
UIUCDCS-R-72-506 coo-1469-0200

A FAILURE TOLERANT FILING SYSTEM
0148.4: 1,1 i -1
B ned,SO

&- -.
E & 23 6-»';' 6 1 ,3.i· .

by

Alfred D. Whaley

February 1972

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

UIUCDCS-R-72-506

A FAILURE TOLERANT FILING SYSTEM*

by

Alfred D.
Whaley "- -:- - NOTICE

This report was prepared as an account of work
sponsored by the United States Government. Neither
the United States nor the United States Atomic Energy
Commission, nor any of their employees, ·nor any of
their contractors, subcontractors, or their employees,

I makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, com- 1
pleteness or usefulness of any information, apparatus,
product or 'process disclosed, or represents that its use I

would not infringe privately owned rights.

February 1972

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF ILLINOIS
URBANA, ILLINOIS 61801

* Supported in part by the Atomic Energy Commission under grant
US AEC AT(11-1)1469.

NSTRIBUTION [lf THIS DOCUMENT IS UNLI ITED

ABSTRACT ,

). 2.

A random access tree structure filing system has been constructed ·,

that is immune to operating system or internal failures through constant K

maintenance of a correct data structure on disk. Emphasis is placed on the 3

f,il-safe nature of the filing system, the speed of access to random lines ,
:

in a data file, and the low level of human intervention required over an
* I

extended period of time.

j

1. INTRODUCTION

The filing system described here was designed for storing large

programs and computer output in a·timesharing environment and was written 1

for an IBM 360. The original objectives were

1. Quick random access to the lines in a file,

2. Efficient utilization of disk space,

3. No maintenance.

The last requirement is meant to apply even in real world situations such

as system crashes. A system crash is any situation in which the CPU

halts unexpectedly and operations must be restarted from the disk.

In addition, some features o f the filing system were .,"

predetermined. A moving head disk was to be used (IBM 2314) with a

small number of fixed length b Zocks permanently assigned to each track.

As the blocks are made smaller, less space is wasted in partially i

filled blocks and more space is wasted in inter-record gaps and filing ,

system information--pointers, etc. It was decided to use-8 blocks per :
...1

track of 793 bytes (characters) each. Data files were to contain

Ii·nes; they might be card images, printer lines, or other information.

The user of the system supplies a key with each line--a unique code : ·'

required for retrieving the line. The only other way for the user to

retrieve a line is to use the commands supplied for reading the file

sequentially. 1111 lines in the file are constantly stored in order

according to the collating sequence of their keys. The user of the

system has no knowledge of the number of lines stored in any given block,

the Dianner in which they are stored, or the method used by the system

to locate then.

-2-

The use of the system was also partially predetermined. User

files were to be separated on the basis of user name and user account

number. This requirement seemed to suggest a tree structure having a

catalog file of account numbers, each account number specifying a

catalog of user names and each user name specifying a catalog of the

user's data file names. The user could be permitted to carry on this

catalog structure at his own level.

.

-3-

2.. IMPLEMENTATION

An example tree is shown in Figure 1.

Catalog File "I;'1,

1» File B"

File "A" 1 Z_11 1 File "C"
L----___1

1

1

3 7/ 1(tS
1

L--3 9 1 10 I

6 1 ,/ \ A AL
Figure 1. Typical Data Structure

Disk blocks are used for three di fferent purposes. One kin d

is triangles which represent ordinary data blocks, each containing many

litics (with keys) of the user's file. A data block contains 8 full card

images or about 20 average cards. Circles represent directory blocks,

used to keep track of a file when it is too large to be contained in one

block. A rectory block may contains pointers to as many as 50 other

blocks. For example, blocks 4, 7 and 8 together contain one data file;

blocks 6, 9, 10, 11, 12, 13 and 14 contain another; 5 still another.

Squares represent catalog blocks which are the data blocks of a
catalog

file. Each block is self-identifying as to type (catalog, data or

directory) by means of an internal code. In this example, blocks 1, 2

-4-

and 3 contain a catalog (named F) of three data fil
es (named A, B

12,d C). As there is more than one catalog block in
the example

(2 and 3), a directory block is inserted (1) which
locates them.

Typically, a catalog block contains catalog information for about

35 other files. Under file F are cataloged three data files. The

 file represented by 5 (file B) is small enough to be contained in

I one block and, therefore, requires no directory blo
ck. The file

whi ch starts at block 4 is somewhat larger, having two data blocks,

so that it requires a directory block. The file st
arting at block 6

(file C) is larger still, having two levels of dire
ctories. (In :

practice, only one catalog block is needed to catalog files A, B and C

shown in Figure 1; and only one directory block wou
ld be needed for the

data blocks in fil# C.)
 1

In

All records in both data and catalog files contain an 8

character (8 byte) key, sometimes referred to as a
line number. In a

catalog block a given record or line identifies a f
ile underneath the

catalog. The key in one of these records is the 8 character name o f the

file being identified. The remainder of the record contains the last

date on which the file was accessed, a disk address of the top block of

the file cataloged, and optionally, some additional information 1

provided by the user. When a line from a catalog f
ile is read, all but

the disk address is supplied.

-5-

3. ACCESSING AND EDITING·FILES

In the example, block 2 contains one record describing file

A, and block 3 contains two records describing files B and C. Directory

block 1 contains two records. The keys of these records have been

employed to facilitate easy identification of the blocks immediately

under a directory block. The keys are the same as those in the first

record in the block immedi ately below the directory. Thus, block 1

has two records having keys A and B. The remainder of these records

consists only of the disk address of the block just below.

As mentioned in our implementation of this data structure,

a disk block on the 2314 was chosen to be 793 bytes (8 blocks per track),

and a directory can specify over 50 blocks beneath it. Although these

numbers make one fealize that Figure 1 is somewhat deceptive (it appears

that a directory can specify only two blocks), this figure is still

potentially correct. In the data file at 4 a directory block is

required, but only two entries are needed, representing the minimun

configuration. The structure at 6 is hardly minimal, however, since

all four data blocks could be easily specified by one directory block.

One may conclude only that this file contained at one time more than the

fifty odd data blocks that can be specified by one directory block, thus

requiring an extra level of directory blocks to appear. After this

structure was created, a large number of records were subsequently

deleted. Tne kind of splitting that causes a second level of directory

blocks to be added is analogous to what would happen if a data block

such as 5 were exceeded and another (in this case the first) directory

].evel were added, creating a structure similar to that at 4.

-6-

It should be noted that two directory levels can specify up

to n2 data or catalog blocks with n+1 directory blocks where n is the

number of blocks one directory block can specify. Three or four levels

are clearly adequate for most needs.

In returning to the first objective, one can see that each

directory block record has the same key as the first record in the

underlying block, making it easy to locate a data record by a vertical

route from the top block of its file. Another equivalent data structure

could have been constructed with each key the same as the last key in

the·underlying blocks. This technique would have been better, as it

would not have required a separate mechanism for locating the last line

in a file.

Efficient use of disk space is accomplished by several

techniques. First, all blocks in the data structure may be anywhere

on the disk, eliminating fragmentation problems. Second, the system

keeps track of all discarded blocks so that they can be reused, and so

that the data structure does not have to be reorganized periodically

or "compressed" in some manner. Third, trailing blanks on the data

lines are not stored, but are resupplied when the data is read back.

The handling of the final objective received the most attention

in implementing this filing system, and will be described in the

next section.

1.

-7-

4. FAIL-SAFE DATA STRUCTURE 'i

The third stated objective was the most difficult to

implement . In order to be free of human intervention and run on a

360, the timesharing system has to be capable of co-existing with
t
t.

an operating system that fails repeatedly, forcing·the following
 ;

requirements:

1. At all times the data structure on the disk must be

an exactly correct data structure.

2. Blocks are allowed to be "lost," i.e. not be in

the data structure or in the free list, but is is

not legal to have a block mentioned in both places

at the same time.
.

After dreaming up an implementation 'that meets the above :

requirements, one typically finds that the various functions w
hich cause

modification of the disk (writing and deleting of records) must be done

in a rigidly determined order. Looking at the second requirement first,

one sees that the free block lists on the disk must be modified to-

exclude the blocks about to be used before they are included in the

data st ructure. To save disk operations, several blocks may be pre-

allocated at the same time. As the number of preallocated blocks

increases, however, one runs the risk of losing more blocks i
f the

operating system should suddenly fail--the ·computer bein
 restarted

n
Arom disk. Fortunately, however, the number can be quite small (e.g. 10)

and still keep the number of accesses to the free block lists at a small

- percentage of total disk accesses.

-8-

Free blocks that have never been used are contiguous and are

represented by a starting disk address and a count while discarded blocks

are kept on a chain. The chain represents the worst possible technique

except, of course, of simply throwing away discarded blocks.

The requirement that the disk always contain a correct data

structure is the difficult one since it requires a certain amount of

othen-ise needless activity if the file structure is to be crash-proof
r

at every instant of time. A few simplified operations will be explained

so that the application of this principle may be understood.

Imagine a file whose block structure is the following

1

4

· /A 21
and which contains 40 lines of text. Lt is now desired to add some lines

of text to the end of the file, but there is no room in block 3. A new

block is added as follows:

/5321/0.
A.

 \.I/2\ /\ /\
It is imperative that block 4 be written out before the directory (block 1)

is rewritten to the disk with the new directory ent ry. Otherwise for a

brief instant, the directory would point to a block containing garbage. A

system crash at that time would be fatal.

-9-

The next situation involves the overflow out of a single i

data block.

In order not to require extremely complex modification of the part of

the tree which points to this file, it is necessary that the top block

of the file (soon to be a new directory block) always have the same

disk address. Tne technique utilized is to write out another copy of

block 1 and the new data in block 2 at new disk addresses.

1

.

1

These new blocks are not in the tree structure yet, and a system crash

at this time would simply cause the loss of the new data in block 2,

and the extra copy o f block 1, but would not cause an incorrect or

unusable data structure. At this point, a directory block is written on

top of the old copy of block 1.

3

AJ

-

-10-

As long as the output transfer is not interrupted--a problem to be

discussed later--a crash-proof transition has been undergone.

Most operations of adding data to the file structure take

place as described above. Data may be added anywhere in the file.

For example, in the following diagram, block 5 contains an addition

to block 3:

1

» 3\ /,\ AZES

Deletions occur in, a similar manner, but the order is reversed;

directory and catalog entries are removed before underlying blocks

are returned to the free block list.

Another problem arises when a data Cor other) block is changed

so that the directory indication of the first key in the data block is

incorrect. The'solution is to change the directory first when adding

data lines and to change the data block first when deleting lines. If

a system crash occurs between modification of the directory and the data

block, the discrepancy is noticed the next time the data is accessed and

the directory is changed to agree.

-11-

Discussion of some of the commands will illustrate some of the

features available. Initially, a givcn "user" (another program) will

have a pointer resting at the top of the tred, and no files opened. Let

us assume that an open X.Y is then issued. The top file in the tree

(the file indicated by the pointer) must be a catalog containing an

entry for file X, or the command is rejected: File X must be a catalog

with an entry for file Y, which may be either catalog or data. At this

point, any of the following commands may be issued whi ch refer to file

X.Y: read (by key), read next record, write (by key), append to end of

file (key is computed), read Zast record, and c Zose. Special open

commands are available for opening read-only files--opening files only

if they already exist, opening files from the top of the tree rather

than where the pointer is, etc. The pointer which may be moved by the
.

search command is used to move the pointer. Search account moves the

pointer and initiates checking individual sk space allocations.

-
1

-12-

5. CONCLUSION

Some difficulties with this filing system arise with the
maximum line size of 254 characters selected and with speed of access

to large quantities of data. Lack of speed is due mainly to the method

of implementation. Some of these problems have been investigated in a

graphics filing system used for storing pictures, with a maximum line

size of 32,767 characters.. Several improvements in the free block

allocation scheme have been tried. Use of a bit map has been by far the

most successful. A method was provided to allow the user to request
many lines simultaneously so that, the disk searches could be minimized.

Other features have been added to keep frequently used blocks in core

and to impose limits on the amount of disk space available to any user.

Ways have also beed found to identify blocks on the disk that were

only partially written before the output operation was terminated, for

example, by a power failure. A one-character counter is kept at both

ends of each block, and is. incremented each time the block is rewritten.

This system has been running quite successfully with the

timesharing system at the Universi.ty of Illinois with two 2314 packs
of information. There have been two minor system crashes : one in

1968 due to a program error, and one in 1970 due to a failure in the

2314 drive. Periodic back-up tapes prevent failures from becoming

serious problems.

1

BIBLIOGRAPHIC DATA 1. Report No. 2. 3. Recipient's Accession No.
SHEET UIUCDCS-R-72-506

- , 4. Title and Subtitle 5. Report Date
February 1972

A FAILURE TOLERANT FILING SYSTEM
6.

7. Author(s) 8. Performing Organization Rept.
Al fre d D. Whaley NO.

9. Performing Organization Name and Address 10. Project/Task/Work Unit No.
University of Illinois
Urbana - Champaign 61801 11. Contract/Grant No.
Department of Computer Science US AEC AT(11-1)1469

12. Sponsoring Organization Name and Address 13. Type of Report & Period
Covered

Argonne National Laboratory
9600 South Cass Avenue 14.
Chicago, Illinois 60600

15. Supplementary Notes

16. Abs[racts

A random access tree structure filing system has been
constructed that is immune to operating system or internal failures
through constant maintenance of a correct data structure on disk.
Emphasis is placed on the fail-safe nature of the filing system, the
speed of access to random lines in a data file, and the low level of
human intervention required over an extended period of time.

17. Key Words and Document Analy.sis. 17a. Descriptors

Data Structure Tree Structure
Timesharing Fail-Safe
Filing System Random Access
Information Retrieval Fragmentation

17b. Identifiers/Open-Ended Terms

170. COSATI Field/Group
' 18. Availability Statement 19.. Security Class (This 21· No. of Pages

Report) 16
Release unlimited UNCLASSIFIEI)

20. Security Class (This 22. Price
Page

UNCLASSIFIED
FORM NTIS-35 (10-70) USCOMM-DC 40329-P71

