
The Peregrine

High�Performance RPC System

David B� Johnson�

Willy Zwaenepoel

Department of Computer Science
Rice University
P�O� Box ����

Houston� Texas ����������

	��
� ������
�

dbj
cs�cmu�edu� willy
cs�rice�edu

This work was supported in part by the National Science Foundation under Grants CDA�������� and CCR���������
and by the Texas Advanced Technology Program under Grant No� 		��	�	���
�Author
s current address� School of Computer Science� Carnegie Mellon University� Pittsburgh� PA ��
��������



Summary

The Peregrine RPC system provides performance very close to the optimum allowed by the hardware

limits� while still supporting the complete RPC model� Implemented on an Ethernet network of

Sun����� workstations� a null RPC between two user�level threads executing on separate machines

requires ��� microseconds� This time compares well with the fastest network RPC times reported in

the literature� ranging from about 		�� to 
��� microseconds� and is only ��� microseconds above

the measured hardware latency for transmitting the call and result packets in our environment�

For large multi�packet RPC calls� the Peregrine user�level data transfer rate reaches ��� megabits

per second� approaching the Ethernet
s 	� megabit per second network transmission rate� Between

two user�level threads on the same machine� a null RPC requires 	�� microseconds� This paper

identi�es some of the key performance optimizations used in Peregrine� and quantitatively assesses

their bene�ts�

Keywords� Peregrine� remote procedure call� interprocess communication� performance�

distributed systems� operating systems



� Introduction

The Peregrine remote procedure call �RPC� system is heavily optimized for providing high�

performance interprocess communication� while still supporting the full generality and functionality

of the RPC model ��� 	��� including arguments and result values of arbitrary data types� The

semantics of the RPC model provides ample opportunities for optimizing the performance of

interprocess communication� some of which are not available in message�passing systems that do

not use RPC� This paper describes how Peregrine exploits these and other opportunities for

performance improvement� and presents Peregrine
s implementation and measured performance�

We concentrate primarily on optimizing the performance of network RPC� between two user�level

threads executing on separate machines� but we also support e�cient local RPC� between two

user�level threads executing on the same machine� High�performance network RPC is important

for shared servers and for parallel computations executing on networks of workstations�

Peregrine provides RPC performance that is very close to the hardware latency� For network

RPCs� the hardware latency is the sum of the network penalty ��� for sending the call and the result

message over the network� The network penalty is the time required for transmitting a message of a

given size over the network from one machine to another� and is measured without operating system

overhead or interrupt latency� The network penalty is greater than the network transmission time

for packets of the same size because the network penalty includes additional network� device� and

processor latencies involved in sending and receiving packets� Latency for local RPCs is determined

by the processor and memory architecture� and includes the expense of the required local procedure

call� kernel trap handling� and context switching overhead �
��

We have implemented Peregrine on a network of Sun����� workstations� connected by a 	�

megabit per second Ethernet� These workstations each use a 
��megahertz Motorola MC���
�

processor and an AMD Am���� LANCE Ethernet network controller� The implementation uses

an RPC packet protocol similar to Cedar RPC ���� except that a blast protocol �
�� is used for

multi�packet messages� The RPC protocol is layered directly on top of the IP Internet datagram

protocol �	��� In this implementation� the measured latency for a null RPC with no arguments or

return values between two user�level threads executing on separate Sun����� workstations on the

	



Ethernet is ��� microseconds� This time compares well with the fastest null network RPC times

reported in the literature� ranging from about 		�� to 
��� microseconds ��� 	
� �� 	�� 	�� 	��� and

is only ��� microseconds above the measured hardware latency de�ned by the network penalty for

the call and result packets in our environment� A null RPC with a single 	�kilobyte argument

requires 	��� microseconds� showing an increase over the time for null RPC with no arguments

of just the network transmission time for the additional bytes of the call packet� This time is

��� microseconds above the network penalty� and is equivalent to a user�level data transfer rate

of ��� megabits per second� For large multi�packet RPC calls� the network user�level data transfer

rate reaches ��� megabits per second� achieving �� percent of the hardware network bandwidth

and �� percent of the maximum achievable transmission bandwidth based on the network penalty�

Between two user�level threads executing on the same machine� a null RPC with no arguments or

return values requires 	�� microseconds�

In Section 
 of this paper� we present an overview of the Peregrine RPC system� Section �

discusses some of the key performance optimizations used in Peregrine� In Section �� we describe

the Peregrine implementation� including single�packet network RPCs� multi�packet network RPCs�

and local RPCs� The measured performance of Peregrine RPC is presented in Section �� In

Section �� we quantify the e�ectiveness of the optimizations mentioned in Section �� Section �

compares our work to other RPC systems� and Section � presents our conclusions�

� Overview of the Peregrine RPC System

The Peregrine RPC system follows the conventional RPC model of servers exporting one or more

interfaces� making a set of procedures available� and clients binding to an interface before performing

calls ��� 	��� Calls to these procedures appear to the client as a conventional procedure call and

to the server as a conventional procedure invocation� In reality� the client invokes a client stub

procedure that packages the call arguments and the identi�cation of the procedure into a call

message� which is then delivered to the server machine� Collecting the arguments into the message

is referred to as marshaling �	��� Once at the server machine� a server stub procedure unmarshals

the arguments from the call message� invokes the appropriate procedure in the server� and on return






from that procedure� marshals the return values into the result message� which is delivered to the

client machine� The client stub then unmarshals the return values from the result message and

returns to the client program� In Peregrine� it is the client stub
s responsibility to convert the call

arguments into the server
s representation� and to convert the results back on return� All network

packets and all processing at the server use only the server
s data representation� thereby o�oading

any data representation conversion overhead from a server to its clients�

RPC binding initializes data structures in the client and server kernels for use on each call and

return� and returns a binding number to the client program� The binding number provides a form

of capability� ensuring that no RPCs can be executed without �rst binding� In addition to the

binding number� a word of binding �ags is returned� identifying the data representation used by

the server machine�

No special programming is necessary in the client or server� and no compiler assistance is

required� In performing an RPC� argument values are pushed onto the call stack by the client

as if calling the server routine directly� The binding number is stored by the client stub and is

automatically provided to the kernel on each call� Although this associates a single server binding

with the procedure names provided by the interface
s client stubs� the associated binding number

may also be changed before each call by the client if desired� The binding �ags word is also stored

by the client stub and is used by the stub on each call�

The client and server stubs are automatically generated from a description language similar to

ANSI C function prototypes� Procedure arguments may be of any data type� Individual arguments

may be either immediate data values or pointers to data values� Pointer arguments may optionally

be declared in one of three ways� depending on whether the data value must be passed on the call�

the return� or both �	���

� An in pointer argument describes a data value that must be passed on the call� but need not

be passed back on the return�

� An out pointer argument describes a data value that must be passed on the return� but need

not be passed on the call�

�



� An in�out pointer argument describes a data value that must be passed on both call and

return�

If not speci�ed� a pointer argument is assumed to be in�out �

� Optimizing RPC Performance

This paper concentrates on the following key optimizations used in the Peregrine RPC

implementation�

	� Arguments �results� are transmitted directly from the user address space of the client �server��

avoiding any intermediate copies�


� No data representation conversion is done for argument and result types when the client and

the server use the same data representation�

�� Both call and return packets are transmitted using preallocated and precomputed header

templates� avoiding recomputation on each call�

�� No thread�speci�c state is saved between calls in the server� In particular� the server thread
s

stack is not saved� and there is no register saving when a call returns or register restoring

when a new call is started�

�� The arguments are mapped into the server
s address space� rather than being copied�

�� Multi�packet arguments are transmitted in such a way that no copying occurs in the critical

path� Copying is either done in parallel with network transmission or is replaced by page

remapping�

The �rst three optimizations can be used in any message�passing system� while the last three

depend on RPC semantics and could not be used in a �non�RPC� message passing system� The

semantics of the RPC model requires only that the speci�ed procedure be executed in the server
s

address space ��� 	��� There is no requirement that the threads that execute these procedure calls

continue to exist after the call has returned� Although the server
s state must be retained between

�



separate calls to the same server� no thread�speci�c state such as register or stack contents of these

threads need be retained� Furthermore� the arguments for a new incoming call can be located at

any available address in the server
s address space�

� Implementation

In Peregrine� the kernel is responsible for getting RPC messages from one address space to another�

including fragmentation and reassembly� retransmission� and duplicate detection for messages that

must travel across the network� The kernel also starts a new thread in the server when a call

message arrives� and unblocks the client thread when the return message arrives� All processing

speci�c to the particular server procedure being called is performed in the stubs� simplifying the

kernel design�

The current Peregrine implementation uses the thread and memory management facilities of the

V�System ���� but is not speci�c to the V�System and does not use the V�System
s message passing

primitives or protocols� with one exception� At bind time� Peregrine currently uses the V�System
s

facilities for connecting to a server� Additional traps were added to the kernel to support RPC call

and return� and minor changes were made in several kernel routines� such as context switching and

the Ethernet device driver� Most of the code added to the kernel has been written in C� Less than

	�� assembly language instructions were added� consisting mainly of �rst�level trap and interrupt

handling �before calling a C procedure� and context switching support�

��� Hardware Requirements

The Peregrine implementation utilizes the �gather� DMA capability of the Ethernet controller�

Given a list of segments� each speci�ed by a start address and a length� the Ethernet controller

can transmit a single packet consisting of the combined data from those segments� The gather

capability avoids copying noncontiguous segments of a call or result packet into a contiguous bu�er

before transmission� The ability to perform gather DMA is a common feature of many modern

network interfaces and is not unique to the Sun architecture or the LANCE Ethernet controller�

�



We also rely on the ability to remap memory pages between address spaces by manipulating

the page table entries� We place no restrictions on the relationship between the relative sizes of

memory pages and network packets� In the Sun����� architecture� remapping pages requires only

the modi�cation of the corresponding page table entries� However� many other architectures also

require that the translation�lookaside bu�er �TLB� entries for the remapped pages in the MMU be

modi�ed� Page remapping can still be performed e�ciently in such systems with modern MMU

designs� For example� the new Sun Microsystems SPARC reference MMU �	�� 	�� uses a TLB but

allows individual TLB entries to be �ushed by virtual address� saving the expense of reloading

the entire TLB after a global �ush� Similarly� the MIPS MMU ��� allows the operating system to

individually modify any speci�ed TLB entry�

��� The Packet Header

The Peregrine RPC protocol is layered directly on top of the Internet IP protocol �	��� which in our

current implementation is layered directly on top of Ethernet packets� Figure 	 shows the IP and

Peregrine RPC packet headers� In the RPC header� the packet type is either �call� or �return�� The

Figure � IP and Peregrine RPC packet headers

�



call sequence number identi�es separate RPCs from the same client� whereas the packet sequence

number identi�es each packet of a particular call or result message� For single�packet argument

or result messages� the packet sequence number is always �� The procedure number identi�es the

particular procedure to call in the server
s address space� and is used only for call packets� The

length of the data present in this packet is speci�ed in the RPC packet data length �eld� and the

total length of all data being sent with this RPC call or return is speci�ed in the RPC total message

length �eld�

The headers of the call packets sent from one client to a particular server change little from

one packet to the next� Likewise� the headers of the result packets sent by that server back to the

same client change little between packets� Many of the �elds of the Ethernet header� the IP header�

and the RPC header can be determined in advance and reused on each packet transmission� At

bind time� a packet header template is allocated and the constant �elds are initialized� only the

remaining �elds are modi�ed in sending each packet� In particular� the entire Ethernet header

remains constant for the duration of the binding� In the IP and RPC headers� only the heavily

shaded �elds indicated in Figure 	 are changed between packets� The lightly shaded �elds change

between calls� but not between individual packets of the same call� Furthermore� since most of the

IP header remains the same between calls� most of the header can be checksummed at bind time�

requiring only the few modi�ed �elds to be added to the checksum on each packet transmission�

��� Client and Server Stubs

The client stub consists mainly of a kernel trap to transmit the call message� followed by a subroutine

return instruction� The server stub consists mainly of a subroutine call to the speci�ed procedure�

followed by a kernel trap to transmit the result message� This trap in the server stub does not

return� Since a new server thread is created to handle each call� this trap instead terminates the

thread and prepares it for reuse on the next call�

For each area of memory that must be transmitted with a call or result message� the stub builds

a bu�er descriptor containing the address and the length of that area� The client stub builds a

descriptor for the stack argument list and for the area of memory pointed to by each pointer

�



argument� The length of this area must be available to the stub� Usually� this length is also an

argument to the procedure� but it may need to be computed by the stub� Each bu�er descriptor

is tagged to indicate to the kernel whether that bu�er is in� out � or in�out � The client stub builds

descriptors for all pointer arguments� but the server stub builds a descriptor only for the out and

in�out pointer arguments� These descriptors built by the server stub are not tagged since they are

all treated as out by the kernel in sending the result message�

At binding time� the binding �ags word is set to indicate any data representation conversion

necessary for communication between this particular client and server� If both client and server use

the same data representation� no �ags are set and all data representation conversion is bypassed�

If representation conversion is necessary� the client stub creates new bu�ers on its stack to hold the

data values in the server
s representation� For example� the client stub may need to byte�reverse

integers or convert �oating point data formats for arguments being passed on the call� These stack

bu�ers are deallocated automatically with the rest of the stack frame when the client stub returns�

simplifying the client stub and avoiding the overhead of allocating these bu�ers on the heap� For

the stack argument list itself� as a special case� any data representation conversion is performed

�in place� if the client and server representations are the same size� replacing the old values with

the same values in the server
s representation� This special case is possible since� by the compiler
s

procedure calling convention� the stack arguments are scratch variables to the client stub and are

automatically deallocated from the stack upon return�

��� Single�Packet Network RPC

����� Sending the Call Packet

When a process performs an RPC� the arguments are pushed onto the process
s stack and a

procedure call to the client stub is performed as if calling the server procedure directly� The client

stub builds the bu�er descriptors on the stack as described in Section ���� pushes the procedure

number and the binding number onto the stack� and traps into the kernel� The stack contents

at the time of the trap are illustrated in Figure 
� The kernel directs the Ethernet interface to

transmit the packet using gather DMA from the packet header template corresponding to the

�



Figure � Client stack on entry to the kernel

given binding number and from the bu�ers indicated by the in and in�out descriptors� On the

Sun architecture� however� I�O using DMA can proceed only to or from virtual addresses in kernel

memory� Therefore� for each bu�er other than the packet header template �which already resides

in kernel memory�� the corresponding memory pages are �rst double�mapped into kernel space

before instructing the Ethernet interface to transmit the packet� The arguments are copy�on�write

protected so that they are available for possible retransmission�

����� Receiving the Call Packet

The arguments for the call are received as part of the packet into a bu�er in the kernel� but before

calling the requested procedure in the server� the arguments must be placed on the top of the server

thread
s stack� To avoid copying them onto the stack� we arrange instead to use the packet bu�er

itself as the server thread
s stack� At initialization time� the Ethernet interface is con�gured with

a number of packet bu�ers� each with size equal to the maximum Ethernet packet size� such that

each bu�er is at the high�address end of a separate virtual memory page� The layout of the call

packet in this page after receipt is shown in Figure ��

�



Figure � Received call packet in one of the server
s Ethernet receive bu�er pages

	�



On arrival of a packet� the Ethernet interrupt routine examines the packet� The IP header

checksum is veri�ed� and if the packet is an RPC call packet� control is passed to the RPC

packet handler� Duplicate detection is done using the RPC call and packet sequence numbers�

A preallocated server thread is then reinitialized to execute this call� or if no free threads are

available in the pool� a new thread is created� The receive packet bu�er page is remapped into the

server
s address space at the location for the thread
s stack� and an unused page is remapped to

the original virtual address of the packet bu�er to replace it for future packets� The thread begins

execution at the server
s RPC dispatch procedure that was registered when the server exported the

RPC interface�

The arguments and procedure number from the remapped packet bu�er are on the top of the

thread
s stack� The server dispatch procedure uses the procedure number to index into a table of

procedure�speci�c stub addresses� It then pops all but the call arguments o� its stack and jumps to

the corresponding stub address from the table� If there are no pointer arguments� the corresponding

user procedure in the server is immediately called by the stub� If there are pointer arguments� each

must �rst be replaced with a pointer to the corresponding bu�er in the server
s address space� For

in and in�out pointers� the address of the bu�er that arrived with the packet� which is now on the

server stack� is used� For out pointers� no bu�er was sent in the packet� and a new bu�er is created

instead� The stub then calls the corresponding user procedure in the server�

����� Sending the Result Packet

When the server procedure returns to the stub� the stub builds any necessary bu�er descriptors for

out or in�out pointer arguments� as described in Section ���� and then traps into the kernel with the

functional return value of the procedure in a register following the MC���x� compiler convention�

The result packet is then transmitted using the Ethernet interface gather DMA capability� in the

same way as for the call packet �Section ����	�� Any result bu�ers are copy�on�write protected in

the server
s address space� to be available for possible retransmission� When the results are received

by the client� an acknowledgement is returned and the result bu�ers are unprotected� As with the

Cedar RPC protocol ���� the transmission of a new RPC by the same client to this server shortly

		



after this reply also serves as an implicit acknowledgement� The server thread does not return from

this kernel trap� and thus when entering the kernel on this trap� and later when leaving the kernel

to begin a new RPC� the thread
s registers need not be saved or restored�

����� Receiving the Result Packet

When the result packet is received by the client kernel� the copy�on�write protection is removed

from the arguments� The functional return value is copied into the client thread
s saved registers�

Any data in the packet being returned for out or in�out bu�ers are copied by the kernel to the

appropriate addresses in the client
s address space� as indicated by the bu�er descriptors built by

the client stub before the call� The client thread is then unblocked and resumes execution in the

client stub immediately after the kernel trap from the call�

The copy of the return bu�ers into the client
s address space could be avoided by instead

remapping the packet bu�er there� but this would require a modi�cation to conventional RPC

semantics� Pointers to out or in�out bu�ers would need to be passed by the user instead as a

pointer to a pointer to the bu�er rather than directly as a single pointer� and the client stub would

then overwrite the second pointer �pointing to the bu�er� with the address of the bu�er in the

remapped packet� e�ectively returning the bu�er without copying its data� The client would then

be responsible for later deallocating memory used by the return packet bu�er� This semantics is used

by the Sun RPC implementation �	�� to avoid the expense of copying� We have not implemented

this mechanism in Peregrine because we want to preserve conventional RPC semantics�

��� Multi�Packet Network RPC

For a network RPC in which the message containing the argument or result values is larger than

the data portion of a single Ethernet RPC packet� the message is broken into multiple packets

for transmission over the network� These packets are sent using a blast protocol �
�� to reduce

latency by eliminating per�packet acknowledgements� Selective retransmission is used to avoid

retransmission of the entire message� As in the single�packet case� the data are transmitted directly

from the client
s address space using gather DMA to avoid copying� Once the arguments �results�

	




have been transmitted and assembled at the server �client� machine� the execution of a multi�packet

network RPC is the same as for the single�packet case described in Section ����

The call message is composed with the argument list and bu�ers in the same order as for

a single�packet call� which is then transmitted in a sequence of packets each of maximum size�

However� the packet that would conventionally be sent �rst �containing� at least� the beginning of

the argument list� is instead sent last� That is� the �rst data packet transmitted starts at an o�set

into the call message equal to the maximum data size of a packet� Following this� the remainder of

the packets are sent in their conventional order� followed �nally by what would otherwise have been

the �rst packet� For example� Figure � illustrates the transmission of a call message composed of

four packets� The packets are transmitted in the order 	� 
� �� �� packet � contains the beginning

of the argument list� and packet � contains the end of the last in or in�out bu�er�

On receipt at the server machine� the packets are reassembled into the call message in a single

contiguous bu�er� For all but the last packet received �the packet containing the beginning of the

Figure � Example multi�packet call transmission and reception

	�



argument list�� the packet data are copied into the contiguous bu�er� as illustrated in Figure �� This

bu�er begins with the space for the data of packet 	 and is located on a page�aligned address� For

each packet copied� the copying overhead occurs in parallel with the transmission of the following

packet of the call� In Figure �� the copying of the data from packet 	 at the server occurs in

parallel with the transmission of packet 
 by the client� and so forth� When the last packet arrives

�packet ��� it is instead remapped into the page located immediately before the assembled argument

bu�er �now containing the data of packets 	 through ��� As described in Section ����
� the Ethernet

receive bu�ers are each located at the high�address end of a separate virtual memory page� Thus�

by remapping this last packet to a page immediately before the bu�er containing the copied data

from the other packets of the call� a contiguous argument bu�er is assembled without copying the

data of this �nal packet� Since this is the last packet transmitted for this call� the copying of

this packet
s data could not be done in parallel with the transmission of another packet of the

call� By remapping this packet instead of copying its data� we avoid this overhead� Since there is

unused space below the Ethernet receive bu�er in each page� only the �rst packet of the original call

message can be remapped in this way to assemble a contiguous bu�er containing the arguments�

therefore necessitating the transmission of the ��rst� packet last�

If the result message requires multiple packets� it is likewise sent as a sequence of packets using

a blast protocol� As described in Section ������ however� the result data arriving at the client

are always copied into the bu�ers described by the out and in�out descriptors built by the client

stub� and no remapping is used� Thus� the packets of the result message are simply sent in their

conventional order rather than the order used in transmitting a multi�packet call message� Once

the complete result message has arrived� the client thread is restarted as in the single�packet case�

��� Local RPC

Between two threads executing on the same machine� Peregrine uses memory mapping to e�ciently

move the call arguments and results between the client
s and server
s address spaces� The technique

used is similar to our remapping of the Ethernet packet receive bu�er to form the server thread
s

stack for network RPCs� The execution of the call in the client and server stubs is the same as

	�



for network RPC� The client stub builds the bu�er descriptors and traps into the kernel� Once

in the kernel� if the server is local� the arguments are copied from the memory areas indicated

by the in and in�out bu�er descriptors into a page�aligned bu�er in the client
s address space�

and this bu�er is then remapped from the client
s address space into the server
s address space

to become the stack for the server thread
s execution of the call� A new thread from the pool of

preallocated server threads created at bind time is reinitialized for this call� and begins execution

in the server dispatch procedure� On return from the call� the stack bu�er is remapped back into

the client thread
s address space� and the kernel then copies any out or in�out arguments to their

correct locations in the client
s address space� By remapping the bu�er between address spaces� the

arguments are never accessible in both the client and server address spaces at the same time� This

prevents other threads in the client
s address space from potentially modifying the arguments in

the server during the call� Although this implementation of local RPC is similar to that used in the

LRPC system �
�� Peregrine di�ers signi�cantly in several areas� as will be discussed in Section ��

Copying the arguments before remapping them into the server
s address space is necessary in

order to preserve RPC semantics for arguments that do not �ll an entire page� Without this copy�

we would need to remap all pages of the client
s address space that contained any portion of the

argument list or data values described by pointer arguments� Since there may also be other data

values in these same pages� this remapping would allow the server access to these values� allowing

them to be read or modi�ed and perhaps violating the correctness or security requirements of the

client� Also� since the remapped pages are not accessible in the client
s address space during the

execution of the call by the server� other threads in the client
s address space would not have access

to these pages and could be forced to wait until the call completed before continuing their own

execution� The copying is performed in the kernel rather than in the client stub in order to use the

same stubs for both local and network RPC�

� Performance

All performance measurements presented in this paper were obtained using diskless Sun�����

workstations connected by a 	� megabit per second Ethernet network� The network was otherwise

	�



idle during the measurements� For each individual measurement� the total elapsed time for a trial

of 	����� iterations �or 	������ iterations for some measurements� was measured and divided by

the number of iterations� Among individual trials for the same measurement� the results varied by

less than 	 percent� For each measurement� the performance �gures presented have been averaged

over several individual trials�

��� The Network Penalty

The network penalty ��� is the minimum time required to transfer a given number of bytes over

the network from one machine to another on an idle network� It is a function of the processor� the

network� the network interface� and the number of bytes transferred� The network penalty does not

include protocol overhead� context switching� or interrupt processing costs� It represents the cost of

transferring the data in one direction only� Any acknowledgements required by particular higher�

level protocols would incur a separate network penalty� Table 	 shows the measured network penalty

for single�packet transfers� for various packet sizes ranging from the minimum to the maximum

Ethernet packet size� Also shown in Table 	 are the network transmission times for the same packet

sizes� computed at the Ethernet transmission rate of 	� megabits per second� and the di�erence

between the transmission time and the network penalty� This di�erence is due to a number of

factors� including additional network and device latencies and processor cost� The network latency

stems from the transmission of synch and preamble bits� and from the delay in listening for the

carrier� The device latency results from checking the LANCE Ethernet interface
s bu�er descriptor

rings� used for communication between the CPU and the interface� at both the sender and the

receiver� Additional latency occurs as a result of �lling the DMA FIFO on the sender� and �ushing

the end of the packet to memory on the receiver� The interface furthermore checks the CRC of

each incoming packet� and sets a number of bits in the device register� Similarly� on transmission

the CPU sets a number of bits in the device register to direct the interface to send a packet�

For data transfers larger than the maximum Ethernet packet data size� the network penalty

measures the cost of streaming the required number of packets over the network� The packets

are sent as quickly as possible� with no delay between packets and no protocol acknowledgements�

	�



Data Size Transmission Time � Network Penalty Overhead
�bytes� �microseconds� �microseconds� �microseconds�

�� �	�
 	�
 ����
	�� ���� 	�� ����

�� 	���� 
�� ����
��� ����� �	� �
��
��� ����� ��� ����
	�
� ����� �
� ����
	��� 	
	��� 	�	� ����

�The transmission time includes �� additional bytes in each packet consisting of the
Ethernet destination address� source address� packet type� and CRC�

Table � Network penalty for various packet sizes

Table 
 shows the measured network penalty for multi�packet data transfers� for various multiples

of the maximum Ethernet packet data size� The transmission data rate achieved is also shown�

In addition to the reasons mentioned previously for the di�erence between network penalty and

network transmission time for single�packet transfers� the interpacket gap required by the LANCE

Ethernet controller for sending back�to�back transmissions prevents full utilization of the 	� megabit

per second bandwidth of the Ethernet ����

Data Size Number of Network Penalty Data Rate
�bytes� Packets �milliseconds� �Mbits�second�

	��� 	 	��	 ��	�
���� 
 
��� ����
���� � ��	� ����
	
��� � 	��
	 ����

���� 	� 
���� ���	
����� �
 ����� ����
����� �� �	��� ���	

Table � Network penalty for multi�packet data transfers

	�



��� Single�Packet Network RPC

The performance of the Peregrine RPC system for single�packet RPCs is close to the network

penalty times given in Table 	� Table � summarizes our measured RPC performance� The network

penalty shown represents the cost of sending the call and result packets over the network� The

di�erence for each case between the measured RPC time and the corresponding network penalty

times indicates the overhead added by Peregrine�

To determine the sources of this overhead� we also separately measured the execution times

for various components of a null RPC� In this cost breakdown� each component was executed

	������ times in a loop� and the results averaged� In a few cases� such as in measuring the execution

time of the Ethernet interrupt routine� small changes were made to the timed version of the code

in order to be able to execute it in a loop� but all such changes closely preserved the individual

instruction execution times� These results are shown in Table �� The components are divided

between those that occur in the client before transmitting the call packet� those in the server

between receiving the call packet and transmitting the result packet� and those in the client after

receiving the result packet� A number of operations necessary as part of a network RPC do not

appear in Table � because they occur in parallel with other operations� On the client
s machine�

these operations include putting the call packet on the retransmission queue� handling the Ethernet

transmit interrupt for the call packet� blocking the calling thread� and the context switch to the

next thread to run while waiting for the RPC results� On the server
s machine� the operations that

occur in parallel with other components of the RPC cost breakdown include handling the Ethernet

transmit interrupt for the result packet� and the context switch to the next thread�

Procedure Network Penalty Measured RPC Overhead

Null RPC 
�� ��� ���
��byte int argument RPC 
�� ��� �	�
	�
��byte in RPC 	��� 	��� ���
	�
��byte in�out RPC 	��� 
��	 ���

Table � Peregrine RPC performance for single�packet network RPCs �microseconds�

	�



Component Time

Procedure call to client stub and matching return 

Client stub �
Client kernel trap and context switch on return ��
Client Ethernet and RPC header completion 

Client IP header completion and checksum �
Client sending call packet �	
Network penalty for call packet 	�


Server Ethernet receive interrupt handling ��
Server Ethernet and RPC header veri�cation 

Server IP header veri�cation and checksum �
Duplicate packet detection �
Page remapping of receive bu�er to be server stack �
Other server handling of call packet �
Server context switch and kernel trap on return 
�
Server stub �
Server Ethernet and RPC header completion 

Server IP header completion and checksum �
Server sending result packet 
�
Network penalty for result packet 	�


Client Ethernet receive interrupt handling ��
Client Ethernet and RPC header veri�cation 

Client IP header veri�cation and checksum �
Client handling of result packet �

Total measured cost breakdown ���
Measured cost of complete null RPC ���

Table � Measured breakdown of costs for a null network RPC �microseconds�

The cost of sending the call packet is more expensive than the cost of sending the result packet

because the binding number must be checked and the corresponding binding data structures found

within the kernel� Directing the Ethernet interface to transmit the call packet is also more expensive

than for the result packet due to the provision for sending the packets of a multi�packet call message

in a di�erent order� as described in Section ���� Although this feature is not used on a null RPC�

its presence does a�ect the null call
s overhead�

The use of the IP Internet Protocol �	�� in the Peregrine implementation adds a total of only


� microseconds to the overhead on each null RPC� Large calls experience a further overhead

	�



of 	� microseconds in transmission time on the Ethernet for each IP header �at 	� megabits per

second�� but this overhead does not a�ect the null RPC time since its packet size is still less than the

minimum allowed Ethernet packet size� Although the use of IP is not strictly necessary on a single

local area network� it allows Peregrine packets to be forwarded through IP gateways� justifying its

modest cost�

��� Multi�Packet Network RPC

Table � shows the performance of Peregrine RPC for various RPCs with large� multi�packet call or

result messages� The throughput indicates the speed at which the argument and result values are

transmitted� and does not include the size of the Ethernet� IP� or RPC packet headers� Like the

single�packet network RPC performance� the performance of multi�packet network RPC is close to

the network penalty for sending the call and return messages� Peregrine achieves a throughput of

up to ��� megabits per second� coming within �� percent of the network bandwidth and within

�� percent of the maximum bandwidth as limited by the network penalty�

��� Local RPC

Unlike network RPC performance� the performance of local RPC is determined primarily by

processor overheads �
�� In particular� the minimum cost of a local null RPC is the sum of the costs

of a procedure call from the client user program to the client stub� a kernel trap and a context

switch on the call� and a kernel trap and a context switch on the return� In order to prevent the

server from accessing other memory in the client and to prevent other threads in the client from

Procedure Network Penalty Latency Throughput
�bytes� �milliseconds� �milliseconds� �Mbits�second�

�����byte in RPC 
��	 ��
� ����
�����byte in�out RPC ��	� ���� ����
������byte in RPC ����� ����� ����
������byte in�out RPC �	��� ���
� ����

Table � Peregrine RPC performance for multi�packet network RPCs


�



modifying the arguments during the server
s execution of the call� at least one memory�to�memory

copy of the arguments is also required� The kernel trap and address space switch costs depend

heavily on the processor architecture and operating system design �	�� The �gures reported for

these operations in Table � apply to the local RPC case as well� making the minimum null local

RPC cost in our environment �� microseconds�

Table � summarizes the measured performance of local RPC in the Peregrine implementation�

Relative to the minimum null RPC cost� this measured performance shows an implementation

overhead of �� microseconds for a local null call� This overhead includes the costs of executing the

client and server stubs� validating the binding number in the kernel� reinitializing a server thread

to execute the call� remapping the argument bu�er from the client address space into the stack for

the new server thread� and remapping the bu�er back to the client on return�

� E�ectiveness of the Optimizations

In this section� we revisit the six optimizations listed in Section � and discuss their e�ectiveness in

the Peregrine RPC implementation�

	� Arguments �results� are transmitted directly from the user address space of the client �server��

avoiding any intermediate copies�

To determine the e�ectiveness of this optimization� we measured the cost of performing

memory�to�memory copies using the standard copying routine available in our C runtime

library� For small copies� the library routine is ine�cient� requiring 	
 microseconds to

copy only � bytes �and � microseconds to copy � bytes�� due to a high startup overhead for

Procedure Time

Null RPC 	��
��byte int argument RPC 	��
	�
��byte in RPC �	�
	�
��byte in�out RPC ���

Table � Performance of local Peregrine RPC �microseconds�


	



determining di�erent special cases for loop unrolling during the copy� To copy 	�
� bytes� the

library routine requires 	�� microseconds� and to copy the user�level data of a maximum�sized

Ethernet packet requires 
�� microseconds� In contrast� using gather DMA to transmit the

packet without memory�to�memory copies avoids these costs entirely� but adds � microseconds

per page for the copy�on�write protection� plus between � and � microseconds per packet for

setting up the Ethernet interface to transmit each separate area of memory to be sent as

part of the packet� We conclude that even for the smallest argument and return value sizes�

transmission from the user address space results in a performance gain�


� No data representation conversion is done for argument and result types when the client and

the server use the same data representation�

RPC systems� such as SunRPC �	��� that use a single �external representation� for data

types must convert all arguments and result values to this standard representation� even if

the client and server machines both use the same native representation that happens to di�er

from the standard RPC external representation� The savings achieved by not performing this

conversion when the client and server machines use the same native representation depend

on the size and type of argument and result values� As an example of these savings in our

hardware environment� the time required to byte�swap a single ��byte integer using the routine

available in our C runtime library is 	� microseconds� and the time required to byte�swap an

array of 
�� integers �	�
� bytes� is 	��� microseconds�

�� Both call and return packets are transmitted using preallocated and precomputed header

templates� avoiding recomputation on each call�

As shown in Table �� the cost of transmitting the call packet is �� microseconds� including

the time to complete the IP and RPC headers� The corresponding cost of transmitting the

result packet is �
 microseconds� To evaluate the e�ectiveness of using the header templates�

we measured these same components in a modi�ed version of the implementation that did

not use this optimization� Based on these measurements� the packet header templates







save 
� microseconds per packet� or �� microseconds total for a null RPC� Of these 
�

microseconds per packet� � microseconds are spent building the Ethernet and RPC headers�

and 	� microseconds for the IP header and IP checksum�

�� No thread�speci�c state is saved between calls in the server� In particular� the thread
s stack

is not saved� and there is no register saving when a call returns or register restoring when a

new call is is started�

In our implementation� this optimization saves 		 microseconds per RPC� as shown by the

di�ering kernel trap and context switch overhead of the client and the server threads in

Table �� The savings from this optimization occur entirely at the server� since the context

switch for the client thread while waiting for the RPC results to be returned must be a

complete context switch� saving and restoring all registers� On processors with larger numbers

of registers that must be saved and restored on a context switch and a kernel trap� such

as the SPARC processor
s register windows �	��� this optimization will increase further in

signi�cance �	��

�� The arguments are mapped into the server
s address space� rather than being copied�

The cost of performing memory�to�memory copies was reported above� From Table �� the

cost of remapping the Ethernet receive bu�er in the server to become the new server thread
s

stack is � microseconds� Thus� even for a null RPC� remapping the stack saves � microseconds

over the cost of calling the library
s memory copying routine� Similarly� for a ��byte int

argument RPC� � microseconds is saved by remapping rather than copying the arguments�

Since the cost of remapping the bu�er is independent of the size of the argument list �up to

the maximum packet size�� the savings by remapping rather than copying increase quickly

with the argument list size� For example� the performance gain achieved by remapping the

arguments into the server
s address space for a 	�
��byte in RPC is 	�� microseconds� and

for a maximum�sized single packet RPC� 
�� microseconds�


�



�� Multi�packet arguments are transmitted in such a way that no copying occurs in the critical

path� Copying is either done in parallel with network transmission or is replaced by page

remapping�

For all but the last packet transmitted� the copying occurs in parallel with the

transmission of the following packet on the network� Copying the data of a full packet

requires 
�� microseconds� whereas the network transmission time for a full packet is

	
	� microseconds� Thus� this copying requires only about 	� percent of the minimum time

between packets� The overhead of copying the data of the last packet of a multi�packet call

message is also eliminated by remapping the packet into the server
s address space� saving an

additional 
�� microseconds�

� Comparison to Other Systems

Comparison of RPC systems is di�cult because di�erences in hardware and software platforms

present implementors with di�erent design tradeo�s� All RPC systems� however� face a similar set of

challenges in achieving good performance� First among these challenges is avoiding expensive copies

both in the client and the server� Expensive data representation conversions and recomputation of

headers must also be avoided to the extent possible� Reducing overhead for thread management in

the server is another important concern� We summarize here the approaches used by a number of

systems for which good performance has been reported in the literature �
� �� 	
� �� 	�� 	���

Some of the optimizations incorporated in Peregrine are similar to optimizations used by the

LRPC system �
�� However� LRPC supports only local RPC� between two threads executing on

the same machine� whereas we have concentrated primarily on network RPC support� between

two threads executing on separate machines over the network� LRPC preallocates and initializes

control and data structures at bind time to reduce later per�call latency� This preallocation is

roughly similar to our preallocation of packet header templates at bind time� Also� like Peregrine�

LRPC does not retain server thread�speci�c state between calls� although LRPC takes advantage

of this in a di�erent way than does Peregrine� LRPC uses the client thread directly in the server
s


�



address space to execute the call� avoiding some context switching overhead� The Peregrine local

RPC implementation di�ers speci�cally from LRPC in two additional areas� First� LRPC was

implemented only on VAX processors� which provide a separate argument pointer register in the

hardware and procedure calling convention� By using the argument bu�er as the stack for the new

server thread� we avoid the need for a dedicated argument pointer register� Also� unlike LRPC� the

argument bu�er in Peregrine is never accessible in both the client and server address spaces at the

same time� avoiding the problem of allowing other threads in the client to modify the arguments

during the call�

The V�System kernel is a message�passing system ���� As a result� the optimizations speci�c

to RPC are not available to the V kernel� Gather DMA for packet header and data is used in

some implementations� The arguments are copied into the server
s address space� For multi�packet

arguments� the copy is done on�the��y as each packet arrives� such that only the last packet adds

to the latency� The optimistic blast protocol implementation ��� attempts to avoid these copies

by predicting that the next packet to arrive during a blast is indeed the next packet in the blast

protocol transfer� Packet headers are derived from a header template�

In Sprite �	
�� RPC is used for kernel�to�kernel communication� thereby avoiding concerns

relating to copies between user and kernel space� Sprite makes limited use of gather DMA for

transmitting the arguments and return values� The gather capability of the network interface is

used to transmit packets consisting of a header and a data segment� usually a �le block� which

need not be contiguous� The data of multi�packet arguments or return values are copied on�the��y�

as in the V kernel� The data segment consists of bytes� while the header is made up of �words��

The header contains a tag� indicating to the receiver whether data conversion is necessary� Header

templates are used to avoid recomputation� A pool of kernel daemon threads handles incoming

calls� the stack and the registers of these threads are saved and restored�

The x�kernel is a testbed for modular yet e�cient implementation of protocols ���� The x�

kernel
s RPC implementation is composed of a number of �smaller� protocols ���� Arguments to an

RPC call are put into a single contiguous bu�er by the client stub� Small arguments are copied into

the server
s address space� while a transparent optimistic blast protocol implementation attempts


�



to avoid copies for large arguments �		�� Data is transmitted in the native format of the sender�

with a �ag indicating the sender
s architecture� The receiver checks this �ag� and performs the

necessary conversion� if any� Each of the component protocols use a template for its protocol

header� which is then copied into a header bu�er� RPCs are executed by a server thread selected

from a pre�allocated pool of threads� The thread persists across invocations� its registers and stack

are saved and restored�

The Fire�y RPC system �	�� was implemented on a small shared�memory multiprocessor�

Copies are avoided in a variety of ways� Arguments are put into a single bu�er in user space� and

transmitted from there using DMA� On the server side� a collection of packet bu�ers is statically

mapped into all address spaces� and thus available to the server without further copies� Header

templates are built at bind time� but the UDP checksum is completely recomputed for every packet�

A pool of server threads accepts incoming calls� the threads maintain their user stack and registers

between calls� but the kernel stack is discarded� The data representation can be negotiated at bind

time�

Amoeba is a message�passing kernel �	��� RPC is built on top of the kernel
s synchronous

message�passing primitives by stubs that can be generated automatically or by hand� As with

the V kernel� the optimizations speci�c to RPC are not available to the Amoeba kernel� Before

transmission by the kernel� the stub copies all argument or result values into a single contiguous

bu�er� Amoeba does not enforce any data representation conversion of these bu�ers� any needed

conversion is left to the stub writer� Within the kernel� Amoeba completely rebuilds the packet

header for each transmission� without the use of header templates�

SunRPC is implemented with a collection of library routines on top of the Unix kernel �	���

and thus the optimizations speci�c to RPC are not available to SunRPC� The stubs copy all

arguments or result values into a single contiguous bu�er� converting them to a standard data

representation �	��� before requesting the kernel to transmit them as a message� As a special

case in some implementations� if the client or server transmitting an RPC message uses the same

native representation as the network standard representation for some data types� representation


�



conversion is bypassed for those values� Some versions of the Unix kernel use header templates for

transmitting consecutive network packets on the same connection�

In terms of performance comparison for RPC and message�passing systems� two metrics seem to

be common� the latency of a null RPC �or message� and the maximum data throughput provided by

a series of RPCs with large arguments �or a series of large messages�� Table � shows the published

performance �gures for network communication in a number of RPC systems and message�passing

operating systems� The machine name and type of processor used for each system are shown� along

with an estimate of the CPU speed of each in MIPS �	��� Except where noted� all performance

�gures in Table � were measured between two user�level threads executing on separate machines�

connected by a 	� megabit per second Ethernet�

� Conclusion

We have described the implementation and performance of the Peregrine RPC system� Peregrine

supports the full generality and functionality of the RPC model� It provides RPC performance

that is very close to the hardware latency� both for network RPCs� between two user�level threads

System Machine Processor MIPS
Latency Throughput

�microsec�� �Mbits�sec��

Cedar ���� Dorado Custom � 	��� 
��
Amoeba �	�� Sun����� MC���
� � 		�� ���
x�kernel ��� Sun����� MC���
� 
 	��� ��	
V�System ��� Sun����� MC���
� 
 
��� ���
Fire�y �	�� ��CPU Fire�y MicroVax II � 
��� ���
Sprite �	
�y Sun����� MC���
� 
 
��� ���
Fire�y �	�� 	�CPU Fire�y MicroVax II 	 ���� 
��
SunRPC �	��z Sun����� MC���
� � ���� 
��

Peregrine Sun����� MC���
� � ��� ���

�Measured on a � megabit per second Ethernet�
yMeasured kernel�to�kernel� rather than between two user�level threads�
zMeasurements reported by Tanenbaum et al� �����

Table � Performance comparison of network RPC and message�passing systems


�



executing on separate machines� and for local RPCs� between two user�level threads executing

on the same machine� Peregrine has been implemented on a network of Sun����� workstations�

connected by a 	� megabit per second Ethernet� In the Peregrine system� the measured latency

for a null RPC over the network is ��� microseconds� which is only ��� microseconds above the

hardware latency for transmitting the required packets� For large multi�packet RPC calls� the

network user�level data transfer rate reaches ��� megabits per second� over the 	� megabit per

second Ethernet� Between two user�level threads on the same machine� the measured latency for a

null RPC is 	�� microseconds�

We have described the bene�ts of various optimizations that we used in the implementation

of Peregrine� In particular� we avoid copies by transmitting arguments and return values directly

from user space� and by mapping the arguments into the server
s address space� We have found

these optimizations to be bene�cial even for the smallest argument and return value sizes� Further

savings were obtained by using header templates and avoiding recomputation of the header on

each call� by avoiding data representation conversions for communication between machines with

identical native data representations� and by reducing thread management overhead on the server�

Acknowledgements

Mike Burrows� Fred Douglis� Frans Kaashoek� Sean O
Malley� John Ousterhout� Larry Peterson�

Mike Schroeder� and Brent Welch provided insights into the design of the RPC systems in which

they participated� We thank them for their help� and we hope that we have represented their

systems accurately in our comparisons with their work� We also wish to thank John Carter� Alan

Cox� Mootaz Elnozahy� Pete Keleher� and the referees for their comments on the paper�

References

�	� T�E� Anderson� H�M� Levy� B�N� Bershad� and E�D� Lazowska� The interaction of architecture

and operating system design� In Proceedings of the �th Symposium on Architectural Support

for Programming Languages and Operating Systems� pages 	���	
�� April 	��	�


�



�
� B�N� Bershad� T�E� Anderson� E�D� Lazowska� and H�M� Levy� Lightweight remote procedure

call� ACM Transactions on Computer Systems� ��	�������� February 	����

��� A�D� Birrell and B�J� Nelson� Implementing remote procedure calls� ACM Transactions on

Computer Systems� 
�	�������� February 	����

��� J�B� Carter and W� Zwaenepoel� Optimistic implementation of bulk data transfer protocols�

In Proceedings of the International Conference on Measurement and Modeling of Computer

Systems �Sigmetrics ���	� pages �	���� May 	����

��� D�R� Cheriton� The V distributed system� Communications of the ACM� �	�����	������March

	����

��� D�R� Cheriton and W� Zwaenepoel� The distributed V kernel and its performance for diskless

workstations� In Proceedings of the �th ACM Symposium on Operating Systems Principles�

pages 	
��	��� October 	����

��� N�C� Hutchinson and L�L� Peterson� The x�kernel� An architecture for implementing protocols�

IEEE Transactions on Software Engineering� SE�	��	�������� January 	��	�

��� N�C� Hutchinson� L�L� Peterson� M�B� Abbott� and S� O
Malley� RPC in the x�kernel�

evaluating new design techniques� In Proceedings of the 
�th ACM Symposium on Operating

Systems Principles� pages �	�	�	� December 	����

��� G� Kane� MIPS RISC Architecture� Prentice Hall� 	����

�	�� B�J� Nelson� Remote Procedure Call� PhD thesis� Carnegie Mellon University� May 	��	�

�		� S�W� O
Malley� M�B� Abbott� N�C� Hutchinson� and L�L� Peterson� A transparent blast facility�

Journal of Internetworking� 	�
�������� December 	����

�	
� J�K� Ousterhout� A�R� Cherenson� F� Douglis� M�N� Nelson� and B�B� Welch� The Sprite

network operating system� IEEE Computer� 
	�
��
����� February 	����

�	�� J�B� Postel� Internet Protocol� Internet Request For Comments RFC ��	� September 	��	�


�



�	�� ROSS Technology� Inc�� Cypress Semiconductor Company� SPARC RISC User�s Guide� second

edition� February 	����

�	�� M�D� Schroeder and M� Burrows� Performance of Fire�y RPC� ACM Transactions on

Computer Systems� ��	��	�	�� February 	����

�	�� Sun Microsystems� Inc� XDR� External data representation standard� Internet Request For

Comments RFC 	�	�� Internet Network Working Group� June 	����

�	�� Sun Microsystems� Inc� Network Programming� May 	����

�	�� Sun Microsystems� Inc� The SPARC architecture manual� version �� January 	��	�

�	�� A�S� Tanenbaum� R� van Renesse� H� van Staveren� G�J� Sharp� S�J� Mullender� J� Jansen� and

G� van Rossum� Experiences with the Amoeba distributed operating system� Communications

of the ACM� ���	
�������� December 	����

�
�� W� Zwaenepoel� Protocols for large data transfers over local networks� In Proceedings of the

�th Data Communications Symposium� pages 

��
� September 	����

��


