CERN-Data Handling Division
DD/84/19
November 1984

SEPARATE COMPILATION IN A MODULA-2 COMPILER

David G. Foster

(Submitted to the Software Practice and Experience)

DD-df

Separate Compilation in a Modula-2 Compiler

David 6. Foster
Data Handling Division

CERH 1211 Geneve 23, Switzerland

Abstract

A new approach to the compilation of Modula-2(1) is described. The
compiler uses & simple data base which provides the basis for a portable
programming support environment. The environment consists of a number of
tools which operate on the data base and provide the programmer with facil-

ities to create, and easily maintain, a multi-module system.

Key words: Modula-2, Compilers

(1)Modula-2 was designed at the Institut fur Informatik, ETH, Zurich.

Introduction

Modula-2 was intreoduced by Niklaus Wirth and has bheen widaly described
&3 the successor to Pascal. The first implementation was made available by
the ETH, Zurich and several compilers have since been produced, most being

derivatives of this original compiler. [1]

The compiler to which the following discussions relate is a cross com-—
piler which currently runs on a VAX UNIX(2) system {Berkeley 4.2) and pro-
duces code for the Motorola 68000 microprocessor [2] . The compiler has

recently been ported to a VAX VM5 system.

Separate compilation regquirements in Modula-2

A Modula-2 program consists of a number of files containing the text
of DEFINITION and IMPLEMENTATION modules to be compiled. The resulting
object modules can then be link edited and loaded. All DEFINITION modules
must be compiled before their corresponding IMPLEMENTATION parts, and the
definitions of all imported modules must have been compiled before the
importing module. Thus to create the object modules of & Modula-2 program,
a number of separate invocations of the compiler is required. The type
checking by the compiler must extend to objects that have been imported

from other, separately compiled, modules.

A DEFINITION module contains the declarations of objects which may be
imported into other DEFINITION or IMPLEMENTATION modules. It is these

declarations which are used when performing type chacking of imported

(2JUNIX is a trademark of AT&T, Bell Laboratories.

objects. The problem becomes one of preserving declarativa information so
that it can be used subsequently by modules importing from this DEFINITION

module.

One solution to this problem has been to save symbol teble information
in a binary format file which can be found and read by the compiler when
requirad. This technique requires the creation of & new file, for each
definition module, with a name that is related to the name of the DEFINI-
TION module. So, typically the compilation of file "test.def"™ which con-
tains the DEFINITION module "test™ will produce the file "test.sym"™. Com-
piling another module which contains the statement "IMPORT test™ implicitly
instructs the compiler to open the file named "test™ with the extension
Psym” to find the symbol table information. The details of this approach
have been well described [3] and it is a rather different approach that

will ba described here.

In the following discussion the nomenclature (a) <- (b} should be read
as the DEFINITION or IMPLEMENTATION module (&) imports from, and depends

on, the DEFINITION module (b).

Importing by Recompilation

The compilation of a definition module does not create a new file con-
taining symbol +table information, but enters a single line of information
into an existing file. This fila, or module base, is a rather simple data

base of information about separately compiled modules. Tha contents of a

line of this file are shoun below.

Entity number

Module name

Checksum

Definition module file name

DatesTime of compilation of definition module
Import list of definition module

Implementation module file name

DatesTime of compilation of implementation module
Import list of implementation module

For some modules, for example a program module which has no DEFINITION
part, some of the fields may not be present. Each entry in the module base
is given an "Entity number” so that an entry can subsequently be referenced
in a convenient way. For example, the "Import 1ist™ in the data base con-

tains the "Entity numbers™ of the modules that ara imported.

The compiler produces a data structure from this file at the start of
every compilation so the module base need only be read once. When an
IMPORT statement is encountered in the source text currently being com-
piled, the subsegquent module name is looked up in the module base. If it is
not there then the imported module has not been compiled and an error is
signalled. Assuming no error, the compiler changes input streams to read
from the file indicated by the "Definition module file name™ entry in the
module base. The main procedure of the compiler is talled recursively at

this point, and the imported module compiled.

Once the imported module has been compiled a symbol table tree of
identifier and structure records describing the imported objects is avail-

able. This tree is preserved when the input stream is restored after com-

piling the imported module. When all imported modules hava been compiled a
linked list of symbol table trees has been formed that are then used when
checking type compatibility of imported objects. In the case of & module
being imported twice the second importation merely refers to the tree

already created.

At the end of compilation of a given module an entry is created or
updated in the module base. Having compiled a module, all the modules that
it depends on are known to the compiler. These modules are those which were
referenced via import statements. Given the system of modules: IMPLEMENTA-
TION (a} <- (b) <- (c) and also DEFINITION (b) <- (d) then (a) depends on
(b),(e) and (d). If the "Entity numbers™ of (a), {(b), (c¢) and (d) are 4,
3, 2 and 1 respectively then compiling (&} would create an "Import list"™ of
1,2,3,%. S5ince an IMPLEMENTATION module always depends on its corresponding
DEFINITION module, the "Import 1list™ of (a) contains its own "Entity
number®™, Although (a) only depends on (c) indirectly (via (b)) the "Import

list" of (a) shows the dependency.

Consistency checking

A number of checks are needed to ensure that & system of modules is
kept cansistent. In this particular schema it is necessary to ensure that a
givan DEFIKITION module has not changed between tha time its entry was
created in the module base and the time it is compiled as an imported
module. The module base contains a checksum for each DEFINITION module;
this is compared with a newly calculated checksum each time the module is
imported. If these checksums differ then the file has baen changed, but not

recompiled, and an error message is generated.

When a DEFINITION module is recompiled it is a simple matter for the
compiler, using the import lists, to "invalidate™ all modules that depend
on the recompiled module (in practice invalidating a module entry in the
module base involves setting the datestime field to blank). This is neces-
sary since recompiling a DEFINITION module implies a change of interface,
s0 all modules that use this interface need to be re-compiled. This is true
even for indirect dependencies as in the system (a) <- (b) <~ (¢) where a
chenge to (c) requires recompilation of both (b) and (a). Recompiling a
DEFINITION module also invalidates its associated IMPLEMENTATION module

since this too uses the DEFINITION module interface.
Tools

A series of tools operates on tha information present in the module
base. The tools consist of a Pascal program and a shell script (or
appropriate command language file). The Pascal program performs the compu-
tation while the shell script provides the interface to the operating sys-
tem and the user. These shell scripts are only a few lines long and the
Fascal programs contain about 2060 lines each. The Pascal programs are port-
able since they do not rely on operating system functions, instead the

shall script performs these where required.

Automatic Recompilation

In early Modula-2 implementations the only tool availablae was the com-
piler itself. Recompiling & DEFINITION module involved studyving hand drawn
graphical representations of the medule interdependencies to determine the

other modules that required recompilation.

Thae recompilation tool operates on the modulae basa &and <€inds those
entries that have been invalidated by the compiler. Invalidated definition
modules are recompiled first, starting with the lowest level modules. Con-
sider (a) <- (b) <- (c) where recompiling (c) has invalidated both (a) and
(bY. (b) must be recompiled first since this is the lowest level module
requiring recompilation. Clearly if (a) were recompiled first, then (b),
this would again invalidate (a) requiring it to be compiled a second tima.
All associated implementation modules which have been invalidated can then

be recompiled in any order.

Khen the program has finished, the module base is in a consistent
state. This guarantees that all the interfaces have been verified and that
the text files of the DEFINITICON modules truly represent the interfaces
used by the compiler. This is an improvement over the symbol file approach
whera the text file is the interface seen by the programmer. but the symbol
file is the interface seen by the compiler. This can lead to problems if a
DEFINITION module is changed but not recompiled since an out of date symbol

file would be used during subseguent compilations.

Module body initialisation 6rder

When & Modula-2 program is started, all the module bodies are exe-
cuted, ending with the main program. These modulae bodies may be used, for
example, to initialise global variables of s particular module. A module
may import a variable which it then uses in its module body initialisation
reutina. This possibility requires that the imported module ba initialised
before the importing module. It is possible for IMPLEMENTATION modules to

be mutually dependent, IMPLEMENTATION (a) <- (b) and IMPLEMENTATIOR (b) <~

(a). In this case the order of initialisation is undefined.

A tool has been providad which first searches the module base for the
main program mpdule (one with no DEFINITION module entry). From this entry
it then deduces all the other modules that need to be includaed in the 1link
edit phase. In addition the order of initialisation of tha modules is
deduced according to the above criterion. If mutual dependencies do exist

then a warning message is issued and an order assumed.

This tool allows the use of a general link editor by performing the

special functions of the link editors normally used in Modula-2 systems.

Graphical representation

It is generally useful to be able to see a complex system of modules
and their dependencies in some graphical form. This is particularly
appropriate when planning the inclusion of new modules into an existing
system. The module base has been used to produce a grid like representation
of the dependencies. The rows and columns represent the modules in the
system and the intersection states whether the DEFINITION or IMPLEMENTATION

of the row module depends on the DEFINITION of the column module.

Compiler structure

The compiler has been structured in such a way as to ba ablae +to call
itself recursively to deal with imported modulas. It was planned to have a
one pass syntactic and semantic enalyser, howaver it is not possible to
fulfil completely the reaquirements of the languaga by a one pass analyser.

Generally in Modula-2 an object may ba declared and used anywhere wuithin

the scope in which the declaration makes it visible. Thus although inclu-
sion of Pascal like "FORWARD™ keyﬁords may remove tha problem of foruard
references for procedures and functions it does not attack the general
problem as it exists in Modula-2. The structura of *he compiler enables
one pass to be completed and if potentisl forward references are detected,
the symbol table trees are saved and +the compiler called recursively.
Information from the previous pass is extracted from the trees, where
required, during the second pass. Thus the compiler will perform the syn-
tactic and semantic analysis in one pass if possible, otheruise it will

take two passes.
Conclusion

The technique of recursively recompiling imported modules has kept the
siza of the compiler very small by avoiding the necessity of special code
to create and read symbol files. A small p?ice is patd in efficiency but
in practice this has not been a problem. Creating the module base has
enabled a number of small tools to be written that are very powerful in
helping the programmer to maintain his Modula-2 system. This has been done
in a system independent format wherever possible to enable the compiler,

and tools, to be ported to different systems.

Acknowledgments

Thanks are due to Duncan Baillie for writing the tools and to Horst
von Eicken, Julian Blake, Petrus van der Stok, Alistair McKeeman and
Thorsten von Eicken for their contributions to the development of the com-

piler.

References

Terry L. Anderson, "Seven Modula-2 Compilers Reviewed,"™ dournal of

Pascal,Ada and Modula-2, pp. 38-43 (March/April 1986).

Julian Blake, Horst von Eicken, and David Foster, "Developing Programs
for the Motorola 68000 Microprocessor at CERN,™ Europhysics conference

on Softwsre Engineering, Methods and Yools in Computational Physics,

(August 1984).

Leo Bernhard Geissmann, $eparate Compilation jn Modula-2 and the
Structure of ihe Modula-Z Compiler on the Personsl Computer Lilith,

Diser Publication (1983).

10

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11

