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Abstract

Recent developments in the Internet of Things (IoT) and real-time applications, have
led to the unprecedented growth in the connected devices and their generated data.
Traditionally, this sensor data is transferred and processed at the cloud, and the con-
trol signals are sent back to the relevant actuators, as part of the IoT applications. This
cloud-centric IoT model, resulted in increased latencies and network load, and com-
promised privacy. To address these problems, Fog Computing was coined by Cisco
in 2012, a decade ago, which utilizes proximal computational resources for process-
ing the sensor data. Ever since its proposal, fog computing has attracted significant
attention and the research fraternity focused at addressing different challenges such
as fog frameworks, simulators, resource management, placement strategies, quality
of service aspects, fog economics etc. However, after a decade of research, we still do
not see large-scale deployments of public/private fog networks, which can be utilized
in realizing interesting IoT applications. In the literature, we only see pilot case stud-
ies and small-scale testbeds, and utilization of simulators for demonstrating scale of
the specified models addressing the respective technical challenges. There are several
reasons for this, and most importantly, fog computing did not present a clear busi-
ness case for the companies and participating individuals yet. This paper summarizes
the technical, non-functional and economic challenges, which have been posing hur-
dles in adopting fog computing, by consolidating them across different clusters. The
paper also summarizes the relevant academic and industrial contributions in address-
ing these challenges and provides future research directions in realizing real-time
fog computing applications, also considering the emerging trends such as federated
learning and quantum computing.
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1 INTRODUCTION

Recent developments in the Internet of Things (IoT) and real-time applications, in domains such as smart cities, smart trans-
portation, and smart healthcare etc., have led to the unprecedented growth in the connected devices such as embedded sensors,
smart gadgets, smart phones, and industrial IoT tools etc. In the last two decades, the number of connected devices increased
significantly, to over 50 billion, and the amount of data generated from them increased exponentially to the order of zettabytes.
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The amount of data generated from IoT connections worldwide is expected to increase further and reach 79.4 zettabytes by
20251. In the traditional model of Cloud-centric IoT2,3, this generated sensor data is moved to the cloud, where it is processed
and the control signals are sent back to the relevant actuators, as part of the IoT applications. This migration of the data to the
cloud for processing, increased the latency for these applications and lead to further challenges such as compromised privacy
of the data and increased network load. To address these problems, Fog Computing was coined by Cisco in 2012, a decade ago,
which utilizes proximal computational resources for processing the sensor data4.

Ever since its proposal, fog computing has attracted significant attention by both research community and industry, and people
focused at addressing different challenges/aspects in realizing and utilizing the fog setup . These included fog architectures,
geographical distribution, standardization efforts, resource provisioning, fog placement strategies, collaborative & distributed
data analytics, heterogeneity & interoperability, device mobility, security & privacy, scalability & reliability, networking &
communication technologies and promoting real-time applications through fog economics. Lot of interesting results are obtained
from these studies, which are applied in several prototypes for fog-based IoT applications. A search of Scopus database with “(
( fog OR edge ) AND computing )” have resulted in over 48,000 publications.

However, after a decade of research, we still do not see large-scale deployments of public/private fog networks, which can be
utilized in realizing interesting IoT applications. The market capture of fog computing is projected to be only around 343 million
dollars by 20305, whereas, for comparison, the cloud market is projected to be around 791 billion dollars by 20286.

Furthermore, in the fog computing literature, we only see pilot case studies and small-scale testbeds, and utilization of simula-
tors for demonstrating scale of the specified models addressing the respective technical challenges. There are several reasons for
this lack of fog computing applications beyond small-scale pilot case studies. Most importantly, fog computing did not present a
clear business case for the companies and participating individuals yet. Fog being perceived as cloud in proximity and strongly
pushing opportunistic computing, the applications require significant infrastructure from nearby participants. However, there is
not much literature about incentives to the participating individuals. Moreover, this type of offloading is perceived to be threat to
the main business of proximal infrastructure providers such as mobile operators. This is one of the reasons for the Multi-access
edge computing not being so successful yet. In addition, the energy requirements of the fog devices (sometimes battery pow-
ered) are significant and lacking models for efficiently utilizing the resources are further reasons for the sparsity of successful
fog computing applications.

1.1 Scope and contributions
This paper summarizes the technical, non-functional and economic challenges, which have been posing hurdles in adopting fog
computing. The paper also summarizes the relevant academic and industrial contributions in addressing these challenges and
provides future research directions in realizing real-time fog computing applications. The contributions of the paper are:

1. Fog computing challenges and the state-of-the-art (SOTA) are clearly organized into different clusters.

2. Consolidated and presented the SOTA and ongoing research across these clusters. In the process also produced a con-
solidated figure (Figure 3) for fog computing challenges and solutions, which can be used as a quick reference in the
domain.

3. Provides future research directions in realizing real-time fog computing applications also considering the emerging trends
such as federated learning and quantum computing.

The rest of the paper is organized as follows:
We first explore the case studies of fog computing, justifying its relevance (Section 2). We then explore the current research

challenges, which are being addressed in fog computing domain, advancing the state-of-the-art. In the process, we also mention
possible extensions to these studies, followed by a thorough discussion (Section 3). Later, we outline the future research direc-
tions in fog computing from the perspective of emerging trends in computer science, that could lead to the eventual deployment
of fog networks and ubiquity of the fog-based applications (Section 4). Section 5 provides a conclusion for the work.

2 RELEVANCE OF FOG COMPUTING

IoT primarily utilizes physical objects with sensing capabilities that are connected over the Internet, in realizing interesting smart
applications. In these applications, instead of sending the raw sensor data from the edge devices to the cloud for processing, fog
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FIGURE 1 Hierarchical fog computing architecture

computing proposes utilizing computational resources available with the fog devices. The fog devices can be network switches,
routers, gateway devices, desktops/laptops or even private clouds in proximity. Fog nodes can also be mobile and thus UAVs
and smart phones can also be part of this fog network. Figure 1 shows the hierarchical fog computing architecture with edge
nodes, gateway devices, other fog nodes and centralized cloud. Processing anywhere from the edge nodes, until it reaches the
centralized data centres, i.e. also on gateway devices, proximal and geo-distributed fog nodes, is considered to be part of fog
computing.

This type of opportunistic computing by resource constrained edge devices is not a completely new idea. It was earlier studied
in mobile web service provisioning (MWSP)7, and mobile cloud computing that proposed cloudlets8 and code offloading9.
MWSP offered services from resource constrained devices and smart phones, using standard web services communication
technologies such as SOAP and REST (REpresentational State Transfer). This allowed them to capitalize on opportunistic
computing in a peer to peer (P2P) manner. Cloudlets are micro data centres that provide cloud computing services to the smart
phones. With code offloading, the mobile applications are profiled and offloaded to a much powerful surrogate in the cloud,
under a particular context such as the current load, battery level, access to WiFi/mobile data etc. Similar concepts were also
studied in Multi-access edge computing (MEC)10 that utilizes the computational resources of mobile operators such as the ones
with base stations. A detailed review of fog computing and its related computing paradigms, such as cloud computing, edge
computing, mist computing etc. is provided at11.

2.1 Fog computing case studies
Fog computing is primarily shown to be relevant in scenarios that required real-time responses such as in smart homes, smart
healthcare, interactive games, smart transportation, industrial IoT etc. Here are some of the prominent case studies/applications
from the literature. Figure 2 shows some of the prominent fog computing application domains.
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FIGURE 2 Prominent fog computing application domains

2.1.1 Interactive games
Some of the first demonstrated fog computing applications are related to interactive and virtual reality (IVR) games12,13. These
applications are based on techniques such as augmented reality (AR) and brain monitoring, and required significant process-
ing capabilities in the proximity and fog facilitated this without needing to send the collected gaming data to the centralized
servers/clouds. With fog computing, only the consolidated results are exchanged among the participants for achieving real-time
gaming experience.

2.1.2 Smart healthcare
This is one domain where lot of fog computing applications are demonstrated in the literature14. Applications ranged from real
time patient monitoring, elderly care to remote surgery. All these critical applications needed sub-second responses and fog
computing with its proximal processing ability gave ideal options. Smart phones are also used here as fog nodes to collect and
process the sensor data in proximity. Fog is also perfect in these scenarios as the medical data is confidential and, in most cases,
it is preferred to store and process the data within the premises.
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2.1.3 Smart home and smart city
With the ubiquity of the smart gadgets, smart homes have improved the living standards of people significantly. Applications/-
case studies in this domain are mainly focusing on home automation, ambient assisted living, video surveillance and real-time
monitoring. Fog computing is shown to facilitate several of these case studies through voice assistance, image/video and sen-
sor data processing15. Similarly, in the domain of smart cities, fog computing case studies focused on smart water and waste
management, real-time monitoring and control of city infrastructure such as traffic lights and power grids16. Smart grids are
modernized electrical grids that utilize IoT and AI (Artificial Intelligence) to improve the performance and efficiency of the
grid, with fog computing facilitating the edge analytics.

2.1.4 Intelligent Transportation Systems (ITS)
The original fog computing paper from CISCO in 20124 already talked about fog facilitating the intelligent transportation
through smart connected vehicles and smart traffic lights. These fog nodes equipped with sensors can detect the presence of
pedestrians/cyclists and measure the speed of approaching vehicles. The data can be processed for accident prevention and
maintenance of steady traffic. Later works based on fog computing focused on road maintenance, traffic management and city
planning, as part of smart city applications16. With the recent developments in autonomous vehicles and self-driving cars,
fog computing can facilitate real-time video-aided navigation, vehicular communication, detection of hurdles and pedestrians,
accident avoidance, etc. through computational, storage and network resources provided in proximity at roadside units17.

2.1.5 Industrial IoT
The fourth industrial revolution, Industry 4.0, is focused on integrating advanced technologies such as IoT, AI, and cloud com-
puting with industrial applications such as manufacturing and supply chain management. Fog applications are demonstrated, as
part of IIoT, in different industries such as mining, smart grids, transportation, waste management, food processing etc., focusing
on improving the productivity, operations and safety, by using different sensors, instruments and industrial equipment18. Fog
computing facilitated simultaneous data collection from variety of sensors, robots, and machines, pre-processing and interfacing
incompatible sensors and machines through necessary protocol translation and mapping, as part of these applications19.

2.1.6 Entertainment
Fog computing is also shown to be handy in improving the performance and scalability of entertainment applications, such as
audio and video streaming. Fog nodes can be used to process and analyse these real-time video, multimedia and streaming data20.
Fog facilitated finding best data streaming bit rate in different scenarios and adjusting video encoding rate (video processing
speed) based on the current network load.

2.1.7 Miscellaneous
In addition to these case studies, fog computing is also demonstrated in other domains such as smart tourism, smart agriculture,
environmental monitoring etc. In tourism applications, fog nodes were deployed across the city in assisting the visitors to find
the next points of their interest. For environmental protection, unmanned aerial vehicles (UAV) and underwater robots were used
as fog nodes, to collect and process the sensor data, in realizing scenarios such as coral reef monitoring and forest fire detection.
In smart agriculture scenarios, drones as fog nodes are used to collect and process video and sensor data, in identifying pests
and operating irrigation.

2.2 Discussion
From these case studies/applications one can deduce that fog computing is relevant and offers significant scope for smart appli-
cations in different domains. However, we do not see many real-world large-scale deployments of fog computing yet. We only
encounter pilot case studies and small-scale testbeds based on fog computing. There are still several technical challenges that
are to be fully addressed before fog computing can be realized seamlessly.
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3 FOG COMPUTING CHALLENGES AND SOLUTIONS

Fog computing poses several technical challenges, also including non-functional challenges, such as the need for ideal solutions
for frameworks and simulators, resource management and scheduling, security and privacy, fog networking aspects, edge ana-
lytics, and issues with mobility, scalability, reliability, heterogeneity, and sustainability. There are also fog economics challenges
that have been posing hurdles in adopting fog computing in real-world applications. Research in the IoT and fog computing
domains tried to address these challenges, and here we try to summarize the respective challenges and identified solutions, by
grouping them into different clusters. In the process we also discuss future extensions that are to be explored for these stud-
ies. Figure 3 summarizes the fog computing challenges and solutions, by incorporating highlights of the discussion about the
respective challenges, provided in the respective subsections (Sections 3.1 - 3.12).

3.1 Fog frameworks
With the initial interest generated in fog computing, people explored options for establishing fog setups. Several frameworks
were proposed in the literature. Cisco proposed IOx as an application environment, on top of Cisco IOS and Linux OS kernel,
that can be deployed on compatible hardware such as Cisco routers and switches, for providing fog services on resource con-
strained devices21. Later open source solutions such as Apache Edgent22 have appeared, proposing lightweight runtimes for
streaming data processing on fog infrastructure. This interest and participation from multiple providers resulted in the formation
of OpenFog Consortium, a public-private ecosystem, primarily targeted at accelerating the adoption of fog computing. OpenFog
Consortium defined an open and interoperable reference architecture for establishing fog computing, which was later adopted
by IEEE standards association23.

Several prototype fog frameworks were also proposed by different research groups that were used to demonstrate fog com-
puting applications in different domains. Rahmani et al. developed a prototype for fog-enabled health-care system24. Chen et
al.25 developed a fog framework for smart city surveillance. Generalized PaaS (Platform-as-a-service) models were also pro-
posed for establishing fog setups such as Indie Fog, FogBus etc. Indie Fog26 proposed an approach/architecture for establishing
fog setups using customer premise equipment such as idle desktops in cafes and handheld devices in proximity. FogBus27 is
a lightweight and distributed, container-based framework that can be used for integrating the IoT systems with edge, fog and
cloud computing. Blockchain in FogBus ensures data integrity and the framework also supports other security aspects such as
user authentication and data encryption.

It is interesting to note that several of the fog frameworks are based on Docker containers, as the containers are light-weight
enough to run on resource-constrained fog devices such as Raspberry PIs28. There are also frameworks which were targeted at
executing specific type of fog applications. Srirama et al.29 proposed a framework that utilizes the proximal fog infrastructure for
executing distributed computing applications using Actor programming model 30 and containers. The framework is extended to
CANTO31, that can be used to train neural networks on fog infrastructure for performing edge analytics. Frameworks were also
developed to support executing serverless functions32 and data pipelines33 on fog infrastructure. The related works discussed
in31,27, give a good summary of different fog frameworks. Most of these frameworks are research prototypes, mainly targeted at
demonstrating novel applications in different domains. However, there are not many commercial frameworks with full customer
support, for being able to adapt fog computing in real-time applications.

3.2 Fog simulation
While a lot of fog computing applications are demonstrated and research is shown in real devices, it is always required to study
aspects such as scalability, scheduling, mobility etc. on simulators. The simulators allow us to study large scale fog deploy-
ments in much cost-efficient way. iFogSim34 was developed and extensively used for evaluating different resource management
policies and placement strategies in fog computing, simulating real-world configurations and workloads. iFogSim extended the
CloudSim, and thus inherited the core cloud computing features such as managing virtualization, applications, resources and
scheduling functions. Later it was extended to iFogSim235 with support for mobility, and microservice management in Edge and
Fog computing environments. EdgeCloudSim36, is another tool based on CloudSim, that includes a nomadic mobility model,
network model and an edge orchestrator for managing resources. MobFogSim37 is another simulator, which extended iFogSim
and supports mobility and VM/container migration, to support the mobility of the consumer and thus live migrating the fog
services to a different cloudlet.
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FIGURE 3 Fog computing: challenges, solutions and future scope

There are also simulators that focused on specific aspects of fog computing applications such as networking and business
process management (BPM)38. FogNetSim++39, supports simulating different network characteristics of fog applications such
as delay, packet loss, transmission range etc. and supports multiple communication protocols such as COAP, AMQP, MQTT,
HTTP etc. along with support for different mobility models. Mobility and BPM are combined in STEP-ONE40, so that fog
computing applications can be modelled as business processes. The processes can be executed on fog devices and can also be
live migrated to other proximal fog nodes through offloading. A comprehensive review on simulators supporting fog computing
is provided at41.

While the existing fog simulators are interesting and sufficient for most of the general studies in fog computing, as stated
already, each of the simulators is focused on specific aspects of fog computing such as support for scheduling, mobility, network,
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standards-compliant process management, etc. There are no efforts to merge all the individual contributions to come up with
consolidated simulators that can be used in designing more complex fog computing scenarios. This is also making further
contributions in the simulators more fragmented.

3.3 Resource management
Fog computing applications can be of two types: 1. Top-down applications 2. Bottom-up applications. In top-down applications,
cloud provider deploys the necessary geo-distributed fog resources for managing the execution of fog applications across the fog
topology. The provisioning and management of resources can be based on different QoS (Quality of Service) parameters such
as proximity, user load, latency, cost models etc. In the bottom-up approach, applications are managed by individual fog service
providers. Here the fog resources are provided by different vendors. These proximal resources are identified and fog related
tasks are scheduled, by the gateway devices. Thus, the onus of resource discovery, provisioning, scheduling and placement fall
on the fog application/service provider. With both the types of fog applications, resource management is a huge challenge and
significant literature42,43 tried to address this challenge during the past decade.

Fog computing generally deals with storage, processing and network resources. First the relevant resources and fog nodes
providing them are to be identified. The resource discovery solutions should be location-aware, to reduce the geographic and
network distances. They also should be context aware considering the fog application requirements and current load and resource
availability of proximal fog nodes. Bukhari et al.44, provides a detailed literature review of fog node discovery and selection.
Regarding the fog resource allocation and provisioning, the approaches can be static or dynamic. In the static provisioning, the
resources of the fog nodes are fixed/known in advance, and the tasks of multiple fog applications are scheduled on the fog nodes
based on different objectives such as energy-efficiency, reducing latency, bandwidth usage and cost. In the dynamic approaches,
the fog providers tried to bring in additional resources based on the need. These studies involved extensive cost models, auction
models etc. again considering the multi-objectives. Ghobaei-Arani et al.42, provides a comprehensive review of the approaches
for resource allocation and provisioning. Regarding resource scheduling and application placement, the main goal is to find the
best viable assignment of available resources based on fog application requirements, which is discussed in detail in the next
subsection. A detailed survey of architectures and algorithms, considered for resource management are provided at43.

While significant literature already tried to address this challenge, there is still a huge scope for future work. Mainly, the
approaches should focus at multi-objectives also considering other QoS aspects such as scalability, privacy and security, real-
time interactions and interoperability of the devices. Even though cost models are studied extensively, there is still not enough
and ideal incentive models for the fog resource providers (Section 3.12). This is one of the main hurdles in achieving large scale
fog computing deployments in the real-world.

3.4 Application placement strategies
The main goal of the fog application scheduling and placement is to find the best feasible assignment of available resources
to fog application requirements. Scheduling fog applications on the infrastructure and thus the fog placement strategies are
extensively studied in the literature45,46,47. The approaches mainly focused at improving the QoS/QoE of the fog applications.
In terms of QoS, the strategies tried to reduce the latency, cost and energy utilization45. In addition to QoS parameters, the
QoE (Quality of Experience) approaches considered further user perspective parameters such as required access rate, priority of
applications and processing time48. The fog applications are modelled as i) monolithic, i.e., single program for the application
ii) Independent, i.e., set of independent tasks executing for the application iii) Modular, i.e., set of dependent tasks executing at
different locations constituting the full fog application. Approaches were studied to place all the three models of fog applications
on both homogeneous and heterogeneous infrastructure, considering the objectives from both the fog user (e.g. deadline and
priority-aware49) and provider (e.g. efficient utilization of resources and maximizing the profit50,51) perspectives.

The fog placement strategies in the literature are based on single objective or multi-objective. The problems were mostly mod-
elled as Integer Linear Programming (ILP) (e.g.52), Mixed Integer Linear Programming (MILP) (e.g.53) and Markov Decision
Process (MDP) (e.g.54). Since these multi-objective strategies are NP-hard, several heuristics (e.g. constant-factor approxima-
tion55) and meta-heuristics (e.g. based on Genetic Algorithm (GA)56, Simulated Annealing (SA)57, Particle swarm optimization
(PSO)58) were proposed. Nature-Inspired meta-heuristics solutions for placement and scheduling of fog applications are
summarized in59.
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In addition to these approaches, Machine Learning (e.g. Reinforcement Learning (RL)60, Residual Recurrent Neural Net-
works61) and game theory (e.g. Stackelberg Game62) were also applied for efficiently scheduling the applications across the fog
topology. Goudarzi et al.45 have nicely summarised the fog placement strategies in detail.

However, most of the fog placement solutions were proposed on simulators and very few of them are actually demonstrated in
small-scale practical implementations. There is still a significant scope to address the challenge in realizing placement strategies
in real-time fog applications.

3.5 Security and privacy
Since fog computing mainly provides computation, storage and network services on resource-constrained devices at the edge of
the network, it faces several security and privacy breaches. Generally, fog is considered to be more secure than cloud computing.
With fog, reliance on Internet decreases as the sensor data is accumulated and analysed locally. This eliminates threats such
as eavesdropping and man-in-the-middle attacks over the internet. The privacy of the user data also gets improved as the data
do not leave the premises. However, the communication between the edge and fog devices is more prone to attacks such as
tampering, jamming and denial-of-service63. The problem is alleviated further, since due to the resource-constrained nature of
the fog devices, not many standard security protocols such as encryption and public-key cryptography can be applied for the
communication.

Several works focused at addressing security and privacy issues in the fog. Primarily, fog nodes assisted in authenticating the
users in several IoT applications64. However, the decentralization of fog computing, and mobility of users and fog nodes makes
this identity authentication a complex issue. Cooperative authentication solutions are proposed to address this challenge65.
Regarding security protocols in fog computing, lightweight cryptography is proposed, whose properties are discussed in ISO/IEC
29192, with block cipher solutions such as PRESENT, CLEFIA and LEA66,67. However, there are no public-key cryptography
approaches based on this lightweight cryptography, due to the inherent computational complexity of public-key cryptography.
Therefore, regarding transient data storage on fog nodes and to enable confidential and privacy-preserving data sharing among
the participating nodes, solutions were proposed based on efficient key exchange protocols68 and homomorphic encryption69.

Another major security challenge in fog computing is the intrusion detection, as malicious internal and external attackers can
hack different entities in fog hierarchy. Different anomaly-based, machine learning-based and statistical-based techniques for
intrusion detection are proposed in the literature. Intrusion detection systems in the fog environment are thoroughly discussed
in70. Solutions are also proposed to ensure end-to-end trustworthiness in fog computing based on security attributes of all the
participating nodes71. A detailed review of security in fog computing is provided at63. Solutions based on blockchains addressing
security, privacy, distributed trust management, and reliability challenges in fog computing are summarized in 72. However, with
security being a non-functional requirement and new threats appearing in Internet on regular basis, it is obvious that security in
fog computing is a continuous research with significant future scope.

3.6 Communication technologies and protocols
In the hierarchical fog computing architecture (Figure 1), with edge nodes, fog nodes and cloud data centre along the edge-cloud
continuum, there is scope for three kinds of connections/communication among the devices. 1. Wireless connection between
the edge devices and the fog nodes; 2. Wired/wireless connection among the fog nodes; 3. Wired/wireless connection between
the fog nodes and the cloud data centre. There are several communication technologies and protocols, which evolved over the
years, that actually make these connections/communication feasible. The technologies are specifically focused on optimizing
energy-efficiency, communication range, standards compliance, bandwidth etc., thus facilitate the IoT/fog applications. Perera
et al16, provides a detailed summary of the communication technologies used in fog computing domain. The paper also provides
information on which network layer of Open Systems Interconnection (OSI) model, each of the communication technologies
belongs to.

Mainly for wireless communication over the physical and data link layers, technologies such as WiFi, Bluetooth, Bluetooth
Low Energy (BLE) are commonly used for communication among the edge and fog nodes. Near field communication (NFC) and
Radio-frequency identification (RFID) are used for communication over short distances ranging from few centimetres to meters.
For communication over the long distances (ranging 2-50 KM in urban and suburban regions), technologies such as Long Power
Wide Area Network (LPWAN or LoRaWAN) or Sigfox can be used. These protocols are low-powered, low-cost, and low-bit
rate, specifically designed for two-way secure communication in the IoT domain. Mobile communication technologies such as
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4G and 5G are also used for this wireless communication, when the smart phones act as gateway devices and fog nodes. It is also
interesting to note here that fog computing based radio access network73 is shown to provide high spectral and energy efficiency
in 5G system.

For wireless communication over higher layers (network, transport and application layers) protocols such as ZigBee, Z-Wave
are used. ZigBee is one of the most popular low power, cost, and throughput, wireless mesh networking standard. ZigBee
needs an application-level gateway to connect to the Internet using Ethernet or WiFi. Z-Wave is designed to facilitate device to
device (D2D) communication in smart home applications. Similarly, 6LoWPAN (IPv6 over Low-power Wireless Personal Area
Networks) enables IP based communication in low-powered devices16.

Regarding wired communication, standard TCP/IP protocols are used over Ethernet. Specifically to support fog computing,
adapting Long-Reach Passive Optical Network (LRPON) is proposed, which makes the network reach up to 100 km74. Further
developments regarding fog networking challenge are discussed in the next subsection.

Regarding application-level data exchange in IoT/fog applications, protocols such as Hypertext Transfer Protocol (HTTP),
Message Queue Telemetry Transport (MQTT), Extensible Messaging and Presence Protocol (XMPP), Constrained Application
Protocol (CoAP), Advanced Message Queuing Protocol (AMQP), etc. are used. Donta et al75, provides a detailed survey on IoT
application layer protocols. While there exist several options, choosing ideal communication technologies and protocols for a
specific fog application is a major challenge.

3.7 Fog Networking
The traditional networking architectures and protocols of the Internet were not designed for the high-level scalability demands
of IoT. The billions of connected devices and the zettabytes of sensor data moved to the cloud for processing, result in congestion
in the core network. Fog computing addresses this issue by processing the data in proximity. However, it is important to note that
augmenting the computational capabilities of fog nodes is not a complete replacement for the cloud. Cloud and fog computing
are complementary in nature and need to be employed together in different applications. However, it is not straightforward to
employ cloud and fog together while letting them accessible ubiquitously. A minimum of three tier architecture is necessary
along with its own set of coordination and orchestration requirements. Thus, an intermediate networking layer is required to
orchestrate the communication between fog and cloud servers, the communication among the fog devices in a device-to-device
(D2D) manner, and to achieve seamless service delivery and handover mechanisms to support mobility of fog nodes. Software
defined networking (SDN) is an emerging computing and networking paradigm, that can be used for the orchestration of this
intermediate networking layer76.

SDN separates control plane and data plane to realize the flexible control of network traffic. A centralized server takes care
of the control, and thus network routing and transmission rules can be defined at this centralized node making communication
more flexible and intelligent77. This allows network switches to utilize all their hardware resources for just forwarding data
rather than also using them for computing routes. OpenFlow, an open protocol, provides a standard way of communication
between controller and switch, allowing reprogramming and updates in the FlowTables. SDN assisted fog computing is studied
extensively in the literature. Tomovic et al.78 proposed an SDN-assisted control and monitoring framework for the fog-based IoT
network. Baktir et al.76 provides a detailed study about how fog/edge computing can benefit from SDN. Primarily, with SDN
controller, a global view of the fog network is available with information such as available resources (memory and storage of fog
nodes) and software applications. This information can be used in delivering fine-grained QoS provisioning for fog services79.
Xu et al.80 joined SDN and MQTT protocol for effective and reliable delivery of IoT data. The paper also showed that SDN
can effectively operate within the fog computing infrastructures. Here the SDN controller is placed on a fog node that acts as a
broker for MQTT clients.

The SDN control and other functionality across the fog hierarchy can be deployed through Network Functions Virtualiza-
tion (NFV)81. By leveraging the virtualization technology with NFV, the network functions are decoupled from the dedicated
physical network hardware. Thus, the gateways, switches, and firewalls can be virtualized and placed as fog nodes, where the
SDN functionality can also be deployed. NFV technology is shown to improve the flexibility of telecommunication service pro-
visioning, with solutions such as TelcoFog controller82. SDN/NFV based fog/edge computing solutions are discussed further
in83.

While SDN controller achieves efficient management of heterogeneous fog networks, the optimal placement of the coordinator
is still an important design issue. Scalability issues of the controller are also to be considered and to address this, distributed
SDN networks are proposed. In this approach physically independent SDN controllers manage a set of subnetworks, which
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synchronize among themselves to achieve a logically centralized network view. Hakiri et al.84 proposed an SDN-enabled wireless
fog architecture, with a hybrid SDN control plane. However, there is still a significant scope for extending the study. Furthermore,
implementing fog computing in off-the-shelf network switches is an active research topic85.

3.8 Mobility
Mobility is a one of the most interesting challenges relevant for fog computing, as several of the fog devices, such as smart
phones, vehicles, and drones are highly mobile. In fog applications, both the edge devices that produce the sensor data and
act as the fog users, and the fog devices where the intermediate processing is being performed, can be mobile. For example,
in applications such as autonomous vehicles and ITS, the vehicles are mobile and roadside units can act as static fog nodes.
Similarly, in applications that require extracting sensor data from remote locations, a drone can act as a fog node, which can
collect and process the data. In both the types of scenarios, mobility of edge or fog nodes impairs fog computing performance.

Mobility mainly causes a change of the access points. Therefore, the data and current services being processed should migrate
to the fog node at the new access point. Several works tried to address this mobility management in fog computing environ-
ments86,87,88,89. For example, Ghosh et al.90, proposed a mobility aware collaborative framework, Mobi-IoST. Here, when the
mobile user changes its location, a centralized node is informed, which analyses the user mobility patterns and with the help
of a Markovian model, predicts the user’s next location. When the user reconnects with the new fog node, the fog services are
migrated to this new node, and the results are finally delivered to the mobile user. Mobi-IoST, framework reveals the steps in
fog mobility management, which are further categorized in37. The intermediary steps in this mobility management procedure
are explored extensively, also leaving scope for further work. For example, migration and handoff processes in fog computing
are thoroughly examined in91.

Mobility management in fog computing is generally explored through simulation, as it includes too many dynamic param-
eters, which cannot be fully observed through real-time applications. MobFogSim37 is a simulator that supports mobility and
VM/container migration. Mobility and BPM are combined in STEP-ONE40, which supports modelling fog computing applica-
tions as business processes and the processes can be live migrated across fog/edge nodes. Gill and Singh41, in the process of
providing a comprehensive review of fog simulators, categorized all the simulators that support mobility.

Mobility significantly decreases the QoS (such as latency, scalability, reliability etc.) and the security of the fog applications.
Thus, the high mobility device support in fog computing is a very important issue that needs to be explored further. Moreover, it
is necessary to develop handshake and authentication protocols, which are quick and stateless, for supporting high-speed users
and automotive communication92.

3.9 Scalability, Availability & Reliability
Many of the existing algorithms and schemes addressing different challenges of fog computing, do not scale well to the magnitude
of IoT networks, with billions of connected devices. The studies neglect scalability in their fundamental design or do not have
access to enough resources, when they are tested in real devices. For example, very few of the pilot case studies discussed in
Section 2 have considered scalability as an intrinsic part of the application. Scalability in literature is mostly studied through
simulators, assuming certain environmental conditions. Several critical parameters may be missing in these simulations and only
large scale deployments of fog networks and infrastructure can prove the adaptability of these solutions in the real-world. Thus,
the research community is strongly encouraged to verify the scalability of their proposed solutions by actual implementations11.

The scalability of IoT/fog networks leads to the issues with the availability. Not enough resources may be available with the
proximal fog nodes to support all the fog users and some of them may be left with no fog nodes to offload. This problem is
addressed in the literature dealing with resource management challenge42,43. Mobility also leads to unavailability issues. The
edge device/fog user might have moved away, and the results cannot be delivered after processing is finished at the fog node,
and in the other case, the fog node might have moved away after the tasks are delivered to it86. Security also intensifies this
availability issue, with attacks such as denial of service (DoS), and the studies relevant to security challenge (Section 3.5) are
addressing this issue.

The corollary of scalability and availability challenges of fog computing is the issue with reliability. Reliability aspects of fog
computing deal with both failures and recoveries. Reliability of fog computing is studied in the literature in different contexts.
Yao and Ansari93, studied fog resource provisioning in reliability-aware IoT networks. Hou et al.94, tried to address the relia-
bility while collectively utilizing the fog nodes for distributed computing. They designed the task allocation as an optimization
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problem, considering the latency, reliability and energy consumption. Desikan et al.95, studied the relationship among latency,
reliability, cost, and energy, while provisioning resources in fog networks. Duc et al96, provides a detailed review on reliable
resource provisioning in edge-cloud continuum using machine learning, with significant scope for future work.

3.10 Heterogeneity & Sustainability
IoT deals with heterogeneity everywhere, with heterogeneous devices, heterogeneous architectures, and heterogeneous net-
works97. Heterogeneity of edge nodes are addressed in fog computing through solutions such as “IoT Hubs”, that act as a bridge
between the different physical networks and merging them using an all-IP network98. Fog nodes are also heterogeneous, as
they can be network switches, routers, gateway devices, and proximal computational resources. Thus, they may have different
hardware architectures and features, software compatibility, supported communication protocols, energy requirements, and pro-
cessing and storage capabilities. However, the fog users should be able to take advantage of fog resources through seamless
offloading. Hong et al.99, proposed Mobile Fog, a platform as a service (PaaS) model that provides a programming abstrac-
tion and allows applications to use heterogeneous fog resources while also supporting dynamic scaling at runtime. Similar
PaaS models were also proposed in solutions such as100. Later containers were explored to be executed on fog infrastructure to
address the heterogeneity. Containers virtualize the operating system and run anywhere, including resource constrained edge/fog
devices such as Raspberry PI, thus provide an ideal solution for offloading101. Standardized container solutions such as Docker
containers helped in achieving interoperability in fog computing.

Heterogeneity of fog devices is also considered in addressing other challenges such as placement strategies. E.g. In Kat-
tepur et al.102, computational times of conventional robotic runtime algorithms are estimated on heterogeneous hardware, to
decide whether to offload the tasks to proximal fog node or not. Research works addressing heterogeneity in fog computing are
categorized in Appendix 1 of 11.

Sustainability challenge primarily deals with energy consumption of the devices in the fog networks. Heterogeneous fog nodes
and edge/IoT devices may be deployed in locations such as in forests, minefields, underwater etc., for realizing different smart
scenarios. Thus, the nodes may be battery powered or depend on renewable energy sources (such as solar, wind, or vibration).
Therefore, it is critical to conserve energy in these edge/fog devices, while addressing different challenges of fog computing.
Energy-efficiency is considered in addressing fog computing challenges such as energy-aware computation offloading (e.g.103),
energy-aware scheduling (e.g.104), energy-aware mobility management (e.g.105) etc. Future work in this domain should focus
on energy harvesters and battery storage, for sensors and edge devices. It is also interesting to identify where and how close the
fog nodes should be placed to the end users, to optimize the energy usage.

3.11 Edge analytics
In the edge-cloud continuum, the zettabytes of sensor data collected from the things/devices is analysed, interpreted and pre-
sented, across the layers in realizing interesting IoT/fog applications. Data management in the edge-cloud continuum and edge
analytics include data integration (propagation, federation and consolidation), storage, preprocessing (filtering, anonymization,
error detection), batch and stream processing, and provisioning. Storing and delivering data across fog hierarchy is studied in
detail and solutions such as Data as a Service have appeared106,107.

The processing of the data across the edge and fog devices is termed as edge analytics, which includes preprocessing and
stream data processing20. The data can be perceived to be executed in a pipeline of processes, where each process takes care
of certain task such as collection, filtering, rule-based propagation across several paths, merging etc. The processes can also
be based on serverless computing, an event-driven way of invoking functions. Serverless data pipeline approaches for edge
analytics are evaluated in33. Edge analytics provides early insights from data streams and protect data stores at cloud against
massive data volumes, high data velocity and network congestion. The fog infrastructure can also be used to perform distributed
data analytics on the collected IoT data, by collectively utilizing the storage and processing capability of the fog nodes29.

Distributed data analytics is better performed at the clouds, due to the availability of unlimited processing power108. Dis-
tributed data processing frameworks such as Hadoop MapReduce and in-memory alternatives such as Apache Spark, can be
employed for this sensor data analytics on the cloud. Moreover, since IoT mostly deals with big streaming data, message queues
such as Apache Kafka can be used to buffer and feed the data into stream data processing systems such as Apache Storm and
Apache Spark streaming109.
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Additionally, the edge analytics performed can be based on machine learning (ML). E.g. Drolia et al.110, proposed a Pre-
Cog system on fog devices that recognizes images rapidly through catching and prefetching. Abdulkareem et al.111, provides a
detailed review of approaches performing edge analytics using ML on fog infrastructure. The ML models and their correspond-
ing functions such as clustering, classification and feature extraction, in the context of IoT are extensively investigated in112.
There are some generic distributable algorithms such as k-nearest neighbors (k-NN) and other special neural network methods,
which can directly be used in resource constrained fog devices for performing ML tasks. These studies lead to the development
of frameworks such as CANTO31, that can be used to train neural networks on fog nodes for performing edge analytics. How-
ever, performing sophisticated ML algorithms in resource and power constrained fog nodes is still a major challenge. Support
for ML enabling hardware such as ENVISION, that can be used in fog networks, is summarized in113.

3.12 Fog economics
Fog computing evolved with the aim of bringing cloud services (storage, computing and networking) to the proximity of IoT/edge
devices. This will result in reduction of network transport costs and latency, by processing the data where it is generated. Latency
reduction can benefit user experience and thus can drive revenue growth, and indirectly improves labour productivity as more
customers/applications can be supported114. Moreover, with the distributed fog, the risk of total loss of service is eliminated, as
the complete dependence on centralized cloud is minimized.

Since fog is cloud in proximity, the economics of cloud computing challenge and its relevant studies, to some extent, are directly
applicable to fog computing. Cloud economics focused at 1. Pricing of cloud services 2. Brokerage mechanisms providing
access to appropriate cloud resources/services based on user requirements 3. Monitoring to determine if proper SLAs (Service
Level Agreements) are guaranteed115. However, fog economics is not explored considerably in the literature, in any of the three
directions, leaving significant scope for future work. Very few works exist and Kim et al.116 performed theoretical economic
analysis of fog computing with a market consisting of Infrastructure and Service Provider (ISP) as brokers, fog users, and Edge
Resource Owners (EROs). The problem is designed as a non-cooperative game.

In addition, the original architectures of fog stressed the importance of utilizing customer premise equipment such as idle
desktops in cafes and handheld devices in proximity, for establishing the fog setup26. However, to encourage the participation of
such third parties in establishing micro data centres and to make their devices available at the edge, proper incentive mechanisms
are necessary. Several incentive models for fog computing are studied in literature. Zeng et al.117, proposed an incentive model for
heterogeneous fog utilizing the framework of contract theory. Luo et al.118, proposed an incentive-aware micro computing cluster
formation problem as a coalition game. Similarly, Nazih et al119, proposed a Stackelberg game-based incentive mechanism for
vehicular fog networks. Incentive models were also proposed in similar domains such as in device-to-device (D2D) offloading120.
However, most of these incentive models are based on theory and are evaluated only in simulated environments. Development
of further real-world adaptable solutions are to be studied, as this is one of the major hurdles in successful deployment of fog
computing applications.

The combination of volatile edge/fog resources and stable cloud resources can reduce the operating costs for some of the
cloud services. This opens the potential market to telco operators, who manage the mobile phone infrastructure, through multi-
access edge computing. With emerging application areas such as smart city sensing and autonomous vehicles, the telco vendors
are likely to form alliances with existing cloud providers for supporting edge analytics and real-time stream data processing115.
There may be a corollary of this alliance with cloud providers entering the telco domain, which may be perceived as a threat to
the main business of the telco providers.

3.13 Discussion
Fog computing and its related challenges are studied extensively in the literature. Reference architectures for establishing fog
setups are studied and frameworks were developed to support distributed data processing, ML based edge analytics, serverless
data pipelines and streaming data processing on fog infrastructure. The frameworks demonstrated several pilot case studies in
different application domains such as smart healthcare, smart cities, interactive games, intelligent transportation systems etc. To
study fog computing and its relevant challenges at scale, simulators were developed. Simulators were successfully used for study-
ing and evaluating the resource management policies, scheduling and placement strategies and fog/edge node mobility. Several
heuristics, meta-heuristics and ML based solutions were identified for the resource provisioning and fog placement strategies
with multiple objectives such as reducing latency, cost, bandwidth usage, and improving energy-efficiency, also considering
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fog user perspectives such as deadlines and priority of applications. Mobility management is addressed along with solutions
for migration and handoff processes. While the results are interesting, adapting the strategies in real-world fog applications is
strongly encouraged and the development of relevant fog computing frameworks with proper customer support is essential.

Regarding QoS provisioning challenges of fog computing, relevant studies dealt with security and privacy, scalability, sus-
tainability, availability and reliability. To address security issues of fog computing, light-weight cryptography-based security
protocols with key exchange and homomorphic encryption are developed. Different anomaly-based, ML-based and statistical-
based techniques are developed in the literature to address intrusion detection. Blockchain based solutions are developed to
address privacy, distributed trust management, and reliability challenges. For future work, to support high mobility devices
in fog computing, development of proper handshake and authentication protocols is proposed. In addition, to address energy-
efficiency and thus the availability/reliability in fog deployments, future studies should focus on energy harvesters and battery
storage. Moreover, the studies should also optimize the location and distance among the fog and edge nodes.

Regarding networking and communication, several long and short ranged, low-powered, low-cost and low-throughput wireless
communication technologies are developed. Improvements are also suggested for the wired networks with solutions such as
LRPON, to support fog computing. Solutions were also developed in utilizing SDN/NFV for ideally deploying fog services over
heterogeneous hardware such as network switches and routers. While there exist several options, choosing ideal communication
technologies and protocols for developing/deploying a specific fog application still remains a major challenge.

While fog computing challenges are addressed extensively in the literature, after a decade of research, we still do not see
large-scale deployments of public/private fog networks, which can be utilized in realizing interesting IoT applications. Fog eco-
nomics is not studied to the required extent, while it is the most important challenge for fog adoption. Thus, fog computing
did not present a clear business case for the companies and participating individuals yet. Moreover, this type of opportunistic
offloading is perceived to be threat to the main business of proximal infrastructure providers such as mobile operators. Fur-
thermore, to utilize proximal fog nodes for opportunistic offloading and to encourage individual/third-party participants, ideal
incentive mechanisms are necessary, and literature provides only theoretical incentive models, that too evaluated in simulated
environments. Development of further real-world adaptable fog economics solutions are to be studied and tested in large-scale
pilot case studies.

4 FUTURE RESEARCH DIRECTIONS FOR NEXT-GENERATION IOT/FOG COMPUTING

Fog computing challenges and the studied solutions are discussed in the previous section. The section already discussed future
research directions for each of the considered challenges. In addition to these, we see further scope for research in fog computing
in terms of establishing large-scale testbeds and developing dynamic deployment solutions. Moreover, the emerging trends in
this domain (e.g. federated learning) and computer science in general (e.g. quantum computing), should positively drive the fog
adoption in real-world applications, in the near future. Thus, the following future research directions should help in realizing the
objectives of Next Generation Internet of Things (NGIoT) initiative121, of lowering the barrier for adoption and development of
IoT-empowered solutions.

4.1 Action plan towards large-scale fog computing testbeds and experiments
Fog computing applications are demonstrated in several small-scale pilot case studies in different domains. One of the main
reasons for these small-scale experiments is due to the lack of adequate infrastructure. There are no proper large-scale testbeds,
either commercial or academic, on which such prototypes can be demonstrated and evaluated. Such testbeds are tried and
common in mobile computing and telecommunication scenarios, with partnership from academic and industrial institutions.
For example, Midoglu et al.122, studied the speed of the Mobile Broadband (MBB) networks on Measuring Mobile Broadband
Networks in Europe (MONROE) testbed.

Such efforts are also attempted in cloud computing domain with hybrid/private clouds such as ELIXIR123 that is used by the
bioinformatics and life science services community in Europe. Similar efforts can be planned for establishing fog computing
testbeds. With several fog computing applications feasible in IIoT, smart city, autonomous vehicles etc. ecosystems, forming
a government, industrial and academic consortium, for establishing large-scale testbeds should be seriously explored. Such
efforts may further drive the fog computing research with interoperability, live migration and handover of jobs etc. across the
fog networks, which are currently being studied theoretically and demonstrated only on simulators.
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4.2 Standards-compliant dynamic deployment of fog services
Currently, fog services are deployed on the resource-constrained and heterogeneous devices, using application-specific propri-
etary solutions. DevOps is a methodology that integrates and automates software development (Dev) and IT operations (Ops),
using relevant tools, thus shortening the systems development life cycle. DevOps is extensively used in the development of
cloud services and applications. Standards such as OASIS - Topology and Orchestration Specification for Cloud Applications
(TOSCA) are developed that can be used to define the configuration of applications using relevant templates. Utilizing the tem-
plates, TOSCA compatible orchestrators can deploy the applications across multiple clouds. This also makes migration of the
applications across multiple cloud providers relatively easy124.

Automated deployment and applicability of DevOps for fog computing is not explored that much. TOSCA standard can
be extended for supporting fog computing. Container orchestration (e.g. Docker Swarm, Kubernetes) can be used to handle
platform independence and interoperability of fog devices. Both the solutions can be combined, and seamless coordination and
cooperation can be achieved across fog devices. Early efforts of adapting TOSCA for fog computing are studied in FogDEFT
framework125. The framework abstracts all the heterogeneity and complexities and offers a user-friendly paradigm to model and
dynamically deploy fog services, on-demand, on the fly, from a remote system. Further work is required to take the approach to
the standardization level.

4.3 Federated learning as a service
Federated learning (FL) is an emerging ML technique that trains over resource-constrained edge/fog devices using only the
local data samples. The locally trained ML model parameters are collected and aggregated at a centralized coordinator and the
consolidated models are replaced at the fog nodes for the next iteration of training, until convergence. FL is being used in a
wide range of IoT and fog computing case studies such as in smart healthcare, smart cities, autonomous vehicles etc126,127. FL is
also addressing several fog computing challenges such as security and privacy128 using solutions like differential privacy (DP)
and secure multiparty computation (SMC). Latest developments in this domain include Transfer Learning (training on datasets
shared across several participants, which can be fog nodes), Dispersed FL (sub-global model is aggregated within groups which
is converged in the second stage, which can realize collaborative learning across multiple layers in the hierarchical fog computing
architecture), etc. FL is being extensively explored in recent years.

FL puts additional load on resource-constrained edge/fog devices. Thus, future research in this domain should focus at devel-
oping light-weight ML models and optimizing these FL algorithms considering constraints such as local model accuracy, energy
requirements, computational resource availability etc129. In addition, it is also interesting to study whether FL can be provided
as a service from the fog nodes. Does this offer new economic models, thus driving further adoption of fog computing? FL is
to be explored further considering all these dimensions.

4.4 Quantum cloud computing and its repercussions on edge/fog
Another rapidly emerging technology is Quantum Computing, which harnesses the laws of quantum mechanics for solving
problems too complex for classical computers130. If powerful quantum computers will become widely available in the near
future, they may drive the future of quantum cloud computing. These developments will offer solutions such as fault-tolerant
secure quantum computations, quantum techniques for cryptographic verification and access control in cloud computing etc 131.
Quantum cloud computing clients then need to communicate with the cloud via a quantum link for transferring their tasks and
associated qubits. Initial efforts have already been made in this direction132.

With fog computing perceived as cloud in proximity, will the quantum cloud computing have any repercussions on edge/-
fog computing? Future work should already start exploring the opportunities it is going to offer. For example, integration of
Blockchain service with Quantum Internet can improve the communication speed along with the required security provisions
for the edge analytics and federated learning tasks performed on the edge-cloud continuum.

5 CONCLUSION

Fog computing was coined by Cisco, a decade ago, which utilizes proximal computational resources for processing the sensor
data, as part of IoT applications. Ever since its proposal, fog computing has attracted significant attention by both research
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community and industry, and people focused at addressing different challenges/aspects in realizing and utilizing the fog setup.
However, after a decade of research, we still do not see large-scale deployments of public/private fog networks, which can be
utilized in realizing interesting IoT applications. In the literature, we only see pilot case studies and small-scale testbeds, and
utilization of simulators for demonstrating scale of the specified models addressing the respective technical challenges. There
are several reasons for this.

This paper first explored the case studies of fog computing in different domains, justifying the relevance of fog computing.
Later it grouped the fog computing challenges such as fog frameworks, simulators, resource management, placement strategies,
quality of service aspects, fog economics etc. into different clusters and summarized them along with the state-of-the-art and
future research directions. We followed this with a thorough discussion stressing the need for the development of further real-
world adaptable fog economics solutions and testing them in large-scale pilot case studies. Later, we outlined the further future
research directions in fog computing from the perspective of the emerging trends in this domain and computer science in general,
that could lead to the eventual deployment of fog networks and ubiquity of the fog-based applications.
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