
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2002; 32:295–318 (DOI: 10.1002/spe.437)

TPF: a dynamic system
thrashing protection facility

Song Jiang and Xiaodong Zhang∗,†

Department of Computer Science, College of William and Mary, Williamsburg, VA 23187-8795, U.S.A.

SUMMARY

Operating system designers attempt to keep high CPU utilization by maintaining an optimal
multiprogramming level (MPL). Although running more processes makes it less likely to leave the CPU
idle, too many processes adversely incur serious memory competition, and even introduce thrashing, which
eventually lowers CPU utilization. A common practice to address the problem is to lower the MPL with the
aid of process swapping out/in operations. This approach is expensive and is only used when the system
begins serious thrashing. The objective of our study is to provide highly responsive and cost-effective
thrashing protection by adaptively conducting priority page replacement in a timely manner. We have
designed a dynamic system Thrashing Protection Facility (TPF) in the system kernel. Once TPF detects
system thrashing, one of the active processes will be identified for protection. The identified process will
have a short period of privilege in which it does not contribute its least recently used (LRU) pages for
removal so that the process can quickly establish its working set, improving the CPU utilization. With the
support of TPF, thrashing can be eliminated in its early stage by adaptive page replacement, so that process
swapping will be avoided or delayed until it is truly necessary. We have implemented TPF in a current
and representative Linux kernel running on an Intel Pentium machine. Compared with the original Linux
page replacement, we show that TPF consistently and significantly reduces page faults and the execution
time of each individual job in several groups of interacting SPEC CPU2000 programs. We also show that
TPF introduces little additional overhead to program executions, and its implementation in Linux (or Unix)
systems is straightforward. Copyright  2002 John Wiley & Sons, Ltd.

KEY WORDS: Linux operating system; page replacement; thrashing protection; virtual memory

∗Correspondence to: Xiaodong Zhang, Department of Computer Science, College of William and Mary, Williamsburg,
VA 23187-8795, U.S.A.
†E-mail: zhang@cs.wm.edu

Contract/grant sponsor: U.S. National Science Foundation; contract/grant number: CCR-9812187, EIA-9977030 and
CCR-0098055
Contract/grant sponsor: Sun Microsystems; contract/grant number: EDUE-NAFO-980405

Copyright  2002 John Wiley & Sons, Ltd.
Received 12 April 2000

Revised 16 October 2001
Accepted 16 October 2001

296 S. JIANG AND X. ZHANG

1. INTRODUCTION

1.1. MPL versus system thrashing

Multiprogramming level, simplified as MPL, is defined as the number of active processes in a system.
We refer to these active processes in an multiprogramming environment as interacting processes,
because they are competing for CPU and memory resources interactively. Dynamically maintaining
an optimal MPL to keep a high CPU utilization has been a fundamental issue in the design of operating
systems [1]. Operating system designers aim at providing an optimal solution to the problem of using
the CPU and memory resources effectively in multiprogramming, while avoiding the thrashing that
multiprogramming can cause. CPU utilization can be increased by increasing MPL—running more
processes. However, as MPL increases to a certain degree, the competition for memory pages among
processes becomes serious, which can eventually cause system thrashing, and CPU utilization will then
be significantly lowered. Considering large variations of memory demands from multiple processes
and dynamical memory requirements in their lifetimes of the processes, it is not practically possible
to set a pre-defined optimal MPL in order to avoid thrashing while allowing a sufficient number of
processes in the system. Existing operating systems, such as BSD and Solaris, provide load control
facility to swap out and in processes, if necessary, for thrashing protection. This facility allows the
systems to adaptively lower MPL, but process swapping can be quite expensive for both systems and
user programs.

1.2. Thrashing and page replacement

Thrashing events can be directly affected by how page replacement is conducted. Most operating
systems adopt global LRU replacement to allocate the limited memory pages among competing
processes according to their memory reference patterns. With an increase in MPL, memory allocation
requests become more demanding. To keep more processes active, limited memory space should be
fully utilized. The global LRU page replacement policy follows this principle. However, the effort to
improve memory utilization could cause low CPU utilization.

In a multiprogramming environment, global LRU replacement selects an LRU page for replacement
throughout the entire user memory space of the computer system. The risk of low CPU utilization
increases if the memory page shortage happens throughout the interacting processes. For example,
a process is not able to access its resident memory pages when the process is resolving page faults.
These already obtained pages may soon become LRU pages when memory space is being demanded
by other processes. When the process is ready to use these pages in its execution turn, these LRU
pages may have already been replaced to satisfy memory requests of other processes. The process then
has to request the virtual memory system to retrieve these pages by replacing LRU pages of others,
significantly lowering the system throughput with just a small increase in MPL. The page replacement
may become chaotic, and could cascade among the interacting processes, eventually causing system
thrashing. Once all interacting processes are in the waiting queue due to page faults, the CPU is doing
little useful work.

1.3. Effectiveness of adaptive page replacement

Existing operating systems protect thrashing at the process scheduling level by load controls.
A commonly used mechanism is to suspend/reactivate or swap out/in programs to free more memory

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:295–318

THRASHING PROTECTION FACILITY 297

space after the thrashing is detected. For example, the 4.4 BSD operating system [2] initially
suspends a program after thrashing. If the thrashing continues, additional programs are suspended
until enough memory becomes available. Our experiments and analysis show that there are several
system performance advantages for conducting adaptive page replacement over process scheduling for
the purpose of thrashing protection. First, since improper page replacement during process interactions
is a major and internal source of system thrashing, a solution to adaptively adjust page replacement
behavior to current system needs can be fundamentally effective to address the problem. Second, the
alternatives of load controls are limited to suspend or remove existing processes. Since this approach
is expensive and can dramatically degrade user programs’ interactivity, it is only used when the system
is seriously thrashing. Finally, using the adaptive page replacement in the first place, we are able to
eliminate the thrashing in its early stage, or significantly delay the usage of load controls. With adaptive
page replacement and load controls guarding at two different levels and two different stages, the system
performance will become more stable and cost-effective.

1.4. Our work

The objective of our study is to provide highly responsive and cost-effective thrashing protection by
dynamically detecting and adaptively taking necessary actions at the kernel level of page replacement.
It can also be regarded as page replacement adaptive to the system situation. We have designed a
dynamic system Thrashing Protection Facility (TPF) in the system kernel considering the trade-off
between CPU and memory utilizations. Once TPF detects system thrashing, one of the interacting
processes will be identified for protection. The identified process will have a short period of privilege
during which it does not contribute its LRU pages for removal. This allows the process to quickly
establish its working set. With the support of TPF, early thrashing can be eliminated at the level of page
replacement, so that process swapping will be avoided or delayed until it is truly necessary. TPF also
improves system stability when memory is dynamically and competitively demanded by interacting
processes. We take the Linux kernel as a case study to illustrate why TPF is needed and how it works.

2. EVOLUTION OF PAGE REPLACEMENT IN LINUX KERNEL

Linux, like most other systems, uses an approximate LRU scheme to keep the working set of a process
in the system, and to contribute already allocated pages which may not be used in the near future to
other interacting pages. A clock algorithm [3] is used, because it provides acceptable approximation of
LRU, and it is cheap to implement, where NRU (not recently used) pages are selected for replacement.

Current page replacement implementation in Linux is based on the following framework. The
interacting processes are arranged in an order to be searched for NRU pages when few free pages are
available in the user space, and/or they are demanded by interacting processes. The system examines
each possible process to see if it is a candidate from which NRU pages can be found for replacement.
The kernel will then check through all of the virtual memory pages in the selected process. In a
moderately loaded system, we could hardly observe execution performance differences due to the
different page replacement implementations. However, when processes are competitively demanding
memory allocations, interacting processes may chaotically replace pages among themselves, leading
to thrashing. We take the three recent versions of Linux kernels to illustrate how the thrashing source is

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:295–318

298 S. JIANG AND X. ZHANG

introduced from page replacement, and why a non-adaptive replacement policy has difficulty avoiding
thrashing.

2.1. Kernel 2.0

In Kernel 2.0, the NRU page contributions are proportionally distributed among interacting processes.
There is a ‘swap cnt’ variable for each process, which is initialized with a quantity (RSS/1 MB)
proportional to its resident set size (RSS). Once an NRU page is taken away from the process, its
‘swap cnt’ will be decreased by one. Only when its ‘swap cnt’ becomes zero, or the searching for an
NRU page fails in resident space of the process, is the next process in the process list examined. When
a process with a ‘swap cnt’ of zero is encountered, it will be re-initialized using the same proportion
rule. This strategy effectively balances memory usage by making all the processes provide proportional
NRU pages. However, a major disadvantage of this approach is its high potential for thrashing, resulting
in low CPU utilization. This is because when all the memory-intensive processes are struggling to build
a working set under heavy memory loads, all are requesting more pages through page faults, and no
one will be given a priority for the purpose of thrashing protection.

2.2. Kernel 2.2

In order to address the limit, Kernel 2.2 makes each identified process continuously contribute its
NRU pages until no NRU pages are available in the process. Attempting to increase CPU utilization,
this strategy allows the rest of the interacting processes to build up their working sets more easily by
penalizing the memory usage of one process at a time. Below is the major section of code to select a
process for page replacement in the kernel function ‘swap out’ in mm/vmscan.c [4].

for (; counter >= 0; counter--) {
max_cnt = 0;
pbest = NULL;

select:
read_lock(&tasklist_lock);
p = init_task.next_task;
for (; p != &init_task;

p = p->next_task) {
if (!p->swappable)

continue;
if (p->mm->rss <= 0)

continue;
/* Refresh swap_cnt? */
if (assign == 1)

p->mm->swap_cnt = p->mm->rss;
if (p->mm->swap_cnt > max_cnt) {

max_cnt = p->mm->swap_cnt;
pbest = p;

}

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:295–318

THRASHING PROTECTION FACILITY 299

}
read_unlock(&tasklist_lock);
if (assign == 1)
assign = 2;

if (!pbest) {
if (!assign) {

assign = 1;
goto select;

}
goto out;

}

if (swap_out_process(pbest, gfp_mask))
return 1;

}
out:
return 0;

In this section of code, the ‘swap cnt’ variable for a process’s data structure can be thought of as
a ‘shadow RSS’, which becomes zero when a swap-out operation of a process fails. The ‘swap cnt’s
of all the swappable processes will be re-assigned with the respective RSS in the second pass through
the process list in the inner loop when they all become zero. This inner loop will select the swappable
process with the maximal RSS that has not yet been swapped out. Variable ‘counter’ is used to control
how many processes are searched before finding an NRU page. We can see that once a process provides
an NRU page, which means it is the one with the maximum ‘swap cnt’ currently, the process will be
selected for swapping upon the next request. This allows its NRU pages continuously to be replaced
until a failure on finding an NRU page in the process occurs. Compared with previous kernel version,
in addition to the changes in the selection of processes for NRU pages, there has been another major
change in this kernel. In Kernel 2.0, there is an ‘age’ associated with each page, which is increased by
three when it is referenced, called page aging, and decreased by three each time the page is examined.
Once the ‘age’ decreases to zero, it becomes an NRU page and is ready to be replaced. Kernel 2.2
greatly simplifies the structure by eliminating the ‘age’ and only making use of the reference bit of
each page in the PTE (page table entry). The bit is set when the page is referenced and reset when the
page is examined. The pages with reference bits of zero are NRU pages and ready to be replaced. This
implementation produces NRU pages more quickly for a process with a high page fault rate. These
changes in Kernel 2.2 take a much more aggressive approach to make an examined process contribute
its NRU pages, attempting to help other interacting processes to establish their working sets to fully
utilize the CPU.

We have noted the effort made in Kernel 2.2 to retain CPU utilization by avoiding widely spreading
page faults among all the interacting processes. However, such an effort increases the possibility of
replacing fresh NRU pages in the process being examined, while some NRU pages in other interacting
processes that have not been used for a long time continue to be kept in memory. This approach benefits
CPU utilization at the cost of lowering memory utilization. Fortunately, in our experiments, we find
that each interacting process is still examined periodically with a reasonable time interval. Although

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:295–318

300 S. JIANG AND X. ZHANG

the average time interval in Kernel 2.2 is longer than that in Kernel 2.0, it seems to be sufficiently short
to let most interacting processes have a chance to be examined. Thus memory utilization is not a major
concern. However, the risk of system instability caused by low CPU utilization remains.

2.3. Kernel 2.4

The latest Linux kernel is version 2.4, which makes considerable changes in the paging strategy. Many
of these changes focus on addressing concerns on memory performance that arose in Kernel 2.2.
For example, without page aging, NRU replacement in Kernel 2.2 can not accurately distinguish the
working set from incidentally accessed pages. Thus, Kernel 2.4 has to reintroduce page aging, just as
Kernel 2.0 and FreeBSD do. However, page aging could help processes with high page fault rates to
keep their working sets, causing other processes also to have high page fault rates to trigger thrashing.
Kernel 2.4 distinguishes the pages with age of zero and those with positive ages by separating them into
non-active and active lists, respectively, to prevent inefficient interactions between page aging and page
flushing [5]. Unfortunately, this change does not help protect the system against thrashing, because the
system still has no knowledge about which working sets of particular processes should be protected
when frequent page replacement takes place under heavy memory workload. A similar argument can
be applied in BSD and FreeBSD, where a system-wide list of pages forces all processes to compete for
memory on an equal basis.

To make memory more efficiently utilized, Kernel 2.4 reintroduces the method used in Kernel 2.0
for selecting processes to contribute NRU pages. Going through a process list each time, it uses about
6% of the address space in each process to search NRU pages. Compared with Kernel 2.2, this method
increases its possibility of thrashing.

2.4. CPU and memory utilizations rooted in page replacement

From the evolution of recent Linux kernels, we can see that in VM designs and implementations,
finding an optimal MPL concerning thrashing has been translated into considerations of the tradeoff
between the CPU and memory utilizations. For the purpose of high CPU utilization, we require that
CPU not be idle when there are computing demands from ‘cycle-demanding’ processes. For the
purpose of high memory utilization, we require that no idle pages be retained when there are memory
demands from ‘memory-demanding’ processes. Our analysis has shown that the conflicting interests
between the requirements on CPU and memory utilizations are inherent in a multiprogramming system.
Regarding CPU utilization, the page replacement strategy should keep at least one process active in the
process queue. Regarding memory utilization, the page replacement strategy should apply the LRU
principle consistently to all the interacting processes. No process should hide its old NRU pages from
swapping while other processes contribute their fresh NRU pages. It is practically difficult to design a
strategy in favor of both CPU and memory utilizations with the low risk of system instability leading to
thrashing. Current systems lack effective mechanisms to integrate the two requirements for the purpose
of thrashing protection.

From the above code analysis, the page replacement implementation in Kernel 2.2 is more effective
in thrashing protection than Kernel 2.0 and Kernel 2.4. However, we will show that the critical
weakness resulting from the conflicting interests between the requirements on CPU and memory

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:295–318

THRASHING PROTECTION FACILITY 301

utilizations exists in Kernel 2.2. Thus, we implement our TPF in Kernel 2.2. The additional thrashing
protection provided by TPF in this environment clearly demonstrates its effectiveness.

3. EVALUATION OF PAGE REPLACEMENT IN LINUX KERNELS 2.2

3.1. Experimental environment

Our performance evaluation is experimental measurement based. The machine we have used for all
experiments is a Pentium II of 400 MHz with physical memory space of 384 MB. The operating
system is Redhat Linux release 6.1 with the Kernel 2.2.14. Program memory space is allocated in units
of 4 kB pages. The disk is an IBM Hercules with capacity of 8450 MB.

When memory related activities in program execution occur, such as memory accesses and page
faults, the system kernel is heavily involved. To gain insight into VM behavior of application programs,
we have monitored program execution at the kernel level and carefully added some instrumentation to
the system. Our monitor program has two functions: user memory space adjustment and system data
collection. In order to flexibly adjust available memory space for user programs in experiments, the
monitor program can serve as a memory-adjustment process requesting a memory space of a fixed size,
which is excluded from page replacement. The available user memory space can be flexibly adjusted by
running the memory-adjustment process with different fixed sizes of memory demand. The difference
between the physical memory space for users and the memory demand size of the memory-adjustment
process is the available user space in our experiments.

In addition, the monitoring program dynamically collects the following memory system status
quanta periodically for every second during execution of programs.

• Memory allocation demand (MAD) is the total amount of requested memory address space
in pages. The memory allocation demand quantum is dynamically recorded in the kernel data
structure of task struct, and can be accurately collected without intrusive effect on program
execution.

• Resident set size (RSS) is the total amount of physical memory used by a process in pages, and
can be obtained from the kernel data structure of task struct.

• Number of page faults (NPF) is the number of page faults of a process, and can be obtained from
task struct of the kernel. There are two types of page faults for each process: minor page faults
and major page faults. A minor page fault will cause an operation to relink the page table to the
requested page in physical memory. The system can mark minor pages as ‘not in address space’
without removing them from the main memory. In the time between the marking and the actual
removal, a marked page may be reclaimed without a disk access. The timing cost of a minor
page fault is trivial in the memory system. A major page fault happens when the requested page
is not in memory and has to be fetched from disk. We only consider major page fault events for
each process in this work, which can also be obtained from task struct.

• Number of accessed pages (NAP) is the number of pages accessed by a process within a time
interval of 1 s. During program execution, a system routine is periodically called to examine all
the reference bits in the page table of a specified process. This quantum is only collected for
dedicated executions of benchmark programs.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:295–318

302 S. JIANG AND X. ZHANG

Table I. Execution performance and memory related data of the three benchmark programs.

Programs Description Input file Memory requirement (MB) Lifetime (s)

gcc optimized C compiler 166.i 145.0 218.7
gzip data compression input.graphic 197.4 248.7
vortex database lendian1.raw 115.0 342.3
vortex database lendian3.raw 131.2 398.0

We have selected three memory-intensive application programs from SPEC CPU2000: gcc, gzip,
and vortex. Using the system facilities described above, we first run each of the three programs in
a dedicated environment to observe the memory access behavior without major page faults and page
replacement (the demanded memory space is smaller than the available user space). Table I presents the
basic experimental results of the three programs, where the ‘description’ column gives the application
nature of each program, the ‘input file’ column is the input file names from the benchmarks, the
‘memory requirement’ column gives the maximum memory demand during the execution, and the
‘lifetime’ column is the execution time of each program. The ‘lifetime’ of each program is measured
without memory status quanta collection involved. These numbers for each program represent the mean
of five runs. The variation coefficients calculated by the ratio of the standard deviation to the mean is
less than 0.01.

3.2. Page replacement behavior of Kernel 2.2

The memory usage patterns of the three programs are plotted by memory–time graphs. In the memory–
time graph, the x axis represents the execution time sequence, and the y axis represents three memory
usage curves: the MAD, the RSS, and the NAP. The memory usage curves of the three benchmark
programs measured by MAD, RSS, and NAP are presented in Figures 1 (gcc), 2 (gzip), and 3 (vortex1,
which is vortex with input file of ‘lendian1.raw’). One major reason for the RSS of the gcc curve
dropping is because the program itself frees its allocated memory space periodically for efficiency. We
find that Linux Kernel 2.2.14 still provides a high potential for interacting processes to chaotically
replace pages among themselves, significantly lowering CPU utilization and causing thrashing if
the page replacement continues under heavy load. To show this, we have monitored executions and
memory performance of several groups of multiple interacting programs. To make the presentation
easily understandable on how memory pages are allocated among processes and their effects on CPU
utilization, we only present the results of running two benchmark programs together as a group.
We present three program interaction groups: gzip+vortex3 (vortex3 is vortex with the input file of
‘lendian3.raw’), gcc+vortex3, and vortex1+vortex3. The available user memory space was adjusted
by the memory-adjustment program accordingly so that each interacting program had considerable
performance degradation due to 27–42% memory shortage. The shortage ratios are calculated based
on the maximum memory requirements. In practice, the realistic memory shortage ratios are smaller
due to dynamically changing memory requirements of interacting programs.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:295–318

THRASHING PROTECTION FACILITY 303

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 50 100 150 200 250

N
u
m

b
e
r

o
f
m

e
m

o
ry

 P
a
g
e
s

Execution time (second)

SPEC2000 gcc

MAD
RSS
NAP

Figure 1. The memory performance of gcc in a dedicated environment.

0

10000

20000

30000

40000

50000

60000

0 50 100 150 200 250 300

N
u
m

b
e
r

o
f
m

e
m

o
ry

 P
a
g
e
s

Execution time (second)

SPEC2000 gzip

MAD
RSS
NAP

Figure 2. The memory performance of gzip in a dedicated environment.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:295–318

304 S. JIANG AND X. ZHANG

0

5000

10000

15000

20000

25000

30000

35000

0 50 100 150 200 250 300 350 400

N
u
m

b
e
r

o
f
m

e
m

o
ry

 P
a
g
e
s

Execution time (second)

SPEC2000 vortex

MAD
RSS
NAP

Figure 3. The memory performance of vortex1 in a dedicated environment.

Figures 4(a) and (b) present the memory usage behavior measured by MAD and RSS of interacting
programs gzip and vortex3, respectively. After we added gzip to interact with vortex3 at 250 s, we
observed that both their RSS curves are up and down in most of the times. CPU utilization is lower
than 50% during the interaction because both processes were held in the waiting list by page faults for
the most time. Adding more processes would worsen the case due to the lack of free memory in the
system. We found that at around 620 and 780 s, gzip did get its working set and ran with a small number
of page faults. Unfortunately, it went back to chaotic competition after that period. The measurement
shows that the slowdown of gzip is 5.23, and that for vortex3 is 3.85.

Figures 5(a) and (b) present the memory usage behavior measured by MAD and RSS of interacting
programs gcc and vortex3, respectively. For program vortex3, the RSS curve suddenly dropped to
about 14 000 pages after it reached 26 870 pages, which was caused by the memory competition of the
partner program gcc. After that, the RSS curves entered a fluctuating stage, causing a large number of
page faults in each process to extend the first spike of gcc in the MAD and RSS curves to 865 s, and
to extend a RSS stair in vortex to 563 s. In this case the slowdown of program gcc is 5.61, and that for
vortex is 3.37.

Figures 6(a) and (b) present the memory usage behavior measured by MAD and RSS of interacting
programs vortex1 and vortex3, respectively. Although the input files are different, the memory access
patterns of the two programs are the same. Our experiments show that the RSS curves of both vortex
programs changed similarly during the interactions. To favor memory utilization, NRU pages were
allocated between the two processes back and forth, causing low CPU utilization and poor system

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:295–318

THRASHING PROTECTION FACILITY 305

(a) (b)

0

10000

20000

30000

40000

50000

60000

0 200 400 600 800 1000 1200 1400 1600

N
u

m
b

e
r

o
f

m
e

m
o

ry
 P

a
g

e
s

Execution time (second)

gzip (input.graphic) in the interaction

MAD
RSS

0

10000

20000

30000

40000

50000

60000

0 200 400 600 800 1000 1200 1400 1600

N
u

m
b

e
r

o
f

m
e

m
o

ry
 P

a
g

e
s

Execution time (second)

vortex (lendian3.raw) in the interaction

MAD
RSS

Figure 4. The memory performance of (a) gzip and (b) vortex3 during the interactions. Note: the execution of gzip
started 250 s after that of the vortex3 program.

(a) (b)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 200 400 600 800 1000 1200 1400

N
u

m
b

e
r

o
f

m
e

m
o

ry
 P

a
g

e
s

Execution time (second)

gcc (166.i) in the interaction

MAD
RSS

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 200 400 600 800 1000 1200 1400

N
u

m
b

e
r

o
f

m
e

m
o

ry
 P

a
g

e
s

Execution time (second)

vortex (lendian3.raw) in the interaction

MAD
RSS

Figure 5. The memory performance of (a) gcc and (b) vortex3 during the interactions. Note: the execution of gcc
started 250 s after that of the vortex3 program.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:295–318

306 S. JIANG AND X. ZHANG

(a) (b)

0

5000

10000

15000

20000

25000

30000

35000

40000

0 200 400 600 800 1000 1200 1400

N
u

m
b

e
r

o
f

m
e

m
o

ry
 P

a
g

e
s

Execution time (second)

vortex (lendian1.raw) in the interaction

MAD
RSS

0

5000

10000

15000

20000

25000

30000

35000

40000

0 200 400 600 800 1000 1200 1400

N
u

m
b

e
r

o
f

m
e

m
o

ry
 P

a
g

e
s

Execution time (second)

vortex (lendian3.raw) in the interaction

MAD
RSS

Figure 6. The memory performance of (a) vortex1 and (b) vortex3 during the interactions.

performance. After the RSS curves of both programs reached about 22 000 pages, their MADs could
not be reached due to memory shortage. Our experiments again show that the execution times of both
programs were significantly increased due to the page faults in the interaction. The slowdown for
vortex1 is 3.58, and that for vortex3 is 3.33.

Our experiments indicate that although thrashing could be triggered by a brief, random peak in
memory demand of a workload, the system may continue thrashing for an unacceptably prolonged
time. To make a system more resilient against dynamically changing virtual memory load, a dynamical
protection mechanism is desirable instead of a brute-force process stop, such as process suspension or
even process removal.

4. THE DESIGN AND IMPLEMENTATION OF TPF

We propose to implement TPF as part of the page replacement for thrashing protection in order to
improve system stability under a heavy load. The main idea of TPF is simple and intuitive. Once the
system detects high page fault rates and low CPU utilization caused by multiple processes, TPF will
identify a process and help it quickly establish its working set by temporarily granting a privilege to the
process for its page replacement. With this action, the CPU utilization quickly increases because at least
one process is able to do useful work. In addition, the memory space is expected to be released soon
by the process after its completion, so that the memory demands of other processes can be satisfied.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:295–318

THRASHING PROTECTION FACILITY 307

We have implemented TPF in the Linux Kernel 2.2.14, which consists of two kernel utilities: detection
and protection routines.

The detection routine is used to dynamically monitor the page fault rate of each process and the
CPU utilization of the system. The protection routine will be awakened to conduct priority-based page
replacement when CPU utilization is lower than a predetermined threshold, and when the page fault
rates of more than one interacting process exceed a threshold. The protection routine then grants a
privilege to an identified process among those with high page fault rates, which will only contribute
a limited number of NRU pages. The identified process is the one that has the smallest difference
between its MAD and its RSS (the least memory demanding process). The detection routine also
monitors whether the identified process has lowered its page fault rate to a certain degree. If so, its
privilege will be disabled. This action will retain memory utilization by treating each process equally.

4.1. The detection routine

There are four predetermined parameters in TPF:

1. CPU Low is the lowest CPU utilization the system can tolerate;
2. CPU High is the targeted CPU utilization for TPF to achieve;
3. PF Low is the targeted page fault rate of the identified process for TPF to achieve; and
4. PF High is the page fault rate threshold of a process to potentially cause thrashing.

We add one global linked list, high PF proc, in the kernel to record interacting processes with high
page fault rates. Once we find the current page fault of a process exceeds PF High, we will enter it in
the linked list.

We have also added three new fields in task struct data structure for each process:

1. num pf is the number of page faults detected recently;
2. start time is the system time for the first page fault in the above ‘num pf’ page faults; and
3. privilege—the process is granted the privilege (= 1) or not (= 0).

Below are the kernel operations to determine and manage the processes exceeding the threshold page
fault rates.

if (process p encounters page faults) {
if (p->num_pf == 0)
p->start_time = current system time;

p->num_pf++;
if (p is not in the ’high_PF_proc’ list)
if (p->num_pf > high_PF) {

if (current system time -
p->start_time <= 1 second)

place p in high_PF_proc;
p->num_pf = 0;

}
}

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:295–318

308 S. JIANG AND X. ZHANG

We check the page fault rate of each process in the high PF proc list every second. If a process’s
page fault rate is lower than PF Low, we will dynamically remove the process from the list by the
following operations:

if (length(high_PF_proc) >= 1) {
for each p in the list do {
if (current system time -

p->start_time >= 1 second) {
if (p->num_pf/(current system time

- p->start_time) < PF_low) {
if (p->privilege == 1)

p->privilege = 0;
remove p from the list;

}
p->num_pf = 0;
p->start_time = current_system_time;

}
}

}

The CPU utilization is measured every second, based on the CPU idle time. Specifically, we use
(1 − idle ratio) to represent the current CPU utilization, where the idle ratio is the CPU time portion
used for the idle processes in the last second. The current CPU utilization is compared with CPU Low
to determine if the system is experiencing an unacceptably low CPU utilization. The protection routine
is triggered when the following three conditions are all true.

if ((CPU utilization < CPU_Low) &&
(length(high_PF_proc) >= 2) &&
(no process has been protected)) {
for all processes in high_PF_proc
select the least memory hungry process p;

p->privilege = 1;
}

4.2. The protection routine

Privilege granting is implemented in a simple way in the kernel routine ‘swap out’ presented in
Section 3. The function swap out process(pbest, gfp mask) will reset its ‘swap cnt’ to zero if, and only
if, the system fails to get an NRU page from process ‘pbest’, as we have shown in Section 3. A small
modification in swap out process() will make the privilege effective; that is, we reset its ‘swap cnt’ to
zero even if an NRU page is obtained in the protected process. This will cause the protected process
to provide at most one NRU page in each examination loop on all swappable processes. Considering
that a large number of NRU pages exist in the rest of the interacting processes, such a change will
effectively help the protected process build up its working set and reduce its page fault rate. Once its
page fault rate is lowered satisfactorily, the protected process will be removed from the ‘high PF proc’
list and lose its privilege.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:295–318

THRASHING PROTECTION FACILITY 309

Monitoring
StateState

Normal Protection
State

CPU utilization > CPU_High

CPU utilization < CPU_Low &&
length(high_PF_proc) >= 2length(high_PF_proc) > 1

length(high_PF_proc) = 1
PageFaultRate(protected process) < PF_Low

Figure 7. Dynamic transitions among normal, monitoring, and protection states in the improved kernel system.

4.3. State transitions in the system

The kernel memory management has the following three states with dynamic transitions.

1. Normal state: in this state, no monitoring activities are conducted. The system deals with page
faults exactly as the original Linux kernel does. The system keeps track of the number of page
faults for each process and places the process with high page fault rates in ‘high PF proc’.

2. Monitoring state: in this state, the detection routine is awakened to start monitoring the CPU
utilization and the page fault rates of processes in ‘high PF proc’. If the protection condition
is satisfied, the detection routine will select a qualified process for protection and go to the
protection state. The system returns to the normal state when no more than one process’s page
fault rate is as high as the predetermined threshold.

3. Protection state: the protection routine will make the selected process quickly establish its
working set. In the protection state, the detection routine keeps monitoring the CPU utilization
and the page fault rate of each process in the list. The detection routine is deactivated and the
protection state transfers to the monitoring state as soon as the protected process becomes stable
and/or the CPU utilization has been sufficiently improved.

Figure 7 describes the dynamic transitions among the three states, which gives a complete description
of TPF facility. When the system is normal (no page faults occur), detection and protection routines are
not involved. As we have described in the implementation, the algorithm only adds limited operations
for each page fault and checks several system parameters with the interval of 1 s. So, overheads
involved for detection and protection one trivial compared with the CPU overhead to deal with page
faults.

5. PERFORMANCE MEASUREMENTS AND ANALYSIS

5.1. Observation and measurements of TPF facility

The predetermined threshold values are set as follows: CPU Low = 40%, CPU High = 80%,
PF High = 10 faults per second, PF Low = 1 fault per second. Parameter PF High is set by the

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:295–318

310 S. JIANG AND X. ZHANG

(a) (b)

0

200

400

600

800

1000

1200

1400

1600

gzip/vortex3 vortex3/gcc vortex1/vortex3

E
x
e
c
u
ti
o
n
 T

im
e
 (

S
e
c
o
n
d
s
)

without protection with protection

gzip

gzip

vortex3

vortex3

vortex3

vortex3

vortex1

vortex1

vortex3

vortex3

gcc

gcc

0

50000

100000

150000

200000

250000

300000

350000

gzip/vortex3 vortex3/gcc vortex1/vortex3

N
u
m

b
e
r

o
f
P

a
g
e
 F

a
u
lt
s

without protection with protection
gzip

vortex3

gzip

vortex3

vortex3

vortex3

vortex1
vortex3

vortex1

vortex3

gcc

gcc

Figure 8. (a) Execution time comparisons and (b) comparisons of numbers of page faults for the three groups of
program interactions in the Linux without TPF and with TPF.

following two reasons. The performance of TPF is experimentally evaluated by the three groups of the
interacting programs. Each of the experiments has exactly the same setting as its counterpart conducted
in Section 3, except that the TPF is implemented in the kernel.

Variable PF High is used to identify an active process for a protection when thrashing starts. The
TPF is triggered by threshold CPU Low to select a process. The value of 10 page faults per second for
a process gives two system implications. First, it tells us how much time this process spends on page
swapping and other related operations. Considering the average page fault penalty time of 10–15 ms,
the CPU wastes 100–150 ms or 15% of its cycles within a second for this process’s page faults. Second,
researchers have measured the correlations between the average page fault rate of each interacting
program and the average memory oversizing percentage at that moment [6]. Based on this study, a
page fault rate of 10 implies that the process demands 10% more memory space than is available.

There are several reasons for choosing a relatively small PF High value (10 faults per second) in
our system. (1) A small PF High makes TPF responsive at an early stage in order to handle thrashing.
When thrashing starts, although CPU utilization drops quickly, it takes a while for the page fault rate
to reach its thrashing value (150–250 faults per second in our experiments). If we adopt a PF High
value close to the thrashing value, the protection action can be delayed. (2) Our experiments show that
the value of 10 faults s−1 provides a proper basis for identifying a process candidate for protection.
(3) Even if a non-active process, such as a process waiting for I/O, is identified and protected, TPF will
quickly reduce its page fault rate. After then, another candidate will be identified.

Figures 9(a) and (b) present the memory usage measured by MAD and RSS of interacting programs
gzip and vortex3, respectively, in the kernel with TPF. Figure 4 shows that thrashing between processes
started as soon as gzip joined the execution at 250 s without TPF. In contrast, Figure 9 shows that TPF

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:295–318

THRASHING PROTECTION FACILITY 311

(a) (b)

0

10000

20000

30000

40000

50000

60000

0 100 200 300 400 500 600 700 800

N
u

m
b

e
r

o
f

m
e

m
o

ry
 p

a
g

e
s

Execution time (second)

gzip (input.graphic) in the interaction

MAD
RSS

0

10000

20000

30000

40000

50000

60000

0 100 200 300 400 500 600 700 800

N
u

m
b

e
r

o
f

m
e

m
o

ry
 p

a
g

e
s

Execution time (second)

vortex (lendian3.raw) in the interaction

MAD
RSS

Figure 9. The memory performance of (a) gzip and (b) vortex3 during the interactions in the Kernel with TPF.
Note: the execution of gzip started 250 s after that of the vortex3 program.

quickly detected the problem and went into the protection state. Because the RSS of vortex3 is close to
its MAD, it was selected for protection. After the protection, its page fault rate was lowered with the
establishment of its working set. Then the protection was disabled to allow the NRU pages of vortex3 to
be fully utilized. This is confirmed by the small gap between MAD and RSS, which does not exist in the
dedicated execution (see Figure 3). In the experiment we observed that TPF had to come back and forth
during the program interaction over 10 times to help vortex3 establish working sets. This is because
the program vortex is not strong enough to keep its established working set with the competition of
gzip. Even for this type of program, TPF demonstrates its effectiveness. The numbers of page faults
and execution time of vortex3 are reduced by 72 and 92%, respectively (see Figure 8).

The performance improvement for gzip is also significant. Its number of page faults and execution
time are reduced by 72 and 64%, respectively. Intuitively, its performance should have been degraded
because it contributed more memory space to vortex3 for building up its working set enforced by
TPF. But this is not the case for two reasons. First, under the protection of TPF, vortex3 had an early
completion. Then gzip could run without memory competition and use CPU cycles solely. Second,
under the protection of TPF, vortex3 could greatly reduce its page fault rate, which made gzip utilize
most of the I/O bandwidth and reduced page fault penalty.

Figures 10(a) and (b) present the memory usage measured by MAD and RSS of interacting programs
gcc and vortex3, respectively, in the kernel with TPF. At 397 s, memory demand from gcc rapidly rose,
and both programs started page faults due to memory shortage. The thrashing significantly lowered
CPU utilization, which triggered TPF to take action. Because gcc demanded memory gradually, and

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:295–318

312 S. JIANG AND X. ZHANG

(a) (b)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 100 200 300 400 500 600 700

N
u

m
b

e
r

o
f

m
e

m
o

ry
 p

a
g

e
s

Execution time (second)

gcc (166.i) in the interaction

MAD
RSS

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 100 200 300 400 500 600 700

N
u

m
b

e
r

o
f

m
e

m
o

ry
 p

a
g

e
s

Execution time (second)

vortex (lendian3.raw) in the interaction

MAD
RSS

Figure 10. The memory performance of (a) gcc and (b) vortex3 during the interactions in the kernel with TPF.
Note: the execution of the gcc program started 250 s after that of the votex3 program.

(a) (b)

0

5000

10000

15000

20000

25000

30000

35000

40000

0 100 200 300 400 500 600 700 800 900

N
u

m
b

e
r

o
f

m
e

m
o

ry
 p

a
g

e
s

Execution time (second)

vortex (lendian1.raw) in the interaction

MAD
RSS

0

5000

10000

15000

20000

25000

30000

35000

40000

0 100 200 300 400 500 600 700 800 900

N
u

m
b

e
r

o
f

m
e

m
o

ry
 p

a
g

e
s

Execution time (second)

vortex (lendian3.raw) in the interaction

MAD
RSS

Figure 11. The memory performance of (a) vortex1 and (b) vortex3 in the kernel with TPF.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:295–318

THRASHING PROTECTION FACILITY 313

0

200

400

600

800

1000

1200

1400

1600

gzip/vortex3 vortex3/gcc vortex1/vortex3

E
x
e
c
u
ti
o
n
 T

im
e
 (

S
e
c
o
n
d
s
)

without protection with protection ideal

Figure 12. Comparison of total interaction execution times for the three groups of program interactions in the
Linux with TPF, without TPF and the ideal interaction times.

kept the gap between MAD and RSS small, gcc was selected for protection on its rising slope of
the first MAD spike by TPF. The memory is dynamically allocated between two processes to ensure
a reasonable level of CPU utilization. The period the system remains in the protection state is very
limited, thus memory utilization is maintained. TPF successfully smoothed out the peak in memory
load that might otherwise have caused the system to thrash. Compared with the same run in the
original Linux kernel, the execution times of programs vortex3 and gcc are reduced by 57 and 69%,
respectively; the numbers of page faults of programs gcc and vortex3 are reduced by 87 and 99%,
respectively (see Figure 8).

Figures 11(a) and (b) present the memory usage measured by MAD and RSS of interacting programs
vortex1 and vortex3, respectively, in the kernel with TPF. During the interactions at the execution time
of 433 s, both programs started page faults due to memory shortage. The program vortex1 was then
protected by TPF. We observed that vortex1 easily held its working set thereafter and only a small
amount of time of TPF involvement was needed. This is because vortex1 and vortex3 have similar
memory access rates and patterns. Thus once vortex1 was given privilege to establish its working set,
it would keep the working set by frequently using it. In contrast to the performance seen in Figure 6, a
small correction from TPF could make a big difference in multiprogramming. Compared with the same
execution in the original Linux kernel, the execution times of programs vortex1 and vortex3 are reduced
by 46 and 42%, respectively; the numbers of page faults are reduced by 99 and 80%, respectively (see
Figure 8).

Figure 12 compares the total execution times for the three groups of interacting programs in Linux
with and without TPF. We assume the execution times of each pair of programs under the same
multiprogramming condition with sufficient memory space as the ideal interaction execution time.
Figure 12 shows that the total interacting execution times in the kernel with TPF for the three groups

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:295–318

314 S. JIANG AND X. ZHANG

are significantly smaller than those in the kernel without TPF, and are very close to the ideal execution
times. These experiments also indicate that TPF has little runtime overhead.

5.2. Experiences with TPF in the multiprogramming environment

1. Under what conditions, does thrashing happen in a multiprogramming environment? Our
experiments show that VMs in Linux can normally keep a reasonable CPU utilization even
under heavy workload, adapting the variance of memory demands, access patterns and access
rates of different processes. A process that can frequently access its working set in execution
interactions has a strong position for memory space competitions during interactions. However,
under the following three conditions, thrashing can be triggered.

• The memory demands of one interacting program have sudden ‘spikes’. Case studies in
Figures 4 and 5 show such examples.

• The variance of memory demands, access patterns, and access rates of interacting
processes are similar. Case studies in Figure 6 show such examples.

• Serious memory shortage happens in the system.

2. For what cases is TPF most effective? TPF is most effective in the first two cases discussed
above. In other words, TPF is able to quickly resolve thrashing for interacting programs having
dynamically changing memory demands. We have shown that TPF is highly responsive to
increasing CPU utilization and to stopping thrashing by adapting page replacement to memory
allocations. In addition, the scheduling action from TPF has little intervention in the system and
the multiprogramming environment because the protection period is very short, but it is effective
in leading the system back to normal.

3. For what cases is TPF ineffective? If the memory shortage problem is too serious in a
multiprogramming environment, the selected process may build up and hold its working set
in memory at the cost of obtaining most of the memory space of other processes. Although TPF
can still cause CPU cycles to be effectively utilized, the CPU overhead serving page faults of
other processes will significantly increase, and I/O channels may become heavily loaded due to
a large amount of page faults. As a result, the protected process will not run smoothly. Under
such conditions, the load control has to be used to swap a process for releasing memory space.
With the support of TPF, the load control facility will be used only when it is truly necessary.

4. How do the threshold parameters affect the performance of TPF? We summarize the
relationships between the four threshold parameters (see Section 3.1) and the effectiveness of
TPF. A large value of CPU Low and a small value of PF High will make TPF more responsive to
system thrashing. In contrast, a large value of CPU High and a small value of PF Low will make
the identified process stay longer in the protection state after it enters the state. Thus, adjusting
these parameters is equivalent to changing the extent of TPF intervention to the system. The
parameters are set based only on system requirements; they are not dependent on application
program natures. For example, for systems with high I/O bandwidths (e.g. parallel disk arrays),
larger values can be set for PF High and PF Low, because page faults can be resolved quickly.
In our experiments we found that the performance of TPF was quite stable within a large range
of parameter values.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:295–318

THRASHING PROTECTION FACILITY 315

6. RELATED WORK

Improvement of CPU and memory utilizations has been a fundamental consideration in the design of
operating systems. Extensive research on thrashing had been conducted since the 1960s. Among the
proposed policies the most influential one is the working set policy, which was able to thoroughly
protect against thrashing while keeping high CPU utilization. The working set policy also provides a
solution at the page replacement level.

6.1. The working set model and its implementation issues

Denning proposes a working set model [7–9] to estimate the current memory demand of a running
program in the system. A working set of a program is a set of its recently used pages. Specifically, at
virtual time t , the program’s working set Wt(θ), is the subset of all pages of the program, which has
been referenced in the previous θ virtual time units (working set window). The task’s virtual time is a
measure of the duration the program has control of the processor and is executing instructions without
interruptions. In practice, NAP(t) is equivalent to Wt(θ) with a 1 s sampling interval of dedicated
execution, where NAP is the number of accessed pages (defined in Section 3.1) at a given time t .
The working set model ensures that the same program with the same input data would have the same
locality measurements, which is independent of the memory size, the multiprogramming level, and
the scheduler policy used. A working set policy is used to ensure no pages in the working set of a
running program will be replaced. Assuming that priorities among the processes exist, once there is a
request for free pages, but they are not available, the processes with the lowest priority has to produce
a victim page for replacement. This implies that an active process with the lowest priority may not
fully allocate its working set. Since the I/O time caused by page faults is excluded in the working
set model, the working set replacement algorithm can theoretically eliminate the thrashing caused
by chaotic memory competition. Comparatively, other global policies like LRU approximations (two-
handed clock, FIFO with second chance) used in the currently popular Unix-like operating systems,
are highly susceptible to thrashing, because a program’s resident set depends on many factors besides
its own locality. Our experimental observations are consistent with the conclusions in the cited work
on working set models.

A major difficulty in implementing the working set model in a modern computer system is its
implementation overhead scaling with the capacity of CPU and memory. The working set model can be
implemented by either hardware or software. To build a hardware for working set detection, registers
(one per page), timers, and circuits are needed to add to the memory. Since these additions would
complicate chip design, no major chip vendor has been willing to implement the working set model.

Compared with the approach of only associating a page-reference bit with each page frame to
support LRU related page replacement policies in Linux and Unix systems, an implementation of
the working set detector is more expensive. With the increase of CPU speed and memory capacity,
and with an increasing amount of memory-intensive workloads in applications, the number of active
pages owned by a process has dramatically increased, which has become a major reason to limit such
an implementation. In addition, since system thrashing is considered an exceptional event, it may be
difficult to convince computer vendors to provide hardware support for the working set model. Instead,
the computer architects prefer to adopt some brute-force methods as exceptional handlers, such as to
release memory space by urgently removing some processes.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:295–318

316 S. JIANG AND X. ZHANG

Implementing the working set detector by system software, we need to routinely update a software
counter associated with each page frame. Since monitoring a huge amount of page frames is part of
routine operations in memory management, it would affect the system performance even when the
system functions normally.

Although a number of good approximations exist, the implementation cost of the working set policy
may limit its direct usage in modern computer systems. However, this model has given us two important
motivations in memory system designs and implementation. First, being a local memory policy, the
working set policy has inherent load controls, and needs no special, additional mechanism to deal with
thrashing. This certainly saves the cost of an additional mechanism to stabilize global LRU policy.
In principle, the working set model can be turned by adjusting its window size, so that it would operate
the system at a nearly optimal MPL. In other words, the highest possible system throughput would be
reached. Second, the working set policy employs ‘feedforward control’, rather than ‘feedback control’,
which means that a working set does not have to react to thrashing, but avoids thrashing in advance.
Motivated by our comparisons and investigations of page replacement implementations in existing
system kernels, and guided by the principle of the working set model, we propose the TPF, which is
not part of the routine operations in memory management, but is only triggered at an early stage of
thrashing to effectively stop the thrashing or significantly delay the load controls. In addition, when
the system is not in danger of thrashing, unlike the working set model, TPF is inactive, avoiding the
working set sampling overhead.

6.2. Other related work

Studies of page replacement policies have a direct impact on memory utilization, which have continued
for several decades (e.g. a representative and early work in [10], and recent work in [11,12]). The goal
of an optimal page replacement is to achieve efficient memory usage by only replacing those pages not
used in the near future when available memory is not sufficient, reducing the number of page faults.
In a single-programming environment, these proposed methods address both concerns of CPU and
memory utilization since any extra page faults due to low memory utilization will make the CPU stall.
However, the system thrashing issue in a multiprogramming environment can not be fully addressed
by the cited work due to the conflicting interests between CPU and memory utilization.

In the multiprogramming context, existing systems mainly apply two methods to eliminate thrashing.
One is local replacement, another is load control. A local replacement policy requires that the paging
system select pages for a program only from its allocated memory space when no free pages can
be found in their memory allotments. Unlike a global replacement policy, a local policy needs a
memory allocation scheme to satisfy the needs of each program. Two commonly used policies are
equal and proportional allocations, which cannot capture the dynamical changing memory demand
of each program [13]. As a result, memory space may not be well utilized. In contrast, an allocation
policy dynamically adapting to the demands of individual programs will shift the scheme to global
replacement. VMS [14] is a representative operating system using a local replacement policy. Memory
is partitioned into multiple independent areas, each of which is localized to a collection of processes
that compete with one another for memory. Unfortunately, this scheme can be difficult to administer
[15]. Researchers and system practitioners seem to have agreed that a local policy is not an effective
solution for virtual memory management. Our TPF is built on a global replacement policy.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:295–318

THRASHING PROTECTION FACILITY 317

The objective of load control is to lower the MPL by physically reducing the number of interacting
processes. A commonly used load control mechanism is to suspend/reactivate processes, even
swapping out/in processes to free more memory space, when thrashing is detected. The 4.4 BSD
operating system [2], the AIX system in the IBM RS/6000 [16], and HP-UX 10.0 in HP 9000 [17]
are examples that adopt this method. In addition, the HP-UX system provides a ‘serialize()’ command
to run the processes one at a time when thrashing is detected. In contrast, TPF protects the system
from thrashing at the page replacement level. Memory allocation scheduling at this level allows us to
carefully consider the tradeoff between CPU and memory utilization.

7. CONCLUSION

We have investigated the risk of system thrashing in page replacement implementation by examining
the Linux kernel code of versions 2.0, 2.2, and 2.4, and running interacting benchmark programs in
a Linux system. Our study indicates that this risk is rooted in conflicting interests of requirements on
CPU and memory utilizations in a multiprogramming environment. We have experimentally observed
several system thrashing cases when processes dynamically and competitively demand memory
allocations, which causes low CPU utilization and long execution time delays, and eventually threatens
system stability.

We have proposed TPF and implemented it in the Linux kernel to prevent the system from thrashing
among interacting processes, and to improve the CPU utilization under heavy load. TPF will be
awakened when the CPU utilization is lower than a predetermined threshold, and when the page fault
rates of more than one interacting process exceed a threshold. TPF then grants privilege to an identified
process to limit its contributions of NRU pages. We create a simple kernel monitoring routine in TPF to
dynamically identify an interacting process that highly deserves temporary protection. The routine also
monitors whether the identified process has satisfactorily lowered its page fault rate after the protection.
If so, its privilege will be disabled to let it equally participate in contributing NRU pages with other
processes.

Conducting experiments and performance evaluation, we show that the TPF facility can effectively
provide thrashing protection without negative effects to overall system performance for three reasons:
(1) the privilege is granted only when a thrashing problem is detected; (2) although the protected
process could lower the memory usage of the rest of the interacting processes for a short period of time,
the system will soon become stable by the protection; and (3) TPF is simple to implement with little
overhead in the Linux kernel. Because the conflicting interests between CPU and memory utilization
are inherent in global page replacement, and our solution is targeted at regulating the conflicts through
tuning page replacement, we believe that the TPF idea is applicable to VMs of other UNIX-like
systems.

ACKNOWLEDGEMENTS

The work is a part of an independent research project sponsored by the National Science Foundation for program
directors and visiting scientists. We thank Phil Kearns for providing a kernel programming environment. We thank
Bill Bynum for reading the paper and for his suggestions. We thank the anonymous referees for their insightful

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:295–318

318 S. JIANG AND X. ZHANG

and constructive comments which have improved the quality and readability of this paper. Finally, we are grateful
to Professor Peter J. Denning for his expert views and advice on this work.

REFERENCES

1. Peterson JL, Silberschatz A. Operating System Concepts (2nd edn). Addison-Wesley: Reading, MA, 1985.
2. McKusick MK, Bostic K, Karels MJ, Quarterman JS. Memory management. The Design and Implementation of the 4.4

BSD Operating System. Addison-Wesley: Reading, MA, 1996; 117–190.
3. Tanenbaum AS, Woodhull AS. Memory management. Operating Systems, Design and Implementation. Prentice-Hall:

Englewood Cliffs, NJ, 1997; 309–400.
4. Maxwell S. Linux Core Kernel Commentary. Coriolis Open Press: Scottsdale, AZ, 1999.
5. van Riel R. Page replacement in Linux 2.4 memory management. Proceedings of USENIX Annual Technical Conference

(FREENIX track), Boston, MA, June 2001.
6. Xiao L, Chen S, Zhang X. Dynamic cluster resource allocations for jobs with known and unknown memory demands.

IEEE Transactions on Parallel and Distributed Systems 2002; 13(3).
7. Denning PJ. The working set model for program behavior. Communications of the ACM 1968; 11(5):323–333.
8. Denning PJ. Working sets past and present. IEEE Transactions on Software Engineering 1980; 6:64–84.
9. Denning PJ. Before memory was virtual. In the Beginning: Personal Recollections of Software Pioneers, Glass R (ed.).

IEEE Press: Los Alamitos, CA, 1997 (also available at http://www.cne.gmu.edu/pjd/PUBS/bvm.pdf).
10. Aho AV, Denning PJ, Ullman JD. Principles of optimal page replacement. Journal of ACM 1971; 18(1):80–93.
11. Glass G, Cao P. Adaptive page replacement based on memory reference behavior. Proceedings of 1997 ACM SIGMETRICS

Conference on Measuring and Modeling of Computer Systems, May 1997; 115–126.
12. Smaragdakis Y, Kaplan S, Wilson P. EELRU: Simple and effective adaptive page replacement. Proceedings of 1999 ACM

SIGMETRICS Conference on Measuring and Modeling of Computer Systems, May 1999; 122–133.
13. Coffman EG Jr., Ryan TA. A study of storage partitioning using a mathematical model of locality. Communications of the

ACM 1972; 15(3):185–190.
14. Kenah LJ, Bate SF. VAX/VMS Internals and Data Structures. Digital Press: Bedford, MA, 1984.
15. Lazowska ED, Kelsey JM. Notes on tuning VAX/VMS. Technical Report 78-12-01, Department of Computer Science,

University of Washington, December 1978.
16. IBM Corporation. AIX Versions 3.2 and 4 Performance Tuning Guide, April 1996.
17. HP Corporation. HP-UX 10.0 Memory Management White Paper, January 1995.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:295–318

	1 INTRODUCTION
	1.1 MPL versus system thrashing
	1.2 Thrashing and page replacement
	1.3 Effectiveness of adaptive page replacement
	1.4 Our work

	2 EVOLUTION OF PAGE REPLACEMENT IN LINUX KERNEL
	2.1 Kernel 2.0
	2.2 Kernel 2.2
	2.3 Kernel 2.4
	2.4 CPU and memory utilizations rooted in page replacement

	3 EVALUATION OF PAGE REPLACEMENT IN LINUX KERNELS 2.2
	3.1 Experimental environment
	3.2 Page replacement behavior of Kernel 2.2

	4 THE DESIGN AND IMPLEMENTATION OF TPF
	4.1 The detection routine
	4.2 The protection routine
	4.3 State transitions in the system

	5 PERFORMANCE MEASUREMENTS AND ANALYSIS
	5.1 Observation and measurements of TPF facility
	5.2 Experiences with TPF in the multiprogramming environment

	6 RELATED WORK
	6.1 The working set model and its implementation issues
	6.2 Other related work

	7 CONCLUSION

