UIUCDCS-R-T2-506

cbo-1h69-0200

A FATLURE TOLERANT FILING SYSTEM
e ——————— T

S—————————

—

by

Alfred D. Whaley

February 1972

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN - URBANA, ILLINOIS

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

UIUCDCS-R-T2-506

A FATLURE TOLERANT FILING SYSTEM*

by

Alfred D. Whaley

February 1972

NOTICE

This rfeport was prepared as an account of work.

sponsored by the United States Government, Neither
the United States nor the United States Atomic Energy
Cominission, nor any of their employees, nor any of

-t_heir contractors, subcontractors, or their employees, |

makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, com-
pleteness or usefulness of any information, apparatus,
product or ‘process disclosed, or represents that its use
would not infringe privately owned rights,

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF ILLINOIS
URBANA, ILLINOIS 61801

US AEC AT(11-1)1k469.

¥ Supported in part by the Atomic Energy Commis

sion under grant

DISTRIBUTION OF TRIS BOCUMENT IS URLIRRITER

~ ABSTRACT

A random access tree structure filing system has been constructed
that is immune to operating system or internal failures through constant

maintenance of a correct data structure on disk. Emphasis is placed on the

full-safe nature of the filing'system, the speed of access to random lines

in.a data file, and the low level of'human intervention required over an

L

extended period of time.

1. INTRODUCTION -

Thé-filing systeﬁ described herekﬁas_designedfér sﬁoring large
progrems and computer output in a timesharing environment and was ﬁriﬁten'
for an IBMYBGO.l.The ofiginal objectives were - B S 1

1. Quick random aééess to the lines in a file, | ‘

2. Efficient utilization of disk space,

3. Nobmaintenance.

The last requirement is meant to apply even in real world-situations.such
as sjstem crashes. A system crash is any situation in which the CPU
halts unexpectedly and operations must be resfarted_from the disk.

In_addition, some feafures‘of the filing system were
predetermined. A moving head disk was to be used (IBM 231k4) with a
small number of fixed length blocks permanentiy assigned to each track.
As the blocks are made smaller, less space is wasted in partially
filled blocks and more space 1is wasfed in inter-record gaps and filing - L
system information--pointers, ete. It was decided to use 8 blocks per
track of T93 bytes (charapters) each. Data files were to contain
Zines; they might be card images, printer lines, or other information.

The user of the system supplies a key with each liﬁe-;a unique code
required for retrieving the line. The only other way fbf the user to
retrieve a line is to use the commands supplied for réading the file
scequentially. All lines in the file are constantly stored in order
according to thevcollating sequence of their keys. The user of the

system has no knowledge of the numbér of lines stored in any given bldck,‘
ilie menner in which they are étored, or the method used_byithe system

to locate theum.

-2

The use of the system was also partially predetermined. Usér

files were to be separatad on the basis of user name and user account

nunber. This requirement seemed to suggest a tree structure having a

cafalog file of account numbers, each account number speciinng a
catalog of user names and each user name specifying a catalog of the
user's data,file.names.' The user could be permitted to carry on this

catalog structure at his own level.

-3-

2. IMPLEMENTATION .

.

An example tree is shown in Figure 1.

Catalog Hile 0 A

Lo e e o

e et i e 2ot B e S e Pk A o B B S i e s e S

Figure 1. Typical Data Strﬁcture
Disk blocks are used for three different purposes. One kind
is triangles which represent ordinary data blocks, each containing many
lines (with keys) of the user's file. A data block contains 8 full card
images or about 20 average cards. Clrcles représent directory blocks,
‘used to keep track of a file when it is too large to be contained in one
plock. A directory block may'céntains polinters to as many as 50 other
blocks. For eiample, blocks L4, 7 and 8 together contain one date file;
blocks 6,9, 10, 11, 12, lBIand 1k cbntain another; 5 still another.
S§uares reoresent catalog blocks which are the data blocks of a catalog
file. Each block is self-identifying as to type (catelog, data or'

dircctory) by means of an internal code. In this example, blocks 1, 2

k-

end 3 contain a catalog‘(naméd F) of fhree Aata'filés (naﬁed A, B
a&d C). As there 1s more than one catalog block in the example
(2 and 3), & dlrectory block is 1nserted (1) whlch locates them.
Typlcally, a catalog block contalns catalog lnformatlon for about
35 other files. Under file F_are cataloged three data fmles.» The
file represented by 5 (filé B) ié small enough.to‘Be contained in
one block and, iherefbre, réquirés no direqtory block. The file
which starts_at,block Y is-somewhat larger; having two data blocks,
so that it requires a directory block. The file starting at block 6'
(file C) is larger still, having two levels of directories;-v(In
practice, only one catalog block‘is needed to cétalog files A; B and C
shown in Figure l; and only one directory block would be needed for the
data blocks in file C.) | |
A1l records in both data and catalo; files contain an 8

character (8 byte) key, sometimes referred to as a line number. In a
catalog block a given record or line identifies a file undernéath the
catalog. The key in one of these recordg is the 8 character name of the
file being identified. The remainder of the record contains the last

te on which,the'file ﬁas accessed, a disk address of the top block of
the file cataloged, and optionally, some additional information
provided by the user. When a line from a catalog file is read, all but

the disk address is supplied.

o=

3. ACCESSING AND EDITING FILES

In the example,“block 2 contains one record describing file
A, and block 3 contains two records descfibiﬁg files B.and C. Direcctory
block 1 contains two records. The kéys.qf these records have bceﬁ
employed to facilitate eésy identificdation of the blocks immediatély'
undervé directgfy block. The keys are the same as those in the first
record in the block immediately below thepdirectbry.. Thus, block 1
‘has two records having keys A and B. -The remainder of these'records
consists oniy of the disk address of the block just below.

As mentioned in our implementation of this data structure,
a disk block on the 231l was chosen to be 793 bytes (8 blocke per track),
and & directéry can specify.over SO.blocks beneath it. Althbugh these
nusbers maxe one realize that Figure 1 is somewhat deceptive (it appears
that a directory can specify only two blocks), this figure is still
potentially correct. In the data file at 4 a directory block is
required, but only two entries are needed, répresenting the minimum
configuration. The structure at € is hardly minimal, hqwever, since
ell four data blocks could be easily specified by one directory block.
One may conclude only that this file contained at one time more than the
fifty odd data blocks that can be specified by one directory block, thus
requiring an extra level of directory blocksvto appear. After this
structure was created, a large number of records vere subsequently
deleted. Te kind of splitting that causes a second level of directory)
blocks to be added is analogous to what would happen if a data blockl
éuch &3 5 were excceded and another (in this case the first) directory

level were added, creabting a structure similar to that at k.

~6-

It should be noted that two directory levels can specify up

‘torn2 data or catalog blq;ks witﬁ'n+i directory blocks where n is the
nunber of biocks one'directory 5lock cén specify. Three.or four levels
are clearly adequate for most needs.

In returning to the first objective, one can see that each
directory block record has the same key as the first record in thé
underlying block, making it easy to locate.a data record by a vertical
route from the top block of its file. Another equivalent data structure
could have Eeen constructed with each.key the saﬁe as the last key in
the underlying blocks. This téchnique would have been better, as it
vwould not have reéuired e separate meghaﬁism for locating the last liﬁe
in a file..

Efficient use of disk space is accomplished by several

o .

techniques. TFirst, all blocks in the datd structure may be anywhere

on the disk, eliminating fragmentation problems. Second, the system
keeps'traék of all discarded blocks so that they can be reuséd, and so
that tﬁe data structure does not have to be reorganized periodically
or "compressed" in some manner. Third, trailing blenks on the data
lines are not stored, but are resupplied when the date is read Dback.

The handling of the final objective received the most attention
in implementing this filing system, and will be described in the

next section.

-7 -
4. FAIL-SAFE DATA STRUCTURE

The third stated objective was the most difficult to
implement. In order to be free of human intervention and run on a

360, the timesharing system has to be capable of co-existing with

an operating system that fails repeatedly, forcing the following

reqﬁirements:
1. At all times the data structufe on the disk must be
an exactly correct data structure.

Blocks are allowed to be "lost," i.e. not be in

the data structure or in the free list, but is is

not legal to have a block mentioned in both places

- at the same time.
.

After dreaming up an implementation‘that meets the above
requirements, one typically finds that the various functions which cause
modification of. the disk (writing and deleting of records) must be done
in a rigidly determined order. Looking at the second requlirement first,
one seces that the free block lists on the disk must be modified to
exclude the blocks about to be used before they are included in the
data structure. To save disk operations, several blocks may be pre- » : ;
allocated at the same time. As the nuwber of preallocate& blocks
increases, however, one runs the risk of losing more blocks if the
operating system should suddenly‘fail—-the‘computer being restarted
from disk. Fortunately, however, the number can be quitevsmall (e.g. 10)
and still keep the nuuber of accésses to the free block lists at a small

percentage of total disk accesses.

8-

Free blocks'thatvhave never been used ére contiguous and are
represented by a‘starting:disk addreés and a count while discarded 5locks
are kept on a chain. The chain fepresents the worst péssible technique
excépt, of course, of simply thfowing away discarded biocks.

The requirement thatvthe disk always ¢6ntain a corréct data
structure is the difficult one since it requirés'a cértain amount of
Otherwise needless activity ifvthe file stfucture is to be crash-proof
at every instant of time."; fewvsimplified'operations will be explained
S0 that the application of this principle may be understood.

| Imagine a file whose block structure is the following

o2 %
> Q

and which contains 40 lines of text. It is now desired to =2dd some lines

of text to the end of the file, but there is no room in block'3. A new

tlock is added as follows:

It is imperative that block 4 be written out before the directory (block 1)
is rewritten to the disk with the new directory entry. Otherwise for a
brief instant, the directory would point to a block containing garbage. A

system crash at that time would be fatal.

9-

The next situation involves the overflow out of & single

data block.

In order notvto'require extremely complex modification of the part of
the tree which points to this file, it is necessary that the top block

of the file (soon to be a new directory block) always have the same

disk address. The technique uﬁilized is to write out another copy of

block 1 and the new data in block 2 at new disk‘éddresses.

These new Elocks are not in the tree structure yét, and a systém crash
at this time would simply éause the loss of the new data in block 2;

and the extra copy of block 1, but would not cause an incorrect or
ﬁnusable data structure. At this point, a directory block is written on

top of the old copy of block 1.

~10-

As long as the output transfer is not interrupted-~a problem to be

discussed later--a crash;proof transition has been undergone.

Most 6perations of adding data tovﬁhe file structure take
place as described above. Data may be added ahywhére in the file.
For example, in the following diagram,‘b10ck 5 CQntains on additiop'

10 block 3:‘

. N) _
Deletions occur in a similar manner, but the order is reversed;

directory and catalog entries are removed before underlying blocks

are returned to the free block list.

Anéther problem arises when a data (or other) block is changed
sovthat the directory indication of the first Key in the data block is
incorrect._ The soluticn is fo ¢hange the directory first vhen adding
date lines and to change the data block first when deletinévlines.‘ I
@ system crash occurs between modification of the directory and the data
block, the discrepancy is noticéd the next time the data is accessed and

the directory is changed to agree.

~11=.

Discussion of some of th¢ commands will iilustrute some of thev
features available. 'Initidlly, a givcﬁ "user! (anothei program) will
have a pointer resting ét the top of the trec,'aﬁd no fileé opened. let
ﬁs assume that an open X.Y is then issued. The top file in the trece
(the file indicated by the pointer) must be a‘catalog containing an
entry fof fiie X, or the.command is rejected. File X muét‘be a'catalogv,
with an entr& for file Y, which may be either catalog or data. At this

point, any of the following commands may be issued which refer to file

X.Y: read (by key), read next record, write (by key), append to end of

file (key is computed), read last record, and close. Special open
comnmands are available for opening‘readronly files--opening fiies only
if they alrcady exist, opening files from the top of the tree rather
than where the pointer is, etec. The pointer which may be noved by the

search command is used to move the pointer. Search account moves the

pointer and initiates checking individual disk space allocations.

-12-
5. CONCLUSION

Some dlfflcultles with this flling system arise with the
maximum line sxze of 254 characters selected and with speed of access
to 1argevquantities of data. Lack of speed is due malnly to the method
of implemenfation. Some of these problems have been 1nvest1gated in a
graphics filing system used for storlng pictures, with a maximum line
size of 32,767 characters. Several improvements in the free block
 allocation scheme have been tried. Use of a bit map has beeﬁ'by far the
rmost successful. ‘A method was provided to allow the user to request
many:lines simultaneously so that the disk searches could be minimized.
Other features have been added to keep frequently used blocks in core
and to impose limits on the amount of disk space available to any user.
- Ways have also beerd found to identify blocks on the disk that were

only partially written before the output operation was terminated, for

cxample, by a porer failure. A one-character counter is kept at both

ends of each block, and is. incremented each time the block is rewritten.
This sysitem has been running quite successfully with the

tinesharing system at the University of Illinois with two 231L packs

of information. There have been two minor system crashes: one in

1968 due to a program error, and one in 1970 due to a failure in the

2314 drive. Periodic buck-up tapes prevent failures from becoming

scrious problems.

el

BIBLIOGRAPHIC DATA |3 Repor No. ‘
SHEET UILUCDCS-R-T2~506

4. Title and Subtitle 5. Report Date
February 1972

3. Recipient’s Accession No.

A FAILURE TOLERANT FILING SYSTEM . 5.

7. Author(s) ' 8. Performing Organization Rept.
Alfred D. Whaley No.

9. Performing Organization Name and Address 10. Project/Task/Work Unit No.
University of Illinois ‘ ’

Urbanea - Champaign 61801 11. Contract/Grant No. .
Department of Computer Science ‘ US AEC AT(11-1)1L69

12. Sponsoring Organization Name and Address . 13. Type of Report & Period
Covered

Argonne National Laboratory
9600 South Cass Avenue
Chicago, Illinois 60600

15. Supplementary Notes

16. Abstracts

A random access tree structure filing system has been
constructed that is immune to operating system or internal failures
through constant maintenance of a correct data structure on disk.
Emphasis is placed on the fail-safe nature of the filing system, the
speed of access to random lines in a data file, and the low level of
human intervention required over an extended period of time.

17. Key Words and Document Analysis. 17a. Descriptors

Data Structure Tree Structure
Timesharing Fail-Safe
Filing System ' Random Access
Information Retrieval : Fragmentation

17b. Identifiers /Open-Ended Terms

17c. COSATI Field/Group

-/ | 18. Availability Statement . 19.}Sec.vurity Class (This 21. No. of Pages
Report) 16
imi . UNCLASSIFIED .
Release unlimited 0. Security Class (This 33, Price
Page
UNCLASSIFIED

FORM NTI5-35 (10-70)) USCOMM-DC 40329-P71

