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Summary

Internet of Things systems exists in various areas of our everyday life. For example,
sensors installed in smart cities and homes are processed in edge and cloud com-
puting centres providing several benefits that improve our lives. The place of data
processing is related to the required system response times - processing data closer
to its source results in a shorter system response time. The Osmotic Computing
concept enables flexible deployment of data processing services and their possible
movement, just like particles in the osmosis phenomenon move between regions of
different densities. At the same time, the impact of complex computer architecture on
the environment is increasingly being compensated by the use of renewable and low-
carbon energy sources. However, the uncertainty of supplying green energy makes
the management of Osmotic Computing demanding, and therefore their autonomy is
desirable. In the paper, we present a framework enabling osmotic computing simula-
tion based on renewable energy sources and autonomic osmotic agents, allowing the
analysis of distributed management algorithms. We discuss the challenges posed to
the framework and analyze various management algorithms for cooperating osmotic
agents. In the evaluation we show that changing the adaptation logic of the osmotic
agents, it is possible to increase the self-consumption of renewable energy sources
or increase the usage of low emission ones.
KEYWORDS:
Osmotic Computing, Autonomic Computing, Sustainable Systems, Internet of Things

1 INTRODUCTION

The development of Internet of Things (IoT) systems covering smart homes, telemedicine, and the fourth industrial revolution
is possible due to the key technology enablers. Wireless communication, cloud computing, edge data centres and increased
networks throughput enable efficient sensor data processing. However, this makes managing the operations of IoT systems
more complex. Hence, the promising programming paradigm for such IoT systems is Osmotic Computing. Like in the osmosis
phenomenon the processing of data can be moved between devices in a continuum of cloud computing, edge computing and IoT
devices. As a result, it is possible to enhance the current properties and performance of IoT ecosystems, such as shortening the
time of data processing, reducing the cost of maintenance, increasing reliability or reducing the amount of data sent to clouds.
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The development of computing infrastructure for modern edge computing IoT systems is associated with an increased demand
for energy. Several solutions are introduced to reduce the emission of pollutants due to the useage of traditional energy sources,
such as more economical processors and computer architectures. However, the adoption of renewable energy for data processing
seems to be a promising approach. Still, it requires intelligent management of the infrastructure and the data stream processing
flows. Moreover, given the dynamic execution context of IoT ecosystems and the uncertain nature of renewable energy sources,
IoT ecosystems would become a non-trivial challenge in production environments. As such, new solutions and prototypes are
required to increase renewable energy usage, productivity and profitability in IoT osmotic contexts.

This paper proposes a new simulation model that covers a set of functionalities in the context of sustainable and autonomic
IoT ecosystems. As well, we extended the IoTSim-Osmosis1 simulator and added our proposed model, which enable research on
sustainable and autonomic IoT systems. The concept of osmotic computing allows for flexible flow migration between edge and
cloud computing centres and osmotic microelements. Information about the availability of renewable sources can be reflected
in the osmosis process itself - i.e. by the migration of processing to use green energy as efficiently as possible. Given the com-
plexity of the adaptation process due to the size of IoT systems, this mechanism should be self-adaptive. A promising approach
to the realization of this concept is the use of osmotic agents2 that follows Autonomic Computing concept3. Cooperating agents
associated with devices and computing centres can exchange messages and adapt to the available energy and the desired prop-
erties of the system. For example, in environmental monitoring systems, osmotic computing should ensure data provision and
processing continuity during natural disasters. In a stable situation, provide the greatest possible use of renewable energy.

The rest of the paper is organized as follows. Section 2 describes the background of the research. Section 3 discusses the
energy modelling used in the simulator, while section 4 describes the implementation details. Section 5 provides the evaluation
details for several adaptation algorithms. Section 6 analyzes the related work and compares their functionalities. Finally, the
paper is concluded in section 6.

1.1 Challenges
Research on energy-aware osmotic computing and realization of the simulation environment requires facing the following
challenges:

• use of historical data - due to the high uncertainty of weather conditions – e.g. wind speed and solar radiation level, the
efficient analysis of adaptive osmotic computing management algorithms should be based on historical data regarding
renewable energy sources. It is discussed in section 4.1.

• decentralized management - the scale of IoT systems makes centralized management of process migration and data flow
control processes usually inefficient. Therefore, it is essential to introduce mechanisms enabling the implementation of
distributed management algorithms. Furthermore, it will allow reacting to changes in the environment in which the devices
operate. We are discussing the Autonomic Computing concept and its realization in section 2.4 and 4.2 respectively.

• adaptation mechanisms - reacting to changes in the availability of renewable energy in osmotic computing may include the
reorganization of the data stream processing flows. Other mechanisms may include changing the routing of data streams
between different data processing centres or limiting sensor data streams by, e.g. reducing the accuracy of sensor data
reading or decreasing the reading frequency. The discussion regarding introduced mechanisms is in section 4.3.

1.2 Contribution
To solve the above challenges, this paper proposes a novel simulation model that encompasses a number of features in the context
of self-sustaining and autonomous IoT ecosystems. The following are the paper’s key contributions:

• we extended the IoTSim-Osmosis simulator with our novel model that consists of a set of functionalities in the context of
sustainable and autonomic IoT ecosystems,

• we evaluated IoTSim-Osmosis-RES using a case study that focused on managing renewable energy sources in IoT systems.
The simulation results summarise IoTSim-Osmosis-RES functionality for assessing various parameters such as the level
of solar radiation, usage of the RES, usage of the low emission sources, and the IoT device battery capacity.
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2 BACKGROUND

2.1 Osmotic computing
Modern Internet of Things systems are usually based on a programming paradigm that emphasizes data flows and stream data
processing4. A characteristic property of this class of systems is that they are composed of computational processes analyz-
ing data streams and passing the results between them. Furthermore, the processes are deployed on the available hardware
infrastructure, i.e. computational clouds, edge datacenters and devices themselves. The concept that generalizes this approach
is Osmotic Computing5 which provides elasticity to such systems enabling processes to move between devices similarly as sol-
vent molecules through the osmotic membrane towards the computational clouds or edge datacenters. Moreover, it allows for
the fulfilment of desired system requirements such as time of processing or energy efficiency by adapting to the current system
operational context.

In osmotic computing, an application is defined as a graph composed of Microelements (MEL)6. They represent specific
functionalities and can be deployed on cloud and edge resources. MELs can migrate within a software-defined membrane which
is an abstraction of a virtual environment spread over the available hardware infrastructure - edge and cloud resources. The IoT
application in this concept is modelled as Osmotic Flow7 and described as a directed graph representing the transformation of
data streams from IoT devices by processes defined in the graph nodes. The Osmotic Computing concept enables the deployment
and management of stream transformation tasks within the available computing resources at the edge of the network and in the
computing cloud.

2.2 Renewable Energy Sources
Designing a system that uses solar energy for computing requires numerous decisions concerning energy being generated. Solar
energy generation depends on a geographical location and, at the same time, varies throughout the year as solar irradiation varies
significantly between seasons. The primary decision to be made is the capacity of the photovoltaic system. Its size depends mainly
on the geographical location and the number of cloudy days during the year. Temporary cloudiness, as presented in Fig.1 is very
dynamic and introduces uncertainty in energy management. The size of the photovoltaic system is designed based on annual
averages, where the generated energy surplus is transferred/sold to the grid in the summer. In winter, it is received/purchased
from the grid. This mechanism makes it possible to design systems whose annual energy demand is covered by renewable energy.
Unfortunately, such a solution involves the cost of transferring/receiving or selling/buying energy to the grid.

Reducing the energy amount being sold/purchased to/from the grid will maximize the utilization of the designed solar energy
generating system. Subsequently, data processing on the edge of the network can be optimized to better use solar energy without
the need to transfer it to/from the grid. This approach may bring significant savings and better energy management.

The power grid is also characterized by indicators of various types of energy providers. These can be multiple types of wind
and water turbines, photovoltaic farms or nuclear power plants. As a result, the electricity use in a particular country is related
to the amount of carbon dioxide released into the atmosphere for each kWh of energy used as presented in Fig.2.

2.3 Energy-aware management
The dynamic change in the availability of renewable energy results in the uncertainty of its supply. To ensure the desired prop-
erties of the IoT system, it is necessary to adapt the processing of data streams from IoT devices. The adaptability mechanisms
applied to the energy-aware computing systems (Fig. 3) can be distinguished based on the scale of management:

• At the global level, it is possible to switch stream processing between data centres powered from photovoltaic panels,
(1)based on the fact that the sun that rises in the east and sets in the west or (2)to the least utilized data centres to preserve
energy (Fig. 3a).

• At the local level - at the edge datacenter (Fig. 3b) - it is possible to locally manage data processing in such a way as to
adapt to locally available resources and weather conditions. It can be done e.g. by slowing down the streams of the input
data or switching off computational nodes thanks to rescheduling processing tasks to other nodes – the processing is not
switched to other locations.

Each of the mechanisms can be activated independently, but it can lead to unexpected results. One of the solutions to this
problem is to use the mechanism to resolve resource contention issues at runtime, according to user preferences. In the previous
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FIGURE 1 Solar irradiance map over Europe (GHI) (20/08/2021 @11:00 CET).

research, we have developed the holistic computing controller (HCC)8, which operation involves the selection of configuration
parameters which – following enactment – specify the expected functional properties of the system. For example, in an HCC-
managed system, the system operator identifies the QoS metrics as the cost of operation, data sampling frequency, power saving,
system lifetime, and availability. Unfortunately, the central management of the complex architecture used to process data from
sensors is ineffective due to the volatility and unpredictability of the environment in which it operates.

2.4 Autonomic Computing
The complexity of multilayer IoT systems and the dynamism resulting from renewable energy sources make the construction
of management mechanisms complex. The most promising solution is to use the concept of Autonomic Computing (AC)3, in
which the systems have the ability to self-manage. The main idea is that computer systems undertake adaptation actions based on
high-level policies given by the administrators. Such systems monitor the system’s state and plan actions in response to changing
conditions of their operation. In the case of complex, distributed computing systems, autonomic computing can be viewed as a
multi-agent system9 where agents manage system components and communicate to undertake coordinated adaptation actions.

The operation context uncertainty of IoT systems, mainly due to the specificity of their operation, causes management deci-
sions to move from the design phase to the execution phase. As a result, responsibility for management actions is shifted from
developers to the system itself. The solution for the implementation of agent logic is the usage of machine learning algorithms,
which can improve their performance during their work10. However, the promising approach is reinforcement learning11 which
principle is based on interacting with the system by performing actions on it and observing how they influence its operation.
The constant feedback from the system is especially applicable in systems characterized by high uncertainty.
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FIGURE 2 Carbon emission map (source:electricitymap.org)
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FIGURE 3 Adaptability mechanisms for stream processing: (a) global (b) local

In osmotic computing, autonomic agents deployed on the computing nodes can be perceived as a distributed multi-agent
system2 that manages the proper execution of the data flows. The osmotic agents can share knowledge with other agents through
the osmosis membrane.

3 ENERGY MODELLING

In the IoTSim-Osmosis extension, we have adopted the topology of electrical connections, including renewable energy sources,
energy storage, and the power grid, as shown in Fig.4. The 𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 module associated with each datacenter is respon-
sible for energy management. Symbols used in the equations are summarized in the Tab.1. Energy controller module is described
by a tuple:

𝐸𝑖 = (𝑃𝑖, 𝑆𝑖, 𝐵𝑖, 𝐷𝑖, 𝑝𝑖, 𝑒
𝑢
𝑖 ) (1)
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FIGURE 4 Datacenter powered by renewable energy.

TABLE 1 Notations used in the system model.
Symbol Meaning
𝐸𝑖 Energy controller at datacenter 𝑖
𝑃𝑖 Power grid at datacenter 𝑖
𝑆𝑖 Renewable energy source at datacenter 𝑖
𝐵𝑖 Battery at datacenter 𝑖
𝐷𝑖 Datacenter 𝑖
𝑝𝑖 Energy management policy used by energy controller at

datacenter 𝑖
𝑒𝑢𝑖 Renewable energy utilization percentage at datacenter 𝑖
𝑒𝑖 Average power consumption at datacenter 𝑖
𝑒𝑟𝑒(𝑡)𝑖 Renewable energy available at 𝐷𝑖 at a particular time point 𝑡
𝑠𝑎𝑛𝑛𝑖 Annual energy generated by solar panel at datacenter 𝑖
𝑝𝑐𝑜𝑠𝑡𝑖 Cost of the kWh of energy in the country where datacenter 𝑖

is located
𝑝𝑙𝑜𝑤𝑖 Percentage of the low-carbon emission sources in the country

where datacenter 𝑖 is located
𝑝𝑟𝑒𝑠𝑖 Percentage of the RES in the country where datacenter 𝑖

is located
𝑡𝑗𝑖 Processing time of the osmotic transaction 𝑗 on datacenter 𝑖

where 𝑃𝑖 = (𝑝𝑐𝑜𝑠𝑡𝑖 , 𝑝𝑙𝑜𝑤𝑖 , 𝑝𝑟𝑒𝑠𝑖 ) stands for power grid and the corresponding parameters. The configuration of the photovoltaic
panels is described as 𝑆𝑖 = (𝑠𝑝𝑒𝑎𝑘𝑖 , 𝑠𝑎𝑛𝑔𝑙𝑒𝑠𝑖 ). Surplus energy is stored in the battery 𝐵𝑖 = (𝑏𝑐𝑎𝑝𝑖 , 𝑏𝑠𝑖 ).The energy consumed by the datacenter 𝐷𝑖 is the result of the processing of data streams in it. Several factors are considered
when designing renewable energy solutions, including geographical location and average annual energy use. It is then possible
to match the size of the photovoltaic installation to the actual energy demand. Usually, the PV installation capacity is taken as
a percentage of the annual energy demand. Thus, the average value of energy consumed by the data centre can be estimated
according to the formula:

𝑒𝑖 =
𝑠𝑎𝑛𝑛𝑖

𝑒𝑢𝑖
⋅

1
365 ⋅ 24

(2)
Renewable energy obtained from the sun is considered in annual cycles. The surplus of energy obtained in summer balances

the energy obtained in the winter months. Therefore, 𝑠𝑎𝑛𝑛𝑖 is calculated as the total solar energy harvested at datacentre 𝑖 during
a year. It is assumed that the datacenter consumes energy at a constant level, resulting from the percentage of energy obtained
from the PV installation for the year in which the simulation is carried out. Any shortfall in PV energy needed to power the data
centre is supplemented by energy from the power grid or battery depending on the provided energy management policy 𝑝𝑖.
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Renewable energy consumed directly by the data centre is self-consumed without being sent to the power grid. In sustainable
systems, the aim is to increase the self-consumption rate because it reduces the amount of energy flowing through the power
grid. In the case of the proposed model, the level of self-consumption is expressed by the formula:

𝑒𝑠𝑒𝑙𝑓 (𝑡)𝑖 =

{

1 𝑒𝑟𝑒(𝑡)𝑖 > 𝑒𝑚𝑗
𝑒𝑟𝑒(𝑡)𝑖

𝑒𝑖
𝑒𝑟𝑒(𝑡)𝑖 ⩽ 𝑒𝑖

(3)

MEL_A MEL_B

Osmotic Resources

MEL_C

t1
k t2

k
tn

k

FIGURE 5 Osmotic flow transaction.

The simulator also incorporates various metrics based on renewable energy use from photovoltaic panels and the power grid.
We assumed that the power grid has both a price and a carbon footprint corresponding to the kWh of energy consumed by the
data centers. The carbon footprint is mainly driven by the type of energy sources, including renewable, low-carbon and fossil
fuel-based. In metric value calculation it is assumed that the osmotic application consists of a series of transactions occurring
one after another. The Fig.5 shows a transaction involving the flow of data streams through the different MELs. In particular:

• The energy self-consumption metric 𝑀𝑠𝑒𝑙𝑓 takes into account the total processing time of the data streams by the MEL
in datacenters. In addition, temporal information of the amount of renewable energy from photovoltaic panels are used.

𝑀𝑠𝑒𝑙𝑓 =
∑

𝑘

(

∑

𝑖 𝑡
𝑘
𝑖 𝑒

𝑠𝑒𝑙𝑓 (𝑡𝑘)
𝑖

∑

𝑖 𝑡
𝑘
𝑖

)

(4)

• The metric 𝑀𝑙𝑜𝑤 for the use of low-emission sources considers both the self-usage of energy from photovoltaic panels
powering the datacentre and the annual share of such sources when using the power grid.

𝑀𝑙𝑜𝑤 =
∑

𝑘

(

∑

𝑖 𝑡
𝑘
𝑖 𝑒

𝑠𝑒𝑙𝑓 (𝑡𝑘)
𝑖 +

∑

𝑖 𝑡
𝑘
𝑖 𝑝

𝑙𝑜𝑤
𝑖 (1 − 𝑒𝑠𝑒𝑙𝑓 (𝑡𝑘)𝑖 )

∑

𝑖 𝑡
𝑘
𝑖

)

(5)

For IoT devices, by default, they are battery-powered. In the case of the discussed extension, it was assumed that they could
also be powered by solar energy. The topologies of electrical connections for IoT devices are shown in Fig. 6. The previously
used energy model of the device has been extended with a charging module. Energy from PV panels is used to charge the battery
directly, assuming the limitations (1) the battery cannot store more energy than the nominal capacity, (2) the maximum charging
current is limited and configurable by the user. The second criterion was introduced because too high charging current reduces
the battery’s maximum capacity in a longer time horizon.

4 DESIGN OF THE SIMULATOR

The proposed simulator is based on the IoTSim-Osmosis and extended by renewable energy modules and the osmotic agent
mechanisms enabling research on renewable energy-aware autonomic IoT systems. The high-level architecture of the solution
is shown in Figure 7. The discussed solution consists of two modules - the first one responsible for modelling renewable energy
sources and the second one implementing the concept of osmotic agents.



8 Tomasz Szydlo ET AL

Battery 
charger

Battery

PV Panel

IoT
Device

FIGURE 6 IoT device powered by renewable energy.
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FIGURE 7 Architecture of the simulator.

4.1 Renewable Energy Sources module
There are a few primary sources of green energy as solar, wind, water. However, in the simulator, the focus is on solar energy
with the future possibility of extensions to others energy sources. The power supply scheme of each datacentre is shown in the
Fig.4, while the details are presented in Fig. 8.

4.1.1 Energy Sources
The module allows simulating the operation of a photovoltaic installation connected to the selected datacentre. The configuration
includes parameters such as geographic location, power of the installation and an indicator informing about the percentage share
of the produced energy in the annual energy consumption of the datacenter.

Each energy source corresponds to one PV installation. However, some datacenter may require energy that could not be
provided by only one installation. Furthermore, since the solar energy generated by PV panels is hesitant and depends on several
factors, a few of them are required to specify before the simulation, such as angle of PV panels, temperature power loss and peak
power.
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Historical data are downloaded from the Photovoltaic Geographical Information System (PVGIS) portal1. It provides data
about solar radiation and PV potential based on satellite image analysis for the 2005-2016 years and can give more detailed
monthly, daily, and hourly intervals.

4.1.2 Energy Storage
Energy storage devices are used to store surplus energy produced by PV panels and then use it later in the day. They can provide
energy when needed, especially in the situation of reduced generation from renewable sources, if it has been previously stored.
If the energy storage is fully charged, the surplus energy is transferred to the power grid. They are particularly important for
reducing the characteristic increase in energy generated at noon by distributed photovoltaic installations and the significant
demand after sunset.

Energy storage can be considered as a solution that balance energy in a daily time horizon. Several technological solutions
are available12 such as rechargeable batteries, pumped hydroelectric store, compressed air storage, or flywheels. However, in the
extension, we are focusing on rechargeable battery technology. Therefore, battery parameters, i.e. its total capacity and current
charge level, are determined at the beginning of the simulation.

4.1.3 Power grid
There could be a situation when the demand for energy consumption of DC is much higher than the amount that any renewable
energy source can produce. In such case, the power grid supplies energy to DC by being switched on by the controller, which
checks whether is there enough energy coming from, e.g. photovoltaic panels. Therefore, it is important to specify the country
where the installation is located in the RES configuration file and the price for the energy taken from the power grid.

4.1.4 Energy Policy
The user-selectable policy performs management of the energy controller. It defines the way how the controller should take care
of the energy consumption and the situation when demands of energy differ from the amount coming from renewable installation.

In the module there are provided three policies to cover real-world cases of energy management, which can be extended by
the users developing their own strategies. Names of the available policies are self-explanatory and are:

• 𝐺𝑟𝑖𝑑𝑂𝑛𝑙𝑦𝑃 𝑜𝑙𝑖𝑐𝑦 - datacenter is connected to the power grid only without energy storage device and the renewable energy
source,

• 𝑂𝑛𝐺𝑟𝑖𝑑𝑝𝑜𝑙𝑖𝑐𝑦 - datacenter uses energy from the power grid as well as from the renewable energy source, surplus of the
energy is transferred to the power grid,

• 𝑂𝑛𝐺𝑟𝑖𝑑𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑃 𝑜𝑙𝑖𝑐𝑦 - similarly as in the 𝑂𝑛𝐺𝑟𝑖𝑑𝑝𝑜𝑙𝑖𝑐𝑦 but the datacenter is also equipped with energy storage
device.

Before the simulation, there is a requirement to chose defined policies in the configuration file.

4.2 Osmotic Agents module
In the simulator, we have implemented autonomous agents, as shown in Figure 9. Agents are assigned to IoT devices as well as
edge and cloud datacenters. Agents implement the autonomic computing MAPE loop13 - Monitor, Analyze, Plan and Execute.
Osmotic agent structures the control and management loop of the system, distinguishing the stages of monitoring, analyzing,
planning and executing actions on the system. In the simplest case, the operating logic of an osmotic agent can be implemented
in the form of a rule-based manner, where a set of system adaptation rules are prepared during the development phase and are
not changed at runtime.

In the case of reinforcement learning and the so-called reinforcement agent, environment observation occurs during the mon-
itoring phase of the osmotic agent, where knowledge about the environment is obtained using dedicated sensors. Then the data

1https://ec.europa.eu/jrc/en/pvgis
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FIGURE 9 Autonomic Osmotic Agent.

is analyzed, and in the planning phase, appropriate management actions are selected by the RL agent. Finally, they are enforced
in the execute phase using dedicated effectors.

Agents lifecycle is controlled by the AgentBroker component. It contains the topology of the infrastructure, thus is responsible
for message passing. Moreover, it controls MAPE execution based on the simulator’s internal timer. Interface-based architecture
facilitates the end-user to implement logic for the agents.

4.2.1 Cooperation models
The osmotic agents can constitute the distributed multi agent environment in which they can cooperate by exchanging messages.
The provided module enables the implementation of three scenarios of cooperation between agents (Fig.11):

• independent agents - each agent manages a device or a data centre independently of other agents. Agents do not exchange
messages.

• communicating agents - agents can exchange messages, but they make management decisions and actions independently.
• central agent - the central agent receives information from all other agents and makes decisions regarding each device

that the agents enforce. Local agents only perform the operations requested by the central agent.
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4.3 Adaptability actions
Because of the fact that agents are associated with the datacenters, they can apply adaptation action in the execute phase of
its internal control loop. It may include modification of all the parameters related to the datacenter itself, such as processing
power and a number of available processing nodes. Nevertheless, to enable processing flow adaptability, the concept of adaptive
routing was introduced as presented in Fig.12. In that concept, MEL_B.* is a stateless abstract MEL_B implementing processing
functionality, but not pointing to the particular instance.

The MEL_B.1 and MEL_B.2 are instances of abstract MEL_B and are located in different edge datacenters. The selection of
the desired functionality implementation is made in the data stream routing process, controlled by appropriate routing rules. By
default, matching instances are selected based on the Round-Robin policy if there are no specific MEL routing rules provided.

MEL_A

MEL_B.1

MEL_B.2

Osmotic Resources

MEL Router

MEL_B.*

Routing 
Rules

FIGURE 12 MEL routing concept.
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TABLE 2 Notations used in the system model.
Parameter Edge1 Edge2 Cloud
Location Berlin Paris Dublin
Latitude 52.52 48.8 53.35
Longitude 13.40 2.30 -6.30
Type on-grid on-grid on-grid
Battery no no no
RES Energy Utilization 60% 60% 40%

TABLE 3 IoT device battery parameters.
Device Type Battery Capacity Initial Energy Battery Voltage Solar Panel
Smart camera 3000mAh 2000mAh 3.7V 10W

5 EVALUATION OF IOTSIM-OSMOSIS-RES

The section presents the results of evaluating the proposed framework. The results of five algorithms for managing the operation
of an example IoT system and the obtained results are presented.

5.1 Infrastructure
The framework evaluation is carried out for the IoT system that processes data from IoT devices. The system processes video
streams from cameras installed in the smart city. Data streams are pre-processed in edge data centres and then processed in the
cloud.

The analysis is performed for two edge data centres located in Berlin and Paris and one cloud datacenter located in Ireland.
All of them are powered by photovoltaic panels. Tab.2 contains the details of the hardware infrastructure. the smart cameras are
installed in Berlin, powered by photovoltaic panels and equipped with rechargeable batteries. Details of the devices used in the
evaluation are presented in Tab. 3.
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FIGURE 13 Osmotic Agents structure.



Tomasz Szydlo ET AL 13

5.2 Osmotic Agents
Each device used in the evaluation has assigned Osmotic Agent(𝐷𝑐𝐴𝑔𝑒𝑛𝑡 for Datacenter, 𝐷𝑒𝑣𝑖𝑐𝑒𝐴𝑔𝑒𝑛𝑡 for IoTDevice). Its job
is to decide whether data should be computed locally or in another datacenter and thus, reroute the processing flow to another
location. In the experiments we consider five algorithms for Osmotic Agents:

• (ALG1/2) Static selection of edge datacenter processing locations. In our case, these are Berlin(1) or Paris(2).
• (ALG3) Selection based on the Round-Robin algorithm - data is processed alternately between edge datacenter where

MELs required by the application are available.
• (ALG4) Adaptive edge datacenter selection algorithm based on the amount of renewable energy available on the edge

datacenter, and in case several datacenters are fully powered by renewable energy at any given time, the closer datacenter
is selected. During nighttime hours, the edge datacenter that is powered by a power grid with a higher percentage of
low-carbon sources is selected. The algorithms for Osmotic Agents are presented in listings 1 and 2.

• (ALG5) Analogously as before, but when none of the computing centres is powered by solar energy from the installed
PV panels, the geographically closest one is selected.

Algorithm 1 DC Agent
1: function MONITOR( )
2: 𝑟 ← solar irradiation value
3: 𝑆 ← available MELs in DC
4: end function

5: function ANALYZE( )
6: 𝑚 ← ∅
7: 𝑚.𝑑𝑒𝑠𝑡 ← neighbouring IoT devices
8: 𝑚.𝑐𝑜𝑛𝑡𝑒𝑛𝑡 ← (𝑟, 𝑆)
9: 𝑝𝑢𝑏𝑙𝑖𝑠ℎ(𝑚)

10: end function

11: function PLAN(𝑀)
12: 𝑛𝑜𝑡ℎ𝑖𝑛𝑔
13: end function

14: function EXECUTE( )
15: 𝑛𝑜𝑡ℎ𝑖𝑛𝑔
16: end function

Algorithms ALG4 and ALG5 use Osmotic Agents to manage the processing of data streams from IoT devices. In the MAPE
loop, agents are processing received messages from other agents and modify routing tables in assigned devices. After these steps,
data flow can change destination, which implies flow processing being moved to the desired place. In the algorithm ALG5, the
geographically closest computing centre selection is based on the haversine algorithm, which determines the distance of a great
circle between two points on the globe.

The discussed algorithms run simultaneously on edge datacenter and devices. In the case of edge datacenter, the algorithm
sends a message containing the deployed MELs list to the available IoT devices. Therefore, the algorithm’s complexity is linear
to the number of available MELs on a particular edge and the number of IoT devices. In the case of devices, the algorithm
processes messages from each edge datacenter, and then for each MEL from the messages, the one that meets the appropriate
criteria is selected. Therefore, the algorithm’s complexity is linear to the number of edge datacenters and the total number of
MELs available in the system.
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Algorithm 2 Device Agent
1: function MONITOR( )
2: 𝑛𝑜𝑡ℎ𝑖𝑛𝑔
3: end function

4: function ANALYZE( )
5: 𝑛𝑜𝑡ℎ𝑖𝑛𝑔
6: end function

7: function PLAN(𝑀)
8: 𝑄{} ← ∅
9: 𝑉 {} ← ∅

10: for each 𝑚𝑖 ∈ 𝑀 do
11: (𝑟, 𝑆) ← 𝑚𝑖.𝑐𝑜𝑛𝑡𝑒𝑛𝑡
12: for each 𝑠𝑗 ∈ 𝑆 do
13: 𝑠′ ← 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡(𝑠𝑖)
14: if 𝑠′ ∉ 𝑄.𝑘𝑒𝑦𝑠𝑒𝑡 then
15: 𝑉 {𝑠′} ← 𝑟
16: 𝑄{𝑠′} ← 𝑠𝑗
17: else if 𝑉 {𝑠′} < 𝑟 then
18: 𝑉 {𝑠′} ← 𝑟
19: 𝑄{𝑠′} ← 𝑠𝑗
20: end if
21: end for
22: end for
23: end function

24: function EXECUTE( )
25: for each 𝑠′ ∈ 𝑄.𝑘𝑒𝑦𝑠𝑒𝑡 do
26: 𝑟𝑜𝑢𝑡𝑖𝑛𝑔_𝑎𝑑𝑑(𝑠′, 𝑄{𝑠′})
27: end for
28: end function

5.3 Results
Fig. 14 shows the level of solar radiation for selected days at the location of the analyzed edge and cloud computing centres.
Changes in the level of solar radiation during the day are the result of cloud cover movement over the sky. The lowest level of
solar radiation was noticed in January.

Fig. 16 shows a comparison of the analyzed algorithms in the context of different evaluation metrics. These are (1)self-
consumption of renewable energy sources, (2)usage of low-emission energy sources, and (3)processing at the nearest edge
datacenter for IoT devices. Each algorithm is evaluated using three metrics. For the first metric, related to the self-consumption
of green energy, the best results are achieved with the ALG4 and ALG5 algorithms. This is because the logic of osmotic agents
adapts the data flow by selecting the edge datacenter with the highest share of green energy to power them. It is also interesting
that despite obtaining comparable results for the self-consumption of renewable energy, the algorithms achieved different values
for the other metrics. ALG4 prefers data centres connected to the power grid with a higher percentage of low-carbon energy
sources, while ALG5 prefers the closest datacenters to the smart cameras. In the case of the second metric, the best results were
obtained for the ALG2 algorithm, for which the edge datacenter was statically selected in a country with more nuclear power
plants (France). In the case of the last metric, the best results were achieved for ALG1 - the data was always processed in the
nearest computing centre (Berlin).
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FIGURE 14 Solar radiation during the experiments.
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FIGURE 15 Usage of the RES and low emission sources during the experiment.

01/01/2016 01/05/2016 01/09/2016
Date

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Pe
rc

en
ta

ge
 [%

]

RES Self Consumption
ALG1
ALG2
ALG3
ALG4
ALG5

01/01/2016 01/05/2016 01/09/2016
Date

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0

Pe
rc

en
ta

ge
 [%

]

Low Emission ES Usage

ALG1
ALG2
ALG3
ALG4
ALG5

01/01/2016 01/05/2016 01/09/2016
Date

0

20

40

60

80

100

Pe
rc

en
ta

ge
 [%

]
Local processing

ALG1
ALG2
ALG3
ALG4
ALG5

FIGURE 16 Comparison of the algorithms used for adaptive management of processing.

Fig. 17 shows the charge level of batteries used in IoT devices for three selected days of the year. During the experiments, it
was assumed that the batteries were charged to 66% at midnight. The energy stored in the battery allows the device to operate
for 24 hours - the entire experiment. In the case of the operation of the device in the summer period, the amount of recharged
energy from solar panels is greater than the device consumption. This means that the device can work for the next day without
interruption - the battery level at the end of the day is higher than at the beginning. However, in the case of winter days and heavy
cloud cover, the device’s battery may be not recharged during the day. Therefore, in real-world scenario, the solution would be
to use the backup power supply from the power grid, oversize batteries and photovoltaic panels, or introduce algorithms for
adaptive management of the device’s operation.

To sum up, the optimal management of osmotic computing is a multi-criteria optimization problem, and various adaptation
goals are achieved depending on the selected algorithm. It is also possible to change the adaptation algorithm during the system
operation, resulting from a change in the context of the system operation, e.g. a natural disaster.
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FIGURE 17 IoT device battery capacity during the experiment.

6 RELATED WORK

There are some existing frameworks for modelling and simulating IoT environments and evaluate resource management.
CloudSim14 is a toolkit for modelling and simulation of cloud computing environments and evaluation of resource provision-
ing algorithms. It provides some basic energy-conscious abstractions and resource management techniques to evaluate energy
usage. EdgeCloudSim15 is based on CloudSim and is designed to handle edge computing’s computational and network require-
ments. EdgeCloudSim’s architecture allows a variety of models for studying features of edge computing, such as the edge server
model, the mobility model, and the network link model. EdgeFogCloud16 support different network and energy models. In addi-
tion, it can help in founding a resource network and task scheduling by formulating the configuration parameters. iCanCloud’s17
main target is to provide the user information about the cost, power, energy of running IoT applications on configured machines.
GreenCloud18 simulates an energy-aware cloud environment in order to observe energy utilization consumed by datacenters,
also concerning their internal components and techniques to reduce power consumption. DCSim19 is capable of changing VMs
state in order to conserve power. CloudSimSDN20 extends CloudSim in enabling it to measure power consumption of network
devices and minimize it. iFogSim21 provides basic resource management policies - cloud-only and edge-ward in order to mea-
sure their impact on various parameters including energy consumption. MyiFogSim22 is an extension of iFogSim that focuses
on failure simulation, network configuration, and providing virtual machine migration policy support to mobile clients. IoTSim-
Edge23 considers devices powered by batteries. IotSim-Osmosis1 is based on CloudSim and IoTSim-Edge, inheriting all their
assumptions and properties, including power management awareness, but extending their ability to model SDN-Networks and
Osmosis paradigm. In summary, there are many frameworks that consider energy management, variety of power sources and
network infrastructure. However, none of them are able to simulate floating weather conditions, renewable energy sources or pro-
vide easily extendable system that enables researches to specify their own VM and power management policies. These features
are nonetheless included in proposed simulator.

IoT systems based on the Osmotic Computing concept also include data processing in the computational clouds. Among the
analyzed simulators, CloudSim is one of the most willingly used solutions. It allows for the evaluation and tests management
strategies which can improve the performance of cloud infrastructures. This is possible by modelling different components typi-
cal for cloud systems like virtual machines or cloud data centres. The iCanCloud can also use different cloud brokering strategies
and observe the efficiency of more resources thanks to more extended output. GreenCloud is very similar to the iCanCloud, but
it extends to network cloud infrastructure simulation. DCSim provides dynamic resource management in the cloud to effectively
evaluate energy-aware algorithms. It also enables the modeling and simulating of cooling systems. CloudSimSDN, as its name
suggests, is an extension of CloudSim and supports Software Defined Networks. It simulates the utilization of hosts, networks
and response time of requests in cloud data centres. Finally, the IotSim-Edge is mostly focused on low power communication
technologies and protocols for IoT devices and edge processing.

To sum up, none of the discussed solutions can model the variety of green energy sources. Instead, they consider the energy
as an already existing entity, whose only relevant parameters are its cost and consumption, without considering other metrics,
such as self-consumption of renewable energy. Similarly, none of the discussed frameworks implements the mechanism of
cooperating agents used for system management.
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Simulator Feature
Cloud

Processing
SDN

Support
SD-WAN
Support

Network
Communication

Edge
Processing

IOT
Devices

Power
Management

Agents
System RES

CloudSim14 x
EdgeCloudSim15 x x x
EdgeFogCloud16 x x x
iCanCloud17 x x x
GreenCloud18 x x x
DCSim19 x x x
CloudSimSDN20 x x x x
iFogSim21 x x x x
MyiFogSim22 x x x
SimIoT24 x x
IotSim-Edge23 x x
IotSim-Osmosis1 x x x x x x
proposed IotSim-OsmosisRES x x x x x x x x x

TABLE 4 Related work summary

7 CONCLUSIONS AND FUTURE WORK

The paper presents extensions to the 𝐼𝑜𝑇 − 𝑆𝑖𝑚𝑂𝑠𝑚𝑜𝑠𝑖𝑠 simulator providing functionality for modelling renewable energy
sources for powering devices and Osmotic Agents mechanism enabling evaluation of autonomic computing algorithms for
Osmotic Computing. The results show that the choice of the adaptation algorithm affects the achievable performance of the IoT
system and, can be selected to fulfill system requirements.

In the described example, the logic of the agents is predefined at the system design state. As further work, we plan to investigate
reinforcement learning algorithms so that individual devices can learn how their decisions affect the system. Reinforcement
learning methods can be used by agents deployed in devices to learn autonomously how the actions taken impacted the change
of the device state and the obtained reward or penalty. Such knowledge can be then distributed to other osmotic agents to update
their adaptation logic. Knowledge exchange regularly should accelerate the learning process and, most importantly, constantly
update cooperating agents’ adaptation logic during the IoT system runtime fulfilling the processing requirements of the whole
system. It would be desirable to develop a dynamic data streams concept using reinforcement learning to change the data transfer
rate of the IoT devices depending on the available energy and to adapt to the projected amount of energy that can be obtained
from renewable energy sources.
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