats each list element as a complex
list-like datastructure containing multiple records. This is
because the intended usage of mpi-list is to store numpy

or cupy arrays, or pandas dataframes. The repartition
function thus requires three functions: one reporting the
length of the stored objects, one able to subdivide the ob-
ject into multiple chunks, and another able to combine mul-
tiple chunks together again. Obviously, the mpi-list im-
plementation is handling the mundane counting and com-
munication tasks.
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Query Parameter Response Description

Create Task, [Task] - Create a new task with the given de-
pendencies.

Steal Worker Task? | Exit Deque (steal) a ready task to be run
by the worker.

Complete Worker, Task - Notify the scheduler that a task is
complete.

Transfer Worker, [Task] - Replace the task and add new de-
pendencies.

Exit Worker - Notify the queuing system that a
processing device is down.

Table 2: Minimal API for maintaining a distributed a task list. Workers send these queries to the task manager, which
replies with the response. Repetitions of zero or more entries (lists) are denoted by brackets. The data-type for Worker is
implemented as a string, while Tasks are defined as protocol buffer messages to allow passing additional meta-data about
the task.

function client-loop
while server responds with task do

copy-in task inputs
execute task
if task error? then

if self-diagnostic fails then
inform server of Exit
exit

else
inform server of error

end if
else

inform server of completion
end if

end while
end function
function Steal

if ready tasks? then
pop a task from the ready-list
mark as assigned to client
send to client

else if waiting tasks? then
send NotFound

else
send Exit

end if
end function
function Complete(Worker, Task)

delete assignment of task to worker
if success? then

mark successors ready
else

add successors recursively to errors set
end if

end function
function Exit(Worker)

move node’s assigned tasks back to ready set
end function
function Create(Task, Dependencies)

if unfinished dependencies? then
add new task to successor list of all dependencies
add to waiting list

else
add to ready list

end if
end function
function Transfer(Task, Dependencies)

delete assignment of task to worker
if unfinished dependencies? then

add new task to successor list of all dependencies
add to waiting list

else
add to ready list

end if
end function

Fig. 2: Client/Server Interaction API Implementation in dwork. Production client code would use an assembly-line pattern
to overlap these 4 steps.
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from m p i l i s t import Context
import xarray as xr

C = Context ( )
dfm = C . i t e r a t e s (N) \

. f latMap ( lambda n : r ead s co r ed ( data , prot , n ) ) \

. map( b e s t s c o r e s )
n = dfm . len ( )
i f C. rank == 0 :

print ( f ”Read {n} pq f i l e s to {C. procs } p r o c e s s e s in { t1−t0 } s e c s . ” )
r e t = dfm . map( s t a t ) . c o l l e c t ( )
i f C. rank == 0 :

print ( f ” Co l l e c t ed s t a t s to rank 0 in { t3−t2 } s e c s . ” )
df = pd . concat ( r e t )
df . to parquet ( out / ”summary . pq” )
l o = df . l o c [ ’ min ’ ]
h i = df . l o c [ ’max ’ ]

# broadcas t his togram parameters
lo , h i = C.comm. bcast ( ( lo , h i ) , root =0)
H = Hist ( lo , hi , 301 , 201)
r e t = dfm . map( lambda df : H. h i s2d ( df , ’ s c o r e ’ , ’ r3 ’ ) ) \

. reduce ( npsum , 0 )
i f C. rank == 0 :

print ( f ” Co l l e c t ed histogram1 in { t3−t2 } s e c s . ” )
r e t . t o n e t c d f ( str ( out / ” s c o r e r f 3 . nc” ) )

Fig. 3: Production code snippet showing use of mpi-list to read a dataset of parquet files and create a 2D histogram in
parallel. This example read 2592 parquet files (80 gigabytes compressed) to 320 processes (20 nodes of OLCF Andes) in 4.0
seconds, collected stats in 1.5 seconds, then output its histogram in 0.4 seconds.

Similarly, the ‘group’ function requires, as input, a func-
tion to turn a stored object into a dictionary mapping des-
tination list indices to lists of objects that should be sent to
that index. mpi-list moves all the data to its newly deter-
mined MPI rank, and calls the user’s combination function
on each new index to re-form the list back into the final
output object.

Mpi-list is released in the pypi package index, and con-
tains full documentation and functionality tests.

3 Evaluation Method

Tools for managing launching and logging of tasks can
be measured for performance efficiency by quantifying the
overhead with respect to sequentially running all tasks di-
rectly on a single compute resource. Sometimes, this over-
head can vary when computational resources are actually
doing work - and so it can be helpful to measure the over-
head during actual task processing. The ‘minimum effec-
tive task granularity’ (METG) has been introduced as a
descriptive measure in this case.[2] Basically, it measures
(in units of seconds) the task difficulty needed to equally
divide observed run-time between scheduling overhead and
actual work done on the task. If the average execution time
per task equals the METG, then the total run-time (ex-
ecution plus overhead) will be twice the number of tasks
times the METG.

In practice, the effect of overhead is negligible when tasks
are a few times larger than the METG. The METG gives
a helpful guideline when dividing up work, since in many
cases task sizes can be arranged to be larger than the
METG. Also, the typical task size provides an estimate
of the computational idle time caused at the completion
of a sequence of tasks. All the task managers here operate
inside a Slurm or LSF job allocation. Hence, out of the re-
sources allocated to the job, all but one task’s worth could
remain idle for this time.

Although the task schedulers presented here were first
put to production use on computational chemistry re-
search with mixed CPU/GPU workloads,[3,4,5] the non-
uniformity of those tasks prevent quantitative comparison.

This work presents a standard, synthetic benchmark to
highlight overheads. I chose GPU-intensive matrix multi-
plication because of its importance to applications in high-
performance computing. There, large (often machine-size)
matrices are divided into tiles to distribute the data and
computational work among all available resources. I apply
the three schedulers here to compute a series of ATB op-
erations, where A and B are single-precision floating point
matrices with sizes between 256 and 8192. This operation
appears very often as a building block of linear algebra
calculations like computation of the wavefunction overlap
matrix, S = ψ†ψ, in quantum mechanics.[26,27] In those
applications, ψ may consist of hundreds of thousands of
tiles like A and B, giving rise to millions of tasks. In these
workflows, however, neglect the hypothetical communica-
tion steps needed to sum the results in computing S.

Each task management system was benchmarked using a
weak-scaling methodology – where number of tasks scaled
with processors. The scale was set to 1024 total kernel ex-
ecutions per rank. Every run used 1 MPI rank per GPU,
except for baseline runs intended to determine the mini-
mum compute time needed to run the kernel itself (which
used only 1 GPU). For pmake and dwork, tasks consisted
of 256 iterations of the matrix-multiplication kernel. For
mpi-list, one single list containing all problems was cre-
ated, and then the kernel was run inside a map-function.
In practice, this allowed each rank to run its 1024 assigned
kernel runs inside a for-loop.

Note that this division means that all workflow systems
encounter the startup costs of spawning MPI jobs, initializ-
ing the GPU and allocating memory only once – except for
pmake. pmake encounters the batch spawn and ‘alloc’ cost
four times per rank. These costs cannot reliably be over-
lapped with computation, and determine pmake’s METG.

mpi-list, on the other hand, has a METG determined
entirely by imbalance in execution times. Since every pro-
cess runs exactly 1024 kernels, processes that get inter-
rupted or have slower than usual GPU accesses will hold
back progress on all the other ranks. Its METG is thus
determined by the point at which idle time (slowest minus
fastest completion) equals the ideal task completion time.
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In other words, the METG for mpi-list is the “slowest
minus fastest” completion time per task.

For dwork, the overhead per-task comes from receiving
its next task via communication with the task database.
Thus, its METG is the latency time for accessing the
database multiplied by the number of MPI ranks. The latter
multiplication happens because the database must serve
every rank with a task at a rate faster than the time needed
for one worker to complete a single task in order to keep
that worker busy.

Table 3 lists the software and dependency library ver-
sions for the scheduling tools tested in this work. The
calls to cublas-sgemm were made via blaspp for pmake and
dwork, or via cupy for mpi-list.

Package Version

pmake commit 05f727

blaspp[28] 2021.04.01
cuda 11.2.0

(a) Software used by pmake and its ker-
nel.

Package Version

dwork commit 88ebb1

zeromq 4.3.3
cppzmq 4.7.1
protobuf-cpp 3.14.0
TKRZW 0.9.3
blaspp[28] 2021.04.01
cuda 11.2.0

(b) Software used dwork and its kernel.

Package Version

mpi-list 0.3

Python 3.7.10
mpi4py 3.0.3
cupy 8.5.0
cuda 10.1.243

(c) Software used by mpi-list and its ker-
nel.

Table 3

Tests were conducted on the Summit supercomputer.
Each summit node has two sockets, each socket has 3
NVIDIA(R) V100 GPUs and 21 usable IBM power9 pro-
cessor cores. Software versions are listed in Table 3.

4 Scaling Results

Fig. 4 shows computational efficiency (GFlops) of the task
systems as a function of the block size. All task systems
achieve peak theoretical efficiency for the hardware (14 ter-
aflops per GPU in single-precision). This should always be
achieved when the problem sizes are large enough so that
computation time is much larger than any other overhead
time per calculation. However, the maximum efficiency is
not achieved for small tile-sizes. This is partially because
of the GPU and call path to the blas library itself, and
partially because of the overhead of the schedulers.

Figure 4(upper) hides potential sources of overhead that
create a difference between the single-GPU run time and
the parallel, task-scheduled run time. Thus, all further
plots are of efficiency relative to single-GPU compute time,
as is done in the lower part of Fig. 4. This measure high-
lights losses due to task scheduling, and ignores losses due
to tile-sizes that don’t saturate the GPU or (for Python)
overcome the function call overhead. The measure serves
to normalize the execution time across frameworks because
there are small differences in initialization and multiplica-
tion time (notably mpi list calls the cupy library). The re-
sulting plots highlight scheduler overhead instead of these
details.

The lower portion of Figure 4 reproduces the minimum
effective task granularity (METG) plot of Ref. [2]. Compu-
tational efficiency, plotted on the vertical axis, is defined as
ideal divided by actual per-task execution time. The hori-
zontal axis is the task’s ideal, single GPU time. The METG
is defined as the task size where computation time equals
half the total execution time per task. It is visible as the
sharp increase in efficiency at a particular task size. This
task size is helpful to state in terms of the ideal, ‘single-
GPU’ execution time, as we have done here. Note that, for
pmake and dwork, one task is defined as 256 iterations of
the multiplication kernel.

Figure 5 shows the breakdown of time spent per task
when running the test workflow. Each of the three run-
time scheduling tools have different sources of per-task
overhead. The pmake tool launches job steps during a run-
ning allocation – and so incurs both overhead from the job
step launch (jsrun), and from startup tasks of the job itself
(alloc). Neither of these tasks can be overlapped with com-
putation easily. The dwork tool only stops work to request
a new task from the server, and to record completion (com-
munication). These two can be effectively overlapped with
computation. The mpi-list kernel launches occur locally,
so the only overhead is at synchronization points in the
code. The ‘sync’ time measures this end-of-job synchro-
nization. It is equivalent to the time difference between
the fastest possible and slowest encountered run-times per
rank.

Table 4 summarizes scaling measurements of these over-
head components. Job step launch times increase roughly
logarithmically with the number of MPI ranks. Task
startup (GPU memory allocation) is constant independent
of the job size or tile size. Communication time only ap-
pears in dwork when computation time is too small to
hide it. For mpi-list, the METG equals the disparity be-
tween fast and slow computation times. This is shown by
the synchronization latency column. It is slowly increasing
with number of ranks. Synchronization latency is indirectly
measured for mpi-list by subtracting the completion time
from the 1-GPU program completion time.

Based on the performance at 846 ranks, the METG for
mpi-list, dwork and pmake are 0.3, 25, and 4500, millisec-
onds, respectively. These can be compared to the results in
Fig. 9 of Ref. [2]. There, 864 ranks correspond to between
16 and 32 nodes. Although the interconnect and proces-
sor hardware are different, the schedulers in that work fall
into two classes – those with METG between 0.01 and
10 milliseconds (Chapel, Charm++, MPI, OpenMP task,
OpmSS, PaRSEC, Regent, StarPU, TensorFlow, X10), and
those with more than 1000 (Spark, Swift/T and Dask). In-
terestingly, this work’s Spark-like mpi-list has the best
performance, probably due to the lack of file I/O. dwork
falls in-between the two groups, and pmake is in the second
group.

The bulk of pmake’s waiting time is attributable to the
startup time for executing the ‘jsrun‘ command, which al-
locates a group of processors to execute an MPI program
in parallel. We can see that this increase in the METG is
due to an approximately logarithmically increasing task-
job launch times.

For dwork, the METG is negligible on a single MPI rank,
but increases proportional to the number of ranks. The rel-
evant number from Table 4 is the 23 microseconds needed
for the Steal/Complete API calls.

Unfortunately, its METG scales linearly with the num-
ber of concurrent compute ranks. For dwork, the maximum
communication value is achieved by a kernel that does no
work. In that case, the server is the bottleneck, and the
time equals the total number of tasks assigned times the
round-trip time of the network API per per-task. I have
used a 2-level forwarding tree, where each rack of 18 Sum-
mit nodes communicates with a rack-leader. The rack lead-
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Fig. 4: Absolute (upper) and relative (lower) computational efficiency per GPU measured using total time the workflow
scheduler spends in its compute phase. One-time workflow startup phases for each are not present in this figure, but are listed
Table 4.

ranks jsrun time alloc
comm
(per task)

sync time
per 1024 tasks

Python alloc Python imports dwork connection

6 0.987 1.81 23µ 0.09 2.23 1.05 1.54
60 1.783 1.81 23µ 0.17 2.23 0.55 -

864 2.336 1.81 23µ 0.33 2.23 2.82 2.74
6912 3.823 1.81 23µ 0.47 2.23 26.65 13.32

Table 4: All data are times in seconds. The symbol µ denotes a factor of 10−6. Column headers in bold font are costs incurred
per-task (depending on the workflow tool). Constant values were averaged over all test runs because their timings did have
significant run-to-run variation. Other columns are useful measures of tasking system startup time.

8



pmake

compute alloc jsrun communicate sync

dwork

mpi-list

256 512 1024 2048 4096 8192

(a) Six ranks (single node) calculation.

pmake

compute alloc jsrun communicate sync

dwork

mpi-list

256 512 1024 2048 4096 8192

(b) 864 ranks (144 node) calculation.

pmake

compute alloc jsrun communicate sync

dwork

mpi-list

256 512 1024 2048 4096 8192

(c) 6912 ranks (1152 node) calculation.

Fig. 5: Pie-charts showing time breakdown between compu-
tation and each overhead cost for each scheduling tool (y-
axis). Increasing matrix tile-sizes (x-axis) provide enough
computation to overwhelm tasking overheads. METG can
be seen as the point where the computation occupies more
than half the time. Note that for pmake and dwork, each
task carries out 256 matrix multiplications, so only four
tasks are sent to each rank during a run. pmake shows
sync-time for large runs because each pmake-task occupies
864 ranks.

ers forwards all messages to a single task server running on
the job’s launch node. As the number of ranks increases,
the communication time measured is this two-hop time.

5 Discussion

The pmake tool provides a makefile-like syntax to run a se-
ries of srun or jsrun launches, as if they had been typed
into a job-script directly. It’s scaling behavior is a direct
consequence of this choice. Because job launch can take
tens of seconds, tasks must take at least this long in order
to make effective use of the machine with this approach.
This is usually the case when bundling together many jobs
that would otherwise have been run on their own as iso-
lated batch scripts. Scanning file presence and construct-
ing a task graph can cause delays too, but are generally
worthwhile because they can avoid duplicating work.

The dwork tool is built around a client/server model.
Its task dispatch latency shows typical behavior following
from this model. Message transfer rates using ZeroMQ[23]
and hash-table entry read/write rates form lower bounds
on the latency. I have avoided additional costs deriving
from establishing TCP connections by establishing a tree-
shaped message forwarding chain. I have added additional
costs by wrapping transmitted tasks and messages into
Google protocol buffers.[22] All of these choices combine
to a measured cost of about 23 microseconds latency per
task.

Although 23 microseconds of latency seems very small,
this number means that only 44,000 tasks can be dis-
tributed to all workers per second. For a job with 44,000
MPI ranks, every task must then last at least one second in
order to achieve full utilization. Even then, receiving a re-
sponse could take half a second. This waiting time can be
hidden by overlapping computation and communication,
which I have implemented in the client. With overlapping,
the task granularity is controlled by the task manager’s
maximum rate of dispatching jobs.

Two simple strategies are worth pursuing for increasing
task dispatch rates further. The first is sending multiple
tasks per ‘Steal’ request. I have already implemented this
as a separate ‘Steal n’ request. The second is to replicate
the server by creating multiple task databases that dis-
tribute tasks among themselves. I have designed the API
to adapt to this pattern in the future, since delegating a
task to another task database is logically the same as as-
signing it to a worker.

The last new task manager, mpi-list, has characteris-
tics that follow from the Spark paradigm. Execution hap-
pens where data elements sit, and each process maintains
its own list of local data elements. It is not suited to general
task graphs. Instead, it works best on map-reduce type op-
erations over datasets that can fit in the machine’s mem-
ory. mpi-list has the smallest latency per task because
our tasks do not include file operations. In my implemen-
tation, job-launch and network communication is based on
MPI, making it easy to use on HPC systems. I observed
a moderately large startup time for the initial launch of
Python. This is not a per-task cost, but it is troubling
that it increases with MPI ranks. Since this is likely due to
I/O overhead from all ranks importing libraries on startup,
future work should investigate using the spindle tool to re-
duce this cost.[29]

All of the task latencies observed for workflow schedul-
ing systems presented in this work are on par with similar
measurements in the literature. mpi-list has a latency of
0.3 ms, entirely due to barrier synchronization costs. This
is slightly above the fastest schedulers from Ref. [2] because
the synchronization is global, and not point-to-point. The
METG for mpi-list is the largest, around 1-5 seconds.
Even still, this is comparable to the smallest METG ob-
served in Ref. [2] for the Spark, Dask, or Swift/T workflow
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systems. dwork has an overhead of 1 second at the largest
node counts, comparable or smaller to that measured in
Ref. [2] for Regent, StarPU, and Parsec.

Although the METG sets a strong-scaling limit, there
are many important features for workflow scheduling sys-
tems including flexible user interface, reproducibility and
tracking, ease of installation, and simplicity.[30] These mul-
tiple trade-offs necessitate making situation-specific and
qualitative comparisons.

6 Conclusions

This work has successfully implemented and used in
production several task managers for distributing asyn-
chronous, parallel work. All three are very well suited for
HPC centers with batch systems and MPI. Arguably, one
of their greatest advantages is the simplicity of the imple-
mentation and user interface. The conditions under which
each of the systems will execute a task are straightforward.
Task tracking is not complicated, and the minimum effec-
tive task granularity is well-characterized.

Each of these scheduling systems serves as a base of use-
ful functionality which can be modified for more efficient
and specialized uses in the future. The pmake scheduler
is very similar to the more full-featured SnakeMake[14],
so pmake’s idea of specifying a parallel resource set
and machine-dependent substitions for {mpirun} can be
adopted into that code. The mpi-list code seems to fill
a new niche for Spark-like computations inside MPI. Nev-
ertheless, it can be limited by memory bounds on large
datasets. Further work can eliminate this issue without
substantial changes to mpi-list itself by loading wrap-
pers for the data elements that maintain the data on disk
except during processing.

The dwork client/server model can be substantially ex-
panded to include features like: 1. separate pools of work
with independent servers (trivial), 2. forwarding of mes-
sages to maintain constant open connections per rank
(implemented in the code released with this article), 3.
more comprehensive display and interactivity with the task
queue (moderate), 4. shared responsibility for handing out
tasks, sharded between multiple servers (moderate), 5. ad-
vertisement of shared-memory access methods for inter-
mediate results (advanced). Most of these features (when
needed) would reduce overall task latency times and fur-
ther increase scalability.

Interestingly, the minimum effective task granularity of
all three dynamic scheduling tools follows different scaling
laws. The pmake tool launches tasks in the background,
but every task incurs startup costs from the scheduler’s re-
source allocation and from the program startup itself. Its
METG is thus equal to the job startup costs. dwork pushes
job information to running clients, so the startup costs be-
come negligible over long runs. Instead, its METG comes
from the overhead of communicating the ‘next ready’ task.
That overhead scales with the number of concurrent work-
ers as long as a single-task-server design is used. So, its
METG is the per-task latency times the number of work-
ers. The mpi-list system apparently has no waiting time
for the next instruction. However, it does have synchroniza-
tion points and uses statically assigned work items. Thus,
its METG is equal to the difference in run-times between
‘fastest’ and ‘slowest’ concurrent worker. That difference
depends on the number of data elements processed, and is
the subject of the study of extreme value distributions.[31]

When presented with these interfaces, task management
appears easy. Difficulties in most implementations come
from additional design requirements. For example, build-
ing a domain-specific interface requires associating addi-
tional information with each task. Preventing duplication
of tasks can require external methods to determine the sta-
tus of completed tasks. Specializing tasks to run on specific

hardware or at coordinated times also requires some exter-
nal delegation or synchronization mechanism.

This work’s contributions uncouple the task schedulers
from all of these concerns. Doing so achieves a simpler and
more flexible design. For some problems, however, it leaves
practical implementation issues unresolved. In particular,
the work does not addressed the data lifecycle manage-
ment issue. In OpenMP, Quark, StarPU, Parsec, and their
predecessors, tasks are associated with in- and out- mem-
ory pointers. This requires tracking the association from
data locations to tasks. Distributed memory runtime sys-
tems often add the further step of copying data to local
resources before execution can start. Solutions like dis-
tributed caching filesystems and tuple-spaces have been
designed to address this issue.[32]

Each of the issues above have multiple potential solu-
tions with different trade-offs. This strategy allows the user
to make their own implementation choices. It reduces the
complexity of the task manager and usually also the user
code. I have shown that this approach has latency over-
head on the order of 23 milliseconds when under heavy
load and can create and deque one million task in about
a minute – competitive with task schedulers designed for
HPC workloads.

This work does not provide a single solution to synchro-
nization and coordination mechanisms. Instead, we are left
with two opposing ideas. Task graphs are functional, ex-
pressing every part of the data flow from task to task, and
tracking progress by pulling data from a collective mem-
ory. Bulk-synchronous operations on data are imperative,
prescribing precisely what each processor should do. These
track progress by a global instruction counter. One middle-
way that has been left unexplored is to earmark certain
tasks for compatible locations and separately implement
a rendezvous mechanism to synchronize the start-time of
those tasks.

Overall, these tools provide a usable, versatile way to
manage scientific simulation campaigns outside the batch
scheduler. This brings scaling benefits, bringing down the
time and effort needed to run multiple inter-related cal-
culations. Their unique features are simplicity of design,
suitability for HPC centers, very short startup time, and
well-understood per-task overhead.

Availability

The tools described in this work have been made available
under open-source licenses at the following locations:

– pmake: https://code.ornl.gov/99R/pmake (GPL v3)
– dwork: https://github.com/frobnitzem/dwork (GPL

v3)
– mpi-list: Mpi-list is released in the pypi package in-

dex, and contains full documentation and functionality
tests. https://github.com/frobnitzem/mpi list (MIT
license)

– Workflow Timings: https://code.ornl.gov/99R/workflow timings
(CC4-BY-SA)

All cases contain example use instructions, while mpi-list
and dwork have more extensive tests and documentation.
Usage code is provided in Fig. 1 for pmake, Fig. 2 for dwork
and Fig. 3 for mpi-list. Full scripts to reproduce the re-
sults presented here are present in the workflow timings
repository linked above.
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