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Abstract
An execution profiler can be integrated into an optimizing compiler to provide the com­

piler with run-time information about user programs. For each code optimization, the profile 
information along with information from static loop analysis is used to reduce the execution 
time of the most frequently executed program regions. This paper describes how the profile 
information helps several classic code optimizations to identify more optimization opportu­
nities. A profiler and several profile-based classic code optimizations have been implemented 
in our prototype C compiler. This paper describes our implementation and presents reasons 
as to why these optimizations are effective. Evaluation has been done with realistic C appli­
cation programs. Experimental results clearly show the importance of profile-based classic 
code optimizations.
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1 In trod u ction
A program consists of a finite set of instructions that may be partitioned into n disjoint sets, 
denoted by 5,-, i = l..n. Let count(Si) denote the execution count of 5,-, and time(Si) 
denote the time that is needed to execute S'*.1 The execution time of the program is 
JSi=i {count(Si) * time(Si)). The major purpose of code optimizations is to reduce the ex­
ecution time. Classic code optimizations can be classified into two major categories. The 
first category reduces time(Si) without affecting time(Sj) for all j  ^  i . For example, dead 
code elimination, common subexpression elimination, and copy propagation belong to this 
category [Allen 71] [Aho 86]. The second category reduces time(Si) of a frequently executed 
Si with the side effect of possibly increasing the execution time of other sets of instructions. 
Code optimizations that are in this category are effective only if the execution count of the 
optimized set of instructions is much larger than the sum of the execution counts of the sets 
whose execution times are increased. For example, loop invariant code removal decreases 
the execution time of a loop body at the cost of increasing that of the loop’s preheader. The 
compiler expects that the body executes many more times than the loop preheader.

Static loop analysis can identify loop structures. However, static analyses that estimate 
count (Si) have several shortcomings.

1. The outcome of a conditional (if) statement is not always predictable at compile time.

2. The iteration count of a loop is not always predictable at compile time.
depending on the input, count(Si) and time(Si) may vary from run to run.
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3. The invocation count of a (recursive) function is not always predictable at compile 
time.

Because conditional statements and loops can be nested, and function calls can be recursive 
in C, the results of static analysis may be inaccurate because the prediction errors are 
amplified in a nested structure. For example, a loop with a large iteration count, nested 
within a conditional statement will not contribute to the execution time if the condition 
for its evaluation is never true. Optimizing such a loop may degrade the overall program 
performance if the optimizations increase the execution time of other sets of instructions.

Classic code optimizations use other static analysis methods, such as live-variable anal­
ysis, reaching definitions, and definition-use chain, to ensure the correctness of code trans­
formations [Aho 86].2 There are often instances where a value will be destroyed on an 
infrequently executed path, which exists to handle rare events, such as error handling.

Profiling is better at detecting the most frequently executed and the most time consuming 
program regions than static loop analysis, because profiling gives exact count(Si). Profiling 
is the process of selecting a set of inputs for a benchmark program, executing the program 
with these inputs, and recording the dynamic behavior of the program. Profiling has been 
a widely used method for hand-tuning algorithms and programs. Many standard profiling 
tools are widely available on UNIX systems.

The motivation to integrate a profiler into a C compiler is to guide the code optimizations 
using profile information. We refer to this scheme as profile-based code optimization. In this 

2In this paper, we assume that the reader is familiar with the static analysis methods.
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paper, we present our method for using profile information to assist classic code optimiza­
tions. The idea is to transform the control flow graph according to the profile information 
so that the optimizations are not hindered by rare conditions. Because profile-based code 
optimizations demand very little work from the user (i.e. selecting a set of input data), they 
can be applied to very large application programs. One can argue that automatic profile- 
based code optimizations may be less effective than algorithm and program tuning by hand. 
Even if that is true, much of the tedious work that is involved in writing more efficient code 
can be eliminated from the hand-tuning process by profile-based code optimizations. The 
programmers can concentrate on more intellectual work, such as algorithm tuning.

1.1 C ontribution o f th is paper
The intended audience of this paper is optimizing compiler designers, and production soft­
ware developers. Compiler designers can reproduce the techniques that are described in this 
paper. Production software developers can evaluate the cost-effectiveness of profile-based 
code optimizations for improving product performance.

The contribution of this paper is a description of our experience with the generation and 
use of profile information in an optimizing C compiler. The prototype profiler that we have 
constructed is robust and tested with large C programs. We have modified many classic 
code optimizations to use profile information. The experimental data show that these code 
optimizations can substantially speedup realistic non-numeric C application programs. We
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also provide insight into why these code optimizations are effective.3

1.2 O rganization o f th is paper
The rest of this paper is divided into 5 sections. Section 2 reviews some profile-based code 
optimizations reported in previous studies. Section 3 briefly discusses how a profiler is 
integrated into our C compiler and where the profile-based classic code optimizations are 
implemented in our prototype compiler. Section 4 describes the changes that need to be 
made to classic code optimizations in order to use profile information, and provides insights 
as to why these optimizations are effective. Section 5 presents some experimental data that 
demonstrate the importance of profile-based classic code optimizations. Section 6 contains 
our concluding remarks.

2 R elated  Studies
Using profile information to hand-tune algorithms and programs has become a common 
practice for serious program developers. Several UNIX profilers are available, such as 
prof/gprof[Graham 82, Graham 83] and tcov[AT&T 79]4. The prof output shows the ex­
ecution time and the invocation count of each function. The gprof output not only shows 
the execution time and the invocation count of each function, but also shows the effect of 
called functions in the profile of each caller. The tcov output is an annotated listing of the

3It should be noted that profile-based code optimizations are not alternatives to conventional optimiza­
tions, but are meant to be applied in addition to conventional optimizations.

4Tcov is available only on Sun-3 and Sun-4 systems
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source program. The execution count of each straight-line segment of C statements is re­
ported. When there are multiple profile files, these profiling tools show the sum of the profile 
files. These profiling tools allow programmers to identify the most important functions and 
the most frequently executed regions in the functions.

Recent studies of profile-based code optimizations have provided solutions to specific ar­
chitectural problems. The accuracy of branch prediction is important to the performance 
of pipelined processors that use the squashing branch scheme. It has been shown that 
profile-based branch prediction (at compile time) performs as well as the best hardware 
schemes[McFarling 86, Hwu 89.2]. Trace scheduling is a popular global microcode com­
paction technique[Fisher 81]. For trace scheduling to be effective, the compiler must be 
able to identify frequently executed sequences of basic blocks. The trace scheduling algo­
rithm operates on one sequence of basic blocks at a time. It has been shown that profiling 
is an effective method to identify frequently executed sequences of basic blocks in a flow 
graph [Ellis 86, Chang 88]. Instruction placement is a code optimization that arranges the 
basic blocks of a flow graph in a particular linear order to maximize the sequential locality 
and to reduce the number of executed branch instructions. It has been shown that profiling 
is an effective method to guide instruction placement [Hwu 89.1, Pettis 90]. A C  compiler 
can implement a multiway branch (a switch statement) as a sequence of branch instructions 
or as a hash table lookup jump[Chang 89], If most occurrences are satisfied by few case 
conditions, then it is better to implement a sequence of branch instructions, starting from 
the most likely case to the least likely case. Otherwise, it is better to implement a hash table
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lookup jump. Profile information can help a register allocator to identify the most frequently 
accessed variables [Wall 86, Wall 88]. Function inline expansion eliminates the overhead of 
function calls and enlarges the scope of global code optimizations. Using profile information, 
the compiler can identify the most frequently invoked calls and determine the best expansion 
sequence[Hwu 89.3].

An optimized counter-based execution profiler that measures the average execution times 
and their variance (with a runtime overhead less than 5% in practice) has been described 
in [Sarkar 89.1]. Extensions from this work to program partitioning and scheduling for 
multiprocessors have been described in [Sarkar 89.2].

3 D esign  O verview
Figure 1 shows the major components of our prototype C compiler. Box A contains the 
compiler front-end and the code generator. The compiler front-end translates a C program 
into an intermediate code which is suitable for code optimization and code generation. The 
compiler front-end performs appropriate lexical, syntactic, and semantic analysis on the C 
program. If an error is found in the lexical, syntax, or semantic analysis, the compilation 
process is stopped abruptly before assembly/machine code generation. The compiler front- 
end also performs local code optimizations to eliminate redundant computations within basic 
blocks. Our prototype compiler generates code for several existing processor architectures: 
MIPS R2000, SPARC, i860, and AMD29k. Each code generator performs the following tasks: 
(1) machine-dependent code optimizations, (e.g., constant preloading, instruction selection),
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Figure 1: A block diagram of our prototype C compiler.



(2) register allocation, and (3) assembly/machine code generation. To improve the output 
code quality, we have added a global code optimizer as shown in Box B of Figure 1. In 
Box B , we have installed many classic global code optimizations. Table 1 lists the local and 
global code optimizations that we have implemented in our prototype compiler. In sum, 
Box A corresponds to a basic working C compiler, and Box A and Box B  together form an 
optimizing C compiler.

local global
constant propagation 
copy propagation
common subexpression elimination 
redundant load elimination 
redundant store elimination 
constant folding 
strength reduction 
constant combining 
operation folding 
dead code removal 
code reordering

constant propagation 
copy propagation
common subexpression elimination 
redundant load elimination 
redundant store elimination 
loop unrolling 
loop invariant code removal 
loop induction strength reduction 
loop induction elimination 
dead code removal 
global variable migration

Table 1: Classic code optimizations.

In order to have profile-based code optimizations, a new Box C has been added to our 
prototype compiler. The input to Box C is an intermediate code plus a set of input data. 
From the intermediate code, a profiler is automatically generated. The profiler is executed 
once with each input data to produce a profile file. After we have obtained all profile 
files, they are summarized. The summarized profile information is then integrated into the 
intermediate code. The global code optimizations in Box B  are modified to use the profile 
information. In a later subsection, we provide more detailed descriptions of the profiling
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procedure.
The compilation procedure consists of the following steps.

1. The compiler front-end translates a C program into an intermediate code (Box A). If 
there is no need to perform global code optimizations goto 4; otherwise, goto 2.

2. The compiler performs classic global code optimizations (Box B ). If there is no need 
to perform profile-based code optimizations goto 4; otherwise, goto 3.

3. The compiler generates a profiler and obtains profile information (jBox C). The profile 
information is integrated into the intermediate code (Box C). The compiler applies 
profile-based code optimizations (Box B) on the intermediate code. Goto 4.

4. The compiler generates target assembly/machine code (Box A).

3.1 Program  representation
In optimizing compilers, a function is typically represented by a flow graph[Aho 86], where 
each node is a basic block and each arc is a potential control flow path between two basic 
blocks. Because classic code optimizations have been developed based on the flow graph 
data structure5, we extend the flow graph data structure to contain profile information. We 
define a weighted flow graph as a quadruplet {V,E, count, arc.count], where each node in 
V is a basic block, each arc in E is a potential control flow path between two basic blocks,

5Algorithms for finding dominators, detecting loops, computing live-variable information, and other 
dataflow analysis have been developed on the flow graph data structure[Aho 86].
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count{v) is a function that returns the execution count of a basic block u, and arc-count(e) 
is a function that returns the taken count of a control flow path e.

Each basic block contains a straight-line segment of instructions. Thé last instruction of 
a basic block may be one of the following types: (1) an unconditional jump instruction, (2) a 
2-way conditional branch instruction, (3) a multi-way branch instruction (switch statement 
in C), or (4) an arithmetic instruction. For simplicity, we assume that a jump-subroutine 
instruction is an arithmetic instruction because it does not change the control flow within 
the function where the jump-subroutine instruction is defined.6 Except the last instruction, 
all other instructions in a basic block must be arithmetic instructions that do not change
the flow of control to another basic block.

%
The instruction set that we have chosen for our intermediate code has the following 

properties: (1) The opcode (operation code) set is very close to that of the host machine in­
struction sets (e.g., MIPS R2000 and SPARC). (2) It is a load/store architecture. Arithmetic 
instructions are register-to-register operations. Data transfers between registers and memory 
are specified by explicit memory load/store instructions. (3) The intermediate code provides 
an infinite number of temporary registers. This allows code optimization to be formulated 
independently of the machine dependent register file structures and calling conventions.

6An exception is when a longjmp() is invoked by the callee of a jump-subroutine instruction and the 
control does not return to the jump-subroutine instruction. Another exception is when the callee of a jump- 
subroutine instruction is exit(). Because the above cases are rare events in most C application programs, 
their effects on code optimization decisions can be considered as noise and be neglected.
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3.2 Profiler im plem entation
We are interested in collecting the following information with the profiler in Box C of Figure
1.

1. The number of times a program has been profiled (N ).

2. The invocation count fn.count(fi) of each function /,-.

3. The execution count count(bk) of each basic block bk.

4. For each 2-way conditional branch instruction / , the number of times it has been taken 
(taken ..count (I)),

5. For each multi-way branch instruction I, the number of times each case (cc) has been 
taken (case.count(I, cc)).

With this information, we can annotate a flow graph to form a weighted flow graph.
Figure 2 shows the major components of the profiler that appears in Box C of Figure 

1. Automatic profiling is provided by four tools: (1) a probe insertion program, (2) an 
execution monitor, (3) a program to combine several profile files into a summarized profile 
file, and (4) a program that maps the summarized profile data into a flow graph to generate 
a weighted flow graph data structure.

The profiling procedure requires five steps as shown in Figure 2.

(a) The probe insertion program assigns a unique id to each function and inserts a probe 
at the entry point of each function. Whenever the probe is activated, it produces a
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functioned) token. In a functioned) token, id is the unique id of the function. The 
probe insertion program also assigns a unique id to each basic block within a function. 
Therefore, a basic block can be uniquely identified by a tuple (function id, basic block 
id). The probe insertion program inserts a probe in each basic block to produce 
a bb(fid, bid, cc) token every time that basic block is executed. In a bb(fid, bid, cc) 
token, fid  identifies a function, bid identifies a basic block in that function, and cc 
is the branch condition. The output of the probe insertion program is an annotated 
intermediate code.

(b) The annotated intermediate code is compiled to generate an executable program which
produces a trace of tokens every time the program is executed.

(c) The execution monitor program consumes a trace of tokens and produces a profile file.
We have implemented the execution monitor program in two ways. It can be a separate 
program which listens through a UNIX socket for incoming tokens. Alternatively, it can 
be a function which is linked with the annotated user program. The second approach 
is at least two orders of magnitude faster than the first approach, but may fail when 
the original user program contains a very large data section that prevents the monitor 
program from allocating the necessary memory space. Fortunately, we have not yet 
encountered that problem.

(d) Step (c) is repeated once for each additional input. All profile files are combined into a
summarized profile file.
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(e) Finally, the profile data is mapped into the original intermediate code. Because we 
have not changed the structure of the program, it is straight-forward to search using 
the assigned function and basic block identifiers. To simplify the formulation of code 
optimizations, all execution counts are divided by the number of times the program 
has been profiled.

We have found the need for an automatic consistency check program because a program 
may have tens of thousands of basic blocks. It is not possible to check manually that the 
profile data has been correctly projected onto the intermediate form. The projection may 
fail if that the original intermediate code is changed after profiling. A simple check is that 
the sum of the invocation count of all control paths into a basic block equals the execution 
count of that basic block. Likewise, the sum of the invocation count of all control paths 
out from a basic block should equal the execution count of that basic block. Some basic 
blocks may fail this check due to longjmp() and exit() calls, and cause warning messages to 
be displayed on the screen. Because the errors due to longjmp() and exit() calls are small, 
the user can ignore those warning messages.

4 C ode O ptim ization  A lgorithm s

4.1 O ptim izing frequently execu ted  paths
All profile-based code optimizations that will be presented in this section explore a single 
concept: optimizing the most frequently executed paths. We will illustrate this concept us-

14



Flow Graph (a)

Weighted Flow Graph
Figure 2: A block diagram of the profiler.
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Figure 3: A weighted flow graph.
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ing an example. Figure 3 shows a weighted flow graph which represents a loop program. 
The count of basic blocks {A, B, C, D, E, F} are {100,90,10,0,90,100}, respectively. The 
arc-count of {A —+ B, A —+ C, B D, B E ,C  —* F, D —> F, E  —> F, F —> A} are
{90,10,0,90,10,0,90,99}, respectively. Clearly, the most frequently executed path in this 
example is the basic block sequence < A ,B ,E ,F  >. Because basic blocks in this sequence 
are executed many more times than basic blocks C and Z), the code optimizer can apply 
transformations that reduce the execution time of the < A, B ,E ,F  > sequence, but increase 
the execution time of basic blocks C and D. The formulation of non-loop based classic code 
optimizations are conservative and do not perform transformations that may increase the 
execution time of any basic block. The formulation of loop based classic code optimizations 
consider the entire loop body as a whole and do not consider the case where some basic 
blocks in the loop body are rarely executed because of a very biased i f  statement. In the 
rest of this section, we describe several profile-based code optimizations that make more 
aggressive decisions and explore more optimization opportunities.

We propose the use of a simple data structure, called a super-block, to represent a 
frequently executed path. A super-block has the following features. (1) It is a linear sequence 
of basic blocks B(i),i = l..n, where n > 1. (2) It can be entered only from B( 1). (3) The 
program control may leave the super-block from any basic block. The set of all basic blocks 
that may be reached when control leaves the super-block from basic block B(i) is denoted 
by OUT{i). (4) When a super-block is executed, it is very likely that all basic blocks in that 
super-block are executed.

17
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OUT(l) = [B5(l)]

OUT(2) = [B’(l)]

OUT(3) = [B(l), B’(l)]
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Figure 4 shows two super-blocks. The top super-block contains three basic blocks B{ 1), 
B{2), and B{3). Because the control may leave the super-block from B( 1) and B{2) to 
B'{ 1), OUT( 1) and OUT(2) are both [£'(1)]. In the case of a multi-way branch, the OUT 
set may contain many basic blocks. The last basic block of a super-block is a special case 
where the fall through path is also in the OUT set. For example, OUT(3) contains both 
B{ 1) and B'{ 1).

4.2 Form ing super-blocks
The formation of super-blocks is a two step procedure: (1) trace selection and (2) tail dupli­
cation. Trace selection identifies basic blocks that tend to execute in a sequence and groups 
them into a trace. The definition of a trace is the same as the definition of a super-block, 
except that the program control is not restricted to enter at the first basic block. Trace 
selection was first used in trace scheduling [Fisher 81, Ellis 86]. An experimental study of 
several trace selection algorithms was reported in [Chang 88]. For completeness, the out­
line of a trace selection algorithm is shown in Figure 5. The best .predecessor.of {node) 
{best ̂ success or.of {node)) function returns the most probable source (destination) basic 
block of node, if the source (destination) basic block has not yet been marked. The growth 
of a trace is stopped when the most probable source (destination) basic block of the first 
(last) node has been marked.

Figure 3 shows the result of trace selection. Each dotted-line box represents a trace. 
There are three traces: {A ,B ,E ,F }, {C}, and {D}. After trace selection, each trace is
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algorithm trace_selection(a weighted flow graph G) begin 
mark all nodes in G unvisited; 
while (there are unvisited nodes) begin

seed = the node with the largest execution count 
among all unvisited nodes; 

mark seed visited;
/* grow the trace forward */
current = seed-;
loop

s - best_successor„of(current); 
if (s=0) exit loop; 
add s to the trace; 
mark s visited; 
current = s; 

end_loop
/* grow the trace backward */
current - seed;
loop

s = best_predecessor_of(current); 
if (s-0) exit loop; 
add s to the trace; 
mark s visited; 
current = s; 

end_loop 
end_while 

end.algorithm

Figure 5: A trace-selection algorithm.
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algorithm tail_duplication(a trace B(l..n)) begin 
Let B(i) be the first basic block that

is an entry point to the trace, except for i*l; 
for (k=i..n) begin

create a trace that contains a copy of B(k); 
place the trace at the end of the function; 
redirect all control flows to B(k), except 

the ones from B(k-l), to the new trace; 
end_for 

end.algorithm

Figure 6: The tail-duplication algorithm.
converted into a super-block by duplicating the tail part of the trace, in order to ensure that 
the program control can only enter at the top basic block. The tail duplication algorithm 
is shown in Figure 6. Using the example in Figure 3, we see that there are two control 
paths that enter the {A, B ,E , F} trace at basic block F. Therefore, we duplicate the tail 
part of the {A, B ,E ,F }  trace starting at basic block F. Each duplicated basic block forms 
a new super-block that is appended to the end of the function. The result is shown in 
Figure 7.7 More code transformations can be applied after tail duplication to eliminate 
jump instructions. For example, the F' super-block in Figure 7 could be duplicated and 
each copy be combined with the C and D super-blocks to form two larger super-blocks.

In order to control the amount of code duplication, we add a basic block to a trace only if 
the execution count of that basic block is more than some threshold value (e.g., 100). After

7Note that the profile information has to be scaled accordingly. Scaling the profile information will destroy 
the accuracy. Fortunately, code optimizations after forming super-blocks only need approximate profile 
information. In order to take measurements from the weighted flow graph data structure, the transformed program needs to be profiled.
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1

Figure 7: Forming super-blocks.

22



forming super-blocks, we only optimize super-blocks whose execution counts are higher than 
the threshold value.

4.3 Form ulation o f code optim izations
Table 2 shows a list of classic code optimizations that we have extended to use profile 
information. The formulation of these classic code optimizations can be found in [Allen 71] 
[Aho 86]. In the rest of this section, we will describe the modifications that need to be 
applied to each of these classic code optimizations. In Table 2, the scope column describes 
the scopes of these code optimizations. The non-loop based code optimizations work on a 
single super-block at a time. The loop based code optimizations work on a single super-block 
loop at a time. A super-block loop is a super-block that has a frequently taken back-edge 
from its last node to its first node.

name scope
constant propagation super-block
copy propagation super-block
constant combining super-block
common subexpression elimination super-block
redundant store elimination super-block
redundant load elimination super-block
dead code removal super-block
loop invariant code removal super-block loop
loop induction variable elimination super-block loop
global variable migration super-block loop

Table 2: Super-block code optimizations.

A code optimization is a triplet, {search,precondition, action}, where search is a func-
23



tion that identifies sets of instructions within the scope of the code optimization that may be 
eligible for this code optimization, precondition is a predicate function that returns true if 
and only if a set of instructions that has been identified by the search function satisfies the 
constraints (preconditions) of the code optimization and produces a speedup of the overall 
program performance, and action is a transformation function that maps a set of instruc­
tions that has passed through both the search and precondition functions to another set of 
instructions that is more efficient.

Let {op(j) | j  = > 1} denote an ordered set of instructions in a super-block, such
that op(x) precedes op(y) if x < y. Except for the global variable migration, the profile- 
based classic code optimizations that are listed in Table 2 optimize one instruction or a pair 
of instructions at a time. For optimizing one instruction at a time, the search function is a 
simple for(i = l..m) loop that sequences through each instruction in the super-block. When 
optimizing a pair of instructions at a time, the search function is a simple nested loop of 
the form for(i = l..m — l)for(j = i + L.m). In the following paragraphs, we focus on the 
precondition and the action functions of the profile-based classic code optimizations.

For an instruction op(i), we denote the set of variables (in register or in memory) that 
op(i) modifies by dest(i).8 We denote the set of variables that op(i) requires as source 
operands by src(i). We denote the operation code of op(i) by /,-. Therefore, op(i) refers to 
the operation dest(i) <— / t(src(z)).

sIn this paper, we assume that there can be at most one element in dest(ï) of any instruction op(ï).
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4.4 O peration com bining
Constant propagation, copy propagation, and constant combining are special cases of op­
eration combining. Operation combining operates on a pair of instructions at a time. Let 
op(x) and op(y) be a pair of instructions in a super-block, where op(x) precedes op(y). The 
precondition function of operation combining consists of the following boolean predicates 
that must all be satisfied.

1. dest(x) is a subset of src(y).

2. The variables in dest(x) are not modified by {op(k), k = x + l..y — 1}.

3. The variables in 5rc(x) are not modified by {op(j),j = x..y — 1}.

4. There is a simple transformation of op(y) to dest(y) <— f y(src(x) U (src(y) — dest(x))).

The action function of operation combining replaces op(y) by dest(y) *— f y(src(x) U 
(src(y) — dest(x))).

The purpose of operation combining is to eliminate the flow dependence between op(x) 
and op(y). When op(y) no longer uses the value that is produced by op(x), it is possible 
that op(x) will become dead code. Duplicating the tail part of a trace to form a super­
block eliminates control paths that enter the trace in the middle. For many op(x) and op(y) 
instruction pairs, op(x) becomes the sole producer of one or more source operands of op(y). 
Therefore, profile-based operation combining can find more opportunities for optimization 
than traditional operation combining.
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Constant propagation is a special case of operation combining, where op(x) is of the 
form dest(x) <— K , where K  is a constant. Copy propagation is another special case of 
operation combining, where op(x) is a simple register move instruction. Constant combining 
is another special case, where both op(x) and op(y) have constant source operands and op(y) 
can be formulated by combining the constant source operands. For example, when op(x) 
is r l  <— rO + 10 and op(y) is r2 memory(r 1 + 4), op(y) can be transformed to r2 *— 
memory(rO + 14). In its general form, constant combining can also optimize multiply, shift, 
and divide instructions. As another example, a compare instruction and a branch instruction 
may be combined into a compare-and-branch instruction for some processor architectures.

4.5 C om m on subexpression elim ination
Common subexpression elimination operates on a pair of instructions at a time. Let op(x) 
and op(y) be a pair of instructions in a super-block, where op(x) precedes op(y). The 
precondition function of common subexpression elimination consists of the following boolean 
predicates that must all be satisfied.

1. f x is the same as f y.

2. src(x) is the same as src(y).

3. The variables in src(x) are not modified by {op(j),j = x..y — 1}.

4. The variables in dest(x) are not modified by {op(k), k = x + l..y — 1}.
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The action function of common subexpression elimination transforms op(y) into dest(y) *— 
dest(x).9

The purpose of common subexpression elimination is to remove redundant instructions. 
More common subexpression elimination opportunities are available when control paths that 
enter in the middle of traces are eliminated. For many op(x) and op(y) instruction pairs, 
op(x) becomes the only producer of dest(x) when the program control is at op(y).

When src(x) contains memory variables (e.g., op(x) is a memory load instruction), elim­
inating control paths that enter in the middle of traces also helps the compiler to prove that 
src(a;) is not modified between op(x) and op(y). Redundant load elimination and redundant 
store elimination are special cases of common expression elimination, in which the operands 
are memory variables.

Figure 8 shows a simple example of super-block common subexpression elimination. The 
original program is shown in Figure 8(a). After trace selection and tail duplication, the 
program is shown in Figure 8(b). Because of tail duplication, opC cannot be reached from 
opB; therefore, common subexpression elimination can be applied to op A and opC.

4.6 D ead code rem oval
Dead code removal operates on one instruction at a time. Let op(x) be an instruction in a 
super-block. The traditional formulation of the precondition function of dead code removal

9 Because some cases of common subexpression elimination and operation combining undo the work of 
each other, there must be some tie-breaking rules between these special cases in the actual implementation.
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Figure 8: An example of common subexpression elimination.
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is simply that the values of dest(x) will not be used later in execution. Then, op(x) can be 
eliminated.

In addition to the traditional formulation, we propose an extension to dead code removal. 
In the extension, the precondition function consists of the following sequential steps.

1. If the super-block where op(x) is defined is a super-block loop, return false.

2. If op(x) is a branch instruction, return false.

3. If dest(x) is used before redefined in the super-block, return false.

4. Find an integer y, such that op(y) is the first instruction that modifies dest(x) and 
x < y. If dest(x) is not redefined in the super-block, set y to m + 1, where op(m) is 
the last instruction in the super-block.

5. Find an integer z , such that op(z) is the last branch instruction in {op(k),k — x -{- 

l..y — 1}. If there is no branch instruction in {op(k), k — x + l..y — 1}, return true. If 
src(x) is modified by an instruction in {op(j), j  = x + l..z}, return false.

6. Return true.

If the precondition function returns true, we proceed to the action part of dead code 
removal. The action function consists of the following steps.

1. For every branch instruction in {op(i),i = x + l..y -  1}, if dest(x) is live10 when op(i)
10A variable is live if its value will be used before redefined. An algorithm for computing live variables can be found in [Aho 86].
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is taken, copy op(x) to a place between op(i) and every possible target super-block of 
op(i) when op(i) is taken.

2. If y is m + 1 and the super-block where op(x) is defined has a fall-thru path (because 
the last instruction in the super-block is not a branch or is a conditional branch), copy 
op(x) to become the last instruction of the super-block.

3. Eliminate the original op(x) from the super-block.

Like operation combining and common subexpression elimination, tail duplication is a 
major reason why more dead code elimination opportunities exist. Another reason is that 
we allow an instruction to be eliminated from a super-block by copying it to all control flow 
paths that exit from the middle of the super-block. This code motion is beneficial because 
the program control rarely exits from the middle of a super-block.

Figure 9 shows a simple example of dead code removal. The program is a simple loop 
that has been unrolled four times. The loop index variable (rO) has been expanded into four 
registers (rl,r2,r3,r4) that can be computed in parallel. If the loop index variable is live after 
the loop execution, then it is necessary to update the value of rO in each iteration, as shown 
in Figure 9(a). According to the definition of super-block dead code removal, these update 
instructions (e.g., rO=rl,rO=r2, and r0=r3) become dead code, since their uses are replaced 
by rl,r2,r3, and r4. These update instructions can be moved out from the super-block, as 
shown in Figure 9(b).
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(a) (b)
Figure 9: An example of dead code removal.
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4.7 Loop optim izations
Super-block loop optimizations can identify more optimization opportunities than traditional 
loop optimizations that must account for all possible execution paths within a loop. Super­
block loop optimizations reduce the execution time of the most likely path of execution 
through a loop. In traditional loop optimizations, a potential optimization may be inhibited 
by a rare event, such as a function call to handle a machine failure in a device driver program, 
or a function call to refill a large character buffer in text processing programs. In super­
block loop optimizations, function calls that are not in the super-block loop do not affect the 
optimization of the super-block loop. Traditional loop optimizations are modified to process 
super-block loops correctly.

We have identified three important loop optimizations that most effectively utilize pro­
file information: invariant code removal, global variable migration and induction variable 
elimination. Each optimization is discussed in a following subsection.

4.8 Loop invariant code rem oval
Invariant code removal moves instructions, whose source operands do not change within the 
loop, to a preheader block. Instructions of this type are then executed only once each time 
the loop is invoked, rather than on every iteration.

The precondition function for invariant code removal consists of the following boolean 
predicates that must all be satisfied.

1. src(x) is not modified in the super-block.

32



2. op(x) is the only instruction which modifies dest(x) in the super-block.

3. op(x) must precede all instructions which use dest(x) in the super-block.

4. op(x) must precede every exit point of the super-block in which dest(x) is live.

5. If op(x) is preceded by a conditional branch, it must not possibly cause an exception.

The action function of invariant code removal is moving op(x) to the end of the preheader 
block of the super-block loop.

In the precondition function, predicate 5 returns true if op{x) is executed on every itera­
tion of the super-block loop. An instruction that is not executed on every iteration may not 
be moved to the preheader if it can possibly cause an exception. Memory instructions, float­
ing point instructions, and integer divide are the most common instructions which cannot 
be removed unless they are executed on every iteration.

Predicate 6 is dependent on two optimization components: memory disambiguation and 
interprocedural analysis. Currently our prototype C compiler performs memory disambigua­
tion, but no interprocedural analysis. Thus, if op(x) is a memory instruction, predicate 6 
will return false if there are any subroutine calls in the super-block loop.

The increased optimization opportunities created by limiting the search space to within a 
super-block (versus the entire loop body) for invariant code removal is best illustrated by an 
example. Figure 10 shows a simple example of super-block loop invariant code removal. In 
Figure 10(a), opA is not loop invariant (in the traditional sense) because its source operand 
is a memory variable, and opD is a function call that may modify any memory variable
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Figure 10: An example of loop invariant code removal.



(assuming that the compiler does not perform interprocedural memory disambiguation). On 
the other hand, opA is invariant in the super-block loop. The result of super-block loop 
invariant code removal is shown in Figure 10(b).

4.9 G lobal variable m igration
Global variable migration moves frequently accessed memory variables (globally declared 
scalar variables, array elements, or structure elements) into registers for the duration of the 
loop. Loads and stores to these variables within the loop are replaced by register accesses. 
A load instruction is inserted in the preheader of the loop to initialize the register, and a 
store is placed at each loop exit to update memory after the execution of the loop.

The precondition function for global variable migration consists of the following boolean 
predicates that must all be satisfied. For this explanation if op(x) is a memory access, let 
address(x) denote the memory address of the access.

1. op(x) is a load or store instruction.

2. address(x) is invariant in the super-block loop.

3. If op(x) is preceded by a conditional branch, it must not possibly cause an exception.

4. The compiler must be able to detect, in the super-block loop, all memory accesses whose 
addresses can equal address(x) at run-time, and these addresses must be invariant in 
the super-block loop.

The action function of global variable migration consists of three steps.
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1. A new load instruction op(a), with src(a) = address(x) and dest(a) = tempjreg, is 
inserted after the last instruction of the preheader of the super-block loop.

2. A store instruction op(b), with dest{b) = address(x) and src(b) = tempjreg, is inserted 
as the first instruction of each block that can be immediately reached when the super­
block loop is exited.11

3. All loads in the super-block loop with src(i) = address(x) are converted to register 
move instructions with src(z) = tempjreg, and all stores with dest(i) = address(x) 
are converted to register move instructions with dest(i) = tempjreg. The unnecessary 
copies are removed by later applications of copy propagation and dead code removal.

Figure 11 shows a simple example of super-block global variable migration. The memory 
variable x[rO] cannot be migrated to a register in traditional global variable migration, be­
cause rO is not loop invariant in the entire loop. On the other hand, rO is loop invariant in 
the super-block loop, and x[rO] can be migrated to a register by super-block global variable 
migration. The result is shown in Figure 11(b). Extra instructions (opX and opY) are added 
to the super-block loop boundary points to ensure correctness of execution.

4.10 Loop induction  variable elim ination
Induction variables are variables in a loop incremented by a constant amount each time the 
loop iterates. Induction variable elimination replaces the uses of an induction variable by

11 If a basic block that is immediately reached from a control flow exit of the super-block loop can be 
reached from multiple basic blocks, a new basic block needs to be created to bridge the super-block loop and the originally reached basic block.
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Figure 11: An example of super-block global variable migration.
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another induction variable, thereby eliminating the need to increment the variable on each 
iteration of the loop. If the induction variable eliminated is then needed after the loop is 
exited, its value can be derived from one of the remaining induction variables.

The precondition function for induction variable elimination consists of the following 
boolean predicates that must all be satisfied.

1. op(x) is an inductive instruction of the form x <— x + K l.

2. op(x) is the only instruction which modifies dest(x) in the super-block.

3. op(y) is an inductive operation of the form y <— y + A2.

4. op(y) is the only instruction which modifies dest(y) in the super-block.

5. op(x) and op(y) are incremented by the same value (AT = K 2).12

6. There are no branch instructions between op(x) and op(y).

7. All uses of dest(x) can be modified to dest(y) in the super-block (without incurring 
time penalty).13

The action function of induction variable elimination consists of 4 steps.

1. op(x) is deleted.
12The restriction of predicate 5 ( K l  =  K 2) can be removed in some special uses of dest(x), however these 

special uses are too complex to be discussed in this paper.
13For example, if we know that dest(x) =  dest(y) +  5 because of different initial values, then a (branch 

if not equal) bne(dest(x), 0) instruction is converted to a bne(dest(y), —5) instruction. For some machines, 
bne(dest(y), —5) needs to be broken down to a compare instruction plus a branch instruction; then, the optimization may degrade performance.
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2. A subtraction instruction op(ra), tempjreg 1 <— de«si(a:) — dest(y), is inserted after the 
last instruction in the preheader of the super-block loop.

3. For each instruction op(a) which uses dest(x), let other src(a ) denote the src operand of 
op(a), which is not dest(x). A subtraction instruction op(n), tempjreg2 <— other src(a)— 
dest(m), is inserted after the last instruction in the preheader. The source operands of 
op(a) are then changed from dest(x) and othersrc(a) to dest(y) and dest(n), respec­
tively.

4. An addition instruction op(o), dest(x) <— dest(y) -f dest(m), is inserted as the first 
instruction of each block that can be immediately reached when the super-block loop 
is exited in which dest(x) is live in.

It should be noted that step 3 of the action function may increase the execution time of 
op(a) by changing a source operand from an integer constant to a register. For example, a 
branch-if-greater-than-zero instruction becomes a compare instruction and a branch instruc­
tion if the constant zero source operand is converted to a register. Precondition predicate 7 
prevents the code optimizer from making a wrong optimization decision. In traditional loop 
induction elimination, we check the entire loop body for violations of precondition predicate 
7. In super-block loop induction elimination, we check only the super-block and therefore 
find more optimization opportunities.



4c 11 E xtension  o f super-block loop optim izations
In order to further relax the conditions for invariant code removal and global variable migra­
tion, the compiler can unroll the super-block loop body once. The first super-block serves 
as the first iteration of the super-block loop for each invocation, while the duplicate is used 
for iterations 2 and above. The compiler is then able to optimize the duplicate super-block 
loop knowing each instruction in the super-block has been executed at least once. For ex­
ample, instructions that are invariant, but conditionally executed due to a preceding branch 
instruction, can be removed from the duplicate super-block loop. For invariant code removal, 
precondition predicates 3, 4, and 5 are always true for the duplicate super-block. For global 
variable migration, precondition predicate 3 is always true for the duplicate super-block.

In the actual implementation of the super-block loop optimization, a preheader is created 
for the original super-block loop before optimization. After optimization, those super-blocks 
with further optimization opportunities are unrolled once, and the original super-block, now 
serving as the first iteration of the loop, additionally serves as the preheader block of the 
duplicate super-block. Further restrictions can be placed on those loops that are unrolled to 
reduce the code expansion. However as we will discuss in the next section, we have found 
this increase to be small.

5 E xp erim entation
Table 3 shows the characteristics of the benchmark programs. The size column indicates 

the sizes of the benchmark programs measured in numbers of lines of C code. The description
40



name size description
cccp 4787 GNU C preprocessor
cmp 141 compare files
compress 1514 compress files
eqn 2569 typeset mathematical formulas for troff
eqntott 3461 boolean minimization
espresso 6722 boolean minimization
grep 464 string search
lex 3316 lexical analysis program generator
mpla 38970 pla generator
tbl 2817 format tables for troff
wc 120 word count
xlisp 7747 lisp interpreter
yacc 2303 parsing program generator

Table 3: Benchmarks.

column briefly describes the benchmark programs.
For each benchmark program, we have selected a number of input data for profiling. Table 

4 shows the characteristics of the input data sets. The input column indicates the number of 
inputs that are used for each benchmark program. The description column briefly describes 
the input data. For each benchmark program, we have selected one additional input and used 
that input to measure the performance. The execution time of the benchmark programs that 

' are annotated with probes for collecting profile information is from 25 to 35 times slower than 
that of the original benchmark programs. It should be noted that our profiler implementation 
is only a prototype and has not been tuned for performance.

Table 5 shows the output code quality of our prototype compiler. We compare the output 
code quality against that of the MIPS C compiler (release 2.1, -04) and the GNU C compiler 
(release 1.37.1, -0), on a DEC3100 workstation which uses a MIPS-R2000 processor. The
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name input description
cccp 20 C source files (100 - 5000 lines)
cmp 20 similar /  different files
compress 20 C source files (100 - 5000 lines)
eqn 20 ditroff files (100 - 4000 lines)
eqntott 5 boolean equations
espresso 20 boolean functions (original espresso benchmarks)
grep 20 C source files (100 - 5000 lines) with various search strings
lex 5 lexers for C, Lisp, Pascal, awk, and pic
mpla 20 boolean functions minimized by espresso (original espresso benchmarks)
tbl 20 ditroff files (100 - 4000) lines
wc 20 C source files (100 - 5000) lines
xlisp 5 gabriel benchmarks
yacc 10 grammars for C, Pascal, pic, eqn, awk, etc.

Table 4: Input data for profiling.

name global profile local MIPS. 04 GNU.O
cccp 1.0 1.04 0.96 0.93 0.92
cmp 1.0 1.42 0.95 0.96 0.95
compress 1.0 1.11 0.95 0.98 0.94
eqn 1.0 1.25 0.88 0.92 0.91
eqntott 1.0 1.16 0.62 0.96 0.75
espresso 1.0 1.03 0.89 0.98 0.87
grep 1.0 1.21 0.88 0.97 0.81
lex 1.0 1.01 0.96 0.99 0.96
mpla 1.0 1.18 0.84 0.95 0.87
tbl 1.0 1.03 0.94 0.98 0.93
wc 1.0 1.32 0.97 0.96 0.87
xlisp 1.0 1.16 0.91 0.88 0.76
yacc 1.0 1.08 0.87 1.00 0.90
avg. 1.0 1.15 0.89 0.96 0.88
s.d. - 0.12 0.09 0.03 0.07

Table 5: Speed for each individual benchmark.
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numbers that are shown in Table 5 are the speedups over the execution times of globally 
optimized codes that are produced by our prototype compiler. The profile column shows the 
speedup that is achieved by applying the set of profile-based code optimizations that have 
been discussed in the previous section on each globally optimized code. The local column 
shows the negative speedup that is due to using only local but no global code optimizations. 
The MIPS.OA column shows the speedup that is achieved by the MIPS C compiler over 
our global code optimizations. The GNU.O column shows the speedup that is achieved by 
the GNU C compiler over our global code optimizations. The numbers in the M IP S.04 
and GNU.O columns show that our prototype global code optimizations performs slightly 
better than the two production compilers for all benchmark programs.

Comparing the performance improvement from local code optimization to global code 
optimization, to that from global code optimization to profile-based super-block code opti­
mization, we clearly see the importance of these super-block code optimizations.

The sizes of the executable programs directly affect the cost of maintaining these pro­
grams in a computer system in terms of disk space. In order to control the code expansion 
due to tail-duplication, basic blocks are added to become a part of a trace only if their 
execution counts exceed a predefined constant threshold. For these experiments we use an 
execution count threshold of 100. Table 6 shows how code optimizations affect the sizes of 
the benchmark programs. The profile column shows the sizes of profile-based code opti­
mized programs relative to the sizes of globally optimized programs. The local column shows 
the sizes of locally optimized programs relative to that of globally optimized programs. In
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name global profile local
cccp 1.0 1.03 0.98
cmp 1.0 1.11 1.00
compress 1.0 1.01 1.00
eqn 1.0 1.10 1.00
eqntott 1.0 1.00 1.00
espresso 1.0 1.07 1.01
grep 1.0 1.09 1.01
lex 1.0 1.08 1.02
mpla 1.0 1.13 1.01
tbl 1.0 1.06 1.00
wc 1.0 1.01 0.99
xlisp 1.0 1.20 1.01
yacc 1.0 1.09 1.00
avg. 1.0 1.07 1.00
s.d. - 0.06 0.01

Table 6: Ratios of code expansion.

Table 6, we show that our prototype compiler has effectively controlled the code expansion 
due to forming super-blocks.

The cost of implementing the profile-based classic code optimizations is modest. The 
global code optimizer in our prototype compiler consists of approximately 32,000 lines of C 
code. The profile-based classic code optimizer consists of approximately 11,000 lines of C 
code. The profiler has about 2,000 lines of C code and a few assembly language subroutines.

6 C onclusions
We have shown how an execution profiler can be integrated into an optimizing compiler to 
provide the compiler with run-time information about user programs. For each code opti-
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mization, the profile information along with information from static loop analysis is used to 
reduce the execution time of the most frequently executed program regions. We have de­
scribed our implementation techniques and presented the formulation of profile-based classic 
code optimizations. We have identified two major reasons why these code optimizations are 
effective: (1) eliminating control flows into the middle sections of a trace, and (2) optimiz­
ing the most frequently executed path in a loop. Evaluation has been done with realistic 
C application programs. Experimental results have shown that significant performance im­
provement can be obtained from profile-based classic code optimizations.
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