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INTRODUCTION

for the wider acceptance and application of GDLs in real-world environments,

Many GDLs have been proposed in the literatyre !> 2 The purpose of this study is
ot to compare GDLs but to apply design metrics to a graphical design to determine
the complexity of the resultant source code, Highly complex source code tends to have
Ore errors associated with it ang is thus more difficuit to maintain. 35 A graphical
design language, GPL, is used in this research.
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GPL is the graphical programming language of the dialogue management system
(DMS) being developed at Virginia Tech.® GPL follows the supervised flow design
methodology which dictates that each program and subprogram has a supervisor which
supervises all the flow of information within a diagram. The diagrams of the programs
are called supervised flow diagrams, or SFDs. The DMS environment provides a
graphical editor for the creation of SFDs which consist of a small set of icons represent-
ing decisions, subprogram calls, input/output operations, statement blocks, start,
return, and control and data flow lines. GPL is unique in the sense that it too is a
programming language rather than just a design language. The DMS system has a
coder under development, which takes the SFDs for a program and generates high-
level language code. At some point in the future the coder will generate C code. The
DMS project also has plans for a behavioural demonstrator which will dynamically
execute a program, while allowing the user to examine and change variable values, and
exhaustively test parts of a program.” ®

This research attempts to take designs written in GPL, translate the designs into a
form recognizable by our metric tool and finally analyse the designs. By using designs
and the source code generated from those designs we can statistically derive prediction
equations which take design metric values and produce source code complexity. Metric
values for both the graphical designs and corresponding source code were necessary to
form the prediction equations. In the future only the metric values for the design and
the derived equations are necessary to predict the metric values for the resulting source
code. Evaluating a software system at design time can save a large amount of time and
money in the production of software.

In general, the software life cycle consists of requirements definition, program design,
implementation, testing and, finally, maintenance. The portion of the cycle that is of
interest to this research is that of design and implementation with the inclusion of
coftware metrics. Figure 1 is a diagram of this part of the software life cycle using
software metrics. First, a design is created and implemented in software. At that point,
software metrics are generated for the source code. If necessary, as indicated by the
metrics, the cycle returns to the design phase. Ideally, the software life cycle can be
‘reduced’ to that in Figure 2 where the metrics are generated during the design
phase, before code implementation. This modified cycle eliminates the generation of
undesirable source code, since it is possible to use the metrics exactly as before, only
earlier. The goal of this study is to indicate the plausibility of using the ‘reduced’ cycle
to increase the efficiency of the software development process by implementing metric
analysis as early as possible with a graphical design tool and to define metrics for a
graphical environment.

Determining potential problems early in the life cycle can reduce the cost of software
development. For example, if a software component is found to be complex at design
time, the designers can re-design the component prior to implementation. At times,
some components simply are complex by nature. If that complexity is discovered early,
a testing cffort may also begin early to fully exercise that component prior to release.

"The goal of shortening the loop in the life cycle is highly dependent on the ability
to perform the metrical measures on the design, along with the need for evidence that
the metric values produced from the design reflect the complexity of the resultant
source code.

The following sections describe the software metrics and associated tools used
this study, the translation of GPL for use by the metric analyser together with a
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Iigure 1. Diagram of currently used software life cycle
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Figure 2. Diagram of proposed reduced software lLife cycle

definition of metrics for a GDL, the data used in this research together with a statistical
analysis of the results and finally our conclusions.

SOFTWARE METRICS AND ANALYSIS TOOL

Software metrics provide a way quantitatively to measure the complexity of software.
There are three classifications of metrics that are used to measure the complexity of
source code: code metrics which measure physical characteristics of the software, such
as length or number of tokens, structure metries which measure the connectivity of
the software, such as the flow of information through the program and flow of control
and hybrid metrics which are a combination of code and structure metrics. The metrics
are briefly discussed in this section. Interested readers are asked to refer to the
references for more details. The remainder of this section describes the tool used to
collect the metric valyes.

Code metrics

Many code metrics have been proposed in the recent past. An effort has been made
to limit this discussion to a few of the more popular ones that are typical of this type
of measure. They include lines of code, parts of Halstead’s software science, and
McCabe’s cyclomatic complexity. Each of these metrics is widely used and has been
extensively validated.3-5- 9. 10

Lines of code

The most familiar software measure is the count of the lines of code with a unit of
LOC, or, for large programs, KLOC (thousands of lines of code). Unfortunately,
there is no consensus on exactly what constitutes a line of code. Most researchers agree
that a blank line should not be counted but cannot agree on comments, declarations,
null statements such as the Pascal begin, ete. Another problem arises in free-format
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languages which allow multiple statements on one textual line or one executable
statement spread over more than one line of text.

For this study, the definition used is the following: a line of code is counted as the
line or lines between semicolons, where intrinsic semicolons are assumed at both the
beginning and the end of the source file. This specifically includes all lines containing
executable and non-executable statements, program headers and declarations.

Halstead’s software science

A natural weighting scheme used by Halstead in his family of metrics (commonly
called software science!!) is a count of the number of ‘tokens’, which are units dis-
tinguishable by a compiler. All of Halstead’s metrics are based on the following
definitions:

#n, the number of unique operands.
#n, the number of unique operators.
N, the total number of operands.
N, the total number of operators.

Three of the software science metrics, N, V and E, are used in this research.

The metric N is simply a count of the total number of tokens expressed as the
number of operands plus the number of operators, i.c. N = N; + N,.

V represents the number of bits required to store the program in memory. Given #
as the number of unique operators plus the number of unique operands, 1.e.
n = n, + n,, then log,(n) is the number of bits needed to encode every token in the
program. Therefore, the number of bits necessary to store the entire program is

V = N log,(n)
The final Halstead metric examined is effort (E). The effort matrix, which is used to
indicate the effort of understanding, is dependent on the volume (V) and the difficulty
(D). The difficulty is estimated as

D = (n/2){(N»/ny)
Given V and D, the effort is calculated as

E=VD

The unit of measurement of E is elementary mental discriminations, which represents
the difficulty of making the mental comparisons required to implement the algorithm.

McCabe’s cyclomatic complexity

McCabe’s metric'? is designed to indicate the testability and maintainability of a
procedure by measuring the number of ‘linearly independent’ paths through the pro-
gram. To determine the paths, the procedure is represented as a strongly connected
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According to McCabe, V(G) = 10 is 4 reasonable upper limit for the complexity of

modules. Code metrics ignore these dependencies, implicitly assurning that each indj-
vidual component of 2 program is a separate entity. Conversely, structure metrics

Henry and Kafura’s information flow metric

Henry and Kafura3- 13 _
between a procedure and jts environment called ‘fan-in’ and ‘fan-out’, which are defined
as

fan-in  the number of local flows into 4 procedure plus the number of global data

fan-out the number of local flows from a procedure plus the number of global data
structures which the procedure updates.

To caleulate the fan-in and fan-out for a procedure, a set of relations is generated
that reflects the flow of information through input parameters, global data structures
and output parameters. From these relations, a flow structure is built that shows gl
possible program paths through which updates to each global data structyre may
propagate. 14

'The complexity for 4 procedure is defined as

C, = (fan-in x fan-out)?

In addition to procedural complexity, the metric may be used for both a module
and a level of the hierarchy of the systemn. Module complexity is defined as the sum
of the complexities of the procedures in the module, and the leve] complexity is the
sum of the complexities of the modules within the level.
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Hybrid metric

Since, as stated above, code and structure metrics appear to be measuring different
aspects of program complexity, it seems reasonable that a metric be composed of both
types of metrics in order to capture the complexity of the procedure as much as
possible. This is what is termed 2 hybrid metric. More succinctly, a hybrid metric 1s
composed of one or more code metrics and one or more structure metrics. This study
examines the hybrid form of Henry and Kafura’s information flow metric.

Henry and Kafura’s hybrid information flow metric

"T'he hybrid form of Henry and Kafura’s information flow metric which was used in
an actual study on the UNIX operating system is described in Reference 3. The
formula 1s

C, = Cy(fan-in X fan-out)?

where C,, is the internal complexity of procedure p.
The metric used for the internal complexity C;, may be any code metric.

Description of a software metric analyser

We have developed a software metric analyser for use in our research. The analyser
is provided that takes as input cither the graphical design or the source code and
produces, as output, a number of complexity metric values. The metric analyser
requires syntactically correct code. When using the analyser at design time, input
consists of syntactically correct graphical designs written in GPL. A general relation
language has been successfully used as a tool to express the intermediate form of the
design or source code.'® This Intermediate form is then translated into a set of relations
which are interpreted to produce metrics. The software metric analyzer is based on
LLEX (a lexical analyser generator) and YACC (yet another compiler-compiler), which
are tools available with a UNIX environment. Hence, the analyser requires a UNIX
system.

The remainder of this section describes the details of the implementation of the
metric analyser. For purposes of discussion, the analyser is divided into distinct three
passes. See Figure 3 for a diagram of the analyser.

Pass 1

Pass 1 has as input the Backus—Naur form (BNT) grammar for the source language
to be analysed, the semantic routines which dictate processing for each production in
the grammar, and the design or source code to be analysed. Current source languages
processed are Pascal, C, FORTRAN and THLL, a language used by the United States
Navy. A pass 1 for Ada is currently under development. A file containing the intrinsic
(i.e. built-in) functions peculiar to the source language is also input. For obvious
reasons, these functions should not be treated as real functions; they actually act ina
similar way to complicated operators and as such are treated as operators. The source
code to be analysed is assumed to be syntactically correct. Note that this is the only

pass of the analyser that has the source code available to it.
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Figure 3. Diagram of the software metric analyser

Two files are output from pass 1. The first file contains the language-dependent
metrics (code metrics) for each procedure: lines of code (LOC),' McCabe’s cyclomatic
complexity (CC)'2 and Halstead’s software science indicators of length, volume and
effort (N, Vand £, respectively).!’ These metrics are produced in pass 1 since this is
the only pass which has the actual code necessary to generate them. The second file

Pass 2

Pass 2 uses the UNIX tools LEX and YACC. The relation language code from pass
1 is translated into a ‘set of relations’.'* This set is completely independent of the
original language. Code can be processed one procedure at a time. An advantage is

into relation language code and then analysed at a separate facility. This feature allows
any proprietary details in the original source code to be hidden from the analysis

Pass 3

Three general classes of software metrics can be distinguished: structure metrics,
which are measures based on automated analysis of the system’s design structure, code
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metrics, which are measures based on implementation details and Aybrid metrics, which
combine features of both structure and code metrics. As previously proposed,® ' ™
17 this research shows that the structure metrics are global indicators of software
complexity which can be taken carly in the life cycle, whereas code and hybrid metrics
can be brought into use as more implementation details become visible.

The relation file from pass 2 contains the necessary information to generate the three
structure metrics: Henry and Kafura’s information flow metric,®> McClure’s invocation
metric'® and Woodfield’s review complexity metric.!® The structure metrics and the
code metrics (file 1 from pass 1) are the components of the hybrid metrics. The
information flow metric is the only structure metric that was available for this study.

Pass 3 is written completely in standard Pascal and is independent of a UNIX
environment. The user is in complaete control of the selection of the structure and
hybrid metrics to be run and the method of viewing the metrics. The user is allowed
to define modules (a related collection of procedures) or levels (a related collection of
modules). It is assumed that the user would like to view all related procedures as a
single module, and likewise, view all related modules as a single level. This feature 1is
especially useful for very large systems.

GRAPHICAL LANGUAGE TRANSLATION

It was necessary to develop a translator, pass 1 of Figure 3, to analyse the GPL. This
section describes the translation of the graphical language to its analysable form.
Translation of GPL is a twofold process. First the graphical design is analysed to
generate code metrics used by pass 3 of the analyser. The second process 18 the
generation of relation language code while preserving the control and information flow
of the corresponding graphical design. A detailed description of the graphical language,
the relation language and the actual translation process is presented.

GPL

The dialogue management system is a software system development environment
being developed at Virginia Tech. Its underlying methodology 1s called supervisory
methodology and notation, or SUPERMAN.® One of SUPERMAN’s primary targets
in software design is the separation of dialogue (communication between a user and
the system), and computational design. This separation of system design is motivated
by the impression that the best dialogue designers are not necessarily programmers
and vice versa. The dialogue management system provides a graphical programming
language (GPL) with which each designer may specify his design. GPL has a set of
symbols specifically used for dialogue design and a set of symbols used for computational
design, with some symbols appearing in both dialogue and computational designs.
These ‘linking’ symbols tie the two parts of a system’s design together. Of interest n
this study are the computational development environment and the symbols in GPL
used to create the computational portion of a system’s design.

The basic building block for a GPL computational design is a supervisory cell, which
contains a supervisor and a supervised flow diagram (SFD). The SFD shows the flow
of control and information within the cell. Intuitively, a supervisory cell represents the
definition of a single subroutine in a system. Figure 4 presents the symbols in GPL
used for computational design and Figure 5 presents a simple example of a supervisory
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Figure 4. Computationai design symbols in GPL

% integer factor integer
> factorial (-8

factor = 1; ——— i A

factor = "»A
factor * x;

Dhbox

Figure 5. A GPIL Supervisory cell

cell. The example is the factorial function. The Syntax and semantics of each symbol
and the information associtated with each supervisor is discussed.,

The computationai design symbols in an SFD

Control flow arcs

Control flow arcs show the flow of control throughout an SFD. These arcs can
connect any two symbols of GPL together with the exception of databoxes, defined
below. The arc labelled * = 1in Figure 5 is a contro] flow arc. Control flow arcs may
Or may not have a conditional associated with them. If there is only one control fow
arc leaving a symbol there is no conditional on the arc; however, if there is more than
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one arc leaving a symbol there must be a conditional associated with each arc that
Jeaves the symbol. A conditional associated with an arc is a valid boolean expression.

Data flow arcs

Data flow arcs are used to bind databoxes, defined below, to functions, also defined
below. There can only be one data arc connecting a subroutine and a databox, and
there is never a condition associated with a data arc. The dashed arcs leading into and
out of the box labelled factorial in Figure 5 are data flow arcs.

Start

There is exactly one start symbol per SFD. The start symbol marks the beginning
of the execution of an SFD. It has no arcs coming into it, yet it may have any number
of arcs leaving.

Return

There is at least one return symbol per SFD. Returns have no arcs out of them,
but they may have any number of arcs entering them. The return symbol represents
the termination of execution of an SFD. Returns have no parameters and therefore
are not used to return variable values. Thus, there are no functions that return values
in GPL.

Decisions

A decision symbol may have any number of arcs entering it and any number of arcs
leaving it. Its semantics resemble those of the Pascal case and C switch statements.
Fach arc that leaves a decision must have a boolean expression associated with it. There
are a minimum of two arcs leaving a decision symbol.

Databoxes

GPL databoxes are used to specify the actual input and output parameters to a
subroutine call. They are sometimes called binding boxes since they contain the actual
parameters and the names of their respective formal parameters. Databoxes have either
a data flow arc leading into the box, i.e. an output parameter, or out of the box to
identify an input parameter.

Inner code block (ICB)

An ICB is a symbol that contains the actual code of a system. The code is syntactically
and semantically correct high-level-language code. In theory, all of a program’s code
could be in an ICB; however, this use of an [CB is not intended. An ICB in a
completely refined design contains only assignment statements. Any number of arcs
may enter and leave an ICB.
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Functions

Dialogue

Dialogue symbols represent input and output operations and may have any number
of arcs leading to them and leaving from them. In the dialogue managerment system,
this is where the dialogue designer takes over the design process. Computational
designers either receive information from a dialogue function (input) or give information
to a dialogue function (output) and are not concerned with how the mformation is

DC-functions

DC~functi0ns, or diangue-computation functions, represent subroutines that contain
both dialogue and computational operations. Aside from containing calls to dialogue
functions, DC-functions have the same Syntax, semantics and requirements as func-
tions.

The supervisor

means of defining global variables. To some this may appear as a disadvantage;
however, eliminating the ability to define a global variable is an excellent means to
control its use, Secondly, and more importantly, by limiting the size of the work area
the definition of shorter, more modular routines becomes natura].
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GPL has some limitations that are particularly annoying. First is the inability to
define system constants which are needed for readability purposes, and second is the

inability to define libraries of routines for the purpose of reusability.

The relation language

The relation language'® was developed to address one of the major problems facing
software engincering researchers: acquiring ‘real world’ data to perform validation
experiments. One good source of data, software organizations, is unavailable owing to
the proprietary nature of the products. Software organizations do not want their
algorithms released into public domain. With this in mind, the relation language was
designed to serve as an intermediate language that can protect the software organizations’
right to privacy while providing sufficient information for software engineers to test
their measurements. In this discussion a brief description of the relation language

constructs, presented in Figure 6, is given.

Relation language constricls

Variables. A relation language program allows for the declaration of three types of
variables: local, struct and const. ‘The variable type one chooses is dependent upon the
usage of the variable in the original source code. Distinctions are made between data
objects as being local variables, complex structures and constants. Variables defined as
type local are considered local to the routine in which they are declared. Determination
of local variables is not always a simple process, owing to the presence of complicated
high-level language constructs such as Pascal’s with statement and FORTRAN’s com-
mon block. Variables defined as type struct are treated as global variables, and may be
defined anywhere in a program. Variables defined to be type const represent declared
constants.

Statements. The four types of statements that can be identified in a relation program
are assignments, conditions, procedure calls and returns. Each of these statement types
is discussed individually.

Assignments. Assignment statemients are similar to those in any high-level language,
with one exception: any arithmetic operators appearing in the original source code are
replaced by ‘&’s. It is not necessary to know the identity of the original operator n
order to perform structure metric analysis, so the substitution disguises the content of
the original source.

Conditions. As with arithmetic operators, it is unnecessary to know the type of
conditional represented in order to derive the flow of control that is present, One only
needs to know that the condition existed and the variables that are needed to evaluate
the decision. Looping constructs are simply replaced by a condition statement and a
corresponding block of statements that the loop encompasses. Decision statements
similar to Pascal’s case and if ... then (else) are replaced by a condition statement,
cond, that contains the original decision construct’s boolean expression variables. A
corresponding block of statements associated with the conditional includes those blocks
of statements from the original source code that are executed as a result of the
conditional’s value. This means that the statements from each of the specific choices
in a Pascal case statement would be grouped together to form a single block of
statements to be associated with a single condition statement.
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Declaration Constructs

LOCAL - Local variable declaration
STRUCT - non-local variable declaration
CONST - defined constant
EXTERNAL - external procedure declaration
PROCEDURE - procedure declaration
FUNCTION - function declaration
INTRINSIC - built-in function

Executable Constructs

COND - all conditionals

160 - all constants

= - assignment

H - statement separation

BEGIN END - grouping statement

& - conditional variable separator

Figure 6. Constructs in the relational language

Procedure calls. Procedure calls are 1dentical to those in other high-level block-
structured languages such as Pascal and C.
Returns. The return statement in a relation language program is similar to one in

define procedures local to the current module. Declaring a procedure as external is the
second method of procedure declaration. This method serves a dual purpose that allows
relations to be defined OVEr many separate modules and provides for the translation of

corresponding relation program.

Observations. 1t is apparent that a relation program bears little resemblance to the
source program from which it is derived and that the relation language provides all of
the necessary constructs to represent the code from a myriad of source languages. In
this study the relation language is used to represent GPL source code in order to
perform structure metric analysis. The translation from GPL to the relation language
1s presented next.

The translation from GPL to the relation language

The dialogue management system provides a graphical editor for the creation and
modification of system designs and the GPL relation language translator uses the same
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mation and control for a single subroutine definition and declaration in the relation
language. Since there are no global variables or constants in GPL, it is sufficient to
discuss the translation of a single subroutine. There are three steps to translating a
GPL subroutine into relation language: procedure header generation, local variable
declarations generation and SFD member generation.

Procedure header generation

Generation of the procedure header involves little processing other than information
retrieval. The procedure name and a list of its input and output parameters arc retrieved
from a database relation. GPL parameters may be identified as input parameters,
output parameters or as both input and output parameters. Since the relation language
does not distinguish between input and output parameters, it is necessary to perform
a union on the lists of input and output parameters and generate the resulting set of
parameters for the procedure header.

Local variable declaration generation

Generating local variable declarations involves the retrieval of the list of variables
for the procedure and the generation of a declaration for each one.

SFD member generation

The term ‘member’ refers to each symbol in an SFD. Many of the member types
in an SFD require no code to be generated in the relation language. These member
types are start, retirn, databox, decision, data arc and control arc. Elimination of these
member types leaves only those member types for which there is a corresponding
statement type in the relation language: function, DC-function, dialogue and 1CB.

One might believe that the decision member type ought not to appear with the
member types that require no relations language code to be generated due to the
existence of the condition statement in the relation language. However, the decision
symbol in GPL and the condition statement in relations language have different
semantics. A decision symbol dictates the flow of control within an SFD, where a
condition statement dictates the flow of information within a procedure. The condition
statement contains the list of those variables whose values determine whether or not a
certain statement gets executed. The statements that are affected by the values of
‘condition’ variables are easily found during visual examination of an SFD. Program
constructs such as loops and if . . . then (.. . else)s are quickly recognized. Control flow,
however, is difficult to discern given the limited information available in the database
which includes the member each arc starts at or goes to, and whether or not the arc
has a conditional on it. Therefore, a backwards approach is taken to determine the flows
of information. There are two steps to translating function, DC-function, dialogue, and
ICB member types into relation language: conditional generation and code generation.

Conditional generation

For each of the function, DC-function, dialogue function and ICB member types,
a single conditional is generated that contains cach of the conditionals from any of the
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vaniables. However, if any of the paths lead to a refurn symbol, the conditionals are
included in the generated conditional.

Code generation

Functions and DC-functions

For the member types function and DC-function, a condition statement and a
procedure call are generated, The condition statement is generated as above, and the
procedure call is generated by matching up the actual parameters with the corresponding
formal parameters.

Dialogue functions

For dialogue members it is necessary to declare two global structures INPUT and
OUTPUT, since any input or output operation is actually an update to or an access to
a global structure (standard input or standard output). For input dialogue operations
an assignment statement of the following form is generated:

{variable} := INPUT

For output dialogue operations an assignment statement of the following form is
generated:

OUTPUT ;= {variable)

Inner code blocks

For ICBs, a conditional statement 1s generated and a call js made to the translator
for the target high-level language to output the proper relation language code for the
code in the ICB. This call is possible since the contents of an ICR are syntactically
and semantically correct code.

The generation of code metric values

Code metric value calculations are performed concurrently with the translation of
GPL to relation language and are discussed in the following sections. This research
defines the process of applying ‘code metrics’ to graphical languages.
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Length

Length appears to be something difficult to measure in a graphical language and
perhaps it is a meaningless measure. However, if one views the length of a design as
a predictor of lines of code in the resulting system, a measure is feasible. Length of a
GPL design is given by

length = number of members + length of ICB code + number of decisions

The formula is derived from intuition. Each member of an SFD is likely to produce
a line of code, regardless of the member type, so initially the length is set to this value.
Then, each time an ICB is encountered, the ICB length, returned by the target
language’s translator, is accumulated. Finally, the number of decisions is added to
account for an additional labe! that is likely to be present in the resulting source code.

McCabe’s cyclomatic complexity

The cyclomatic complexity (V(G)) 1s perhaps the easiest code metric value to
calculate. A graph’s cyclomatic number is given by

VG)=E—-N+2

where V(G) is the cyclomatic number of a graph, E is the number of edges in a graph
and N is the number of nodes or members in a graph.

The value of V(G) in GPL is initialized to the number of arcs minus the number
of members. This alone, however, is not sufficient since GPL allows for any number
of returns in an SFD. Cyclomatic complexity requires that the graph have unique
entry and exit points. To account for this, each time a return symbol is encountered
during translation, the cyclomatic number is increased by one, then instead of adding
two at the end we only add one, to take out a single node for the unique exit point.
Figure 7 displays two SFDs that are semantically equivalent and their corresponding
cyclomatic complexities, calculated without taking the multiple exit points into consider-
ation. The complexities are different, even though the graphs are semantically the
same.

Halstead’s software science

Perhaps the most difficult code metrics to calculate, owing to the ambiguity in
determining what is an operand and what is an operator, are Halstead’s software science
indicators. This study defines the required counts (unique and total operands and
unique and total operators) on a graphical language. The counts of operands are
straightforward and include anything that appears as text in an SFD: the supervisor
name, parameter and variable names, variables that appear in conditionals, variables
from the databoxes and the names of called subroutines. The counts of operands are
then modified by the high-level language translator used to translate the code in the
ICBs. The counts of operators in GPL are less intuitive than those of operands.
However, bearing in mind Halstead’s intuitive definition of the N value (the vocabulary
of a routine), the counts become more obvious. The counts of operators in 1CBs,
which are performed by the high-level-language translator, are accumulated with
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Figure 7. Multiple exit point handling for cyclomatic complexity calculation

those returned by the conditional parser, along with identification of operators being
performed as in conventional, textual languages. The number of members in an SFD
and the number of control and data flow arcs in an SFD are also accumulated.
Intuitively, the counts of members and arcs as operators is necessary since the members
and arcs and their semantics are part of a designer’s working vocabulary,

METRIC ANALYSIS

First, we wanted to determine if our definitions of applying metrics to a graphical

complexity of the source code? Secondly, a previous study determined that code metrics
had little or no value when applied at the architectural design level. However, the

The experiment

The data in this study were collected from an assignment given in a graduate-level
operating systems course. Students simulated the management of consumable and
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reusable operating system resources to detect and prevent deadlock, respectively. The
banker’s algorithm is used for deadlock prevention, and knot detection algorithms are
used for deadlock detection.?® The assignment required the students to submit an
initial design (one week prior to the assignment due date), a revised design (on the
due date), and the Pascal source code and simulation results. The revised designs were
included as a part of the assignment.

Data preparation

In order to perform statistical analysis of the correlations of initial design to revised
design and of revised design to source, and to perform the regression analysis, it is
necessary to have the same number of data observations (i.e. procedures) in the data
being compared. It is possible, and in fact likely, that a design will not have the same
number of routines as the source code. Often the source code will use many routines
to perform the function of a single routine specified in the design. Another cause of
extraneous routines in the source code may be the inability to refine a particular type
of function in the design language like dialogue functions in GPL. Similarly, a routine
may appear in a design, but its function may be combined into another routine in the
resulting source code. It is necessary to incorporate. the complexity measures of aJl of
the routines in the source code into the data to be analysed. When a routine exists in
the source and does not have a corresponding routine in the design, one sums the
complexities of the more refined routines with the complexity of their parents. This is
a valid operation since the design required the function to be performed, and therefore
its complexity is present in the design. The case where a routine is present in the
design but not in the source code identifics a design that is not properly refined. One
problem arises as a result of the accumulation process. The complexity of the main
program in the source code becomes unrealistic since many routines are accumulated
into it. This occurs when programmers do not nest procedures, and as a result the
only place for a routine’s complexity to be accumulated is in the main program. Beyond
programming style, it is possible that the language being used (e.g. GPL or C) may
not allow procedure nesting and again the routine’s complexity must be accumulated
in the main program. As a result of language limitations and the programming style,
the main program’s complexity no longer reflects the actual complexity of the code. In
this study the main programs were removed from the data prior to performing the
statistical analysis. Three hundred and twenty-three procedures were used in this
analysis.

GPL measurement and predictor equations

Table I contains the abbreviations that are used in the tables displayed throughout
this study. An abbreviation for each of the nine metrics calculated 1s given.

Comparison of initial and revised designs

Comparing the initial and revised designs provides a measure of the change required
in order to achieve a working system. This measure is meaningful only if there 1s a
good correlation of the metric values between revised design and source code. In this
study there is a good correlation between revised design and source code. Table II



COMPLEXITY MEASUREMENT 1083

Table 1. Metric abbreviations used in data presentation

Metrie Abbreviation
Length Loc

N N

Volume v

Effort F
Cyclomatic complexity cC
Information flow INFO
information flow with length INFO-L.
Information flow with effort INFO-E
Information flow with cyclomatic complexity INFO-CC

Table II. Correlations between initial and revised -designs

LOC N vV E CcC INFO INFO-L INFO-E INFO-CC
GPL

0-884 0-917 0972 . 0942 0-935 0-877 0-995 0-710 0-952
GPL design corvelations with no outliers

0-905 0-943 0-974 0-978 (-944 (-924 0-829 0-926 0-865

displays the correlations of initial to revised designs for GPL. The correlations between
the code metrics in GPL designs are very high. Looking at Table III, which gives the
mean complexities of GPL, it is interesting to note that the complexity of GPL designs
actually went down from the initial to the revised designs for the structure and hybrid
metrics. Further investigation revealed that the complexities of two procedures are
responsible for the difference. Removal of these routines produced complexities that
are closer together. The two outlying procedures were found to be routines that had
been reorganized and actually performed different functions in the revised design while
keeping the same name as in the initial design. The revised mean complexities are
found in Table IIT and the revised correlations are in Table I1.

Regression analysis of GPL

In this study, a simple linear regression is performed, with the complexity of design
as the independent variable and complexity of the source as the dependent variable,
In an attempt to derive equations which would allow a designer to estimate the
complexity of the system being developed prior to its implementation. Regression
analysis is performed for each of the calculated metrics.

A correlation between the two sets of values was performed to see if there was any
relationship between the two. Table IV gives the results of the correlation. These
correlations are ‘high’, but certainly not considered ‘very high’. This implies that many
changes or revisions occured prior to actual implementation. However, our priority is
not to discuss the fact that designs correlate with source but to provide a model which
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Table III. Mean complexities of initial and revised designs

Design LOC N v E CC INFO INFO-L INFO-E INFO-CC

GPL (all procedures)
Initial  14-032 85-95 251-656 6374-66 3-552 14,129-62 1,362,948 308,062,000 337,889

Revised 14-519 87-89 261-617 644296 3-643 100313 28,337 18,113,410 8164

GPL (with outliers removed)
Initial  13-375 80-678 233-974 5698-32 3-38 688-395  10,431-23 7,348,219 2930-033
Revised 14-151 84-618 246-842 6009-91 3-52 686-559  12,050-82 8,206,303 3302-488

predicts the source code complexity from the design. If at design time, one discovers
a high complexity (in one or more of the metrics) and a high correlation between
designs and source code complexity has been proved, then one can detect probably
problem areas at design time.’”

A less detailed design still has a reasonable correlation with the structure metric but
has very low correlations with the code metrics. High complexity with a high-level
design still indicates potential problems but low complexities in a high level design do
not necessarily imply low complexities in the corresponding source code.'

The high correlations in Table IV indicate that a relationship between the data sets
may exist, so the regression analysis is performed. Table V contains the equations that
result from the regression analysis of the GPL revised designs and the GPL designed
source code. The ‘Coefficient’ column gives the value of the y-axis intercept and the
slope of the regression line for the corresponding metric. The ‘Standard error’ column
gives the standard error found in the calculation of the coefficient and the ‘t-value’
column gives the value from the Student ¢ distribution and is used for significance and
confidence testing. The coefficient will fall within the range of plus or minus twice the
standard error. A ¢-value of greater than two generally represents 95 per cent confidence
that the corresponding coefficient is correct. The r-values for each of the metrics’ slopes
are well above 2, and 99 per cent confidence in their values can easily be assumed.
Ninety-nine per cent confidence in all of the y-axis intercepts, except cyclomatic and
information flow with cyelomatic, can also be assumed. The intercepts for the cyclo-
matic complexity and the information flow complexity combined with the cyclomatic
complexity can be assumed to be zero because of the low t-value. Figure 8 gives a plot
of the actual data observations, the regression line and the ninety-five per cent confi-
dence lines for the GPL information flow measure. The prediction equation for a
procedure’s information flow complexity is as follows:

y = 1-103x + 205-167

Table 1V. Correlations between revised designs and designed source: GPL

LOC N 1% E cC INFO INFO-L.  INFO-E INFO-CC

0-780 6702 0-660 0-508 0793 0-808 0-788 0-737 0752
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Figure 8. Regression line and 95 per cens confidence lines for information flow complexity in GPL

where y is the predicted source code information flow complexity of the procedure and
¥ is the calculated design information flow complexity of the procedure. With 95 per
cent confidence the predicted y value will fall within the confidence interval. Similar
equations for each of the other metrics may be obtained by reading the coefficient
values in Table V. Figures 9 and 10 graph the GPL length and effort regressions,
respectively.

The results presented in this section indicate that it is possible, given the complexity
of a GPL, to predict the complexity of the corresponding source code. However, it is
important to note that designs with different levels of refinement may produce different
results. The designs used in this study are at a very detailed level of refinement and
the accuracy of the equations reflects the detail. A similar research project using a
textual design language found that with a less detailed level of refinement, the confidence
level in the prediction equations decreased. !0 Although this result seems obvious, this
research concentrated on defining metrics for a graphical language and proving that
the metrics could indeed predict source code complexity. Qur belief is that prediction
equations could be calibrated for less detailed designs, but the confidence level for
those equations would decrease.

CONCLUSIONS

This study was begun with a twofold purpose. The first purpose was to define whether
the complexity of a graphical language could be measured, using established software
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Table V. Regression line equations and statistics for GPL design

Coefficient Standard error  ¢-value
Length Intercept 3-878 0-871 4-454
Slope 0-826 0-055 15-105
N Intercept 22-258 8781 2:535
Slope 1-141 -096 11-947
Volume Intercept 211-697 42-367 4-997
Slape 1-639 0-154 10-643
Effort Intercept 12892-83 2666-116 4-836
Slope 2-222 0-311 7-15
Cyclomatic Intercept —0-03 0-334 —0-09
Slope 1-325 0-084 15-799
Information Intercept 205-167 77-814 2-637
Flow Slope 1-103 0-066 16-629
Information flow Intercept 4985-403 1709-029 2-917
with length Slope 1-278 0-082 15:524
Information flow Intercept 14,976,060 4,711,310 3178
with effort Slope 3-025 0-229 13-235
Information flow Intercept 1284-167 735-014 1-747
with cyclomatic Slope 1-539— 0111 13-812
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Figure 9. GPL length regression and 95 per cent confidence lines
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Figure 10. GPL effort regression and 95 per cent confidence lines

metrics. The second was to show that software metrics may be applied early in the life
cycle to predict resultant source code complexity.

In a prior section a technique for measuring GPL design complexities was presented.
The technique involves the translation of a GPL design into an intermediate language
(the relation language) from which an existing metric analyser draws the information
needed to produce the measures. The results of measuring GPL designs and a set of
equations to predict, with more than 95 per cent confidence, the complexity of source
code was discussed. These equations allow the selection of the least complex design
from a group of designs that perform the same task, and serve to shorten the
design—code-measure-redesign cycle to a design-measure-redesign cycle.

"This research is an initial attempt which indicates the ability to measure graphical
designs and to predict source code complexity from GPL designs. As with all metric
validation studies, these results need to be duplicated and extended. First, the extension
of the metric definition to an architectural, or higher, level of design must be considered.
Our inclination is that the results of such an experiment would indicate that the
structure metrics are more indicative of source code complexity at this high level. Prior
rescarch has shown that code metrics become more reliable as more detail is provided
in the design.

A second extension of this research is to validate the results on a ‘real’ system. This
validation presents more difficulty for academics to accomplish. However, since GPL
is similar to most production graphical tools, we would expect these results to be
duplicated.
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Since this initial study was successful, one would hope that additional validation

would also be a success. In the future, we hope to extend this research to calibrate
prediction equations for less detailed levels of design and to attempt this analysis in a
production system.
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