LUND UNIVERSITY

Implementation of Concurrent Pascal on LSI-11

Mattsson, Sven Erik

1979

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Mattsson, S. E. (1979). Implementation of Concurrent Pascal on LSI-11. (Technical Reports TFRT-7168).
Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/e0edbe61-d8b3-406e-8fd4-08b3db0b63c9

CODEN: LUTFD2/(TFRT-7168)/1-020/(1979)

IMPLEMENTATION OF CONCURRENT PASCAL ON LSI-11

SVEN ERIK MATTSSON

DEPARTMENT oF AutoMATIC CoNTROL
Lunp INSTITUTE oF TECHNOLOGY
AucusTt 1979

Dokumentutgivare Dokumentnamn Dokumentbeteckning

Dymd Institute of Technology REPORT LUTFD2/ (TFRTL7168) /1-020/(1979)
Handléggare Dept of Automatic Control Utgivningsdatum Arendebeteckning
863 Erik Mattsson RGghst 1979

Forfattare

6638 Erik Mattsson

Dokumenttitel och undertite!

1ﬁﬁfementation of Concurrent Pascal on LSI-11.

Referat (sammandrag)
PHhif paper considers the moving of the implementation of Concurrent Pascal for

the PDP-11/45 computer to the LSI-11 computer. The resulting implementation

‘ for the LSI-11 computer is also discussed and described.

| Referat skrivet av |
Adthor |
Fbrslag till ytterligare nyckelord

B4T0ability Pascal

| Klassifikationssystem och -klass(er)
5070

Indextermear (ange kalla)

5270

: Omflng . Ovriga bibliografiska uppgifter
2B8Tpages
I Sprék
BAglish
Sekretessuppgifter ISSN ISBN
6070 ' 6076
Dokumentet kan aerhBllas frdn Mottagarens uppgifter
DéplArtment of Automatic Control
Lund Institute of Technology
Box 725, $-220 07 Lund 7, Sweden

Pris

8010
Blankett LU 11:25 197607

SIS-
DB 1

DOKUMENTDATABLAD enligt SIS 62 10 12

INTRODUCTION

Today it is commonly understood that for economic as well as
for security reasons it is necessary to use abstract
languages when writing concurrent programs. Concurrent
Pascal designed by Brinch Hansen [1l] is one attempt to solve
this problem. It extends the sequential programming language
Pascal [2] with facilities for concurrent programming. The
language was originally implemented on the PDP-11/45
computer.

The compiler for Concurrent Pascal is written in Sequential
Pascal [3]. It 1is programmed by Hartmann [4). The compiler
generates code for a virtual machine and the virtual machine
is emulated by the code interpreter and the kernel, which
are written in assembly language.

This paper describes experiences from transferring the
compiler, code interpreter and the kernel to the LSI-11
computer.

THE SCENE

This section describes the starting-point and the conditions
under which the work had to be done.

A distribution tape with a Concurrent Pascal compiler, a
code interpreter, a kernel, the Solo Operating System [1]
and two reports titled "Concurrent Pascal Implementation
Notes" [5] and "Sequential Pascal Report" [3] were received
from the University of Colorado. The compiler, the code
interpreter and the kernel received were implemented for the
PDP-11/45 computer and the intention was to implement
Concurrent Pascal for an LSI-11 computer.

The LSI-11 computer system available has 28K words of RAM
memory, a simple alphanumeric display, a printer and a dual
diskette unit. Among the available software facilities under
the RT-11 operating system [6] the OMSI Pascal compiler [7]
can be mentioned. All the computer work was done on the
LSI-11 computer itself.

This implementation of Concurrent Pascal for the LSI-11
computer is mainly intended for process control applications
and not for implementing general purpose operating systems.
The Solo Operating System is too large. It requires a core
store of 39K words for programs and data.

MOVING OF THE COMPILER

This section describes the experiences gained and
difficulties encountered when moving the Concurrent Pascal
compiler from PDP-11/45 to LSI-11.

An overview of the compiler is given by Brinch Hansen [1].
It 1is described 1in detail by Hartmann [4]. The compiler
itself is written in Sequential Pascal. The code 1is about
8000 lines long. It is divided into seven passes of 750-1600
lines each. The source code is readable and in general very
interesting and worthwhile reading. This is consistent with
one of the objectives of the compiler. 1In the introduction
to his book Hartmann writes

"Many of the compilation techniques used here are
well-known, but, taken as a whole, this compiler is
an engineering product that may serve as a prototype
for industrial compiler writers".

The Concurrent Pascal compiler is indeed a good program, but
even so some problems were encountered. These problems can
be divided into three groups. First, the Concurrent Pascal
compiler is written in Sequential Pascal. Sequential Pascal
is a variant of Pascal and our LSI-11 system has an OMSI
Pascal compiler. The problems caused by different Pascal
implementations can be viewed as ©portability problems.
Second, the compiler generates code for a virtual machine,
but some of the properties (e.qg. how numbers are
represented) depend on the target machine and have to be
considered. Third, genuine errors were found which had to be
corrected and which should also be corrected in the
PDP-11/45 version.

Portability Problems

The Concurrent Pascal compiler is written in Sequential
Pascal. Unfortunately, Pascal is not standardized and there
exist several versions. The original Pascal defined by
Wirth [2] will in the following be called Pascal and the
version of Brinch Hansen [3] will be called Sequential
Pascal. Our version is made by Oregon Minicomputer Software
Inc. and will be called OMSI Pascal [7]. Some of the
differences are of minor importance and can easily be
remedied with a good editor. There are, however, differences
that can be troublesome and even force the programmer to
rewrite large parts of the program.

Differences in the character set are a common portability
problem that can be remedied with a good editor. The
differences are listed in Table 1. Sequential Pascal allows
underscore _ in identifiers, but OMSI Pascal does not. It

was not possible to simply remove the underscore characters.
The removal caused ambiguous and illegal constructions.
There were for example procedures called TYPE , REAL and
CASE and a variable called ARG and a procedure called ARG :
These significant underscores were replaced with X.

Sequential Pascal OMSI Pascal
Comment " " { b (X %),
brackets /* */
Array (o &) []
brackets
Pointer @)
symbol

Table 1. Differences in the character set of Sequential
Pascal and OMSI Pascal.

The size of sets 1is not defined in Pascal, but it is
implementation dependent. OMSI Pascal limits sets to 64
elements and Sequential Pascal to 128 elements. It is easy
to understand that this can cause a lot of trouble. In pass
1l (lexical analysis) there were sets of type char, and for
this and other reasons discussed below it was decided to
rewrite pass l. In pass 2 (syntax analysis) there were sets
of 1input operators and there are 66 input operators.
Fortunately three of these operators (lconstl, messagel and
newlinel) are handled directly by the GETSY procedure and
are not visible for the parser so they could be removed from
the sets. In all other cases the maximum number of elements
was less than 64.

In pass 3 (name analysis) there is a function declared in
the following way

type entryptr=4tentryrec;
function top:entryptr;
begin

top:=ops[T] .defentry
end;

Top was used in constructions like

with top4 do ...; and
index:=top+.noun;

According to the Pascal-user and manual report [2] and the
Sequential Pascal Report [3] this use of a pointer function
is not allowed in either version, although it is a useful
extension. The constructs above were rewritten as

topl:=top;
with toplt do ...; and

topl:=top;
index:=toplt.noun;

If a parameter in Sequential Pascal is prefixed by the word
univ, the parameter is said to be of universal type. The
prefix univ suppresses compatibility checking of parameters
in routine calls. It 1is only checked that the formal and
actual parameter are represented by the same number of store
locations. This facility is not defined in Pascal. In pass 4
the following procedures could be found

type univset=array[l..8] of integer;
procedure pack(var packedset:integer;
unpackedset:univ univset);
begin
packedset:=unpackedset [1]
end;

procedure unpack (packedset:integer;
var unpackedset:univ univset)
begin
unpackedset[l] :=packedset
end;

It turned out that these procedures were used to make the
storing more efficient. They pack and unpack information to
and from sets declared as

type legacytype=(classlegacy,monitorlegacy,
processlegacy,queuelegacy) ;
legacys=set of legacytype;

This effect can be achieved in Pascal using records with
variants in the following way

type intorset=(integertype,settype);
univset=record
case intorset of
integertype: (integerarray:
array[l..4] of integer);
settype: (legacyset:legacys)
end;

procedure pack(var packedset:integer;
unpackedset:legacys) ;
var setl:univset;
begin
with setl do begin
legacyset:=unpackedset;
packedset:=integerarray[1l]
end
end:;

procedure unpack (packedset:integer;
var unpackedset:legacys);
var setl:univset;
begin
with setl do begin
integerarray[l] :=packedset;
unpackedset:=legacyset
end
end;

In Sequential Pascal the case clause of a record with
variants must have a tag field and a variant field can only
be selected if the value of the tag field is equal to one of
the labels of that variant. 1In Pascal records with variants
can be used for type conversions. In 3equential Pascal the
concept of wuniversal parameters can be used for the same
purpose.

Brinch Hansen [1l] writes "Our goal was to make a compiler
that can compile operating systems on a minicomputer with at
least 16K words of core store and a slow disk (50
msec/transfer)". Their solution relies on the Solo Operating
System, written in Concurrent Pascal. Under Solo it 1is
possible to let a Sequential Pascal program run other
Sequential Pascal programs. The seven passes are written as
seven ordinary Sequential Pascal programs and a Sequential
Pascal program runs these in turn. The bootstrap problems
could be solved in different ways, but it was possible to
avoid them. The OMSI Pascal compiler allows separately
compiled procedures. The linker under RT-11 can then be used
to build a program that is executable under RT-11. The seven
passes are compiled separately with a common prefix, which
contains declarations of global variables and vprocedures.
The compiler 1is then linked as an overlaid program, where
the seven passes overlay each other.

The standard I/O0 routines in Sequential Pascal are very
rudimentary, for example the user has to define a procedure
to write integers. Many of the user defined I/0 routines
were common to several passes and these were moved from the
passes and collected into a separate compile module.

For many reasons pass 1 was rewritten to a large extent. The
problem with different sizes of sets is discussed above.
Pass 1 decodes the command 1line from the operator, checks

its validity and opens the files. It was decided that the
command structure should follow the RT-11 standard. The OMSI
Pascal compiler makes it possible to check if the files
exist. To make the programs more readable lower case letters
are allowed in the LSI-11 implementation, but they are
interpreted as their upper case counterparts.

The identifiers are stored in a table and a hash key is used
as an index to the table. The hash key starts at =zero and
for each character in the identifier the hash key in the
PDP-11/45 version is updated as

const
span=26; {number of distinct id chars}
hashmax=750; {hash table upperbound}
hashmax1=751; {primelength}

var
hashkey:0..hashmax;
hashtable:array[#..hashmax] of

record

end;

hashkey:=hashkey*(ord(ch) mod span+l) mod hashmaxl;

This updating rule uses one multiplication and two divisions
for each character in the identifier. Multiplication and
division are fairly slow operations in an LSI-11 even with
the Extended Arithmetic Chip. The updating rule was
therefore changed into

hashkey:=(hashkey+hashkey*16+code (ch)) mod 1024;
if hashkey>=hashmaxl then hashkey:=hashkey-hashmaxl;

where code(ch) is a simple function which maps letters and
digits onto the interval 1..38. The OMSI Pascal compiler
implements the multiplication with 16 as shifts and the "mod
1924" is implemented as a mask operation. Consequently, this
rule, which contains neither division nor multiplication is
much faster.

Differences between the Virtual Machines

The Concurrent Pascal compiler generates code for a virtual
machine. The virtual machine 1is emulated on the target
machine. In this way the problem with different target
machines is moved from the construction of the compiler to a
construction of an emulation program. However, for
efficiency reasons the representation of integers and reals
must depend on the target machine. The compiler must know
the ranges in order to test the 1legality of a numeric
constant. It must also know how many bytes an integer or

real occupies in the memory in order to make a correct
allocation. This information is given as a set of constants
and is easy to change with an editor.

Genuine Errors

Four errors were found: one range error, one endless loop,
one uninitialized variable and one more complex error.

In pass 1 the following code could be found

const
idpieclength=9; {ten chars per piece}
maxpieces=13; {14 pieces => 140 chars}
blank="' '; {blank padding}

type
piece=array([#..idpiecelength] of char;

var
idtext:array[@..maxpieces] of viece;
procedure identifier;
begin
pieces:=-1; charindex:=idpiecelength; hashkey:=0;
repeat
if charindex=idpiecelength then begin
charindex:=0; pieces:=pieces+l; idtext:=blank end
else charindex:=charindex+l;
idtext[pieces,charindex] :=ch;
hashkey:=...;
{read next symbol}
until {not identifier symbol};

end;

It is easy to see that an identifier with more than 140
characters will cause a range error in idtext. It may be
argued that in practice this error will never occur, but it
was corrected all the same.

Identifiers were allowed to contain wup to 140 characters,
but a string was maximized to 80 characters. A string with
more than 80 characters will put the PDP-11/45 Concurrent
Pascal Compiler into an endless loop. Consider the following

lines

10

const
maxstringlength=80; {chars}
procedure stringchar;
begin
if stringlength=maxstringlength then {errormessage}
else begin
stringlenth:=stringlength+l;
{store the symbol and read next symbol}
end
end;
procedure string;
begin
while {not an special string char} do stringchar;

L L

end;

The endless loop <can be removed if stringchar is rewritten
as

procedure stringchar;
begin
if (stringlength<maxstringlength) and
not {end of line} then begin
stringlength:=stringlength+l;
{store the symbol and get a new symbol}
else {fatal error, abort pass 1}
end;

In the new version a string constant must be contained in
one source line and a string error is considered to be so
serious that the lexical analysis is aborted where the error
was found.

A serious and difficult error was the following one. In the
definition of Concurrent Pascal a variable of type char and
an element of a string are equivalent. 1In the PDP-11/45
version, however, they are not implemented in the same way.
A variable of type char occupies two bytes, the redundant
byte (here called the high byte) of a character is supposed
to have a zero value, but an element of a string occupies
only one byte. There are two reasons for storing a simple
variable of type char in two bytes. First, an LSI-11 or
PDP-11 word is divided into a high byte and a low byte. Word
addresses are always even-numbered. Byte addresses can be
either even or odd-numbered. This rule complicates the
allocation of variables, if variables with an odd number of
bytes are allowed. Second, if the high byte is supposed to
be zero, a variable of type char can be handled in the same
way as an integer. This shortens the instruction list of the
virtual machine.

The virtual machine is a stack machine and all manipulations

11

are done on the stack. A push of an element of a string
gives the high byte of the stack the value zero and can then
be manipulated in the same way as a simple variable of type
char.

Now consider the following Concurrent Pascal Program

type stringtype=array(l..10] of char;
var string:stringtype;
character:char;
procedure setchar (var character:char);
begin
character:='a';
end;
begin
setchar (character);
setchar (string[5])
end.

In the first call {setchar(character)} two bytes should be
assigned values, but in the second one {setchar(string[5])}
only one byte should be assigned. This could not be handled
properly in the original version. It produced erroneous code
because the call setchar (string[5]) caused an assignment of
two bytes. The problem was solved by letting a simple
variable of type char still occupy two bytes but with the
high byte undefined and handle it as an element of a string
in the original version. After extension of the virtual
instruction list with two new instructions (pushlocalbyte
and pushglobalbyte) it was possible to correct the compiler.

The uninitialized variable was discovered during the work
with the problem discussed above. In the very first
compilation of the program above pass 5 of the Concurrent
Pascal compiler gave an error message that the statement
setchar (string[5]) contained a bad operand type. After
inspection, it was found that pass 4 told pass 5 that the
parameter of setchar was of universal type and since the
length of a character was two bytes and an element of a
string was only one byte, it 1is evident that pass 5 could
not accept the call setchar(string[5]). It turned out that a
boolean variable in pass 4 named universal was not
initialized to false.

12

MOVING OF THE CODE INTERPRETER AND THE KERNEL

The Concurrent Pascal compiler generates code for a virtual
machine. The code interpreter is the microprogram of this
virtual machine. The kernel multiplexes the processor among
concurrent processes and gives them exclusive access to
monitors. It contains also the device handlers. The virtual
machine, code interpreter and the kernel are described in
Reference 1.

In the PDP-11/45 version the code interpreter and the kernel
are written as one 4K word 1long assembly program. It 1is
inconvenient to handle such a large program. It was
therefore divided into three parts with a common prefix. The
first part is the code interpreter, the second part is the
kernel without operations associated with I/O and the third
part handles I/0 and contains the device handlers.

Fortunately, the PDP-11 family including LSI-11 has a common
assembly language [6]. There are of course differences
between the computers in the family and an instruction can
be special to a version or it can have different effects on
different versions.

The Code Interpreter

In the code interpreter it was only the virtual instructions
associated with real numbers that had to be modified. In the
PDP-11/45 computer a real number is eight bytes long, but in
the LSI-11 computer it is only four bytes 1long. PDP-11/45
and LSI-11 with Extended Arithmetic Chip have different
floating point instructions and comparisons between real
numbers and conversions between an integer number and a real
number are done in software in an LSI-11 computer. It was
easy to modify the code interpreter so it could handle real
numbers in an LSI-11 computer.

The two new virtual instructions (pushlocalbyte and
pushglobalbyte) discussed above were implemented.

An operation table defines the entry points of the code
piece that executes virtual instructions. The code generated
by the compiler contains indices to the operation table. In
the PDP-11/45 version the operation table begins at the
virtual address =zero. The LSI-11 computer has no virtual
addressing mechanism and it is not possible to let the table
start at address =zero because these locations are reserved
for other purposes. In the LSI-11 version the operation
table starts at the octal address 1000. Pass 7 of the
Concurrent Pascal Compiler was therefore modified to take
this into account.

13

The Kernel

The kernel is a rather complex program and although the
assembly code was commented in a language that resembles
Concurrent Pascal it was hard to understand it in detail.

Code associated with the management of disks, magnetic tapes
and line printers was removed. The debugging facility
appeared to be so complicated that it was removed and new
debugging facilities were implemented when necessary.
Because the LSI-11 computer has no virtual addressing
mechanism, the corresponding code was removed or rewritten.

The PDP-11/45 computer has two register sets and the kernel
used one and the users the other. The LSI-11 computer has
only one register set. The kernel was rewritten so that when
the kernel is entered, the registers R#, Rl and R2 are
stacked and the stackpointer SP is stored in the bottom of
the kernel stack. The kernel does not use the registers R3,
R4 and R5. This makes a kernel call faster.

14

THE LSI-11 SYSTEM

In this section some of the restrictions and extensions of
Concurrent Pascal for the LSI-11 computer are discussed. For
further details see the Concurrent Pascal User's Guide [8].

The set of letters is extended with lower case letters, but
they will be interpreted as their upper case counterparts.
This is easy to implement, it makes it possible to write
more readable programs and it is easy to write a Pascal
program that converts lower case letters to their upper case
counterparts if a program is going to be moved.

Four forms of comment brackets are allowed:

"ao.", {ttt}' (*tct*) and /*ttt*/.
The opening and closing comment bracket must have the same
form. In the PDP-11/45 version only "..." 1is allowed.

Hartmann [4] states the following rule

"Symbols must be used unambiguously to make the error
recovery of the compiler efficient.”

This rule implies that the opening and closing comment
bracket should not be identical.

The boolean operator & can be written AND. This 1is in fact
also allowed by the PDP-11/45 compiler, although it is not
declared in the Concurrent Pascal Report.

The array brackets (. and .) can be written [and].

Process Scheduling and Real-Time Control

This implementation of Concurrent Pascal for the LSI-11
computer is mainly intended for process control
applications. In these applications the computer is expected
to control a plant and to communicate with an operator. Two
major tasks can be recognized. The first should control the
plant and has to be run periodically. The second task should
communicate with the operator and the control task. In many
cases the control task must not be delayed by the
communication task. So in these cases the communication task
has to wait wuntil the control task has completed its
execution, but this does not matter if the execution time of
the control task is short.

In the PDP-11/45 version the computer in principle switches
from one process to another every 17 ms to give the illusion
that they are executed simultaneously. This means that it is
not possible for the Concurrent Pascal programmer to achieve

15

the effect discussed above. In the LSI-11l version a priority
is associated with every process. It 1is described by a
nonnegative integer. A small priority number corresponds to
a higher priority. All scheduling is done according to the
priority. If two ©vrocesses have the same priority, the
first-come-first-served rule applies. The initial process
will start with priority zero. The other processes will
start with priority one. A process can change its priority
during its execution by means of the standard procedure
setpri(x). The priority of the calling process is set to x.
In a process control system the processes should cooperate
and not compete, so it 1is assumed that the programmer
chooses proper priorities for the different processes to
make the system work well. If negative priorities occur a
run time error 1is generated. Changes of priorities are
significant events and a process may be suspended if it
lowers its priority.

It is desirable to get the kernel and consequently also the
assembly program as short as possible and write as much as
possible in Concurrent Pascal. Consequently, the standard
routines defined in the LSI-11 version are simple
constructions.

The standard function realtime returns an integer defining
the real time in ticks mod 32768 after system
initialization. The time between two ticks is 20 ms and
32768 ticks are 10 minutes and 55.36 seconds. A call of the
standard procedure sleep(x) delays the calling process until
the real time defined by the function realtime is x. Only
one process at a time can sleep. If a process calls sleep
when another process is sleeping, or if x<@, a runtime error
occurs. A process can wake up a sleeping process by calling
the standard procedure awake. If no process is sleeping the
call is ignored. The standard routines realtime, sleep(x)
and awake can be used to implement timetables and
schedulers.

The standard function gateopen(x) applies to monitors. The
result is a boolean value, true if the monitor is free,
false otherwise. Note that the use of this function does not
violate any of the strict access rules of Concurrent Pascal.
The intention is that a high priority process may check the
availability of a monitor before trying to enter it. If the
monitor is not free, the process may choose some alternative
action.

It was fairly easy to introduce new standard routines into
the compiler, because the pattern of the already existing
ones could be followed. However, gateopen(x) caused some
problems. The parameter should be of any monitor type. A
variable of system type is called a system component. It is
either a process, a monitor or a class. In pass 5 where the
compatibilities of operands are checked it is not possible
to find out if a system component is a process, a monitor or

le6

a class. 80 if the model was followed a process or a class
would be accepted as a legal parameter. The compiler
produced code that could be used by the code interpreter so
that part caused no problems.

From the descriptions of the intermediate languages 1in
Reference 4 it can be found that a legal call of gateopen is
input to pass 4 as

—=ROUTINE ("gateopen")——=FUNCTION ("boolean") l

L-VAR(varnoun,vartypenoun)————PARM(parmnoun,parmtypenoun}]

L-CALLFUNC————

Varnoun and vartypenoun point to a description in the symbol
table of the parameter wused in the call of gateopen
(parmnoun and parmtypenoun describe in the same way how the
parameter is declared) and here it is possible to find out
if the parameter is of monitor type. When
routine ("gateopen") is found a boolean variable called
monitorcheck is set to true and this causes the compiler to
check if tne variable described by var (varnoun, vartypenoun)
is of monitor type. This is not the most proper way to do
it, but it was easy to implement. The system component type
should of course be split up into three different types, but
this is laborious to implement and it can easily cause new
errors.

Sequential Programs

In the PDP-11/45 version a Concurrent Pascal program can
execute a program written in Sequential Pascal and it is
possible for the Sequential Pascal program to use routines
defined in the Concurrent Pascal program. It was decided
that in the LSI-11 version this should be done with programs
compiled with the OMSI Pascal compiler.

The process that controls the execution of the sequential
program must include a declaration of the sequential program

~=PROGRAM—widentifier-=parameters—a; —=ENTRY —s=identifiers—=

A program declaration consists of program identifier, a
parameter list and a list of access rigths.

The access rigths of a program are specified by a 1list of
identifiers of routines defined within the process in which
the program 1is declared. The sequential program may call
these routines during its execution.

The problem of communication between the Concurrent Pascal
program and the OMSI Pascal programs is solved as follows.

17

When a sequential program is called, the absolute addresses
of the routines specified in the ENTRY list are stacked with
the first address on the top of the stack. So when the
sequential program is entered the addresses to the entry
routines are known. An interface procedure can use these
addresses to make a proper jump. The interface procedure
must know which of the procedures the user wants to call.
Suppose that there are n explicit (defined below) entry
routines in the ENTRY list. If the following declarations
are done in the sequential program

type entryroutines=(entryl, entry2,..., entryn);
procedure entprocedure (entryroutine:entryroutines);
external;

and i1f the i:th explicit entry routine is a procedure and
declared as

procedure routinei({the same parameterlist as in the
declaration of the procedure in
the process});
begin
entprocedure (entryi)
end;

then it is easy to write the assembly procedure entprocedure
(six statements). Entprocedure is available in a support
library.

It is natural but not necessary to give the OMSI Pascal
procedure the same name as in the Concurrent Pascal process.
The important issue is that entprocedure(entryi) will call
the 1i:th explicit entryroutine, if entryi is the 1i:th
element of the type entryroutines. Entry routines which are
functions turned out to be impossible to implement
efficiently and are not allowed.

The Concurrent Pascal compiler and the OMSI Pascal compiler
handle constant parameters in diffent ways, therefore all
parameters of entry routines must be variable parameters. It
is desirable that the standard types are compatible. OMSI
Pascal 1limits sets to 64 and therefore a set 1is in the
LSI-11 wversion of Concurrent Pascal 1limited to 64 in
contrast to the PDP-11/45 version where a set may contain up
to 128 elements. OMSI Pascal stores a variable of type
boolean or char in one byte. This problem is discussed above
and the rules given there are extended to variables of type
boolean. However, with this the problem is not completely
solved. OMSI Pascal stores also variables of type boolean or
char in high bytes. If a record contains two simple
successive elements of type boolean or char this record will
be stored in different ways. It is laborious to change the
allocation rules of the Concurrent Pascal compiler.
Therefore records with two simple successive elements of
type boolean or char or records with a simple element of

18

these types at the end are not allowed as parameters of an
entry procedure.

Unfortunately, it is not possible for the compilers to check
that the procedures are declared in the same way in the two
programs and that the rules given above are followed. The
programmer must be careful and check it himself.

A concurrent program must ensure that a device 1is not used
by more than one process at a time Consequently the
Concurrent Pascal program must support the calls of the read
and write procedures in the OMSI Pascal programs. The first
two procedures in the ENTRY list are reserved for this
purpose and they must always be defined in the Concurrent
Pascal program. Since they are used implicitly by read and
write, they must not be declared in the OMSI Pascal program.
The rest of the routines in the 1list are <called explicit
routines.

The first implicit procedure should be a procedure which
inputs a single character from the terminal. It will be used
implicitly by read and readln in the sequential program. The
procedure should have one variable parameter of type char.

The second one should be a procedure which outputs a single
character to the terminal. It will be used implicitly by
write and writeln, and also to print error messages from the
segeuntial program. The procedure should have one variable
parameter of type char.

A sequential program must of course be loaded into the store
before it can be executed. At present there is no disk
handler available in Concurrent Pascal for the LSI-11
computer, so the RT-11 disk handler 1is used. The loading of
sequential program is handled by the standard procedure

loadseq(segprogspec,varspace)

In order to load sequential programs safely, all sequential
programs should be loaded before any process is initialized.
Segprogspec should be a variable of type segprogspectype
defined as

type segprogspectype=record
filename: array[l..l14] of char;
stacktop,
heaptop,
startaddress,
loadaddress: integer
end;

The user must declare this type and the compiler can only
check that the parameter has the correct 1length. The
filename component of segprogspec should contain the
filename of a relocatable version of the sequential program.

-y

19

Loadseq will give the rest of the components of
seqgprogspectype appropriate values. Varspace should be an
integer and should specify the data space (in words) needed
to execute the sequential program.

The parameter list of the declaration of the sequential
program must contain exactly one variable parameter and no
constant parameter, and the variable parameter must be of
the type seqgprogspectype (defined above). The parameter used
at a call of a sequential program should contain the values
received at loading. A sequential program is not reentrant,
but it can be restarted without loading. If two processes
want to execute the same sequential program, two copies must
be loaded.

CONCLUSIONS

The implementation process described in this paper was
pleasant and instructive. The implementation 1is a tool of
significant value for teaching, research and engineering. It
has been used with success in an undergraduate course.

The Concurrent Pascal Compiler is a large program consisting
of 810@ lines of source <code. It is divided into seven
passes each 750-1600 lines 1long. It takes a full hour to
create a runnable version of the Concurrent Pascal compiler
on the LSI-11 with diskettes as mass memory. The compiler
requires a code space of 11K words and a data space of 7K
words. The mass memory requirements are 182 256-word blocks.

It takes 23 seconds to compile a program containing only
begin end. Excluding these 23 seconds the compilation time
varies between 5-8 lines/s again with diskettes as system
units.

The code interpreter is 1.2K words 1long and the kernel is

2.0K words long including an I/0 part of 0.4K words.

The total manpower to implement Concurrent Pascal for LSI-11
is estimated at four man-months.

20

ACKNOWLEDGEMENTS

I want to thank Professor Karl Johan Astrém who proposed
this project and Leif Andersson for his never ending
interest, support and valuable suggestions during this
project.

REFERENCES

1. P. Brinch Hansen, 'The Architecture of Concurrent
Programs', Prentice Hall, Inc., Englewood Cliffs, New
Jersey 07632, 1978.

2. K. Jensen, N. Wirth,'Pascal-User and Manual Report',
Springer Verlag, Berlin, 1975.

3. P. Brinch Hansen, A.C. Hartmann, 'Sequential Pascal
Report', Information Science, California Institute of
Technology, 1975.

4. A.C, Hartmann, 'A Concurrent Pascal Compiler for
Minicomputers', Springer Verlag, Berlin, 1977.

5. P. Brinch Hansen, 'Concurrent Pascal Implementation
Notes', Information Science, California Institute of
Technology, 1976.

6. RT-11 System Reference Manual, Order Wo.
DEC-11-ORUGA-C-D,DN1,DN2, Digital Equipment Corporation
Massachusetts, 1976.

7. OMSI PASCAL-1 Documentation Version 1.1, Oregon
Minicomputer Software Inc., 2340 SW Canyon Road,
Portland, Oregon 97201.

8. S.E. Mattsson, '"Concurrent Pascal User's Guide',
Department of Automatic Control, Lund Institute of
Technology, Lund, Sweden, 1979.

CODEN: LUTFD2/(TFRT-7167)/1-009/(1979)

