
SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 19(1), 1–34 (JANUARY 1989)

indx and findphrases,
A System for Generating Indexes for

Ditroff Documents

KRIS K. ABE†
Computer Science Department, University of California, Los Angeles, CA 90024, U. S. A.

AND

DANIEL M. BERRY
Computer Science Department, Technion, Haifa 32000, Israel

SUMMARY

Creating back-of-the-book indexes is a difficult task involving intelligent and clerical processes. Programs have gen-
erally not achieved the level of intelligence required to perform the intelligent process of selecting terms for the index.
Semi-automatic indexing programs perform the clerical process of preparing entries once the terms have been
selected. The programs do not provide assistance in term determination and most require flooding the text with
indexing commands. indx differs from other semi-automatic indexing programs mainly because it does not require
the insertion of indexing commands into the text to be indexed. The method by which indx assists in the creation of an
index is introduced and compared with the characteristics of the other programs. This method includes the use of a
program that aids the term determination process. The design, implementation, and application of indx are
presented. Areas in which indx may be improved or enhanced are identified. An index of this paper created with
indx is included as an example.

KEY WORDS Generating book indexes Formatting Typesetting Device independent Troff

INTRODUCTION

Anyone familiar with textbooks is also familiar with the use of the back-of-the-book indexes. For
finding text dealing with a given subject, such an index is far more useful than the front-of-the-book
table of contents, which just lists, in page order, the chapter, section, and subsection titles and start-
ing page numbers. The index lists important terms occurring in the text and the numbers of the
pages on which these terms actually appear or are the subject of the discussion. The index is usu-
ally alphabetized by the spelling of the terms. The index helps locate discussions of important con-
cepts simply by knowing the keywords of these concepts. Doing the same with the table of contents
requires knowing under which title a term is likely to be discussed. A good index is like an inani-
mate memory, in which information is stored to be recovered quickly and precisely.1

hhhhhhhhhhhhh

† Present affiliation: The Aerospace Corporation, El Segundo, CA 90245, U. S. A.

0038-0644/89/010001—34/$17.00 Received 1 January 1988

 1989 by John Wiley & Sons, Ltd. Revised 22 July 1988

2 K. K. ABE AND D. M. BERRY

While an index is very useful for the reader of a book, it is very difficult for the author of the
book to generate. It is so difficult that many authors hire a specialist to do the task. A common use
of indexes is to locate all books in a library that deal with a particular issue by looking for that issue
in the indexes of all books on the shelves with the same call number. Anyone who has tried this
method of search knows that many books just do not have good indexes.

Generating an index is difficult because it consists of two processes,
1. one intelligent, determining the terms that are to be indexed, and
2. one clerical, finding all places where these terms appear.

The first is difficult because it is hard to anticipate the keywords that the readers look for. If the
index has too few terms, the reader will not find what he or she is looking for. If the index has too
many terms, it will be too big and unwieldy. The second is difficult because it is boring and subject
to clerical error, and subject to revision any time a change is made in the text. The indexer can
easily fail to find some occurrences of a term.

Thoughts turn to automating the process. However, automating the process is difficult too. Pro-
grams have not achieved the level of intelligence required for doing the term determination,
artificial intelligence research notwithstanding. Brute force generation of terms by simply taking all
phrases that occur in the book yields an index larger than the book! Programs are very good at the
clerical task of locating all occurrences of terms that actually occur as phrases in the book. How-
ever, they cannot locate a discussion about a term in which that term itself does not appear. Thus all
that can be hoped for (at least for the foreseeable future) is some clerical program or perhaps some
expert system aiding the term determination process and a second program doing the more mundane
and error-prone task of finding all occurrences of a term that actually appears in the book.

A number of schemes exist already. However, most attack only the location of occurrences of
terms, and do nothing to help determine the terms in the first place. Many also do nothing about
finding discussions about the terms that do not actually contain them. Also, many require flooding
the text of the book submitted to the formatter with commands to dump a term/page-number pair
into a database for later sifting into an index; if not done with the aid of hideable windows, this
flooding can make it hard to read the input text.

This paper describes a suite of tools developed at UCLA that assist in indexing ditroff2 (Device
Independent Typsetter RunOFF) documents. Specifically, these tools offer genuine assistance in
term determination, allow finding all occurrences of and some discussions about terms, and provide
a clean interface in which the text of the book to be indexed is not flooded with indexing commands.

This paper was typeset camera-ready in its entirety (including the page headers, the page
numbers, and the journal-specific information in the first page’s header and footer†) with the aid of
ditroff, its pre- and post-processors, and the suite. In order that the page numbers in the index of the
paper be correct, it was necessary to know at typesetting time on which page the article would
begin. It is extremely fortunate that the paper could be scheduled to be the first paper of the present
volume, for then it was trivial to know at typesetting time on which page the article would begin,
namely page 1.

The rest of this section defines the terminology of indexing, describes the manual process, and
briefly discusses existing programs for assisting in index generation. The second section describes
the approach the suite uses and the method by which the authors exercised the suite to obtain the
index. The third section describes the experience gained in using indx, and the last section contains
conclusions about the indx method and program and discusses areas of further work. This paper is

iiiiiiiiiiiii

†However, the journal’s editors may have replaced all of the headers and footers with paste-overs.

GENERATING INDEXES FOR DITROFF DOCUMENTS 3

followed by an index generated with the help of these tools. Finally the appendices show the input
necessary to generate the index of the paper and give UNIX†-style manual pages for the tools.
Note that the indexing suite was not applied to the appendices! This paper is derived from a much
longer thesis in which many of the details omitted to fit the size limitation may be found.3

Index term definitions

Most of the index entries look like the following example:

Program maintenance documentation, 11, 17, 24

The phrase ‘Program maintenance documentation’ is called a heading. As defined by professional
indexer G. Norman Knight, headings are the ‘word(s) or symbol(s) selected from, or based on, an
item in the text, arranged in alphabetical or other chosen order’.4 In this paper, headings are also
referred to as entry phrases. The numbers following the heading are references, which direct the
reader to the location in the text where the heading is discussed. These numbers are usually page
numbers, but they can also be folio, section, or paragraph numbers. The current version of indx
deals only with page numbers, thus these numbers are referred to as page references. An index entry
having this form is referred to in this paper as a regular entry.

At times, a regular entry may be further expanded under or may be closely related to other entries
in the index. A see also cross-reference would be added to such terms, directing the reader to the
related entries. A see also cross-reference follows the page references of the entry, as follows.

Program maintenance documentation, 11, 17, 24
See also Program design language

Other types of cross-references exist to guide the reader who is unfamiliar with the terms used in
the text to the relevant entries having page references. A see cross-reference is a direction from one
heading (or subheading) to an alternative heading under which all the relevant references to an item
in the text are collected. A see under cross-reference indicates that the subject word is used under
another heading. For example, the entry ‘Taxation of costs, See under Costs’ means the term ‘taxa-
tion’ is used as a subheading under the heading ‘Costs’.4 For see and see under cross-references,
there are no page references.

As alluded to above, a subheading is the heading of an index entry that appears under another
index entry. An index entry found under another entry is referred to as a subentry. At times, an
index entry having subentries is referred to as a main entry. In fact, index entries not having sub-
entries are also called main entries, as they are on the same level of the index. A main entry along
with its subentries is referred to as a group entry. The group entry below has a regular entry and a
see cross-reference as subentries.

Program design languages
PDL, 37-40, 42
ADA/PDL, See Ada

It appears that in the U.S., see under cross-references are not used in book indexes;5 see cross-

iiiiiiiiiiiiiiiii

† UNIX is a registered trademark of AT&T Bell Laboratories.

4 K. K. ABE AND D. M. BERRY

references are used instead. See under cross-references are used mostly in the large indexes to the
periodical literature produced by commercial indexing companies. Our goal, as implementors, is to
provide complete functionality with a good user interface. Since there are indexes that use see under
cross-references, our software is obliged to provide the ability to obtain them.

Notwithstanding this observation about style, the index in this paper uses see under cross-
references. The index in the paper and the accompanying presentation of the input to make it serve
two main goals.

1. It should be comprehensive enough to allow the reader to find what is desired, in order to
demonstrate the effectiveness of the term identification method and software.

2. It should include examples of all features in order to demonstrate that the all features of the
indexing software work and to show the input necessary to obtain each kind of entry.

A third goal of adhering to stylistic standards is sacrificed to these two.

Formatting styles

There are several methods of formatting the index — entry-per-line, paragraph or run-in, and a
combination of the two. In the entry-per-line style, each heading and subheading is placed on a
separate line. The paragraph style has subheadings following the heading in a paragraph form.
This latter style is common in social science texts, where the subentries, which are usually events,
may be presented in an evolutionary or chronological order. Because of the natural progression of
subentries as sentences in a paragraph, the subentries should be listed in numerical rather than
alphabetical order. A big advantage of the paragraph style is the space it saves. It is, however, more
difficult to scan this type of index, and Eleanor Harris1 recommends that indexes having sub-sub-
entries be presented in entry-per-line style. The combined style borrows the good points of each of
the previous styles. Subentries are placed on separate lines and sub-subentries are presented in para-
graph style following their parent subentries. Thus overall, entries and subentries are easily
identified and some space is saved when sub-subentries are printed.

Within each style there appear to be variations in the punctuation that is used. Where some use
periods, others use commas. In order to demonstrate the flexibility of our software, the first half of
the index is printed in the entry-per-line style, and the second half is printed in the paragraph style.
This flexibility is achieved, as explained later, by changing the definitions of the macro calls gen-
erated by the indexing software.

Manual indexing task

The indexing task is an art, as the indexer must select the terms that best convey the contents of
the text. In order to get a good and well-balanced index, the indexer reads the text once rapidly and
then a second time, more slowly, to get an understanding of the text. While reading, phrases are
underlined and possible subjects (entry phrases) are written in the margin. After all phrases have
been identified as possible entries, the indexer must decide which of these will be in the index.
Several factors influence the selection process. First, the indexer must keep the needs of two types
of readers in mind. There are readers who have read through the book and use the index to refer
back to things already read. There are also readers who are searching through several books on the
same subject, seeking specific information without having to read the entire book. Another factor
influencing entry selection is the maximum index length permitted by the publisher. The terms
selected for the index are written on cards or slips of paper and kept in a tray. The cards are checked
by pages to prevent useless entries in the index, which are entries having a page reference that
yields no information on the subject. Then they are alphabetically sorted and the index is typed from

GENERATING INDEXES FOR DITROFF DOCUMENTS 5

the cards.
One of the unresolved issues in indexing is the type of alphabetization used. There is no univer-

sal standard, but two of the common ones are word-by-word and letter-by-letter. The word-by-word
method is more common4 and treats the headings and the subheadings as consisting of separate
words, alphabetizing them one word at a time. For example:

Index arrays
Index generation
Indexes, efficiency and

The letter-by-letter method involves treating the headings and the subheadings as single units,
alphabetizing them one letter at a time. The same three phrases above alphabetized letter-by-letter
would be in the following order:

Index arrays
Indexes, efficiency and
Index generation

No clear advantage of either has been found.6 Although alphabetizing word-by-word seems easier to
perform from the human point of view, there is a tendency nowadays to use letter-by-letter or rather
character-by-character in machine collated indexes, as it is simpler to generate and to explain to the
reader. In the older styles, numbers would be sorted as if they were spelled out and Roman numerals
would be sorted according to the values they represent, not their actual letters. However, today there
appears to be a tendency to sorting numbers by their machine collating sequence. The literature
abounds with information on the indexing process and should be consulted by the interested
reader.7, 8, 4, 1

Indexing programs

Several computer programs now exist to aid the indexer in his or her job. They may be classified
into two main groups, those running with the full function formatting system which is formatting the
document that is being indexed and those which run as separate programs. In the first category are
those that run with Wordstar†,9 with troff or ditroff,10, 11 with TEX‡,12 and with LATEX.13, 14

These all have the problem that they require flooding the text of the indexed document with macro
calls for dumping terms paired with page numbers. These macro calls must be inserted at each place
in which the term is used or discussed to force dumping of that point’s page number with the term.
It is the presence of these macro calls that can make it hard to read the input document. However,
there are windowed, WYSIWYG formatting systems in which one can annotate arbitrary points in
the text with indexing information. These include Interleaf15 and Ventura.16 The indexing window
is invisible unless one is actually working on it; thus the input document is not obscured. Those that
run without a document formatting system include <<ANSWER>>,17 INDEX,6 *INDEX,18

INDEXIT,19 and many more.20 These stand-alone systems are intended to emulate the 3×5 card
method that many indexers are wont to use. After the book has been printed, the indexer works with

iiiiiiiiiiiiiiiii

†Wordstar is a trademark of MicroPro International Corporation.

‡TEX is a trademark of the American Mathematical Society.

6 K. K. ABE AND D. M. BERRY

one of these as a separate application, typing entries, including the page numbers, directly to the
program. While the indexer must find and type the page numbers (perhaps using another computer
or window running an editing application on the book itself), the indexer is spared the drudgery of
alphabetizing, formatting, and retyping the index each time it is necessary to modify it. See the
thesis3 for more details on existing indexing software.

According to Linda Fetters, a freelance indexer, indexing programs should be judged by the fol-
lowing criteria:19 (1) ease of entering index headings, (2) ability to create cross-references, (3) ease
of editing index entries, (4) sorting capabilities, (5) size limitations, (6) formatting capabilities, (7)
printing effects, and (8) ability to cumulate indexes.

Although the extent to which each of the above programs other than INDEXIT satisfies the cri-
teria is unknown, several comments can be made. First, although marking words or phrases in the
text is easier than entering them separately, each such term has to be marked each time it occurs. In
such indexing systems, there are two styles of marking. In one, one puts a marking command con-
sisting of an explicit term in the midst of each discussion about that term. The explicit term is not
taken as part of the text, and it is listed in the index as having appeared at the point of the mark,
even if the term really does not appear in the text. In the other style, one puts a mark at each explicit
occurence of the term in the text. Indexes set up in this latter manner are restricted to terms occur-
ring word-for-word in the text. Secondly, it is desirable to be able to create cross-references. A
good index would have cross-references for readers unfamiliar with the terms used in the text, hav-
ing synonymous terms in the index referencing the terms used in the text. Thirdly, having the capa-
bility of different ways of sorting the terms is desirable since there is no standard method. Fourthly,
the ability to accumulate indexes would be nice to have because index entries can be set up for sec-
tions of the text in parallel and merged to form the entire index. This would save time although
more space may be needed, depending on the size of the text and the number of sections into which
it has been broken.

Properties of indx

The main advantage, we believe, of the indx approach, described herein, is that the text to be for-
matted does not have to be flooded with indexing commands. The formatter gets a cleaner input
text, which is easier to subject to other analyses, and which is less likely to confuse an editor’s pat-
tern matching. In addition, by having the index terms in a separate file, in which each occurs only
once, it is easier to add, change, and delete index terms. The old concepts of modularity and infor-
mation hiding21 come to play here. The purpose of the index terms is to generate the index; the pur-
pose of the text is to generate the body of the book. Therefore, they should be in separate modules,
each somewhat independently updateable. One can make minor cosmetic changes or even major
reorganizational changes to the text without having to change the index terms, and one can adjust
the detail of the index by changing the index terms without changing the text.

Not all agree that having a separate list of index terms is better. Kernighan is one of the co-
authors of an indexing system in which one sprinkles the source of a document with macro calls at
each occurrence of a term.11 He points out that with a separate index terms file, one has to edit both
files to keep them up to date. He, for one, would prefer to have to edit only one file.22 In the last
analysis, the users will decide which scheme is best.

The main property of ditroff that makes this separation possible is that there exists a representa-
tion of the document after formatting decisions have been made, i.e. where the page breaks are, but
from which the original input’s word boundaries can be extracted. By use of this word boundary
information, it is possible to find the occurrences of the index terms, and by use of the page boun-
dary information, it is possible to determine on which page each occurrence of an index term

GENERATING INDEXES FOR DITROFF DOCUMENTS 7

occurs.
Ditroff’s so-called device-independent intermediate form fits the bill exactly. Besides the page

breaks and the sequence of characters and movements or positions that are found in all such inter-
mediate forms and that a device driver needs to print the text, there is some extra semantic informa-
tion. Specifically, there are ws to mark ends of words and nnumber 0s to mark ends of lines.

This is an example of a line.

If the above is submitted to dtroff -Tpsc, the output, folded to fit the line length, is as below:

H576
V96
cT
49h40i22sw51i22sw51a36nw60e36x40a36m62p40l22ew56o40fw47aw
56l22i22n40e36.n96 0

Note the bold faced end-of-word and end-of-line markers. The device drivers generally ignore the
semantic markers, but the semantic markers permit other analyses, such as that necessary to do the
index generation. Note that no ws are issued before hyphens generated by the formatter; they come
only at the ends of input words. One can submit this intermediate form to a device driver for print-
ing and then, together with the index terms, to the indx program to generate the index.

Without these end-of-word markers, the indexing program would be forced to guestimate the
word boundaries based on relative sizes of movements. These guestimates are bound to fail in the
presence of wild movements that are found in equations, tables, and pictures. Observe that this fact
means that the indx approach cannot be followed on any DVI-based23 formatter, e.g. TEX,24 without
modification of the formatter to generate more information in the DVI output (something which is
politically and economically infeasible).

One of these authors participated in a project to build a bi-directional version of ditroff,25 to be
used to format text involving say, both English and Hebrew. The fact that ditroff’s intermediate
output has end-of-line markers allows the bi-directional formatting to be achieved by inserting a
program called ffortid between ditroff and the device driver. ffortid accepts the intermediate output
from ditroff; on a line-by-line basis, it reorganizes the line so that the text in each font is printed in
its natural direction; and it outputs this reorganized line in the same format as produced by ditroff,
so that the device driver, getting its output, would be none the wiser. The beauty of this scheme is
that an unchanged ditroff can be used. Without the end-of-line markers, ffortid would have to gues-
timate where the end of lines are based on movements; this guestimate is again bound to fail in the
presence of tables and pictures.

The lack of end-of-line markers in the DVI format prevents production of a bi-directional version
of TEX using the simple scheme of reorganizing the DVI output on a line-by-line basis. The only
way it can be done is to modify TEX itself as MacKay and Knuth have noted.26

In view of the fact that no device driver really needs the semantic markers, we thought that it was
a stroke of luck, genius, or foresight that Kernighan put them in ditroff’s output. Given that these
markers can be used only for semantics-based processing such as indexing, it was surprising to us
that Bentley and Kernighan did not follow an approach similar to ours in their indexing system.11

When we approached Kernighan with the obvious question, he said that he had put in the end-of-
word markers in order to allow someone else to build an editor for documents of the ditroff output

8 K. K. ABE AND D. M. BERRY

format and had never considered using it for indexing.22

THE INDX METHOD

The method of producing indexes with indx allows the indexer to concentrate on obtaining the
entries in the final index without initially having to know specific page references or having to insert
many markers or macro calls into the input text. It is described and compared with the characteris-
tics of some of the other existing methods below. Then the initial expectations of the method are
discussed.

Description of the method

The first thing the indexer must do is select the phrases in the text that are to have page refer-
ences. These phrases are put in the phrase file. The indexer must then set up the optional files that
are described later, in order to obtain the desired index. The optional files define index terms that are
to be combined with each other under one term, that are to be grouped with each other to form
headings that have subheadings, that are to have see also, see, and see under cross-references, and
that are to be given an alternative heading or subheading. The files are processed in this order and
the actual steps taken to create an index are controlled by the files provided by the indexer.

For example, suppose the completed index is to contain

Alphabetic sort, See Binary search trees

Binary search trees, 320-372

LEFT pointers, 208-214

Pointers
LEFT, 208-214
RIGHT, 208-214

RIGHT pointers, 208-214

and the phrases for which page references are found are

Binary search trees
LEFT pointer
LEFT pointers
RIGHT pointer
RIGHT pointers

The optional files that would be needed are the combine-phrase, group-entry, see, and alternative-
index-term files. The page references of the phrases LEFT pointer and LEFT pointers
would be combined under LEFT pointers. The same thing would be done for RIGHT
pointer and RIGHT pointers. Then the Pointers group entry would be built in the
group-entry file. In it, would be the definitions for copying the entry LEFT pointers under the
heading Pointers and for copying the entry RIGHT pointers under the heading Pointers.
There are no see also and see under cross-references to add, so those files are not given. The see file

GENERATING INDEXES FOR DITROFF DOCUMENTS 9

contains a line mapping Alphabetic sort to Binary search trees. The alternative-
index-term file is needed to change the subheading LEFT pointers under the heading
Pointers to LEFT and to make a similar change for RIGHT pointers.

As a preview to the detailed description below, the four optional files needed to make the above
index example are as follows.

combine-phrase group-entry
: :

LEFT pointers : LEFT pointer Pointers : LEFT pointers :

RIGHT pointers : RIGHT pointer Pointers : RIGHT pointers :

see alternative-index-term
: :

Alphabetic sort : Binary search trees LEFT pointers : LEFT : Pointers

RIGHT pointers : RIGHT : Pointers

The input text must be prepared as described below and the indx program is run given the names
of the files and the input text. The indexer should save the output to a file so that it may be examined
for incorrectly sorted terms and sequences of consecutive page references that should be replaced
by a spanning range of page numbers. After the ditroff macro calls are verified and corrected as
necessary, they must be formatted using the appropriate macro package to get the final index.

The input text

The form of the text is much like regular text except for two things. First, all sentence punctua-
tion must be separated from surrounding words by at least one blank, to allow for the search of
phrases. Secondly, the text of page n must be preceded by a line beginning with the sequence ˆLpn.
Here ˆL is the formfeed character. If the original text is available as ditroff output, the program
dedit (parse that as de-dit and not d-edit) can be used to convert the ditroff output into the text
acceptable by indx. One of the differences between setting up a text file manually and running ditr-
off text through dedit is that all words of the dedit output will be separated from any sort of punc-
tuation by one blank, whereas text set up manually could very well have only sentence punctuation
preceded by a blank. For example, the sentence ending ‘U.S. Navy.’ should be ‘U.S. Navy .’ in
the text file, but the ditroff equivalent of the same part of the sentence would be changed by dedit to
‘U . S . Navy .’ This is a relatively minor detail that can be taken care of by searching for the
phrase ‘U . S . Navy’ and later changing the entry using the alternative-index-term file to
‘U.S. Navy’.

Selection of phrases in the text

The file of phrases to be searched for in the text must always be provided. The phrase file con-
tains one phrase per line. In order to speed up the initial building of the index, the phrases of the
phrase file must be sorted, and each phrase may occur no more than once. Normally, indx ignores
case distinctions when searching for phrases in the text, thus normally two phrases differing only by
the case of one or more letters will not both be in the phrase file. The UNIX sort command can be
used with the −f option to sort the index ignoring case distinctions. In the situation in which the
case of one or more letters in a phrase matters, the phrase is to be matched in the text only exactly,

10 K. K. ABE AND D. M. BERRY

and the phrase may otherwise even be the same as another phrase in the phrase file, the phrase to be
matched exactly will be flagged with a word consisting of a single occurrence of a special character
at the end of the line. The special character ideally should be one that is not used in any of the
phrases. The special character for the file is announced by its being the first character of the file and
the sole occupant of the first line. If it should become necessary to have a non-special use of the
special character in a phrase, then it should appear doubled. That is, if ‘!’ is the special character
and the phrase ‘Yippee !!’ must be searched for exactly, it should appear in the file as Yippee
!!!!. This convention of doubling non-special uses of the special character is used for all other
files as well; in the other files, the special character introduced as the first and only character of the
first line is used to separate elements of pairs and triples.

In order to determine the list of phrases that will appear in the index, the program findphrases27

may be used. findphrases scans the input text, finding all repeated phrases up to a user-specified
number of words in length, ignoring phrases given in an ignored-phrases file. By forming a large
enough file of ignored phrases, one can end up with a meaningful list of repeated phrases. This list
will contain many, if not all, of the items either that should appear in the index or that suggest other
phrases that should appear in the index. This list is just a preliminary one since there will possibly
be items to be indexed that occur on only one page, and not on the list of repeated phrases. Some of
these unrepeated items may be found by using the −t option of findphrases to obtain a list of the
tokens, which are single words or single items of punctuation.

One can keep a list of phrases that will be ignored in the majority of documents written in one
natural language, i.e. a general-purpose ignored-phrases file. For English, it contains phrases such
as the, a, of, and is. For a particular document, the general-purpose ignored-phrases file would
be complemented by adding document-specific phrases that should be ignored. A few iterations may
be needed to get the right maximum phrase length and a large enough list of ignored phrases to
reduce the number of repeated phrases to a useful size, so that it really indicates phrases to be
indexed. Normally phrases that start with a phrase from the ignored-phrases file but which are not
themselves listed in the ignored-phrases file are not ignored. However, sometimes one finds too
many phrases that start with other phrases in the output. Therefore, one of the options in the
findphrases program is to ignore all phrases that begin with a phrase in the ignored-phrases file. In
any case, with the help of several successive runs of findphrases on the text of a document, the
indexer creates the phrase file for indx, consisting of all of the phrases whose page numbers are to
be gathered

The phrase file and the optional files used to create the index of this paper are given in the
Appendix. The boldfaced phrases in the phrase file are those that have been directly obtained from
the list of repeated phrases. About 42 per cent of the final index entries of the thesis came from the
list. Many of the other phrases in the phrase file have been derived from the list of repeated phrases.
That is, the list directed attention to parts of the text that should be indexed and often suggested part
of a phrase to be used in the phrase file. Merely being directed to a part of the text helped in select-
ing a phrase to obtain the page reference.

The various optional files

The phrases for which page references are to be combined, the phrases which should be grouped
to form group entries, the phrases which should have see also cross-references, see cross-
references, see under cross-references, and the phrases whose entry phrases are to be changed are
stored in separate files. Depending on the index being formed, any combination of these files may
be given by the indexer.

GENERATING INDEXES FOR DITROFF DOCUMENTS 11

The combine-phrase file contains pairs of phrases on each line. Both phrases must be in the
phrase file. The page references of the second phrase are merged with the page references of the
first, putting the merged list with the first term. The second term is deleted from the index. This file
is provided to allow concepts that are expressed by more than one phrase to be indexed as one entry
and to simulate the appearance of having a reference to a page discussing but not actually contain-
ing a term. The second phrase of a pair will often be the plural or some other variation of the first
phrase.

The group-entry file also contains pairs of phrases on each line. At least the second phrase of
each pair must be in the phrase file. The second term will become a subentry of the first term, if the
definition is valid. Only two levels are provided; a main entry can have a subentry but a subentry
may not have a sub-subentry. Thus, the first phrase will be a main index term. If it is not in the
phrase file, a main entry will be formed for it, but it will not have page numbers. There are two
ways to define a subentry. Either the subentry will be a copy of one of the main entries, or the sub-
entry will appear only under a main entry. Lines ending with the separation character of the file will
have the subentry as a copy of the main entry given by the second phrase. For example, to get the
following portion of an index, shown in paragraph style:

programming language, 3: C, 4, 7; Pascal, 4, 7, 9

the group-entry file might contain

!
programming language ! Pascal
programming language ! C

If ‘Pascal’ should also be in the index as a main entry, the group-entry file would contain

!
programming language ! Pascal !
programming language ! C

The three see... files, the see, the see-also, and the see-under files, share a common basic purpose
and format. The files consist of lines containing two or three phrases. In all cases, the index entry
for the first phrase will refer to the second phrase with the appropriate ‘see...’, i.e. ‘see’, ‘see also’,
or ‘see under’. If there is a third phrase, then the referring entry, described above, will be put as a
subentry under the occurrence of the third phrase as a main entry. For each line, the second phrase
must be in the phrase file. For any line with three phrases, if the third phrase is not already in the
phrase file or is not already defined as a main entry in a group, then a main entry for that phrase is
made. Now the discussion turns to the differences between the three kinds of see... files.

In the see-also file, all first phrases must be in the phrase file. The result of a line is that the entry
for the first phrase will have following its page numbers, a see also cross-reference to the second
phrase. For example, to get the following entry, shown in entry-per-line format:

Program documentation, 11, 17, 24
See also program design language

the see-also file should contain

12 K. K. ABE AND D. M. BERRY

:
Program documentation : program design language

In the see and see-under files, first phrases of pairs or triples are not in the phrase file. The result
of a line is that the entry for the first phrase, which necessarily has no page numbers, will have a see
or a see under cross-reference to the second phrase. The see under cross-reference is used when the
second phrase has a main entry with subentries and it is desired to refer one or more subentries, and
the see cross-reference is used when the second phrase has only a regular entry with no subentries
under it. Suppose the following portion of the index is desired, shown in entry-per-line format:

PDL; See program design language
.
.
.

program design language, 17, 25, 27

The see file should contain

:
PDL : program design language

The alternative-index-term file also contains pairs or triples of phrases, which define alternative
spellings for main and subentries, respectively. The effect of a line is that the index entry, either a
main entry or a subentry, for the first phrase is changed to have the second phrase as its term, and it
is printed in the position dictated by the spelling of the new phrase. This file is provided, because
certain phrases found in the text may be better represented in the index by other phrases.

Description of the output

As indx reads the files, the lines describing valid transactions are processed and error messages
for any invalid lines in the optional files are printed out. Whatever is in the index at the end of the
processing, even if there are illegal descriptions, is printed out after all optional files have been pro-
cessed. With both the error messages and the generated, partial index, it proves quite easy to track
down the sources of the errors and to fix them.

The index terms are printed out as a series of ditroff macro calls. At least two macro packages are
available, one for the entry-per-line style and one for the paragraph style. The terms are alphabet-
ized word-by-word, with the case of the letters ignored. Non-alphabetic characters in entries are
included in the sorting process, which may cause terms to be incorrectly sorted. Strictly ASCII com-
parisons are made so that numbers will appear before entries beginning with ‘A’.

The indexer may have to correct the order of terms as well as touch up the page references. For
one thing, indx will find every page on which a phrase is found, whereas the indexer may not want
all of them in the index. In addition to possibly removing some page numbers, the indexer may wish
to replace a sequence of consecutive numbers with a range of page numbers, for example replace
‘3,4,5,6’ by ‘3–6’. These two forms are not identical because individually listed numbers means the
subject is discussed intermittently on each page, whereas a range of numbers means the subject is
discussed continuously on these pages. A program is incapable of making this distinction. So, the
human indexer must do it.

GENERATING INDEXES FOR DITROFF DOCUMENTS 13

It would be useful to have a browser program to find entries with page number ranges. This pro-
gram would search the indx output for sequences of consecutive numbers, display the entry, and ask
for and make changes desired by the human indexer. However, a multi-window workstation works
nearly as well.

Comparison with other automated tools

indx, just like the other indexing programs, must be given the phrases of the index. However, the
actual phrases for which page entries are to be found are stored in a file instead of being marked in
the text or given as macro arguments. Unlike the other programs, indx searches the text for
occurrences of the phrases to get the page references. The definition of index entries via the phrase
file and the optional files is unique to indx. One of the disadvantages of having multiple files
defining index entries is that a change to a phrase in the index may have to be made not only to the
phrase file but to any of the optional files the phrase is in. This is not difficult but can be rather tedi-
ous. However, the number of changes to be made is always quite limited, in most cases, one line per
file.

indx provides three types of cross-referencing. None of the other programs seems to support see
under cross-referencing. This is probably because see under cross-references are not used in books
in the U.S. Also, in most, cross-reference targets are not verified as being entries in the index. indx
does not allow an index term to cross-reference an entry that does not exist as a main entry in the
index. In addition, only entries having page references are allowed to have see also cross-
references. It is verified that all entries referred to by a see under cross-reference be main headings
of group entries. The usage of the actual phrase in a subheading of a group referred to by a see
under cross-reference is not verified, so that it is the indexer’s responsibility to use the see under
cross-reference properly. indx does not allow check entries or circular see references, in which two
page-less terms in the index cross-reference only each other. If such a pair of entries is desired for
the purpose of detecting and proving copyright violations, it must be manually added to the macro
calls for the index. More generally, having a see cross-reference to an index term that has a see
cross-reference to any term is not allowed by indx.

The sorting capabilities of indx are average when compared with those of the other programs.
The indx program implementation inherently supports word-by-word alphabetization without ignor-
ing punctuation. As in many of the other programs, there will probably be phrases in the wrong
order, making the human indexer responsible for correctness.

The maximum size of an index in indx is unknown, as it is limited by the memory size of the
machine. For any set of files, though, the total number of entries and subentries can be approxi-
mated by summing the number of lines in the phrase, see, and see-under files, adding the number of
lines in the group-entry file which define the subentry as a duplicate of a main entry, and then sub-
tracting the number of lines in the combine-phrase file. The phrase file gives the maximum number
of main entries having page numbers and the see file and see-under file together give the minimum
number of entries (main or sub) not having page numbers. One entry is created for every subentry
formed by duplicating a main entry, and one entry is destroyed for every line in the combine-phrase
file. The first reason why this sum is only an approximation is that when the group-entry file is pro-
cessed, if no main entry exists in the index for a subentry to be placed under, it is created and added
to the index. Entries formed in this manner will not have page references or cross-references. The
second reason is that using the number of lines in each of the files includes the first line which has
no phrases. To calculate the exact number of macro calls in the output, the formula described above
should be used with one less than the number of lines in each file. This subtotal should then be
increased by the number of unique group headings which were not searched for in the index.

14 K. K. ABE AND D. M. BERRY

The two ditroff macro packages provided with the software give the user the option to choose
between entry-per-line style and paragraph style. The combined style is not necessary for indx,
because with only two levels of entries, the combined style is equivalent to the entry-per-line style.
These macros are not as flexible as the Winograd and Paxton TEX macros by which the indexer can
control many parts of an individual entry.28 indx formats a basic index, which should be sufficient
for most indexers. However, since the macros are published, they can be modified to be as fancy as
desired.

Although main page references cannot automatically be boldfaced, the indexer may be able to
print entry phrases that have special characters or characteristics. For example, if the indexer desires
the phrase ‘Absolute zero’ to be boldfaced in the index, he or she may have \fBAbsolute
zero\fP in the input text and in the phrase file. When ditroff is run on the indx output, the \fB
and \fP commands will be interpreted and the ‘Absolute zero’ entry will be bold faced. An easier
way to achieve this is to find the phrase ‘Absolute zero’ and then rename it using the alternative-
index-term file to \fBAbsolute zero\fP. Entries containing such formatting commands will
definitely be missorted in the index and their positions must be corrected by the human indexer.
This is why such commands are advised against in Salz’s index10 and why the ability to specify a
sort key in the Bentley and Kernighan indexing suite11 is a good idea.

The entire index must be built at once. One of the problems in building the index with sections of
the text is that entries being cross-referenced to may not exist in the portion of the index being built.
The program would be unable to verify cross-references without having the entire index to search.

Initial expectations of the method

It should be fairly easy to set up the files for the index terms once the indexer identifies the terms
to be indexed and their relationship to each other. The optional files should be straightforward if the
indexer uses each file correctly. For example, the second terms of the combine-phrase file will be
deleted from the index after its page numbers have been added to the other term so no other optional
files should contain that phrase. The only valid way such a phrase could exist in another file is if
another phrase is renamed to this deleted phrase in the alternative-index-term file.

Because a subject heading is most likely to be referred to using more than one phrase, it is
expected that the combine-phrase file will be quite long. Also, because a subject heading is most
likely to be a synopsis of the phrase actually used in the text, the alternative-index-term file should
also be quite long. It is expected that most of the definitions in the alternative-index-term file will be
for subentries. Parts of the phrase used for obtaining the page references of a subentry will probably
appear redundant when the entire entry is printed, as the group heading identifies the subject of the
entry. Thus, most subheadings would be shortened or summarized.

The amount of time needed to create the index depends on several things. Increasing either the
length of the text to be indexed, the number of phrases in the phrase file, or the lengths of these
phrases will increase the execution time. The number of phrases to be combined will also have a
great influence on the time it takes to generate an index because of the page-number merging that
must be done.

Depending on the phrases that eventually make up the index, there may be some sorting prob-
lems. As mentioned above, alphabetization is done word-by-word. Phrases containing punctuation
characters may end up slightly misplaced since there is no way to ignore the punctuation in the sort.
Those misplaced phrases will be either inverted, since they contain commas, or contain printing
sequences. An example of this second type is the \fBAbsolute zero\fP phrase mentioned
earlier. The word-by-word sort would take \fBAbsolute as the first word of the phrase instead of
Absolute. It is the human indexer’s responsibility to check that the index terms are sorted

GENERATING INDEXES FOR DITROFF DOCUMENTS 15

correctly. Only those terms containing non-alphabetic characters need closer examination. These
can be found easily by any editor.

The standard output should be redirected to a file so that the indexer can check the order and the
page references of the entries. It is expected that many of the page numbers for a term may be use-
less, since every single occurrence of the term gets listed. The number of useless terms should
decrease as increasingly specific phrases are selected. Most of the indexer’s time spent on prepar-
ing the indx output for printing will be ensuring that page references are meaningful and replacing a
page sequence with a range if the subject is discussed continuously across consecutive pages.

THE INDXING EXPERIENCE

The first application of indx was to form an index for the thesis3 on which this paper is based. This
task was split into four parts. The first and most difficult entailed selecting the entries for the index,
referred to as entry selection, and selecting the actual phrases from the text that represented them,
referred to as phrase selection. The second part involved setting up the necessary files and running
indx. The third part involved checking the output for incorrectly sorted entries and incorrect page
references. After the macro calls were checked, the final index was printed using an mI macro
package developed for ditroff.

The selection of entries and phrases

Because the authors were novice indexers, the phrase selection task was very difficult despite
having the findphrases output. The list of repeated phrases aided in determining much of the
entries that should be in the index. In fact, out of the 96 phrases in the phrase file, 63 were taken
directly from the list and six were derived from the list. Some of the phrases from the list would
have been found without the help of findphrases. These phrases, though, are obvious since they are
names of things, such as of the optional files, of the sorting schemes, of the formatting styles, and of
the other programs mentioned. These are almost always referred to using the same phrase. It would
have been difficult to find phrases for general discussions whose topics should be indexed, such as
the manual indexing task and phrase selection. However, it was still necessary to read through the
text to identify other entries that should be included but were either not repeated or were described
in such a way that their significant terms were too common to be searched for. Much of the
difficulty lay in how the entries were arranged — whether partially related entries should be kept
separate or placed together under one heading. It seems that this difficulty was due to lack of index-
ing experience.

In order to use findphrases, a file of ignored phrases was needed. The ignored-phrases file was a
combination of generic and text-specific ignored phrases. The text-specific ignored phrases should
include not only phrases not meant to be indexed but common phrases that alone will not be an
entry in the index. For example, since ‘index’ is such a common word in the thesis, it made sense to
ignore it, as all of the occurrences of the phrases would not be referring to the same concept any-
way. Ignoring this word, however, caused the references to the programs Index, index, and INDEX
to be omitted from the list of repeated phrases. Thus phrases for these three programs had to be
determined manually. The ignored phrases used were determined with the intention of using the −b
option of findphrases, which causes any phrase beginning with a phrase in the ignored-phrases file
to also be ignored. Care must be taken in determining text-specific ignored phrases when the −b
option is used, so that important phrases will not be ignored unintentionally.

16 K. K. ABE AND D. M. BERRY

findphrases was to be run on the thesis with a maximum phrase length of five. The thesis was
run through the necessary ditroff preprocessors, through ditroff, and then through dedit into a single
file. This file had to be partitioned since it was too long to be processed at once by findphrases.
The main problem with not being able to submit the whole text at once to findphrases and having
to submit parts separately is that some repeated phrases may simply not be found. If a particular
phrase appears only once in each part, then it will not show up in any part’s listing, whereas it
would show up if the whole text were submitted at once. Thus, manual care had to be taken not to
lose any of these phrases. This care involved manually inspecting the the complete list of tokens
generated for each part. It was also little more work to check back and forth between the different
lists for entries to be indexed. A problem was encountered when there were too many repetitions of
phrases, causing findphrases to stop. The highly repetitive phrases were added to to file of ignored
phrases and the program was restarted. Owing to lack of time, previous runs were not repeated with
the expanded ignored-phrases file. Thus most of the lists were obtained with different ignored-
phrases files.

Normally, it would be useful to suppress counting phrases which are everywhere wholly con-
tained in the same other counted phrase; i.e. if the words ‘espresso’ and ‘coffee’ each appear ten
times and so does the phrase ‘espresso coffee’, not much information is conveyed by listing the indi-
vidual words and their appearance just clutters the list of repeated phrases. One can use the −u
option of findphrases to suppress the listing of these contained phrases. However to reduce execu-
tion time, this option was not used. Also, as will be explained later in this section it turned out that
it was better not to use this option.

findphrases printed the input text file with the lines numbered and the list of repeated phrases,
first sorted by frequency and then sorted alphabetically. Since the frequency with which phrases
occur is not too important for the index, the alphabetically sorted list was mainly used. The list was
scanned for possible entries and it was easy to determine the context in which the phrases occurred
by referring to the lines listed. Because the input text included the indx page markers, it was also
easy to determine whether a phrase would give the page references desired for an entry. The fre-
quency listing, although it was not used at all to create the first index, may be helpful in suggesting
subentries, as subentries are more specific than main entries and thus should occur less frequently
than their respective main entries.

The lists were also scanned for terms that may have been missed when reading through the text.
It seemed that skimming through the text first to jot down possible entries and phrases before look-
ing at the repeated phrases list was easier than beginning with the list. The entries seemed to be
more balanced this way.

An alternative of using ditroff and dedit for preparing the findphrases input file is to use deroff.
Deroff will output the source text with the ditroff commands removed. This output should be saved
in a file and is in the form accepted by findphrases. The file is obtained faster than with ditroff, but
a major drawback of this method is that page markers are not present to aid phrase selection. It is
also possible to use the source file as input to findphrases. This would allow searching for phrases
containing commands such as font changes. Any formatting commands not contained in phrases
should be added to the ignored-phrases file. As with deroff, the input file will not contain any page
markers.

As the entries and phrases were selected, one of the foremost priorities was to reduce the amount
of processing done by indx. This priority affected phrase selection in several ways. First of all, the
maximum number of words in a phrase was kept to a minimum. Remember, the longer the lengths
of the phrases in the phrase file, the longer searching the text will take. As mentioned earlier, it was
advantageous that the −u option was not used with findphrases. Although the list of repeated
phrases was much longer than if the option had been used, it enabled identification of the shortest

GENERATING INDEXES FOR DITROFF DOCUMENTS 17

possible phrase that would yield the same page references as the phrase for an entry in the index.
For example, in Chapter 1, ‘semi-automatic indexing’ was defined on the very pages that the word
‘semi’ is found on. Thus, instead of using the entire phrase consisting of four words, the word semi
was used in the phrase file. Secondly, the number of phrases beginning with the same word was
kept to a minimum. More specifically, having phrases which were identical in the first five letters of
the first word was avoided as much as possible. This was done to have the phrases distributed
evenly in the search table of the hash function.

Setting up the optional files for indx

As the entries and the phrases to give the page references were selected, they were written on a
sheet of paper with the phrases on one side and the entries on the other. For example:

Phrases Entries

select the phrases + select the terms selection of phrases
allows finding + finds repeated findphrases program

+ findphrases
alphabetized Alphabetization schemes

letter ’ letter-by-letter
word ’ word-by-word

This example shows the phrases associated with three of the entries of the index. Two are main
entries, one is a group entry. The phrases shown added together will be combined to give the page
references, and the italicized phrase shows the phrase under which all of the page references end up.
All of the phrases were placed in the phrase file, which was then sorted using the UNIX sort. The
optional files were created using these same phrases. The only files in which an entry was used were
the group-entry file, when group headings were not searched for in the text, and the alternative-
index-term file. It was very easy to set up the files once the phrases and entry phrases were outlined
as shown. One of the phrases was missing from the phrase file, which caused several error mes-
sages to print out on the first run of indx, but the mistake was easy to track and correct. For the frag-
ment of the index given above, the optional files and their contents are:

combine-phrase file:
:
select the phrases : select the terms
allows finding : finds repeated
allows finding : findphrases

group-entry file:
:
alphabetized : letter ’
alphabetized : word ’

alternative-index-term file:
:
select the phrases : Selection of phrases
allows finding : findphrases program
letter ’ : letter-by-letter : alphabetization

18 K. K. ABE AND D. M. BERRY

word ’ : word-by-word : alphabetization
alphabetization : Alphabetization schemes

In the run of indx on the thesis, there were 96 phrases in the phrase file, and the following table
gives the number of definitions in each of the optional files.

File No. of definitions
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

combine-phrase 29
group-entry 43

see-also 4
see 2

see-under 7
alternative-index-term 48c

c
c
c
c
c
c
c
c
c

As expected, the alternative-index-term and combine-phrase files contained many more definitions
than the other files. However, the group-entry file also contained many definitions since many group
relationships were formed for this index. The majority of the definitions in the alternative-index-
term file were for renaming subentries, also as anticipated. Out of the 48 definitions, 37 of them
were for subentries.

Checking the indx output

The file was checked for correct sorting of phrases and correct page references. None of the
entries were sorted in the wrong order since none contained any formatting commands. The page
reference check was time-consuming since all of the references had to be looked up to verify their
usefulness. Setting up editors in multiple shell windows would ease the checking process as the
human indexer can simultaneously view the macro call being checked, the indx input text, and any
of the indx files. If there was a subsequent page reference to the next page, a check was also made
to see if the sequence should be replaced by a range. Keeping a record of the phrases and the pages
on which they were inspected and chosen for indexing would have made the page reference check
considerably faster, especially for the more common phrases which may supply extraneous page
references. There were several-page-long runs which were replaced by ranges, but most of the
corrections stemmed from removing useless page references. This is partially due to the method of
finding all occurrences of a phrase, but with a better selection of phrases, the number of useless
page references should decrease. One disadvantage of having separate lists of repeated phrases is
that a phrase selected from one of the lists may be good for one part of the text, but will bring in
other useless page references when the entire text is used. For example, ‘semi’ as mentioned earlier
was sufficient to give the page references for the definition of semi-automatic indexing found in
Chapter 1 of the thesis. Later in Chapter 3, ‘semi’ appears as part of an example, which resulted in
an extraneous page reference. In fact, more extraneous page references have been generated for that
entry in this section.

Updating the index

The general method described here was used to update the first index to obtain the index found at
the end of this paper. Updating the text often caused indexed discussions originally on one page to
be split over two pages. If the phrase selected to obtain the original page reference does not appear
twice in such a location that both page references will be obtained, another phrase from the missing

GENERATING INDEXES FOR DITROFF DOCUMENTS 19

page must be selected for that entry. This is not very desirable but cannot be avoided at the moment.
The opposite situation may occur as well. Discussions once split over two pages may end up being
on one page. If more than one phrase is used to obtain the page reference and one of the phrases
does not add in other page references for the entry, it may be deleted from the phrase and the
combine-phrase files as it will no longer be contributing any new line numbers for the entry. Having
extra phrases will prolong the execution of indx, but having several extra phrases is better than hav-
ing too few. It was also found that phrases once specific enough to obtain page references for a
given entry could become too general if the textual additions contained many trivial occurrences of
the phrase.

The ability to run the entire text at once through findphrases would have helped make new
phrase choices if they were needed. The UNIX program grep was also used to help determine
whether a phrase would provide the correct page references. It was especially helpful for indexing
Chapter 4 since there was no list of repeated phrases for the chapter. It was very helpful for deter-
mining whether a phrase which begins with a phrase that was ignored by findphrases should be
used in the phrase file.

A method of updating the index after revising the text has been suggested. The Revision Control
System29 is used to keep old versions of the repeated phrases list which may be compared with a
newly generated list using diff. The difference identified will indicate whether changes need to be
made to the phrase and the optional files to update the index. Should the difference in lists be
mainly composed of the same phrases found on different lines, this method will have saved a lot of
time over redoing the index from scratch. The method of using diff to compare old and new phrase
lists for a given part of the paper would have been used had the changes been extensive, but since
most of the changes were stylistic ones, findphrases was not rerun on these parts. Hindsight
revealed that given even minor changes, it may be very useful to rerun findphrases as the section-
ing of the text into pages will be changed.

Indexing this paper

The same phrase file used for indexing the thesis was used initially to index this paper since no
new terms are introduced in this paper. During the scan of the .IX lines, the terms having no
occurrences were checked. If the term belonged to a discussion of the thesis but was omitted for this
paper, it was edited out of the .IX macros. If the phrase chosen to represent a discussion was
removed or the phrase was no longer sufficient to provide the page references, another phrase to
represent the discussion was selected. One phrase which was part of a further expanded discussion
was added to the phrase file in order for the page number of the new discussion to show up under its
respective index term. In two cases, large group entries were compressed into main entries since
much of the detailed discussion had been omitted. For these, the phrases in the phrase file were kept
and the combine-phrase, group-entry, and alternative-index-term files were changed.

The output file was then run through ditroff partially with the mI.line.per.entry and partially with
the mI.paragraph macro packages defined for the entry-per-line and paragraph formats.

The phrase file and the optional files used to generate the index are given in the Appendix. The
boldfaced phrases in the phrase file are those that were taken directly from the lists of repeated
phrases. Also given in that appendix are the macro calls output from indx from which the macro
calls used to generate the index of this paper were obtained and the mI.entry.per.line macro pack-
age showing one possible definition for the .IX macro.

20 K. K. ABE AND D. M. BERRY

AREAS OF FURTHER WORK AND CONCLUSIONS

The indx program was designed to provide the indexer with enough options for creating a good
index. As is true of most programs, there are several areas in which indx should be modified to
improve its performance and to provide additional features.

Improving the performance of indx

The two major areas where improvement directly affects the performance of indx are the page-
merging routine used in combining phrases and the hash function used to distribute the index terms
among the binary search tree buckets of the hash function search table. The implemented page-
merging routine is not the usual kind of merge routine in which several lists are merged to give a
new list. The merged list replaces the original page list of the first term on a combine-phrase file
line. More specifically, the page references of the second list that are not already present in the first
list are inserted into the first list. The page lists are scanned from the beginning and should the end
of the first list be reached before the end of the second list during the merging process, the
remainder of the second list is appended to the first list. Note that in this case, the remainder of the
list is copied and added to the first list instead of being moved over. This way, the page list of the
second term remains intact, although, by the definition of combining phrases, the second term will
be deleted from the index after the page lists are merged.

There is probably a more clever and faster way of merging the two lists, which once implemented
would decrease the execution time for combining phrases. An efficient routine is desirable here
since combining phrases to form entries is one of the most frequent operations, even for a small
index.

The hash function used is very simple and easy to calculate. It was chosen mainly because it
avoided having to retrieve all of the tokens of a phrase. It is particularly advantageous to have the
function depend on the first word only since the existence of a heading that begins with a certain
word can be easily determined with its help. The hash function provides access to the only binary
tree that might contain an index heading beginning with the given word. Were the hash function
dependent on the entire phrase, this fast lookup would not be possible without either searching the
index directly, thus bypassing the search table, or adding some data structure by which this informa-
tion would be obtained.

The hash function has some drawbacks, as it does not distribute the index terms evenly among
the buckets of the search table when many groups of index terms have the same second through fifth
characters. It is not unreasonable to expect that several headings of an index will begin with the
same word. As the number of headings that get hashed to the same location increases, the time to
delete one of those headings will also increase, whether it be through its combination with another
entry, its relocation under another entry, or its removal in the process of renaming the entry. Thus,
as larger indexes are produced, the advantages of the current hash function would be outweighed by
the disadvantage of managing large binary search trees. A slightly more complicated, but better dis-
tributing hash function should be used despite having to add a table structure for determining
whether any index entry begins with a given word.

Additional features of indx

Several features that would be nice to have available became apparent after examining other
semi-automatic indexing programs and after using indx.

1. Increasing the number of cross-references. Although having one entry to cross-reference is
usually sufficient, there are times when a second or even a third heading should also be

GENERATING INDEXES FOR DITROFF DOCUMENTS 21

cross-referenced.
2. Increasing the index levels. The vast majority of indexes desired could be built by indx if the

number of index levels possible were increased to three. Having more than three levels would
probably not be worth the effort to implement since four or more levels is quite uncommon in
indexes.

3. Sorting scheme options. indx would also be more complete if it provided the indexer with
the choice of sorting entries word-by-word or letter-by-letter.

4. An explicit sort key. As used in the Bentley and Kernighan indexing programs, having the
ability to explicitly define a sort key guarantees that the index terms will be sorted correctly
even though they may contain formatting commands, punctuation characters, or digits.

5. Merging indexes. indx may be very useful if parts of an index could be created and merged
to form a complete index. This would allow the creation of indexes on a chapter-by-chapter
basis, whereupon indexes of each chapter are merged to form the index.

6. Keeping a combined phrase in the index. While using indx to build the initial index of this
paper, the option of keeping the second term of a combine-phrase file definition rather than
having it automatically deleted became desirable. Just as the group-entry file allowed an entry
to become a subentry while remaining a main entry, the ability to use a phrase to supply page
references to more than one phrase was found to be handy. Currently, if such entries were
desired, another phrase would have to be chosen to yield the same page numbers. This would
put an additional burden on the human indexer and would cause the use of more index terms
than necessary.

These changes could be incorporated by changing the program or by using the Bentley and
Kernighan approach of adding awk scripts in a pipe line.

Conclusions

The indx program has been successfully used to create the index of this paper. The method as a
whole is simple to use once the difficult task of selecting phrases and entries is done. This selection
task must be done for all semi-automatic indexing programs. However, instead of entering them in
the source text, they are entered in the phrase file, thus avoiding messing up the source text.

The novel idea of using different files to create the various parts of the index may at first seem
more involved than the other programs especially since what is easily done by the human indexer
when inserting indexing macros in a text must be explicitly defined in the combine-phrase and
alternative-index-term files. However, there are several reasons for storing all the information about
the index in several files than having parts of the index scattered among the text. First, should the
human indexer wish to change the heading of a term, all the various places in the text where the
macro is given would have to be searched for and changed, whereas with indx, the phrase would
have to be changed only in a few short files. In many cases, the only phrase that would need chang-
ing would be in the alternative-index-term file. Secondly, it seems easier to track down discrepan-
cies in the index when all definitions are organized in specific files. Thirdly, it is easier to remove
index terms from the index by deleting the appropriate lines of the files involved. Fourthly, as dis-
cussed earlier, one can calculate the total number of entries by the number of definitions in the files.
Also, it should be easier to restructure the index. For example, pulling several main entries under
one group or breaking up a group entry into several main entries are accomplished by changing one
line in the optional files for each entry involved instead of changing each occurrence of the indexing
commands for those entries in the source text. In general, changes may be made to the index
without having to touch the text file.

22 K. K. ABE AND D. M. BERRY

indx helps the human indexer create good indexes to the extent that cross-references in the index
will be checked and the annoying chain reference in which the reader is directed from one entry to
another to yet another without having any page references to look up is disallowed. It is necessary
for the human to spend some time eliminating useless page references. Using specific phrases that
are as short as possible will reduce the amount of checking needed.

The process of creating indexes using indx is made easier by use of other tools, such as dedit and
findphrases. Dedit prepares source text in ditroff output format for use by indx. The dedit output
has also been shown to be useful as input to findphrases. findphrases has been shown to aid in the
phrase selection process. It was found to be especially helpful in identifying phrases that would
locate discussions of concepts not having specific phrases to represent them. In order to improve its
usefulness, findphrases needs to be able to search through the entire text at once so that separate
lists will not have to be cross checked manually.

Other tools do not exist yet. Additional options to findphrases would make it more useful for
indexing. An option to list all phrases may help the indexer in identifying phrases for index entries,
but there may be too much output for the human indexer to sift through. The browser program sug-
gested earlier would aid the page reference check specifically in the conversion of a sequence of
page numbers into a range of numbers.

indx performs the clerical process of the indexing task, finding the page references of entries and
arranging the entries in the desired order, without cluttering the text being indexed with indexing
commands. This program and its related tools provide much help to the person creating an index.
However, the indexing task remains a highly intellectual and human intensive one.

One of the referees for the paper appears, from the thoroughness of his or her comments, to be a
professional indexer who has used other indexing software. The referee legitimately complained
about all the gyrations that indexer must perform to produce an index with the suite of programs
described herein and was glad that he or she does not have to use this present suite.

We are forced to agree that there are a lot of gyrations. However, do notice that almost all of the
gyrations were in the term selection process, which by its very intelligence requiring nature is the
hardest to automate. findphrases is offered only as a tool to be used by an intelligent indexer to
help locate the phrases that are talked about in the document being indexed. Ultimately the indexer
has to know the document well enough to pick the terms him or herself. The alternative is to use no
tool and do it completely by hand, as with the other systems mentioned in the introduction section.

That findphrases is the weakest part of the suite is demonstrated by the fact that this referee
found some indexing terms that we had failed to identify. These were added to the appropriate files
for generation of the current index of this paper. It is hoped that the difficulties with this weakest
link do not detract from satisfaction with the rest of the suite. If we would be satisfied with
unverified page references and either

1. lists of only individual page numbers and no ranges or
2. uniform replacement of each sublist of consecutive page numbers by a range regardless of

whether or not the range represents a single discussion,
then the production of the formatted document and formatted index can be completely automatic
once the terms are identified. Indeed, in preparing drafts, we skipped the page number verification
and range identification, and we have a makefile, shown in the Appendix, that prepares a complete
printed copy of the paper while we go out to lunch. Only just before sending a version of the paper
to the journal did we manually intervene in this process to verify page numbers and identify ranges.

GENERATING INDEXES FOR DITROFF DOCUMENTS 23

ACKNOWLEDGEMENTS

The authors thank Christine Aguilera for her willingness to modify her findphrases program to
meet the needs of indexing. They thank David Kay and the anonymous referees for their comments
on an earlier draft. Finally they thank Brian Kernighan for his useful discussions over the network
and for providing a set of ditroff macros for typesetting this paper in SP&E ’s format.

REFERENCES

1. E. T. Harris, ‘A guide for the preparation of indexes’, Technical Report, The Rand Corporation, Santa Monica, CA,
1965.

2. B. W. Kernighan, ‘A typesetter-independent TROFF’, Computing Science Technical Report No. 97, Bell Laboratories,
Murray Hill, NJ 07974, March 1982.

3. K. K. Takata (n.k.a. K. K. Abe), ‘indx, a semi-automatic indexing program’, M.S. Thesis, Computer Science Depart-
ment, UCLA, Los Angeles, CA, 1987.

4. G. N. Knight, Training In Indexing, The M. I. T. Press, Cambridge, MA, 1970.
5. Chicago Manual of Style, Thirteenth Edition, University of Chicago Press, Chicago, 1982.
6. R. Gardner and E. Gardner, ‘Computer-aided indexing with SPITBOL and TEXTFORM’, The Indexer, 13, 115–119,

1982.
7. R. L. Collison, Indexing Books, John De Graff, Inc., New York, NY, 1962.
8. R. L. Collison, Indexes and Indexing, John De Graff, Inc., Tuckahoe, NY, 1969.
9. P. Hardy, ‘Computer-aided indexing of technical manuals’, The Indexer, 15, 22–24, 1986.
10. R. Salz, ‘INDEX’, Technical Memo, Mirror Systems, Inc., 1986.
11. J. L. Bentley and B. W. Kernighan, ‘Tools for printing indexes’, Electronic Publishing, 1, 3–17, 1988.
12. R. L. Aurbach, ‘re: IdxTEX’, TUGboat, 7, 187, 1986.
13. L. Lamport, LATEX User’s Guide & Reference Manual, Addison-Wesley, Reading, MA, 1986.
14. T. Hofmann, ‘re: latexindex ’, TUGboat, 7, 186, 1986.
15. Interleaf Workstation Publishing Software User’s Guide, Interleaf, Inc., 1986.
16. R. Kerstetter, Illustrated Ventura, Wordware Publishing, Inc., Plano, TX, 1988.
17. C. Anderson, ‘<<ANSWER: an “off-the-shelf” program for computer-aided indexing’, The Indexer, 13, 236–238, 1983.
18. J. M. Pasachoff and N. P. Kutner, ‘Computer assistance in indexing with *INDEX’, The Indexer, 12, 173–174, 1981.
19. L. K. Fetters, ‘INDEXIT: an economical but limited indexing program’, DATABASE, 9, 54–56, 1986.
20. L. K. Fetters, ‘Indexing software abounds’, Small Press, 4, 50–55, 1986.
21. D. L. Parnas, ‘On the criteria to be used in decomposing systems into modules’, Communications of the ACM, 15,

1053–1058, 1972.
22. B. W. Kernighan, Private communication, 1987.
23. D. Fuchs, ‘Device-independent file format’, TUGboat, 3, 14–19, 1982.
24. D. E. Knuth, The TEXbook, Addison-Wesley Publishing Co., Reading, MA, 1984.
25. C. Buchman, D. M. Berry, and J. Gonczarowski, ‘DITROFF/FFORTID, an adaptation of the UNIX DITROFF for

formattingbi-directional text’, ACM Transactions on Office Information Systems, 3, 1985.
26. D. E. Knuth and P. MacKay, ‘Mixing right-to-left texts with left-to-right texts’, TUGboat, 8, 14–25, 1987.
27. C.S. Aguilera, ‘Finding abstractions in problem descriptions using findphrases’, M.S. Thesis, Computer Science

Department, UCLA, Los Angeles, CA, 1987.
28. T. Winograd and B. Paxton, ‘An indexing facility for TEX’, TUGboat, 1, Appendix A, 1980.
29. W. F. Tichy, ‘Design, implementation, and evaluation of a revision control system,’ Proceedings of the 6th International

Conference on Software Engineering, Computer Society Press of the IEEE, Washington, D.C., September 1982.

INDEX

*INDEX 5, 23
<<ANSWER>> 5, 23
Alphabetization problems

ASCII order 12
numerals 5
special characters 9, 12, 13–14, 15, 21

Alphabetization schemes 1, 5, 12, 17
See also Sorting of entries
letter-by-letter 5, 21
word-by-word 5, 12, 13–14, 21

Alternative-index-term file. See under Optional files
ASCII comparisons 12
Automatic indexing. See Semi-automatic indexing

24 K. K. ABE AND D. M. BERRY

Blind references. See Chain references
Chain references 22

See also Circular references
Check entries. See Circular references
Checking indx output for

alphabetic order. See Alphabetization problems
page references 9, 12, 15, 18, 22
see-under cross-references 13

Circular references
See also Chain references

Combine-phrase file. See under Optional files
Creating the paper index 2, 3, 18, 19
Cross references 3, 6, 22

see 3, 10, 12, 13
see also 3, 10–11, 13
see under 3–4, 8, 10, 12, 13

dedit 9, 16, 22
ditroff 1–2, 5, 6–7, 9, 12, 14, 15–16, 19, 22, 23
Enhancing the features of indx 6, 7, 21
Entry phrase 3–4, 10, 14, 17

See also Heading
Error handling 2, 12, 17
findphrases program 1, 10, 15–16, 19, 22, 23

aid in phrase selection 15–16
ignored phrases file 10, 15–16
improvements suggested 22
preparing input file 16

Formatting final index 14, 15, 19
Formatting styles

combined 4, 8, 10, 14, 17, 21
entry-per-line 4, 11, 12, 14, 19
paragraph (run-in) 4, 11, 12, 14

Group entry 3, 8, 17, 21
Group-entry file. See under Optional files
Hash Function 17, 20
Heading 3–5, 8–9, 14–15, 20–21
INDEX 5, 23
INDEXIT 5–6, 23
indx method 1–2, 8–9, 14–15, 18–19, 21

advantages of 6, 21–22
disadvantages of 22

Now switch to paragraph style
indx tools: browser program, 13, 22; dedit, 9, 16, 22;

findphrases, See findphrases program; grep, 19;
updating shell script, 19, 23

Main entry, 3, 11–12, 13, 17, 19, 21
Manual indexing task, 4, 15
Numerals, alphabetization of, 5
Optional files: alternative-index-term, 8–9, 12, 14, 17–19,

21; combine-phrase, 8–9, 11, 13, 14, 17–19, 20–21;
group-entry, 8, 11, 13, 17–19, 21; see, 8, 12, 13;
see-also, 11; see-under, 13; separation character, 11

Output of indx, 9, 12. See also Formatting final index
Page merging routine, 14, 20, 21
Page reference, 3, 4, 8–9, 10–12, 13–17, 18–19, 20–22
Performance, improving indx’s: hash function, 17, 20.

(See also Search Table); page merging routine, 14,
20–21 Phrase file, 8–9, 10–12, 13–17, 18–19, 21: special

character, 10
Preparing input files, 6, 8–9, 14, 17
Preparing input text, 2, 8–9, 10, 14, 16
Regular entry, 3, 12
Search Table, 17, 20
Searching the index. See Search Table
See file. See under Optional files
See-also file. See under Optional files
See-under file. See under Optional files
Selection of phrases, 4, 8, 15–16, 17, 22: aid for, See

under findphrases program; difficulties in, 16; for
indx, 10, 15–17

Semi-automatic indexing: criteria for programs, 6, 23;
definition of, 1, 17, 18, 20, 21, 23; motivation for, 2

Semi-automatic indexing programs, 5, 7, 14, 21, 23:
*INDEX, 5, 23; <<ANSWER>>, 5, 23; INDEX, 5,
23; INDEXIT, 5–6, 23

Size of the index, determining, 13, 20, 21
Sorting of entries, 4–5, 6, 9, 12, 13–14, 21. See also

Alphabetization schemes
Special characters, alphabetization of, 9, 12, 13–14, 15, 21
Subentry, 3, 4, 11, 12, 13, 14, 16, 18, 21
Table of contents, 1
Updating an index, 18–19

APPENDIX: INDX FILES AND OUTPUT

This appendix contains the files used by indx to form the index of this paper. The boldfaced
phrases in the phrase file have been taken from the lists of repeated phrases from running
findphrases. To save space, the phrase file is printed in two columns. Next are the optional files in
order of processing by indx: combine-phrase, group-entry, see-also, see, see-under, and
alternative-index-term.

Following the files is a printout of the output obtained directly from indx as a result of using
these files. The input text is the main body of the paper itself. Following this output are an entry-
per-line version of the definition of the .IX macro, that is the mI.entry.per.line macro package,

GENERATING INDEXES FOR DITROFF DOCUMENTS 25

and the makefile that is used to typeset this paper.

The phrase file

:
* INDEX :
< < answer
a minimum
abstraction
actual phrase
algorithm
allow for merging
allows finding
allupper
alphabetized
alternative -
approximated
ASCII comparisons
automatically deleted
automating
awk
browser program
calculate
called chunks
Chain reference
changes been extensive
chapters were run
check back
checking the page
chunk file
chunkfile . p
Circular references
combine -
combined
combined style
create cross
criteria
dedit
deroff
design decisions
difficulty laid
ditroff
ditroff macro calls
ditroff macro packages
documate
doubly
else PrintErrorMsg
enabled identification
end index
entry -
Entry phrase
entry phrases
erroneously placed
error
eventually get the following
expected that many

extraneous
file of phrases
find a subentry
find an index
findphrases
findphrases needs
finds repeated
from the list
generate it
grep
grep was
group -
Group entry
hash function
Heading
headings and
ignored phrases
incorrectly sorted
increased to three
INDEX :
INDEXIT
index for the paper
index of the paper
individual files
indx helps
involves expanding
LATEX
letter - by
main advantage
main entries
Main entry
manual indexing
merging
mI :
minor changes
modifications proposed
Module 5
Module 6
non-alphabetic
novel idea
obtain the index found
on one side
Page reference
page reference check
page references
paragraph ,
paragraph or
paragraph style
partitioned since
phrase selection
phrases (found
phrases . p
phrases are implemented

26 K. K. ABE AND D. M. BERRY

printed using
program modularized
punctuation
range
Regular entry
related
repeated phrases aided
retrievals of
revision control
Roman numerals
Salz
scheme
search table :
searching for a heading
second cross
see - also file
see - under file
see also cross
see and
see cross
see file
see under cross
select the phrases
select the terms
semi

semiautomatic
separation character
set up
shell script
should save
significant phrases
sorted
sorting
special character
spend some time
standard input can
standard input is
Starindex
subentries
Subentry
Table of contents
takes longer
TEX
the input text
the method
the phrase file
unfamiliar
units are
updating the index
used in a subentry
word - by

The optional files

combine-phrases file:

:
actual phrase : used in a subentry
algorithm : else PrintErrorMsg
allow for merging : automatically deleted
allow for merging : increased to three
allow for merging : involves expanding
allow for merging : scheme
allow for merging : second cross
allows finding : findphrases
allows finding : finds repeated
allupper : chunkfile . p
calculate : approximated
called chunks : chunk file
chapters were run : the input text
combined : combined style
create cross : related
create cross : unfamiliar
deroff : partitioned since
difficulty laid : check back
ditroff macro packages : mI
end index : Module 6
Entry phrase : entry phrases
findphrases needs : significant phrases

GENERATING INDEXES FOR DITROFF DOCUMENTS 27

from the list : a minimum
generate it : manual indexing
Heading : headings and
incorrectly sorted : erroneously placed
incorrectly sorted : non-alphabetic
incorrectly sorted : punctuation
Main entry : main entries
Module 5 : phrases (found
novel idea : indx helps
novel idea : main advantage
obtain the index found : changes been extensive
obtain the index found : grep
obtain the index found : index for the paper
obtain the index found : index of the paper
Page reference : page references
paragraph style : paragraph ,
paragraph style : paragraph or
phrase selection : select the phrases
phrase selection : select the terms
phrases are implemented : phrases . p
program modularized : abstraction
program modularized : design decisions
range : checking the page
range : extraneous
range : page reference check
repeated phrases aided : enabled identification
retrievals of : find an index
retrievals of : searching for a heading
see cross : see and
semiautomatic : awk
semiautomatic : documate
semiautomatic : LATEX
semiautomatic : Salz
semiautomatic : Starindex
semiautomatic : TEX
set up : eventually get the following
set up : individual files
set up : on one side
shell script : revision control
sorting : sorted
Subentry : subentries
takes longer : spend some time
the method : expected that many
the method : printed using
the method : should save
the phrase file : file of phrases
units are : standard input can
units are : standard input is
updating the index : minor changes

group-entry file:

:
allows finding : deroff
allows finding : findphrases needs

28 K. K. ABE AND D. M. BERRY

allows finding : ignored phrases
allows finding : repeated phrases aided
Alphabetization problems : ASCII comparisons :
Alphabetization problems : incorrectly sorted :
Alphabetization problems : Roman numerals :
alphabetized : letter - by
alphabetized : word - by
Checking indx output for : actual phrase
Checking indx output for : range
Chunks : allupper
Chunks : called chunks
create cross : see also cross
create cross : see under cross
create cross : see cross
Formatting styles : combined
Formatting styles : entry -
Formatting styles : paragraph style
Improving indx’s performance : hash function :
Improving indx’s performance : merging :
indx tools : browser program
indx tools : dedit :
indx tools : grep was
indx tools : shell script
Optional files : alternative -
Optional files : combine -
Optional files : group -
Optional files : see - also file
Optional files : see - under file
Optional files : see file
Optional files : separation character
phrase selection : difficulty laid
phrase selection : from the list
Phrases : Module 5
Phrases : phrases are implemented
program modularized : modifications proposed
Semi-automatic indexing : automating
Semi-automatic indexing : criteria
Semi-automatic indexing : semi
semiautomatic : * INDEX :
semiautomatic : < < answer :
semiautomatic : INDEX :
semiautomatic : INDEXIT :
Storage and retrieval : find a subentry
Storage and retrieval : retrievals of
The index : doubly
The index : end index
the method : novel idea
the method : takes longer
the phrase file : special character
Units : units are

see-also file:

:
alphabetized : sorting

GENERATING INDEXES FOR DITROFF DOCUMENTS 29

Chain reference : Circular references
Circular references : Chain reference
ditroff macro calls : ditroff macro packages
doubly : search table : The index
Entry phrase : Heading
hash function : search table : Improving indx’s performance
sorting : alphabetized

see file:

:
alphabetic order : Alphabetization problems : Checking indx output for
Automatic indexing : Semi-automatic indexing
Blind references : Chain reference
Check entries : Circular references
findphrases : allows finding : indx tools
Searching the index : search table

see-under file:

:
aid for : allows finding : phrase selection
Alternative-index-term file : Optional files
Combine-phrase file : Optional files
Group-entry file : Optional files
implementation : Chunks : Units
See file : Optional files
See-also file : Optional files
See-under file : Optional files

alternative-index-term file:

:
< < answer : <<ANSWER>>
* INDEX : *INDEX
algorithm : Algorithm of indx
ASCII comparisons : ASCII order : Alphabetization problems
Roman numerals : numerals : Alphabetization problems
incorrectly sorted : special characters : Alphabetization problems
letter - by : letter-by-letter : alphabetized
word - by : word-by-word : alphabetized
alphabetized : Alphabetization schemes
Chain reference : Chain references
range : page references : Checking indx output for
actual phrase : see-under cross-references : Checking indx output for
called chunks : design : Chunks
allupper : implementation : Chunks
obtain the index found : Creating the paper index
see cross : see : create cross
see also cross : see also : create cross

30 K. K. ABE AND D. M. BERRY

see under cross : see under : create cross
create cross : Cross references
calculate : Determining size of the index
allow for merging : Enhancing the features of indx
error : Error handling
ignored phrases : ignored phrases file : allows finding
deroff : preparing input file : allows finding
findphrases needs : improvements suggested : allows finding
repeated phrases aided : aid in phrase selection : allows finding
allows finding : findphrases program
ditroff macro packages : Formatting final index
entry - : entry-per-line : Formatting styles
paragraph style : paragraph (run-in) : Formatting styles
hash function : Hash Function
merging : page merging routine : Improving indx’s performance
modifications proposed : modifiability of : program modularized
program modularized : indx design
novel idea : advantages of : the method
takes longer : disadvantages of : the method
the method : indx method
shell script : updating shell script : indx tools
grep was : grep : indx tools
generate it : Manual indexing task
Roman numerals : Numerals, alphabetization of
alternative - : alternative-index-term : Optional files
combine - : combine-phrase : Optional files
group - : group-entry : Optional files
see file : see : Optional files
see - also file : see-also : Optional files
see - under file : see-under : Optional files
ditroff macro calls : Output of indx
merging : Page merging routine
Improving indx’s performance : Performance, improving indx’s
the phrase file : Phrase file
Module 5 : design : Phrases
phrases are implemented : implementation : Phrases
set up : Preparing input files
chapters were run : Preparing input text
search table : Search Table
difficulty laid : difficulties in : phrase selection
from the list : for indx : phrase selection
phrase selection : Selection of phrases
semi : definition of : Semi-automatic indexing
automating : motivation for : Semi-automatic indexing
criteria : criteria for programs : Semi-automatic indexing
< < answer : <<ANSWER>> : semiautomatic
* INDEX : *INDEX : semiautomatic
semiautomatic : Semi-automatic indexing programs
sorting : Sorting of entries
Determining size of the index : Size of the index, determining
incorrectly sorted : Special characters, alphabetization of
retrievals of : of main entries : Storage and retrieval
find a subentry : of subentries : Storage and retrieval
end index : design : The index
doubly : implementation : The index
units are : design : Units
updating the index : Updating an index

GENERATING INDEXES FOR DITROFF DOCUMENTS 31

The untouched output of indx for the index (folded to fit the line length)

.IX 0 reg "*INDEX" "5, 23" ""

.IX 0 reg "<<ANSWER>>" "5, 23" ""

.IX 0 reg "Algorithm of indx" "" ""

.IX 0 reg "Alphabetization problems" "" ""

.IX 1 reg "ASCII order" "12" ""

.IX 1 reg "numerals" "5" ""

.IX 1 reg "special characters" "4, 9, 10, 12, 13, 14, 15, 21" ""

.IX 0 also "Alphabetization schemes" "1, 5, 12, 17" "Sorting of
entries"
.IX 1 reg "letter-by-letter" "5, 17, 21" ""
.IX 1 reg "word-by-word" "5, 12, 13, 14, 17, 18, 21" ""
.IX 0 under "Alternative-index-term file" "" "Optional files"
.IX 0 reg "ASCII comparisons" "12" ""
.IX 0 see "Automatic indexing" "" "Semi-automatic indexing"
.IX 0 see "Blind references" "" "Chain references"
.IX 0 also "Chain references" "22" "Circular references"
.IX 0 see "Check entries" "" "Circular references"
.IX 0 reg "Checking indx output for" "" ""
.IX 1 see "alphabetic order" "" "Alphabetization problems"
.IX 1 reg "page references" "9, 12, 15, 18, 22" ""
.IX 1 reg "see-under cross-references" "13" ""
.IX 0 reg "Chunks" "" ""
.IX 1 reg "design" "" ""
.IX 1 reg "implementation" "" ""
.IX 0 also "Circular references" "" "Chain references"
.IX 0 under "Combine-phrase file" "" "Optional files"
.IX 0 reg "Creating the paper index" "2, 3, 18, 19" ""
.IX 0 reg "Cross references" "3, 6, 15, 22" ""
.IX 1 reg "see" "3, 10, 12, 13" ""
.IX 1 reg "see also" "3, 10, 11, 13" ""
.IX 1 reg "see under" "3, 4, 8, 10, 12, 13" ""
.IX 0 reg "dedit" "9, 16, 22" ""
.IX 0 reg "ditroff" "1, 2, 3, 5, 6, 7, 9, 11, 12, 13, 14, 15, 16, 17,
19, 21, 22, 23" ""
.IX 0 reg "Enhancing the features of indx" "6, 7, 21" ""
.IX 0 also "Entry phrase" "3, 4, 10, 14, 17" "Heading"
.IX 0 reg "Error handling" "2, 12, 17" ""
.IX 0 reg "findphrases program" "1, 10, 15, 16, 17, 19, 22, 23" ""
.IX 1 reg "aid in phrase selection" "15, 16" ""
.IX 1 reg "ignored phrases file" "10, 15, 16" ""
.IX 1 reg "improvements suggested" "22" ""
.IX 1 reg "preparing input file" "16" ""
.IX 0 reg "Formatting final index" "14, 15, 19" ""
.IX 0 reg "Formatting styles" "" ""
.IX 1 reg "combined" "4, 8, 10, 14, 17, 21" ""
.IX 1 reg "entry-per-line" "4, 11, 12, 14, 19" ""
.IX 1 reg "paragraph (run-in)" "4, 11, 12, 14" ""
.IX 0 reg "Group entry" "3, 8, 17, 21" ""
.IX 0 under "Group-entry file" "" "Optional files"
.IX 0 reg "Hash Function" "17, 20" ""
.IX 0 reg "Heading" "3, 4, 5, 8, 9, 14, 15, 20, 21" ""
.IX 0 reg "INDEX" "5, 15, 23" ""
.IX 0 reg "INDEXIT" "5, 6, 23" ""
.IX 0 reg "indx design" "" ""
.IX 1 reg "modifiability of" "" ""

32 K. K. ABE AND D. M. BERRY

.IX 0 reg "indx method" "1, 2, 8, 9, 14, 15, 18, 19, 21" ""

.IX 1 reg "advantages of" "6, 21, 22" ""

.IX 1 reg "disadvantages of" "22" ""

.IX 0 reg "indx tools" "" ""

.IX 1 reg "browser program" "13, 22" ""

.IX 1 reg "dedit" "9, 16, 22" ""

.IX 1 see "findphrases" "" "findphrases program"

.IX 1 reg "grep" "19" ""

.IX 1 reg "updating shell script" "19, 23" ""

.IX 0 reg "Main entry" "3, 11, 12, 13, 16, 17, 19, 21" ""

.IX 0 reg "Manual indexing task" "4, 15" ""

.IX 0 reg "Numerals, alphabetization of" "5" ""

.IX 0 reg "Optional files" "" ""

.IX 1 reg "alternative-index-term" "8, 9, 12, 14, 17, 18, 19, 21" ""

.IX 1 reg "combine-phrase" "8, 9, 11, 13, 14, 17, 18, 19, 20, 21" ""

.IX 1 reg "group-entry" "8, 11, 13, 17, 18, 19, 21" ""

.IX 1 reg "see" "8, 12, 13" ""

.IX 1 reg "see-also" "11" ""

.IX 1 reg "see-under" "13" ""

.IX 1 reg "separation character" "11" ""

.IX 0 also "Output of indx" "9, 12" "Formatting final index"

.IX 0 reg "Page merging routine" "14, 20, 21" ""

.IX 0 reg "Page reference" "3, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22" ""
.IX 0 reg "Performance, improving indx’s" "" ""
.IX 1 also "hash function" "17, 20" "Search Table"
.IX 1 reg "page merging routine" "14, 20, 21" ""
.IX 0 reg "Phrase file" "8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
21" ""
.IX 1 reg "special character" "10" ""
.IX 0 reg "Phrases" "" ""
.IX 1 reg "design" "" ""
.IX 1 reg "implementation" "" ""
.IX 0 reg "Preparing input files" "6, 8, 9, 14, 17" ""
.IX 0 reg "Preparing input text" "2, 8, 9, 10, 14, 16" ""
.IX 0 reg "Regular entry" "3, 12" ""
.IX 0 reg "Search Table" "17, 20" ""
.IX 0 see "Searching the index" "" "Search Table"
.IX 0 under "See file" "" "Optional files"
.IX 0 under "See-also file" "" "Optional files"
.IX 0 under "See-under file" "" "Optional files"
.IX 0 reg "Selection of phrases" "4, 8, 15, 16, 17, 22" ""
.IX 1 under "aid for" "" "findphrases program"
.IX 1 reg "difficulties in" "16" ""
.IX 1 reg "for indx" "10, 15, 16, 17" ""
.IX 0 reg "Semi-automatic indexing" "" ""
.IX 1 reg "criteria for programs" "6, 23" ""
.IX 1 reg "definition of" "1, 17, 18, 20, 21, 23" ""
.IX 1 reg "motivation for" "2" ""
.IX 0 reg "Semi-automatic indexing programs" "5, 7, 14, 21, 23" ""
.IX 1 reg "*INDEX" "5, 23" ""
.IX 1 reg "<<ANSWER>>" "5, 23" ""
.IX 1 reg "INDEX" "5, 15, 23" ""
.IX 1 reg "INDEXIT" "5, 6, 23" ""
.IX 0 reg "Size of the index, determining" "13, 20, 21" ""
.IX 0 also "Sorting of entries" "4, 5, 6, 9, 12, 13, 14, 15, 16, 17,
18, 21" "Alphabetization schemes"
.IX 0 reg "Special characters, alphabetization of" "4, 9, 10, 12, 13,

GENERATING INDEXES FOR DITROFF DOCUMENTS 33

14, 15, 21" ""
.IX 0 reg "Storage and retrieval" "" ""
.IX 1 reg "of main entries" "" ""
.IX 1 reg "of subentries" "" ""
.IX 0 reg "Subentry" "3, 4, 11, 12, 13, 14, 16, 18, 21" ""
.IX 0 reg "Table of contents" "1" ""
.IX 0 reg "The index" "" ""
.IX 1 reg "design" "" ""
.IX 1 also "implementation" "" "Search Table"
.IX 0 reg "Units" "" ""
.IX 1 reg "design" "" ""
.IX 1 under "implementation" "" "Chunks"
.IX 0 reg "Updating an index" "18, 19" ""

The actual index given in this paper is obtained by removing useless page references and replacing
sequences of consecutive page numbers by ranges of page numbers. Both must be done manually,
as they involve inspection of the referenced page numbers to determine if the reference is useful and
if, in fact, the sequence represents a single continuous discussion. If one does not mind arbitrarily
replacing all sequences with ranges despite the semantics of the referenced text, it is straightforward
to write a program to do this replacement.

An entry-per-line version of mI macro package

.de IX

.if \\$1>0 .in +(3n*\\$1u)u

. \" indent a little for every sub-level

.in +3n

. \" left margin in case line is too long and must be continued

. \" on the next line

.ti -3n

. \" left margin for the entry

.ie ’\\$2’see’ \\$3.\ \ \\fISee\\fP\ \\$5

.el \{\

. ie ’\\$2’under’ \\$3.\ \ \\fISee under\\fP\ \\$5

. el \{\
\\$3\ \ \\$4
. \" entry phrase & page refs
. if ’\\$2’also’ \{\
. br
\\fISee also\\fP\ \ \\$5\}\}\}
.in -3n
. \" move margin back to line up with starting of the entry
.if \\$1>0 .in -(3n*\\$1u)u
. \" get back to original margin of main entries
..

Makefile used to format this paper:

printpaper contains troff macro definitions and register settings
and the title and abstract
the sec?’s contain sections of the paper
refs contains the refer database

34 K. K. ABE AND D. M. BERRY

header.index contains troff macro definitions and register settings
for printing the index
tail.index resets the macros and registers for normal text after the
index
app contains the appendix
app includes (via .so’s) optional files from run of indx; phrases
file must be copied manually into app because some of its words
are boldfaced
phrases comb grp see also under alt are the required and optional
files for indx

F=paper
B=printpaper sec1 sec2 sec3 sec4
PAGES=
refs.ia: refs

mkey refs | inv -n refs

$F.ref: $B refs.ia
refer -e -n -p refs $B > $F.ref

$F.ddt: $F.ref
/bin/cat $F.ref | tbl | dtroff $(PAGES) -mXP | dedit > $F.ddt

$F.raw.indx: $F.ddt phrases comb grp see also under alt
indx -pphrases -ccomb -ggrp -ssee -aalso -uunder -nalt < $F.ddt \
> $F.raw.indx

$F.raw.indx.trf: $F.raw.indx
prepare a formattable copy of the raw index for inclusion in appendix A
by folding too-long lines, inserting \& in front of each macro call
and doubling escapes

fmt $F.raw.indx |alg.trf >$F.raw.indx.trf

$F.indx: $F.raw.indx
cp $F.raw.indx $F.indx

when preparing a non-final draft, comment out the next two lines
echo now edit the $F.indx by collecting sequences of pages
vi $F.indx

to print the paper
psroff: $F.indx $F.raw.indx.trf app

/bin/cat $F.ref header.index $F.indx tail.index app | tbl \
| psroff $(PAGES) -mXP

