

Testing a Multiprogramming System∗

(1973)

A central problem in program design is to structure a large program such that

it can be tested systematically by the simplest possible techniques. This pa-

per describes the method used to test the RC 4000 multiprogramming system.

During testing, the system records all transitions of processes and messages

between various queues. The test mechanism consists of fifty machine instruc-

tions centralized in two procedures. By using this mechanism in a series of

carefully selected test cases, the system was made virtually error free within

a few weeks. The test procedure is illustrated by examples.

1 Introduction

This paper describes the method used to test the RC 4000 multiprogramming
system (Brinch Hansen 1970). The system was built with the following test
criteria in mind:

1. A large program should be structured such that it can be tested by
the simplest possible techniques.

2. The documentation of a large program should include a systematic set
of reproducible test cases.

The nucleus of the RC 4000 system is an interrupt response program of
4,800 machine words called the monitor. The monitor multiplexes a single
processor among concurrent processes and implements a set of procedures
which these processes can call to create other processes and send messages
to them. Monitor procedures are executed in a non-interruptable, privileged
processor state; processes are executed in an interruptable, non-privileged
state.

The monitor consists of five programming layers with the following tasks:

∗P. Brinch Hansen, Testing a multiprogramming system, Software—Practice and Ex-
perience 3, 2 (April–June), 145–150. Copyright c© 1973, John Wiley & Sons, Ltd.

1

2 PER BRINCH HANSEN

processor multiplexing
message buffering
input/output operations
process creation and termination
file system

The layers were tested in that order starting with the bottom layer (processor
multiplexing) working towards the top layer (file system).

2 Test Mechanism

The main difficulty in testing a (possibly erroneous) multiprogramming sys-
tem is to prevent concurrent events from causing irreproducible, time-de-
pendent test results.

During each test, the system was initialized with the monitor and a num-
ber of test processes. The simplest idea would have been to let a test process
first call a monitor procedure and then examine various monitor variables
(such as process descriptions and scheduling queues) to decide whether the
call had the intended effect. Unfortunately, this idea does not work in a
multiprogramming environment in which other events (caused by processor
multiplexing) may change the internal state of the monitor before the result
of a given monitor call has been recorded by a test process.

To make a test event well defined and reproducible, the execution of a
monitor call and the recording of its result had to be an indivisible event.
Mutual exclusion of test events was achieved by letting the monitor output
test data on a typewriter in the non-interruptable processor state.

The hardest problem was to select a minimal set of monitor events that
would give significant information about its handling of concurrent processes.
It turned out to be sufficient to record all transitions of processes and mes-
sages among various queues. When a list element (representing a process or
a message) is removed from or linked to a list (representing a queue), the
monitor outputs the addresses of the list element and the head of the list
plus a single character to distinguish removal from linking. The meaning of
these addresses is defined by the assembly listing of the monitor program.

In the following, such test output is represented by more readable lines
of the form:

take element from queue
put element in queue

TESTING A MULTIPROGRAMMING SYSTEM 3

This test mechanism, which adds fifty machine instructions to the mon-
itor, is centralized in two local procedures, take and put. The following
sections describe how it was used to test the monitor.

3 Processor Multiplexing

The processor is shared cyclically among all active processes. Every 25 msec,
a clock interrupt causes the monitor to preempt a running process in favor
of another process ready to run (Fig. 1).

��m
Running process Ready queue

Figure 1 Processor multiplexing.

The monitor code for processor multiplexing can be represented as fol-
lows:

on clock interrupt do
begin

put running process in ready queue;
take another process from ready queue;
continue that process;

end

To test processor multiplexing, the system was initialized with three
processes P , Q and R in the ready queue (in that order). These processes
cycled forever:

P: repeat until false;
Q: repeat until false;
R: repeat until false;

The clock was replaced by a manually operated interrupt key. During the
test, the monitor produced the following output when processor multiplexing
was correct:

4 PER BRINCH HANSEN

take P from ready queue
∗ put P in ready queue

take Q from ready queue
∗ put Q in ready queue

take R from ready queue
∗ put R in ready queue

take P from ready queue
. . .

The lines marked ∗ are monitor responses to clock interrupts simulated by
pushing the interrupt key.

As soon as processor multiplexing worked, the monitor procedures for
process communication were tested.

4 Process Communication

Processes can exchange messages in buffer elements of fixed length stored
within the monitor. A communication between two processes, S and R,
takes place in four steps:

1. Process S sends a message M to process R in a buffer element B
selected by the monitor by calling the procedure

send message(R, M , B)

2. Process R receives the message by calling the procedure

wait message(S, M , B)

3. Process R sends an answer A to process S in the same buffer element
B by calling the procedure

send answer(A, B)

4. Process S receives the answer by calling the procedure

wait answer(A, B)

TESTING A MULTIPROGRAMMING SYSTEM 5

Figure 2 shows the life cycle of a buffer element. Available buffer elements
are linked to a common pool within the monitor. The monitor also maintains
a message queue for each process. A buffer element is linked to this queue
when a message is sent to the corresponding process. The buffer element
is removed from the queue when the message has been received. When the
message has been answered, and the answer has been received, the buffer
element is linked to the pool again.

Pool Queue

Element Element

- -

��

Ready for message Contains message

Send message

Wait answer Wait message

Send answer

Contains answer Ready for answer

Figure 2 Message buffer states.

In a simplified form these monitor procedures can be represented as fol-
lows:

send message:
take buffer from pool;
if message expected then

put receiver in ready queue
else put buffer in message queue;

wait message:
if message available then

take buffer from message queue
else

begin
indicate message expected;
take another process from ready queue;

end

send answer:
if answer expected then

6 PER BRINCH HANSEN

begin
put buffer in pool;
put receiver in ready queue;

end

wait answer:
if answer available then

put buffer in pool
else

begin
indicate answer expected;
take another process from ready queue;

end

During testing a process can ask the monitor whether a message or an
answer is available for it without being forced to wait for its arrival. A
process can also ask the monitor whether another process is expecting a
message or an answer.

To test process communication, the system was initialized with two pro-
cesses, R and S, in the ready queue (in that order). The processes exchange
messages and answers in two buffer elements B and B′:

R: wait message(S, M , B);
repeat until answer expected(S);
send answer(A, B);
repeat until message available(R);
wait message(S, M ′, B′);
send answer(A′, B′);
repeat until false;

S: repeat until message expected(R);
send message(R, M , B);
wait answer(A, B);
send message(R, M ′, B′);
repeat until answer available(B′);
wait answer(A′, B′);
repeat until false;

This test should produce the following output:

TESTING A MULTIPROGRAMMING SYSTEM 7

1: take R from ready queue
2: take S from ready queue
3: take B from buffer pool
4: put R in ready queue
5: take R from ready queue
6: put B in buffer pool
7: put S in ready queue
8: ∗ put R in ready queue
9: take S from ready queue

10: take B′ from buffer pool
11: put B′ in message queue(R)
12: ∗ put S in ready queue
13: take R from ready queue
14: take B′ from message queue(R)
15: ∗ put R in ready queue
16: take S from ready queue
17: put B′ in buffer pool

The output can be explained as follows:

Line 1: The monitor selects process R as the first process to run.
Line 2: While process R waits for nessage M , the monitor continues to

run process S.
Lines 3–4: Process S sends message M to process R which in turn reen-

ters the ready queue.
Line 5: While process S waits for answer A, the monitor continues to

run process R.
Lines 6–7: Process R sends answer A to process S which in turn reenters

the ready queue.
Lines 8–9: Process R continuously asks the monitor whether a message

is available for it. A key interrupt preempts process R in favor of process S.
Lines 10–11: Process S sends message M ′ to process R.
Lines 12–13: Process S continuously asks the monitor whether an answer

is available for it. A key interrupt preempts process S in favor of process R.
Line 14: Process R receives message M ′ and sends answer A′ to process

S.
Lines 15–16: Process R cycles indefinitely. A key interrupt preempts

process R in favor of process S.
Line 17: Process S receives answer A′.

This test covers the eight relevant cases of process communication:

8 PER BRINCH HANSEN

{
send
receive

}{
expected
unexpected

}{
message
answer

}

5 Concluding Remarks

When the communication procedures worked, all possible interactions be-
tween processes and peripheral devices of various types were tested. Tests
concerning dynamic process creation and termination then followed. Finally,
the file system was tested.

The test output immediately revealed all serious synchronizing errors
within the monitor. Quite often, the output also led to the discovery of errors
in the test programs themselves. As a result of this systematic approach,
the monitor was virtually error free after a test period of a few weeks.

It is worth mentioning that the monitor program was written after the
test mechanism had been selected. If the test problem had been attacked
after the monitor was finished, the relevant test events (take and put) might
have been scattered all over the program as in-line code, thus making a
centralization of the test mechanism impossible without extensive study and
revision of the program text.

Acknowledgements

The author is indebted to Peter Naur (1963) for demonstrating the validity
of simple, systematic testing techniques for large, sequential compilers.

References

Brinch Hansen, P. 1970. The nucleus of a multiprogramming system. Communications of
the ACM 13, 4 (April), 238–250. Article 2.

Naur, P. 1963. The design of the Gier Algol compiler. BIT 3, 2–3, 124–140 and 145–166.

