
Stretching Your Data With Taffy Filters

Jim Apple

Abstract
Popular approximate membership query structures such as
Bloom filters and cuckoo filters are widely used in databases,
security, and networking. These structures represent sets ap-
proximately, and support at least two operations – insert and
lookup; lookup always returns true on elements inserted
into the structure; it also returns true with some probability
0 < ε < 1 on elements not inserted into the structure. These
latter elements are called false positives. Compensatory for
these false positives, filters can be much smaller than hash
tables that represent the same set. However, unlike hash ta-
bles, cuckoo filters and Bloom filters must be initialized with
the intended number of inserts to be performed, and cannot
grow larger – inserts beyond this number fail or significantly
increase the false positive probability. This paper presents
designs and implementations of filters than can grow without
inserts failing and without meaningfully increasing the false
positive probability, even if the filters are created with a small
initial size. The resulting code is available on GitHub under a
permissive open source license.

1 Introduction

The Bloom filter is a ubiquitous data structure that allows
storing a set with a low amount of space. Bloom filters support
the operations insert – which adds an item to the set – and
lookup, which returns true if an element is in the filter; if
an element is not in the filter, true is returned with some
configurable probability 0 < ε < 1. This is called the “false
positive probability”, or “fpp”.

There are a number of other structures also supporting
insert and lookup with a false positive probability greater
than 0 [3, 4, 8, 22, 33, 50, 59]. A lookup operation with these
guarantees is sometimes called an “approximate membership
query”, and structures that support approximate membership
queries are sometimes referred to “AMQ structures” or just
“filters”. The significant interest in filters is reflective of their
utility in applications such as databases, security, and network-
ing [1, 4, 9, 11, 18, 27, 31, 32, 59].

Each of the filter structures cited above supports approx-
imate membership queries on sets with a given maximum
size, but the question of extensible (or extendable or incre-
mental or growable) filters that can increase in capacity as
more elements are inserted is little studied. The classic an-
swer is to create a sequence of filters, possibly of increasing
sizes and/or lower false positive probabilities [2, 13, 34]. In-
serts occur on the last filter to be created and lookups must
search each filter. Even in designs for which this keeps the
false positive rate low, lookup times balloon from constant to
poly-logarithmic or even linear in n, the number of elements
inserted [45,48,63]. Additionally, the space usage often grows
as Ω(n lgn), at which point a traditional hash table would do
the same work in the same space with constant-time opera-
tions and an n−c false positive probability, where c depends
on the constant in Ω(n lgn). A newer approach to manage
growing filters is to use cuckoo or quotient filters in which,
each time the filter capacity grows, the false positive proba-
bility doubles [8, 49, 59, 62, 63]. Finally, a third approach to
the problem of growing a filter is to depend on the original
keys being available during rebuild time [60]. This approach
is not always possible or time efficient. See Figure 1, which
describes prior work and its limitations when filters grow.

Instead of these approaches, this paper investigates prac-
tical structures that allow the structure to grow and keep a
low false positive rate (not exceeding a threshold specified
when the structure was created), all while using no more than
O(lg lgn+ lg(1/ε)) bits of space per element [48]. This is a
significant improvement over the status quo in which filters
either cannot grow, such as standard Bloom filters, or use
lg(1/ε)+ω(lg lgn) or ω(lg(1/ε)) bits to represent sets with
size n and false positive probability ε.

1.1 Applications

Growable filters are potentially useful in situations where
there is no known bound on the number of keys to be inserted.
One example is in joins in query processing systems. It is
often beneficial to performance to create and populate a filter

1

ar
X

iv
:2

10
9.

01
94

7v
4

 [
cs

.D
S]

 1
4

Ja
n

20
22

Behavior Filters
ω(1) lookup dynamic bloom [34], scalable bloom [2], dynamic cuckoo [13], monkey [16]

Doubled fpp when capacity doubles logarithmic dynamic cuckoo [63], Morton [8], vacuum [59], rank select quotient [49],
consistent cuckoo [45], dynamic cuckoo [13], entry-extensible cuckoo [62]

Depend on storing Ω(lgn) bits per
element (in filter or in backing store) elastic [60], consistent cuckoo [45], Chucky [17]

More than double fpp when full be-
yond capacity Bloom [5], tinySet [23]

Figure 1: The filter types that exhibit various undesirable behavior as more keys are inserted

for the build side of a join: the filter, being much smaller than
the full output of the build-side hash table construction, can
be pushed-down to the probe side to reduce the number of
rows that need to be tested against the build output [7]. If there
are any predicates on the build side, or if the build side has
incomplete or inaccurate distinct value count statistics, it is
not possible to predict the eventual size of the filter. Systems
like Apache Impala estimate the cardinality when initializing
the filter and then discard the filter if the estimate was too
low [40]. Using growable filters would allow these filters to
continue to be populated and used in the probe side.

Another example where growable filters are useful is in
log-structured merge trees (“LSM trees”) [44]. Log-structured
merge trees store data in sorted “runs” of exponentially-
increasing size. In order to cheaply discover if a key is present
in a run, systems like RocksDB equip each run with a fil-
ter [22, 44]. Point lookups that go through the filters require
accessing lgn filters, where n is the number of keys in the
LSM tree. A single growable filter structure can reduce this to
a single filter query by storing one structure for all keys, rather
than lgn structures. Here a Bloomier filter (sometimes called
a retrieval data structure) is called for, in which every positive
result from a lookup operation has an attached value [12]. For
LSM trees, that value should be the identifier of the most-
recently-created run a key is associated with. Upon a positive
lookup in the filter, the run identifier is retrieved, and a more
expensive probe of that run can begin.1

A final example is previously-used passwords [57]. The
goal of a filter for these cases is to allow lookups during
password creation time and prevent users from using a previ-
ously used password. These sets can have long lifetimes and
grow arbitrarily large; the “Have I Been Pwned” data set is
11GB of SHA-1-hashed passwords [35]. Because of password
databases’ propensity for growth, static-capacity structures
like Bloom filters or cuckoo filters are less well suited for
these data sets. Section 6.3 discusses this example in more
detail.

1The “Chucky” system is built on this premise, but requires a full filter
rewrite at each last-level compaction [17]. SlimDB also uses a cuckoo filter
to implement a retrieval structure on the most-recently-created “sub-level”
that a key is in in an LSM, but doesn’t use dynamic sizing at all [55].

1.2 Contributions
To address the need for filters that can grow, this paper makes
three contributions.

1. Section 3 presents the taffy block filter (“TBF”), a Bloom-
filter-backed AMQ structure with O(lgn) lookup cost.

2. Section 4 presents the taffy cuckoo filter (“TCF”), a
cuckoo-hashing-based AMQ structure with O(1) lookup
cost.

3. Section 5 presents the minimal taffy cuckoo filter
(“MTCF”), a cuckoo-hashing-based AMQ structure that
decreases the space needed in a TCF by up to a factor of
2.

TCFs, in addition to having O(1) lookup, contribute a new
understanding of cuckoo filters as dictionaries. MTCFs apply
for the first time the technique of quotienting to dictionaries
that can grow without doubling in size, which may be of
independent interest.

Section 6 describes experimental performance results on
all three taffy filters and what circumstances each is suited
for. Section 7 concludes.

2 Prior work

2.1 Split block Bloom filters
The insert and lookup operations in standard Bloom fil-
ters access lg(1/ε) bits in an array of size m that stores
m ln2/ lg(1/ε) distinct elements [6]. These cause lg(1/ε)
memory accesses and require the same number of hash func-
tion applications. Block Bloom filters reduce the number of
memory accesses to 1 at a cost of a slightly increased false
positive probability [53].

Each block Bloom filter is implemented as an array of
non-overlapping blocks; see Figure 2. Each block is itself a
Bloom filter. Blocks are no larger than a single cache line in
size. To insert a key, the key is hashed to select the block to
use, mapping a key x to h(x) mod m/B, where h is the hash
function, m is the size of the block Bloom filter and B is the
size of each block.

2

Symbol Usage

a
The logarithm, base 2, of the number of buck-
ets in an array in a TCF or an MTCF.

b
The number of slots in a bucket in a filter or
hash table that uses buckets.

B The size of a block in a block Bloom filter.

d
The over-provisioning per key - the number of
bits per element that need to be stored beyond
lg(1/ε).

F
The size of fingerprints in TCFs and the size
of large fingerprints in MTCFs. See Sec-
tions 4 and 5.

k
The number of hash functions in a cuckoo
hash table or Bloom filter.

L The size of a “lane” in a split Bloom filter.
m The number of bits in a Bloom filter.

n
The number of keys in a filter or dictionary at
a given point in time.

N
The maximum number of keys that will ever
be in a filter. Always less than |U |.

p
The logarithm, base 2, of the number of levels
in an MTCF.

Si
The set of permutations on the integers in
[0, i).

T
The maximum size of tails in TCFs and
MTCFs. See Sections 4 and 5.

U
The “universe” - the set of keys that could be
put in a filter.

Zi The set of integers [0, i).
Zi

2 The set of bit strings of length i.

δ The over-provisioning per structure - the per-
cent of empty space in a dictionary or filter.

ε The false positive probability, or “fpp”.

ϕi
The permutations associated with side i of a
TCF. See Section 4.

A ·∪B
The tagged union of A and B such that even if
A⊆ B, A ·∪B 6= B.

In split block Bloom filters, once a block is selected, it is
used as a “split” Bloom filter [9]. In a standard Bloom filter, to
insert a key x, k =m ln2/n hash functions are applied to x, and
each bit hi(x) mod B is set, 0≤ i < k. In a split Bloom filter,
the filter is split into equal-sized non-overlapping “lanes”,
each of size L. Upon insertion, the bits iL+(hi(x) mod L) for
0 ≤ i < k are set; in other words, a single bit is set in each
lane.

When a block Bloom filter is used with block size B = 256
and lane size L = 32, it is possible to use SIMD instructions
to perform the eight hash function computations at once, set
the eight bits at once (one per 32-bit lane), or check those
eight bits at once. The resulting Bloom filter has constant-
time branch-free insert and lookup and is consistently faster

than a cuckoo filter of the same size (See Figures 13 and 14
in Section 6) [26, 29, 41, 43].

Taffy block filters use split block Bloom filters as a
building block to make an extensible filter with lower
query time than a traditional Bloom filter would require
in the same application.

2.2 Cuckoo hashing

TCFs and MTCFs are based on cuckoo hashing, a
method of collision resolution in open-addressing hash
tables that assigns each key a small set of slots it can oc-
cupy [47]. A cuckoo hash table consists of two arrays of
size (1+ δ)n/2 to store a set of n keys, for 0 < δ < 1. The
arrays are broken up into contiguous non-overlapping buck-
ets [21, 58]. Each key is assigned one bucket per array via the
application of two hash functions on the key. Every key in the
table will be stored in a slot in one of those two buckets.

Inserting a key is more complex. If no slot in the two
buckets for storing a key is empty, one of the occupying keys
is evicted and replaced by the key being inserted. Now the
victim of the eviction is in turn inserted. With high probability,
eventually the evictions find an empty slot and the chain of
evictions ends [47].

2.3 Succinct dictionaries with quotienting

Maps of size n with keys from a “universe” of size U can
be naïvely stored in n lg |U | bits by storing every element (in
any order) in an array of size n.2 Space can be saved using a
technique called “quotienting” [4, 38]. See Figure 3.

2A “universe” is the set of all possible keys, such as all 64-bit integers, or
all strings up to length 1 trillion characters.

block

32-bit lanes

Figure 2: A diagram of a split block Bloom filter with k = 8
and B = 256.

3

The basic construction can be illustrated as follows: first,
an array of size n is created in which each array slot can
hold an arbitrary number of keys [39]. Then, a key x is stored
in slot x mod n. Additionally, instead of storing x explicitly,
bx/nc is stored; x mod n is the implicitly-stored part of they
key and bx/nc is the explicitly-stored part of the key. Because
only bx/nc is stored as the key, only lg |U |− blgnc bits are
required to store it. Coming back to the array, this reduces the
total storage required to n(lg |U |−blgnc).

In Figure 3, the column on the left represents a set of values
in Z128 (integers between 0 and 127, inclusive), with each
element taking 7 bits to store. The column in the middle
shows another way of representing the same set as two parts
per element: one of the lower order two bits and another of
the higher order five. The column on the right stores the two
low-order bits implicitly and the high order five bits explicitly.
This cuts the space needed to store the set down from 28 bits
to 20 bits.

TCFs and MTCFs use quotienting in cuckoo hashing
to reduce the space needed to store the filter.

2.4 Filters that can grow
Pagh et al. describe two constructions to support extensible
filters [48]. Taffy filters refine the work of Pagh et al. with
new structures for both constructions.

O(lgn) lookup The first is implemented as a series of suc-
cinct dictionaries. Common similar constructions use a series
of Bloom filters and exponentially decreasing false positive
probabilities in each subsequent filter in order to bound the
total false positive rate. That is, they create a sequence of
Bloom filters with the following pairs for the false positive
probability and expected number of distinct values:

〈ε/2,2〉,〈ε/4,4〉,〈ε/8,8〉,〈ε/16,16〉, . . .
As new items arrive, they are inserted into the largest

Bloom filter. Once that filter reaches the capacity it was con-
figured for, a new Bloom filter with twice the capacity and half
the false positive probability is initialized. Lookups access all
the Bloom filters.

This leads to a storage footprint of more than (lgn +
lg(1/ε))/ ln2 bits per element and a query time of O(lg2 n+

64
98
39
77

∼

b64/4c= 16
b98/4c= 24
b39/4c= 9
b77/4c= 19

64 mod 4 = 0
98 mod 4 = 2
39 mod 4 = 3
77 mod 4 = 1

9
24
19
16

Figure 3: Quotienting with n = 4 and all buckets holding
exactly one element.

lgn lg(1/ε)). Pagh et al. reduce the lookup cost to O(lgn) by
using a dictionary like Raman and Rao’s that has O(1) query
time per filter [48, 54]. They also reduce the space usage to
O(lg lgn+ lg(1/ε)) bits per element by using the sequence
〈O(ε/i2),2i〉 for i∈ [1,∞), rather than 〈ε/2i,2i〉. See Figure 4.
In this construction, dlg(n−1)e dictionaries are maintained
with exponentially increasing capacities and logarithmically
increasing bit widths. The false positive probability of the
ith dictionary, counting from 1, is 6ε/i2π2, and the sum of
the false positive probabilities is ≤ ε. The lookup operation
requires a dictionary lookup in dlg(n−1)e dictionaries.

O(1) lookup Pagh et al. also present a filter with the same
space usage but O(1) query time [48]. See Figure 5.

This filter maintains a map where the keys are bit strings
of length dlgne+ lg(1/ε)+2 and the values (which we will
call “tails”) are bit strings of length up to lg lgN, where N
will be the largest size of the data structure. (This definition
of N is not a problem in practice, as using |U |, the size of the
universe of keys, should be sufficient for integer keys. For
non-integer keys, they must be hashed down to an integer in
order to use these structures, and using the universe of the set
of integers each key is hashed to also works well.) After every
2i insertions, a new map is created where the keys are one bit
longer. Pagh et al. show that the fpp of such a dictionary is no
more than ε as long as n < N.

2.5 Compact extensible dictionaries
Hash tables that are used to accommodate sets without a size
known in advance typically do so by doubling in capacity
as needed. This applies to TCFs, as well. This means that at
least 50% of the space goes unused at points, with an average
unused percentage of at least 25%. Constructions like that of
Raman and Rao are able to mitigate this, but they are largely
theoretical [54]. Instead, Maier et al. use the cuckoo hashing
evict operation to incrementally resize a hash table [46]. First,

Zlg(12π2/6ε)
2

Zlg(22π2/6ε)
2

Zlg(32π2/6ε)
2

Zlg(dlg(n−1)e2π2/(6ε))
2





2dlg(n−1)e−1

Figure 4: Pagh et al.’s first construction. Zm
2 means bitstrings

of length m. In this diagram, columns of blocks represent
dictionaries. The caption under a column is the type of the
elements in the dictionary. For instance, the block with four
rows in its column stores bit strings of length lg(32π2/6ε).
Quotienting (see Section 2.3) and other space factors are not
presented in this figure.

4

the “DySECT” table, as they call it, is broken up into equal
sized sub-arrays that can be resized independently. When
the table gets close to full, exactly one of the sub-arrays is
doubled in size. This frees up room that’s available in future
eviction sequences, and the new space will slowly be filled.
Eventually all arrays will have been doubled in size, thereby
causing the whole table to have doubled in size without going
through a phase with as low as 50% space usage.

MTCFs filters extend quotienting-based dictionaries to
DySECT tables for the first time.

3 Taffy block filters

The first construction from Pagh et al. consists of a set of sub-
filters of geometrically decreasing false positive probabilities
but exponentially increasing size [48]; see Figure 4. As Pagh
et al. describe it, this filter is initialized with a single sub-filter.
Inserts take place on the most recently added sub-filter (which
is the largest), while lookups are performed by performing a
lookup in each sub-filter until the element is found or there are
no more sub-filters to search. Once 2i inserts have taken place,
a new sub-filter is initialized and added to the collection.

Using traditional Bloom filters, the lookup cost would be

lgn

∑
i=1

lg(i2π2/(6ε)) =
lgn

∑
i=1

lg(i2)+ lg(π2)− lg6+ lg(1/ε)

= Θ(lg2 n+ lgn lg(1/ε))

Instead, Pagh et al. use dictionary-based filters that support
constant-time lookup – such as Raman and Rao’s dictionary
– rather than Bloom filters [48, 54]. This reduces the lookup
time to O(lgn).

Taffy block filters (“TBFs”) use split block Bloom fil-
ters to keep the lookup time logarithmic and independent

Zdlgne+lg(1/ε)+2
2 Z0

2 or Z1
2 or . . . or Zlg lgN

2

n





Figure 5: Pagh et al.’s second construction. In this construc-
tion of a growable filter, when a filter contains n items, it is
stored as a dictionary in which the keys are bit stings of length
dlgne+ lg(1/ε)+2 and the values are bit strings of length up
to lg lgN, where N is the largest number of keys the filter will
contain.

of ε, rather than Raman and Rao’s dictionary, as the latter
is a theoretical, not a practical design [48, 54]. Split block
Bloom filters have proven to be the fastest dynamic filters
for doing single-element lookups in recent works on the mat-
ter [22,41,51]. Even though they are not based on dictionaries,
they suffice for this construction, as they support the two oper-
ations needed for each level: lookup and insert. See Section 6
for performance of TBFs compared to pre-sized split block
Bloom filters.

4 Taffy cuckoo filters

Taffy block filters’ lookup operation requires lgn lookup op-
erations on their sub-filters, one per sub-filter. Taffy cuckoo
filters reduce lookup times to O(1) and show how the ideas
from quotienting can be applied to cuckoo filters to produce
a dictionary.

Taffy cuckoo filters (“TCFs”) use quotienting cuckoo tables
to store their data, as this reduces the storage space by a
significant margin (See section 2.3). See Figure 5. The keys
are bit-strings of length blgnc+ F and the values are bit-
strings of length up to T , for some fixed F (for “fingerprint”)
and T (for “tail”). By quotienting in an array of size Ω(n),
each fingerprint-tail pair can be stored in blgnc+F +T −
lgn+O(1) bits, for a total space usage of (F +T)n+O(n).
For performance and simplicity purposes, we pick F+T = 15,
but this is not a requirement of the structure.

Quotienting Quotienting is used with linear probing as the
collision resolution mechanism in quotient filters [4]. Quo-
tienting can also be used with cuckooing as the collision
resolution mechanism, as in backyard cuckoo hashing [56].
Cuckoo hash tables maintain k ≥ 1 potential locations for
each key, each of which could be stored in any of its potential
locations [47]. Because more than one hash function is used
and because eviction occurs, it must be possible to translate
from a location-element pair to an alternate location-element
pair for the same key. See Section 4.1.

TCFs are based on cuckoo tables and have two arrays of
slots, referred to as “sides,” just as (some) cuckoo filter de-
signs break up the address space into multiple regions, one per
hash function. With TCFs, this is a requirement in order to be
able to recover enough of the original key in order to re-hash it
to a larger address space. TCFs, unlike backyard cuckoo hash-
ing, use bucketing in order to increase the usable capacity and
thus reduce wasted space [21,56].3 Each side of a TCF comes
equipped with a random permutation on bit-strings of length
lgn+F−O(1), analogous to how each side of a cuckoo hash
table comes equipped with a hash function. A fingerprint-tail
pair (f , t) is stored in one of two buckets: the one in side 0
pointed to by the high-order lgn−O(1) bits of ϕ0(f) or the

3Like quotienting, buckets are not required for the correctness of the
structure, just its succinctness.

5

Element := {fingerprint: ZF
2 , tail: ·∪i≤TZi

2}
Slot := Element⊥
Bucket := Slot[b]
Side(a) := {Bucket[2a], Permutation: S2k+F}

TCF(U, a) := {Side(a)[2], HashFunction: U→Z64
2 }

Listing 1: The types of a TCF.

one in side 1 pointed to by the high-order lgn−O(1) bits of
ϕ1(f), where ϕi is the permutation associated with side i.

The critical part of the permutations is the ability to trans-
late between Si(x) and S j(x) for a key x and i 6= j. In a cuckoo
hash table in which the original key x is stored, this is trivial
whether or not the hash functions associated with each side
are permutations. In taffy cuckoo filters this translation is
accomplished without storing x directly, but just S0(x) and
S1(x), via Si(x) = Si(S−1

j (S j(x))).

More concretely, see Listing 1. An element consists of two
groups of bits. The fingerprint (of size F) is tested for equality
when executing the lookup operation; the tail (of size 0,1,. . . ,
or T) is the unused part of the hashed key that will eventually
be used in the fingerprint (after permuting – see below). A
bucket consists of b possibly empty slots, each of which can
hold one element or be empty.4 A side consists of 2a buckets
for some a as well as a random permutation on Za+F

2 . A TCF
consists of two sides and one hash function that produces a
64-bit key. The two sides have the same number of buckets
but different permutations.

In Listing 1, A ·∪B represents a tagged disjoint union of A
and B; even if A⊆ B, A ·∪B 6= B. T⊥ means the type T extended
with the element ⊥, indicating “null” or “empty”. T[n] de-
notes an array of n values of type T . Si is the symmetric group
on Zi – the set of all permutations on Zi. Structs are denoted
by curly brackets {}.

A slot is encoded in a bitfield of size F +T +1 as follows.
If the last T +1 bits are all zero, the slot is empty. Otherwise,
there must be a one bit in the last T +1 bits. All bits following
that one bit are the tail. Bits 1−F are the F-bit fingerprint.
For example, the tail 010000 represents a tail of size 4, 0000,
while 000001 represents tail of length zero. The tail 000000
represents an empty slot, which is dinstinct from an element
with a tail of length zero.

Lookup A lookup begins by hashing a key with the TCF’s
hash function. Then the lookup operation does the following:

1. Applies the permutation associated with side 0, ϕ0, to
the most-significant a+F bits in the key.

4For our implementation, we use b = 4. Just as with F and T , four is not
a magic number, but one picked for a balance between maximum load and
fpp, both of which go up as buckets get larger.

2. Reserves the next T bits of the key; this will be the key’s
tail. Note that these bits have not been permuted.

3. Using the most-significant a bits in the permuted bits,
selects a bucket within side 0. (The remaining F bits in
the permuted value are the fingerprint.)

4. Checks to see if one of the b slots in the bucket contains
an identical fingerprint. If so, checks if the element’s
tail is a prefix of the key’s tail. If yes, returns True.
Otherwise, repeats with side 1. If neither side contains
an identical fingerprint and prefix-matched tail, returns
False.

Note that the prefix check is not strictly necessary, but
does serve to reduce the fpp. See Upsize, below, as well as
Figure 10 in Section 6.

Figure 6 shows how a hashed key is broken down into three
parts: the index into the bucket array, the fingerprint, and the
tail.

Insert Insert places the key’s fingerprint and tail in one of
the 2b slots corresponding to that key, if an empty slot is
found. Otherwise, insert selects an occupied slot from the
bucket to evict: the element in this slot will be moved to the
other side.

The evict operation first reconstructs the high order a+F
bits of the key by concatenating the a bits of the bucket index
and the F bits of the fingerprint, then applying that side’s
permutation in reverse to the value. Using the same tail (this
does not get permuted), the evict operation then inserts the

0x89a∗ 0xbc†

0x89abc

0xdef∗ 0x01†

0xdef01

ϕ0 or ϕ1

0x12345 0x6 = 〈0,1,1,0〉‡

0x1234567§

Figure 6: TCF key split. In this example, a= 12, F = 8, T = 4,
ϕ0(0x12345) =0x89abc, and ϕ1(0x12345) =0xdef01.
§ hashed key
‡ tail
† fingerprint
∗ index into bucket array; stored implicitly using quotienting

6

evicted data into the opposite side; this continues until an
empty slot is encountered

Upsize When a TCF is nearly full, inserts may fail. This
is identical to the situation with cuckoo filters. When this
happens, the upsize method must be called to double the size
of the structure. (This is not available in cuckoo filters without
shortening the fingerprints, thereby doubling the fpp.)

The upsize operation begins by creating a new TCF. To
transfer the data from the older to the newer TCF, upsize uses
a modified version of the evict algorithm, as follows:

Upsize first reconstructs the a+F bits of the key that were
used to construct the bucket index and fingerprint. Then a bit
is “stolen” from the tail and appended onto the end of the
key. The high order bit of the tail is removed from the tail
and added to the low-order end of the key. Since the tail was
taken unaltered from the key, this gives a+F +1 bits of the
original key. The new tail has now been decreased in length
by one. The key and this new tail can now be inserted into
one of the sides of the new TCF as described above.

This works as long as the tail has positive length. If the tail
has length zero, there is nothing to steal from. Instead, two
candidate keys are created from the reverse-permuted a+F
bits by appending a zero and a one. It’s indeterminate which
one of these was in the original key, so both are inserted.

The fpp remains less than 2−F+O(1): after adding n ele-
ments to the filter, the filter holds n/2 fingerprint-tail pairs
with tail length lg lgN, n/4 pairs with tail length lg lgN−1,
. . . and n/ lgN pairs with tail length 1. It also contains
(lgn− lg lgN)n/2lgN pairs with tail length 0. Overall that’s
3n/2−O(n) pairs, so the space usage is still linear in the
number of elements. (Note that if the tails started with length
0 instead of lg lgN, this would work out to Θ(n lgn) rather
than 3n/2−O(n).) Now the odds that any bitstring of length
L matches any of m different L-bit strings is m2−L. Applying
this to TCFs, since the space usage is linear, and since the
“sides” (the two arrays of buckets) are of length lgn−O(1),
then by reversing the quotienting operation we get that the
probability that any random value that wasn’t inserted matches
with any of the existing elements is O(n)2− lgn+O(1)−F =
2−F+O(1); this is the false positive probability.

Note that if the tails all started with length 0, rather than
lg lgN, then the space usage would be Θ(n lgn) and the fpp
would be 2−F+O(1)+lg lgn. See also [48].

Freeze and Thaw TCFs also support freeze and thaw oper-
ations. Freeze reduces the space consumption of a TCF from
O(lg(1/ε)+ lg lgN) to O(lg(1/ε)) bits per item, where N is
the largest size the structure will grow to. It does so by recre-
ating the structure as a TCF with tail length capacity 0. Thaw
simply turns a frozen structure into an unfrozen structure by
recreating a TCF with tail length capacity lg lgN in which all
of the tails have length zero. This allows new inserts to take
place while capturing their tails.

4.1 Cuckoo filters ∼= cuckoo hashing with per-
mutations and quotienting

Note that the frozen taffy cuckoo filter is a variant of a cuckoo
filter in which the fingerprint hash function takes into account
the index as well. In the original cuckoo filters, the two buck-
ets a fingerprint could reside in are separated by a hashed
value of the fingerprint [25]. The fingerprint stored in either
bucket is identical, and there is no recovery of the original
hashed value. The difference between a frozen TCF and the
original cuckoo filter is that a frozen TCF can recover a prefix
of the hashed key by way of inverting the relevant permutation
and applying it to the bucket index and fingerprint. Other than
this difference, the structures have the same operations.

This isomer of cuckoo filters shows how to support in
cuckoo filters a straightforward method for porting techniques
that were designed for cuckoo hash tables, including satel-
lite data (making a cuckoo filter a type of Bloomier filter),
overlapping blocks, stashes, L > 2 buckets, fast insertion al-
gorithms, and cuckoo hashing with pages [12, 15, 20, 24, 28,
30, 36, 37, 42, 52, 61].

5 Minimal taffy cuckoo filters

Taffy cuckoo filters suffer from a step-function space usage:
at each point, the structure has a size which is a power of two,
sometimes allocating twice as much space as is needed. (See
Figure 9 in Section 6.) Even if the size were not limited to
being a power of two, as in vacuum filters or Morton filter,
doubling the capacity during upsize would reduce the space
utilization to less than 50% [8,59]. To address this, this section
describes a cuckooing structure based on DySECT to reduce
the space usage closer to only what is needed [46].

DySECT is a variant of cuckoo hashing. A DySECT table
consists of some number of subtables, and as the table gets
more and more full, it grows by doubling the size of one of
its subtables. Just as in cuckoo hashing, upon an insertion, an
element may be evicted. As new elements are inserted into
the table, they evict older elements, and this movement causes
the newly-doubled subtable to fill up.

This section proposes minimal taffy cuckoo filters
(“MTCFs”), an application of the DySECT idea to quotienting
and taffy filters. Some complications arise:

1. Because subtables have different sizes, the bits that are
implicitly stored using quotienting vary depending on
which part of the table an element is in. To address this,
fingerprints in MTCFs have variable size.

2. Because fingerprints have variable size, there must be
multiple permutations per side, one for each size of fin-
gerprint.

3. Because there are multiple permutations per side, a key
may be in multiple distinct buckets per side, which de-

7

Element := {fingerprint: ZF−1
2 ·∪ZF

2 , tail: ·∪i≤TZi
2}

Slot := Element⊥
Bucket := Slot[b]
Level(a) := Bucket[2][2a] ·∪ Bucket[2][2a+1]
Permutation(a) := S2p+a+F−1 ·∪S2p+a+F

MTCF(U, a) := {cursor: Z2p,
Level(a)[2p],
Permutation(a)[2],

HashFunction: U → Z64
2 }

Listing 2: The types of an MTCF.

creases the lookup performance and increases the false
positive probability.

See Listing 2 and Figure 7 for a breakdown of the compo-
nents of an MTCF. In an MTCF, each element has a finger-
print of size F−1 or F and a tail of size up to T . A bucket
consists of b (possibly empty) slots, each of which can hold
one element. A level consists of two arrays of the same size,
each with 2a buckets for some a. The table consists of four
permutations, one hash function, 2p levels, and one cursor
pointing to some index in the set of levels. The maximum
and minimum a across all levels differ by at most 1. Levels at
location less than the cursor have the larger size. If all levels
have the same size, the cursor must be 0.

The permutations are grouped by side, two for each. The
permutations are on values with length p+ a+F − 1 and
p+a+F , where 2a is the size of the smallest table, measured
in buckets.

If there are larger and smaller levels, then every element in
the larger levels has a fingerprint of size F−1, not F . This is
because the implicitly-stored part of the key is one-bit longer
in the larger levels, so the explicitly stored part is shorter.

In an MTCF, upsize only increases the size of one of the
levels, not the whole structure. As a result, the capacity of the
filter tracks more closely the number of entries in the table.
(See Figure 9 in Section 6.)

Lookup A lookup operation in an MTCF first applies each
of the four permutations to the hashed key.

• For the permutations on p+ a+F bits the first p bits
indicate the level, the next a or a+1 indicate the bucket,
and the remaining F − 1 or F bits are the fingerprint.
Lookup proceeds as it does in the TCF case, by checking
if fingerprints match and if the stored tail is a prefix of
the tail of the key being looked up.

• For the permutations on p+ a+F − 1 bits, the first p
bits again indicate the level.

– If the level has tables with 2a+1 buckets, the per-
muted key is not used for lookup; to do otherwise

would leave only p+ a+F − 1− p− (a+ 1) =
F−2 bits for the fingerprint, which is not permit-
ted. That key is simply skipped and the lookup
continues with the next key.

– Otherwise, the level has tables with 2a buckets, and
we can proceed as in the p+a+F case.

Insert In insert operations, as in lookup, the first p bits of
the permuted item indicate the level. Just as in TCFs, the
insert operation on a bucket may produce an eviction. During
an evict operation in an insert, an element may move between
levels with differently-sized arrays of buckets. When the fin-
gerprint has size F−1 and the level moved from has a bucket
array of size 2a and the level moved to has a bucket array of
size 2a+1, the number of explicitly stored bits (the fingerprint
bits) is now (a+F−1)− (a+1) = F−2. Since every finger-
print must be of length F or F−1, a bit must be stolen from
the tail. As in TCFs, if there are no bits to steal, two new key
prefixes are created and inserted, as one of them must be the
prefix of the original key.

Note that TCFs only steal bits during upsize operations,
unlike MTCFs.

See Figure 8, which illustrates the transitions an element in
an MTCF can go through when evicted. The states indicate the
lengths of the level, fingerprint, and tail. For instance, when
a level’s index is less than the cursor (the center state in the
diagram), the length of that level is twice what it would be if
its index were higher. For elements in a short level with a short

cursor = 2

level 0

side 0 side 1

bucket⊥ ⊥ ⊥

fingerprint tail entry

ZF−1
2 or ZF

2 Z0
2 or Z1

2 or . . .ZT
2

Figure 7: A diagram of an MTCF. In this example, a = 2 and
b = 4.

8

fingerprint and a tail of length zero, when they are evicted to
an element in a long level, two elements are created, as it is
impossible to steal a bit from the tail of length zero.

Freeze/thaw and encoding The analysis of freeze/thaw is
identical to that of TCFs, with the exception that a frozen
MTCF is not a cuckoo filter. It is, instead, a new type of filter
that mixes cuckoo hashing and DySECT.

The tails are encoded as they are in TCFs - by removing the
leading zero bits and the first one bit. An all-zero tail means
a slot is unoccupied. The fingerprint is encoded by using a
single bit to indicate if the fingerprint has size F or F − 1.
Thus, a slot needs to store F + 1+T + 1 bits. For speed of
operation, we choose F = 9 and T = 5 so that slots fit into
uint16_ts. As with TCFs, and for the same reason, we pick
b, the number of slots in a bucket, to be 4. We pick p, the
logarithm of the number of levels, to be 5; other choices are
valid, but this one made a nice compromise between insert
speed and space overhead.

6 Evaluation

TBFs, TCFs, and MTCFs have been implemented and tested
for correctness; this section describes their space usage, false
positive probabilities, and performance.

In each chart, TBFs are configured for a maximum fpp of
0.4%. All taffy filters are configured with an initial capacity of
1. All experiments were performed on both an Intel i7-7800X
with 96GB of memory and SMT turned on and an AWS
EC2 instance of class m6g.medium with 4GB of memory
and a single Graviton2 ARM-based core. The experiments
used Ubuntu 18.04 and 20.04, respectively, and g++ 10 and 9,
respectively.

For performance testing, we equipped both TCFs and
MTCFs with stashes, extra storage slots not associated with
any bucket [37]. We set both filters to upsize when they

≥ cursor, ZF−1
2 , empty tail ≥ cursor, ZF−1

2 , non-empty tail

< cursor

≥ cursor, ZF
2

Figure 8: The transitions an element in an MTCF can go
through when evicted.

were 90% full or their stashes had size greater than 4. For
the random permutations we use Feistel networks with 2-
independent multiply-shift as the round function [19]. These
are not perfectly random, of course; analyzing the sufficiency
in theory is future work. [14, 56].

For comparison, the graphs also include a cuckoo filter
(labeled “CF”) with fingerprints of size 12 and a split block
Bloom filter (labeled “SBBF”) sized to hold 100 million ele-
ments with an fpp of 0.4%. The keys used in the experiments
are all randomly-generated 64-bit integers. This suffices for
testing larger universes as well, as noted in Section 2.4. To
benchmark the insert time, 100 million elements are inserted.
At intermediate points we also benchmark the lookup opera-
tion one million times both on integer keys that are guaranteed
to be present and on randomly-generated integer keys. Fig-
ures 13 and 14, which show the results of lookup performance
testing, only show the randomly-generated-keys result, as the
same chart for guaranteed-to-be-present keys shows the same
characteristics.

6.1 Space
A filter with a false positive probability of ε must take up
at least lg(1/ε) bits per element (assuming all data sets of
the same size are equally likely) [10]. Practical filters use
more space. For instance, Bloom filters use lg(1/ε)/ ln2 bits
per element, which is about 1.44lg(1/ε). Cuckoo filters and
quotient filters use (lg(1/ε)+d)(1+δ) where d is between
2 and 3, and δ is the over-provisioning factor, between 1% -
20% [4, 25, 50]. Static filters that only support a single initial-
izing bulk insert – such as the ribbon filter – can use nearly
optimal space [22].

However, Pagh et al. showed that filters that can grow, like
taffy filters can, must use at least lg(1/ε)+Ω(lg lgn) bits per
element [48]. Figures 9 and 10 show the space usage and ε,
respectively. Cuckoo filters cannot grow (without changing
the number of bits per slot and doubling the false positive
rate), and as such, cuckoo filters with sufficient capacity to
insert up to 100 million keys use tens of millions of bytes
even when the set currently stored is very small. The same
is true of split block Bloom filters. Even though the fpp of
taffy filters seems to grow as the capacity grows, it is bounded
above by 2−F+O(1); see Section 4.

6.2 Time
Figures 11, 12, 13, and 14 show the performance of taffy
filter operations.5 For inserts, TBFs are the fastest of the three
taffy filter variants; they are even faster than the fastest non-
taffy variant, split block Bloom filters. TBF inserts are faster
than the other cuckoo filters because they are simple, branch-
free, and induce a single cache miss; they are faster than the
pre-sized split block Bloom filter because, while being built,

5All charts of time show the minimum over nine runs.

9

the entirety of the TBF fits in cache until about 10 million
elements have been inserted. This holds true across both tested
machines, x86 and ARM.

For inserts there are visible dips in the average construction
time for small filters as they get larger. These are due to
measurement overhead (for the smallest n) and the cost of
upsizing (for slightly larger n).

For lookups, the situation is more complex. Of the resizable
filters, the taffy cuckoo filter is the fastest once the size of the
filter is large enough, while a TBF is otherwise faster. The
MTCF lags behind both.

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70 80 90 100

B
y

te
s

o
cc

u
p

ie
d

 (
m

il
li

o
n

s)

Keys inserted (millions)

MTCF
TCF
TBF

CF
SBBF

Figure 9: The amount of space used by each filter at the given
number of keys inserted.

0.01%

0.1%

1%

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

F
al

se
 p

o
si

ti
v

e
p

ro
b

ab
il

it
y

Keys inserted

MTCF
TCF
TBF

CF
SBBF

Figure 10: ε, the false positive probability.

6.3 Previously-used-password filter

In this section we test the dataset of previously used passwords
from “Have I Been Pwned” [35]. This dataset consists of 847
million hashes of leaked passwords. It has grown over time,
starting in August 2017 with 306 million passwords. It is
currently6 on version 8.

Taffy Bloom filters and taffy cuckoo filters were tested on
this dataset using the 64 low-order bits from the hashes as
the keys. Both filters started out configured with an initial
capacity of a single element; the TBF was configured to have
a similar fpp to the TCF. Once insertion was complete, the
TCF was frozen to test the lookup performance and fpp of

6As of December 2021

 10

 100

 1000

 10000

 100000

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

A
v

er
ag

e
n

an
o

se
co

n
d

s
p

er
 k

ey

Keys inserted

MTCF
TCF
TBF

CF
SBBF

Figure 11: Insert times for filters, i7-7800X.

 10

 100

 1000

 10000

 100000

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

A
v

er
ag

e
n

an
o

se
co

n
d

s
p

er
 k

ey

Keys inserted

MTCF
TCF
TBF

CF
SBBF

Figure 12: Insert times for filters, m6g.medium.

10

the resulting data structure. Experiments were conducted on
an AWS EC2 r6i.xlarge with 32GiB of memory and an Intel
Xeon Platinum 8375C. Times are the minimum over a set of
7 runs; fpps are the median. See Figure 15.

As in the case of the synthetic benchmarks, insert is faster
for the TBF and lookup is faster for the TCF. This omission
of the tails makes the false positive rate higher but the lookup
faster, since the prefix checks are now unnecessary and the
fingerprint matches can now be performed with SIMD-within-
a-register techniques, just as in the original cuckoo filter [26].
For the “Raw, sorted” column, we consider the cost of storing
64 bits of each hash in a single array with sorting as the input
method and binary search as the lookup method.

 10

 100

 1000

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

N
an

o
se

co
n

d
s

Keys inserted

MTCF
TCF
TBF

CF
SBBF

Figure 13: Lookup times for filters, i7-7800X.

 10

 100

 1000

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

N
an

o
se

co
n

d
s

Keys inserted

MTCF
TCF
TBF

CF
SBBF

Figure 14: Lookup times for filters, m6g.medium.

6.4 Discussion

The MTCF offers lower space than the other two taffy filters,
but its speed is substantially worse. It has significant insertion
time increases when it is hard to find an eviction sequence;
in this case consecutive insert operations may call upsize,
causing a spike in the graph. (See Figures 11 and 12.) This
cyclic behavior was noted by Maier et al. [46].

During lookup operations on MTCFs, when the cursor is
close to 32, the performance improves as the four potential
locations to look for a key are more frequently reduced to two,
since the shorter permuted keys are no longer long enough
for most of the levels in the structure. See Figures 13 and 14.

Split block Bloom filters and cuckoo filters are still attrac-
tive choices when the size of the set to be approximated is
known in advance. When a growable filter is needed, the
application matters quite a bit. If saving every byte matters,
MTCFs are called for. If satellite data (as in a Bloomier filter)
is needed, such as when using the filter in front of an LSM
tree, a TCF or MTCF should be used, as TBFs do not support
satellite data. Otherwise, a practitioner must ask themselves:

• Is the workload write-heavy or read-heavy? Write-heavy
workloads favor TBFs over TCFs.

• Is the set likely to exceed one million elements (x86)
or 1000 elements (ARM)? If yes, a TCF should be pre-
ferred.

The code for taffy filters is available on GitHubunder a
permissive open-source license.7

7 Conclusion

This work exhibits for the first time practical structures sup-
porting approximate membership queries and filter growth
without exceeding O(lg(1/ε)+ lg lgN) bits of space used per
distinct key. We presented three structures: the TBF, the TCF,
and the MTCF. We demonstrated taffy filter performance and
correctness under synthetic and real-world benchmarks.

7https://github.com/jbapple/libfilter

TBF TCF Frozen Raw,
sorted

insert
(ns/key) 24 572 TCF +

2.2 113

fpp 0.25% 0.26% 0.71% 0%
lookup
(ns/key) 290 108 70 719

space 4.1GiB 4.0GiB 2.5GiB 6.3GiB

Figure 15: Performance on “Have I Been Pwned”

11

https://github.com/jbapple/libfilter

Acknowledgments

Thanks to Pedro Vasallo and Alex Breslow for helpful discus-
sions and feedback.

References

[1] Mohammad Alaggan, Sébastien Gambs, and Anne-
Marie Kermarrec. Blip: Non-interactive differentially-
private similarity computation on Bloom filters. In
Andréa W. Richa and Christian Scheideler, editors,
Stabilization, Safety, and Security of Distributed Sys-
tems, pages 202–216, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

[2] Paulo Sérgio Almeida, Carlos Baquero, Nuno Preguiça,
and David Hutchison. Scalable Bloom filters. Informa-
tion Processing Letters, 101(6):255–261, 2007.

[3] Michael A. Bender, Martin Farach-Colton, Mayank
Goswami, Rob Johnson, Samuel McCauley, and Shikha
Singh. Bloom filters, adaptivity, and the dictionary prob-
lem. In 2018 IEEE 59th Annual Symposium on Foun-
dations of Computer Science (FOCS), pages 182–193,
2018.

[4] Michael A. Bender, Martin Farach-Colton, Rob John-
son, Russell Kraner, Bradley C. Kuszmaul, Dzejla
Medjedovic, Pablo Montes, Pradeep Shetty, Richard P.
Spillane, and Erez Zadok. Don’t thrash: How to cache
your hash on flash. Proc. VLDB Endow., 5(11):1627–
1637, July 2012.

[5] Burton H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM, 13(7):422–426,
jul 1970.

[6] Burton H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM, 13(7):422–426,
July 1970.

[7] Peter Boncz, Thomas Neumann, and Orri Erling. TPC-
H analyzed: Hidden messages and lessons learned from
an influential benchmark. In Raghunath Nambiar and
Meikel Poess, editors, Performance Characterization
and Benchmarking, pages 61–76, Cham, 2014. Springer
International Publishing.

[8] Alex D. Breslow and Nuwan S. Jayasena. Morton fil-
ters: fast, compressed sparse cuckoo filters. The VLDB
Journal, 29(2):731–754, 2020.

[9] Andrei Broder and Michael Mitzenmacher. Network
applications of Bloom filters: A survey. Internet mathe-
matics, 1(4):485–509, 2004.

[10] Larry Carter, Robert Floyd, John Gill, George
Markowsky, and Mark Wegman. Exact and approxi-
mate membership testers. In Proceedings of the Tenth
Annual ACM Symposium on Theory of Computing,
STOC ’78, pages 59–65, New York, NY, USA, 1978.
Association for Computing Machinery.

[11] Sang Kil Cha, Iulian Moraru, Jiyong Jang, John
Truelove, David Brumley, and David G. Andersen.
Splitscreen: Enabling efficient, distributed malware de-
tection. Journal of Communications and Networks,
13(2):187–200, 2011.

[12] Bernard Chazelle, Joe Kilian, Ronitt Rubinfeld, and
Ayellet Tal. The Bloomier filter: An efficient data struc-
ture for static support lookup tables. In Proceedings
of the Fifteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA ’04, pages 30–39, USA, 2004.
Society for Industrial and Applied Mathematics.

[13] Hanhua Chen, Liangyi Liao, Hai Jin, and Jie Wu. The
dynamic cuckoo filter. In 2017 IEEE 25th International
Conference on Network Protocols (ICNP), pages 1–10,
2017.

[14] Kai-Min Chung, Michael Mitzenmacher, and Salil Vad-
han. Why simple hash functions work: Exploiting the
entropy in a data stream. Theory of Computing, 9(1):897–
945, 2013.

[15] Flaviene Cristo, Eduardo Almeida, and Marco Alves.
ViViD cuckoo hash: Fast cuckoo table building in SIMD.
In Anais do XX Simpósio em Sistemas Computacionais
de Alto Desempenho, pages 288–299, Porto Alegre, RS,
Brasil, 2019. SBC.

[16] Niv Dayan, Manos Athanassoulis, and Stratos Idreos.
Monkey: Optimal navigable key-value store. In Pro-
ceedings of the 2017 ACM International Conference
on Management of Data, SIGMOD ’17, pages 79–94,
New York, NY, USA, 2017. Association for Computing
Machinery.

[17] Niv Dayan and Moshe Twitto. Chucky: A succinct
cuckoo filter for lsm-tree. In Proceedings of the 2021
International Conference on Management of Data, SIG-
MOD/PODS ’21, pages 365–378, New York, NY, USA,
2021. Association for Computing Machinery.

[18] Sarang Dharmapurikar, Praveen Krishnamurthy, and
David E. Taylor. Longest prefix matching using Bloom
filters. In Proceedings of the 2003 Conference on Ap-
plications, Technologies, Architectures, and Protocols
for Computer Communications, SIGCOMM ’03, pages
201–212, New York, NY, USA, 2003. Association for
Computing Machinery.

12

[19] Martin Dietzfelbinger. Universal hashing and k-wise in-
dependent random variables via integer arithmetic with-
out primes. In Proceedings of the 13th Annual Sym-
posium on Theoretical Aspects of Computer Science,
STACS ’96, pages 569–580, Berlin, Heidelberg, 1996.
Springer-Verlag.

[20] Martin Dietzfelbinger, Michael Mitzenmacher, and
Michael Rink. Cuckoo hashing with pages. In Pro-
ceedings of the 19th European Conference on Algo-
rithms, ESA’11, pages 615–627, Berlin, Heidelberg,
2011. Springer-Verlag.

[21] Martin Dietzfelbinger and Christoph Weidling. Bal-
anced allocation and dictionaries with tightly packed
constant size bins. Theoretical Computer Science,
380(1):47–68, 2007. Automata, Languages and Pro-
gramming.

[22] Peter C. Dillinger and Stefan Walzer. Ribbon fil-
ter: practically smaller than Bloom and xor. CoRR,
abs/2103.02515, 2021.

[23] G. Einziger and R. Friedman. TinySet–an ac-
cess efficient self adjusting bloom filter construction.
IEEE/ACM Transactions on Networking, 25(04):2295–
2307, jul 2017.

[24] David Eppstein. Cuckoo Filter: Simplification and Anal-
ysis. In Rasmus Pagh, editor, 15th Scandinavian Sym-
posium and Workshops on Algorithm Theory (SWAT
2016), volume 53 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 8:1–8:12, Dagstuhl, Ger-
many, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik.

[25] Bin Fan, Dave G Andersen, Michael Kaminsky, and
Michael D Mitzenmacher. Cuckoo filter: Practically
better than bloom. In Proceedings of the 10th ACM
International on Conference on emerging Networking
Experiments and Technologies, pages 75–88, 2014.

[26] Bin Fan, Jim Apple, Florian Jacob, Daniel Baker, Dave
Andersen, José Luis Pereira, Antonio Mallia, and Arni
Birgisson. Cuckoo filter. https://github.com/
efficient/cuckoofilter, 2017.

[27] Li Fan, Pei Cao, J. Almeida, and A.Z. Broder. Summary
cache: a scalable wide-area web cache sharing protocol.
IEEE/ACM Transactions on Networking, 8(3):281–293,
2000.

[28] Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul
Spirakis. Space efficient hash tables with worst case
constant access time. Theory of Computing Systems,
38(2):229–248, 2005.

[29] The Apache Software Foundation. Impala 2.7.0, 2016.

[30] Pengtao Fu, Lailong Luo, Shangsen Li, Deke Guo,
Geyao Cheng, and Yun Zhou. The vertical cuckoo fil-
ters: A family of insertion-friendly sketches for online
applications. In 2021 IEEE 41st International Confer-
ence on Distributed Computing Systems (ICDCS), pages
57–67, 2021.

[31] Dimitris Geneiatakis, Nikos Vrakas, and Costas Lambri-
noudakis. Utilizing Bloom filters for detecting flooding
attacks against SIP based services. Comput. Secur.,
28(7):578–591, October 2009.

[32] Michael T. Goodrich and Michael Mitzenmacher. Invert-
ible bloom lookup tables. In 2011 49th Annual Allerton
Conference on Communication, Control, and Computing
(Allerton), pages 792–799, 2011.

[33] Thomas Mueller Graf and Daniel Lemire. Xor filters:
Faster and smaller than Bloom and cuckoo filters. ACM
J. Exp. Algorithmics, 25, 2020.

[34] Deke Guo, Jie Wu, Honghui Chen, Ye Yuan, and Xue-
shan Luo. The dynamic Bloom filters. IEEE Transac-
tions on Knowledge and Data Engineering, 22(1):120–
133, 2010.

[35] Troy Hunt. Have I been pwned. https://
haveibeenpwned.com/Passwords. Accessed: 2021-
12-20.

[36] Megha Khosla and Avishek Anand. A faster algorithm
for cuckoo insertion and bipartite matching in large
graphs. Algorithmica, 81(9):3707–3724, 2019.

[37] Adam Kirsch, Michael Mitzenmacher, and Udi Wieder.
More robust hashing: Cuckoo hashing with a stash.
SIAM J. Comput., 39(4):1543–1561, December 2009.

[38] Donald E Knuth. The art of computer programming:
Sorting and searching, volume 3, chapter 6.4, Exercise
13. 1973.

[39] Dominik Köppl, Simon J. Puglisi, and Rajeev Raman.
Fast and Simple Compact Hashing via Bucketing. In
Simone Faro and Domenico Cantone, editors, 18th Inter-
national Symposium on Experimental Algorithms (SEA
2020), volume 160 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 7:1–7:14, Dagstuhl,
Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik.

[40] Marcel Kornacker, Alexander Behm, Victor Bittorf,
Taras Bobrovytsky, Alan Choi, Justin Erickson, Mar-
tin Grund, Daniel Hecht, Matthew Jacobs, Ishaan Joshi,
Lenni Kuff, Dileep Kumar, Alex Leblang, Nong Li,
Henry Robinson, David Rorke, Silvius Rus, John Rus-
sell, Dimitris Tsirogiannis, Skye Wanderman-Milne, and
Michael Yoder. Impala: A modern, open-source SQL
engine for Hadoop. In In Proc. CIDR’15, 2015.

13

https://github.com/efficient/cuckoofilter
https://github.com/efficient/cuckoofilter
https://haveibeenpwned.com/Passwords
https://haveibeenpwned.com/Passwords

[41] Harald Lang, Thomas Neumann, Alfons Kemper, and
Peter Boncz. Performance-optimal filtering: Bloom
overtakes cuckoo at high throughput. Proc. VLDB En-
dow., 12(5):502–515, January 2019.

[42] Eric Lehman and Rina Panigrahy. 3.5-way cuckoo hash-
ing for the price of 2-and-a-bit. In Amos Fiat and Peter
Sanders, editors, Algorithms - ESA 2009, pages 671–681,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[43] Jianyuan Lu, Ying Wan, Yang Li, Chuwen Zhang,
Huichen Dai, Yi Wang, Gong Zhang, and Bin Liu. Ultra-
fast Bloom filters using SIMD techniques. IEEE Trans-
actions on Parallel and Distributed Systems, 30(4):953–
964, 2018.

[44] Chen Luo and Michael J Carey. Lsm-based storage
techniques: a survey. The VLDB Journal, 29(1):393–
418, 2020.

[45] Lailong Luo, Deke Guo, Ori Rottenstreich, Richard TB
Ma, Xueshan Luo, and Bangbang Ren. The consistent
cuckoo filter. In IEEE INFOCOM 2019-IEEE Confer-
ence on Computer Communications, pages 712–720,
2019.

[46] Tobias Maier, Peter Sanders, and Stefan Walzer.
Dynamic space efficient hashing. Algorithmica,
81(8):3162–3185, 2019.

[47] Rasmus Pagh and Flemming Friche Rodler. Cuckoo
hashing. Journal of Algorithms, 51(2):122–144, 2004.

[48] Rasmus Pagh, Gil Segev, and Udi Wieder. How to ap-
proximate a set without knowing its size in advance. In
2013 IEEE 54th Annual Symposium on Foundations of
Computer Science, pages 80–89, 2013.

[49] Prashant Pandey, Michael A. Bender, Rob Johnson, and
Rob Patro. A general-purpose counting filter: Making
every bit count. In Proceedings of the 2017 ACM Inter-
national Conference on Management of Data, SIGMOD
’17, pages 775–787, 2017.

[50] Prashant Pandey, Alex Conway, Joe Durie, Michael A.
Bender, Martin Farach-Colton, and Rob Johnson. Vector
quotient filters: Overcoming the time/space trade-off in
filter design. In Proceedings of the 2021 International
Conference on Management of Data, SIGMOD/PODS
’21, pages 1386–1399, 2021.

[51] Orestis Polychroniou and Kenneth A. Ross. Vectorized
Bloom filters for advanced SIMD processors. In Pro-
ceedings of the Tenth International Workshop on Data
Management on New Hardware, DaMoN ’14, New York,
NY, USA, 2014. Association for Computing Machinery.

[52] Ely Porat and Bar Shalem. A cuckoo hashing variant
with improved memory utilization and insertion time.
In 2012 Data Compression Conference, pages 347–356,
2012.

[53] Felix Putze, Peter Sanders, and Johannes Singler. Cache-
, hash- and space-efficient Bloom filters. In Camil Deme-
trescu, editor, Experimental Algorithms, pages 108–121,
2007.

[54] Rajeev Raman and Satti Srinivasa Rao. Succinct dy-
namic dictionaries and trees. In Automata, Languages
and Programming, pages 357–368, 2003.

[55] Kai Ren, Qing Zheng, Joy Arulraj, and Garth Gibson.
SlimDB: A space-efficient key-value storage engine for
semi-sorted data. Proc. VLDB Endow., 10(13):2037–
2048, Sep 2017.

[56] G. Segev, Y. Arbitman, and M. Naor. Backyard cuckoo
hashing: Constant worst-case operations with a succinct
representation. In 2013 IEEE 54th Annual Symposium
on Foundations of Computer Science, pages 787–796,
2010.

[57] Eugene H. Spafford. OPUS: Preventing weak password
choices. Computers & Security, 11(3):273–278, 1992.

[58] Stefan Walzer. Load thresholds for cuckoo hashing with
overlapping blocks. 45th International Colloquium on
Automata, Languages, and Programming: ICALP 2018,
Prague, Czech Republic, July 9-13, 2018, 107:art. 102,
Jul 2018.

[59] Minmei Wang, Mingxun Zhou, Shouqian Shi, and Chen
Qian. Vacuum filters: More space-efficient and faster
replacement for Bloom and cuckoo filters. Proc. VLDB
Endow., 13(2):197–210, October 2019.

[60] Yuhan Wu, Jintao He, Shen Yan, Jianyu Wu, Tong Yang,
Olivier Ruas, Gong Zhang, and Bin Cui. Elastic Bloom
filter: Deletable and expandable filter using elastic fin-
gerprints. IEEE Transactions on Computers, pages 1–1,
2021.

[61] Zhuohan Xie, Wencheng Ding, Hongya Wang, Yingyuan
Xiao, and Zhenyu Liu. D-ary cuckoo filter: A space effi-
cient data structure for set membership lookup. In 2017
IEEE 23rd International Conference on Parallel and
Distributed Systems (ICPADS), pages 190–197, 2017.

[62] Shuiying Yu, Sijie Wu, Hanhua Chen, and Hai Jin. The
entry-extensible cuckoo filter. In Xin He, En Shao, and
Guangming Tan, editors, Network and Parallel Comput-
ing, pages 373–385, Cham, 2021. Springer International
Publishing.

14

[63] Fan Zhang, Hanhua Chen, Hai Jin, and Pedro Reviriego.
The logarithmic dynamic cuckoo filter. In 2021 IEEE
37th International Conference on Data Engineering
(ICDE), pages 948–959, 2021.

15

	1 Introduction
	1.1 Applications
	1.2 Contributions

	2 Prior work
	2.1 Split block Bloom filters
	2.2 Cuckoo hashing
	2.3 Succinct dictionaries with quotienting
	2.4 Filters that can grow
	2.5 Compact extensible dictionaries

	3 Taffy block filters
	4 Taffy cuckoo filters
	4.1 Cuckoo filters .5-.5.5-.5.5-.5.5-.5 cuckoo hashing with permutations and quotienting

	5 Minimal taffy cuckoo filters
	6 Evaluation
	6.1 Space
	6.2 Time
	6.3 Previously-used-password filter
	6.4 Discussion

	7 Conclusion

