DIVISION OF COMPUTER SCIENCE

Using Conditional Execution to Exploit Instruction Level
Concurrency

Sue Gray
Rod Adams

Technical Report No.181

March 1994

Using Conditional Execution to Exploit Instruction Level Concurrency
SUE GRAY AND ROD ADAMS

Department of Computer Science, University of Hertfordshire, Hatfield,
ALL10 9AB, UK.

S M Gray 1

SUMMARY

Multiple-instruction-issue processors seek to improve performance over scalar RISC
processors by providing multiple pipelined functional units in order to fetch, decode
and execute several instructions per cycle. The process of identifying instructions
which can be executed in parallel and distributing them between the available functional
units is referred to as instruction scheduling. This paper describes a simple
compile-time scheduling technique, called conditional compaction, which uses the
concept of conditional execution to move instructions across basic block boundaries. It
then presents the results of an investigation into the performance of the scheduling
technique using C benchmarks programs scheduled for machines with different
functional unit configurations.

KEY WORDS Static Instruction Scheduling Conditional Execution Conditional
Compaction Resource Configurations

INTRODUCTION

Multiple-instruction-issue machines seek to increase processor performance by
exploiting the low level parallelism available in compiled code. Execution rates in
excess of one instruction per cycle are achieved by providing multiple pipelined
functional units in order to fetch, decode and execute several instructions per cycle.
Instruction level concurrency is detected dynamically by the hardware, statically by the
compiler, or by a combination of the two techniques. In general
multiple-instruction-issue processors are categorised as superscalar or very long
instruction word (VLIW) machines.! |

Superscalar processors are scheduled dynamically, with or without assistance
from the compiler. A typical superscalar processor fetches instructions from the
instruction cache into a buffer, referred to as a window. Complex instruction issue
logic is then used to select instructions from the window for parallel issue to the
appropriate functional units. In contrast VLIW machines rely solely on the compiler to
detect parallelism. The functional units in a VLIW processor are controlled by
concurrent instructions which are packed into long instruction words (LIWs) by the
compiler. Long instruction words are then issued, in order, at a rate of one LIW per
cycle. In this paper we are concerned with a simple VLIW scheduling technique, called
conditional comﬁabtion, which produces long instruction words for a machine model
with variable resource configurations.

The ability of the scheduler to exploit the parallelism available within an
application is fundamental to the performance of a VLIW machine. The amount of
parallelism available within an application and the amount of parallelism which is

realised by a particular scheduling technique is largely dependent on the nature of the

S M Gray 2

application.

Numeric applications are characterised by a high ratio of computations to dynamic
branches. Furthermore, a large percentage of the branches are do-loop branches which
can be resolved early. Such programs respond well to techniques such as trace
scheduling? which relies heavily on program profiling to predict the most likely path
through a program; and to techniques such as loop unrolling3 and software pipelining®
which concentrate on exposing the parallelism between successive loop iterations.

Non-numeric applications are characterised by a high proportion of data
dependent branches, small loop bodies, and low loop iteration counts. Hence such
programs respond well to techniques such as boosting’, enhanced pipeline scheduling®
and conditional compaction which focus on removing the dependencies caused by data
dependent branch instructions.

Boosting is based on the concept of speculative execution. Speculative execution
is supported by "shadow" structures which are used to buffer the results of instructions
which are "boosted" across conditional branches. These results are then committed or
squashed when the outcomes of the preceding branches are known. Enhanced pipeline
scheduling and conditional compaction are based on the concept of conditional
execution. An instruction which is moved across a conditional branch from either the
branch target or the sequential execution path is conditionally executed on the value of
the branch condition which results in execution along that path.

In the following sections we describe the architectural and software framework
for the development of the conditional compaction technique, give a detailed description
of the algorithms used by the scheduler, and present the results of an investigation into
the performance of tae technique for target architectures with different functional unit
configurations.

ARCHITECTURAL AND SOFTWARE FRAMEWORK

The conditional compaction algorithm was developed in conjunction with the HARP
architecture.”.8 HARP is a statically scheduled multiple-instruction-issue architecture
which is characterised by multiple functional units and a conditional execution
mechanism. Conditional execution is supported by a set of one-bit Boolean registers.
There are four types of instruction: ALU (i.e. computational and relational), memory
reference, Boolean, and branch. All instructions may be conditionally executed on the
value of a Boolean register specified in the instruction. For example the instruction

F B3 ADD R20, R19, #4
is executed if and only if the Boolean register B3 contains the value FALSE.

The architecture has a compact four stage pipeline (see Figure 1) which combined
with unrestricted register bypassing results in an operational latency of one cycle for all
instructions except MULT, DIV and load a return address. Delays are implemented
using dummy WAIT instructions which use the same resources as the parent

S M Gray 3

instructions generating the delay. The Boolean registers are set by relational and
Boolean instructions and tested by conditional branch instructions. This two instruction
branch architecture results in a branch delay of one cycle.

Two addressing modes are provided, register indirect with index, and register
indirect with displacement. The architecture uses an ORed addressing mechanism
which removes the need for an addition in an address calculation and allows the ALU
and memory reference stages of the pipeline to be combined. Memory addresses are
computed by ORing the two address components? in the RF stage of the pipeline. The
compiler guarantees that an OR operation is equivalent to an addition by ensuring that
the base register always contains a multiple of a power of two and that the offset/index
is always less than this power of two.

Multiple ALUs and address units, a Boolean unit and a PC unit allow the
execution of several computational, relational, and memory reference instructions in
parallel with a single Boolean instruction and a maximum of two branch instructions.
The model provides 64, 32-bit, general purpose registers and 32, 1-bit, Boolean
registers.

Our experiments were conducted using a simulation of the machine model to run a
set of conditionally compacted C benchmarks. The simulator allows the user to specify
the total number of instructions contained in a long instruction word. The benchmark
programs were compiled into optimised sequential code using a C compiler generated
by the GNU-CC compiler generator. The compiler generator takes a machine
description as input and produces a C compiler for the specified architecture. The
resulting compiler provides a comprehensive range of classical optimisations and an
optional procedure in-lining facility. _

The sequential code for each C function is packed into long instruction words by
the instruction scheduler. Each long instruction word consists of a fixed number of
branch, ALU, boolean and memory reference slots. Slots which are not filled by the
scheduler are packed with NOPs.The compaction process is divided into two phases.
First a local compaction algorithm is used to schedule the instructions within each basic
block (i.e. within sections of code which can only be entered at the beginning and
exited at the end); then the conditional compaction algorithm is used to extend the scope
of the scheduler across the whole function by moving conditionally executed
instructions into the empty slots in the locally compacted code.

LOCAL COMPACTION
The process of scheduling unconditionally executed instructions within a basic block is
called local compaction. Local compaction consists of two phases: constructing a DAG,
called a data interaction graph (DIG), to represent the partial ordering of instructions
which is maintained by the scheduler in order to preserve data integrity, and forming

long instruction words from sets of potentially concurrent instructions identified using

S M Gray 4

the graph.

The local compaction program builds a list of long instruction words (LIWs) one
long instruction at a time, in sequential order. The LIW which is currently under
construction is called the current long instruction word (CLIW). The set of instructions
which can be scheduled in the CLIW without violating data integrity is referred to as the
data available set. List scheduling is used to schedule an instruction from the data
available set into the CLIW, subject to resource limitations. The data available set is
then recomputed and the process is repeated until the CLIW is complete.

The definition of data availability is given in terms of the following relationships

between instructions.

Definition 1: Strong Data Interaction

Given two instructions s; and s;, where sj precedes s; in the sequential code, s and s;

are said to have a strong data interaction if they satisfy any of the following conditions.

1. s defines a register or memory location used by j- This is termed a definition

versus use constraint.

2. sj and s; define the same register or memory location. This is termed a definition

versus definition constraint.

3. sjuses amemory location defined by s;. This is termed a use versus definition

constraint with respect to data held in memory.

Definition 2: Weak Data interaction '
Given two short instructions s; and sj, where sj precedes s; in the sequential code, sj
and sj are said to have a weak data interaction if they satisfy both the following

conditions.

1. There is no strong data interaction between sj and s;
2. s uses aregister defined by 8j- This is termed a use versus definition constraint

with respect to data held in a register.

Definition 3: Data Available
An instruction s; is said to be data available with respect to the CLIW if s; satisfies both

the following conditions.

1. Every short instruction in the basic block which precedes Sj in the sequential

code and has a strong data interaction with sj appears in a long instruction

which precedes the CLIW in the list.

2. Every short instruction in the basic block which precedes s; in the sequential

code and has a weak interaction with s; appears in a long instruction which

S M Gray 5

precedes the CLIW in the list, or appears in the CLIW itself.

Parallel execution is possible between instructions which have a weak data interaction
(i.e. a register use versus definition constraint) as data is read from the register file in
the register fetch stage of the pipeline, one cycle before the new value is computed in
the ALU stage.

The data available set is computed using the information in the data interaction
graph. The DIG for a block is a DAG, where nodes represent instructions, and node A
is a parent of node B means that node A precedes node B in the sequential code and
node A has a data interaction with node B. Arcs are labelled to indicate strong and weak
data interactions. The DIG for a block is implemented by a labelled adjacency matrix
which is constructed by scanning backwards through the block comparing each
instruction to each of its predecessors.

Detecting an interaction between two instructions with respect to the data held in a
register is easily achieved by comparing the input and output registers of both
instructions. Detecting a data interaction with respect to data held in memory is a more
complex problem known as memory reference disambiguation.? Since memory
addresses are calculated from two components, the local compaction program must
assume that there is a data interaction with respect to two items of data held in memory,
unless it can be shown that the sum of their respective address components are not
equal. For example there is no interaction between the instructions

LD R21, (R22, R23) ST 6(R25), R24
with respect to the data held in registers, but if (R22, R23) and 6(R25) could possibly
specify the same address there is use versus definition constraint between the
instructions with respect to the data held in memory. |

Storage for each invocation of a C function is allocated dynamically on the run-time
stack. The C compiler computes the size of each stack frame and uses the stack pointer
to maintain activation records and access data. Local variables and actual parameters are
referenced using positive offsets from the stack pointer which points to the top of the
stack, and the current activation record is popped from the stack by adjusting the stack
pointer by the stack frame size. Thus the contents of the stack pointer remains constant
throughout the invocation of a function, and two addresses which are specified using
different offsets from the stack pointer are guaranteed to be distinct.

Hence given two memory reference instructions sj and s;, where s; precedes s; in
the sequential code, sj and s; are said to have no data interaction with respect to data

held in memory if s and s; are of the form

ST offsetj(Rsrclj), Rsre2j and LD Rdst;, offsetj(Rsrcl;)
or ST offsetj(Rsrcl;), Rsre2; and ST offsetj(Rsrc 1 j),. Rscmj
or LD Rdst;, offset;(Rsrcl;) and ST offsetj(Rsrc 1 j), Rsr02j

S M Gray 6

and Rsrclj = Rsrcl; = SP and offset; # offset;

Otherwise two memory reference instructions sj and s; are said to have a strong data
interaction, with respect to data held in memory, if they satisfy any of the following
conditions.

1. sjisa ST instruction and s; is a LD instruction

(implies a definition versus use constraint with respect to data held in memory)

2. sjis a ST instruction and s; is a ST instruction

(implies a definition versus definition constraint with respect to data held in

memory)

3. sjisalLD instruction and s; is a ST instruction

(implies a use versus definition constraint with respect to data held in memory)

During the construction of a list of long instruction words from the instructions in a
basic block, the local compaction program uses the DIG for the block to compute the
set of instructions which are data available with respect to the current long instruction
word. List scheduling!0 is then used to determine the order in which instructions from
the data available set are considered for inclusion in the CLIW. List scheduling is a
heuristic technique wherein each instruction is assigned a priority prior to scheduling.
Then, given a set of available instructions, only the "best" long instruction word is
formed by scheduling the instructions with the highest priorities. In our scheduler each
instruction is assigned a scheduling priority which reflects its position in the sequential
code. The data available set is implemented as a list of instructions which are ordered in
decreasing magnitude of scheduling priority. The local compaction program then
attempts to schedule the short instruction from the head of the list into the CLIW,
subject to the resource limitations of the target architecture.

Definition 4: Resource Available

An instruction S which requires a functional unit U is said to be resource available with

respect to the CLIW if the number of instructions already scheduled in the CLIW which
require a functional unit U is less than the total number of this type of functional unit
provided by the target machine.

An instruction s which is data available with respect to the CLIW can only be
scheduled in the CLIW if it is resource available with respect to the CLIW.

The local compaction program schedules the instructions in a basic block into long
instruction words using the algorithm given in Figure 2. Since the HARP pipeline

allows two instructions which have a register use-definition dependency to be

S M Gray 7

scheduled in parallel, the local compabtion program updates the data available set each
time it adds a new instruction to the CLIW.

Branch instructions determine a program's flow of control and, by definition, a
branch instruction must occur at the end of a basic block. HARP has a branch delay of
one cycle, hence a branch instruction must be scheduled in the penultimate long
instruction word of a compacted block. The DIG represents the ordering constraints on
a branch instruction resulting from data dependencies, but cannot be used to represent
the control dependencies which relate to long instruction words. Hence a branch
instruction and its associated NOP are scheduled last, and are packed into the existing

penultimate, last or newly created LIWs, depending on data and resource availability.
CONDITIONAL COMPACTION

Conditional compaction is a simple technique which uses the concept of conditional
execution to extend the scope of the scheduler across a whole function or procedure.
The conditional compaction program attempts the fill the empty slots in a block of
locally compacted code with instructions from the branch target and sequential
execution paths. Instructions which are moved across a conditional branch are
conditionally executed on the value of the branch condition (i.e. the Boolean variable)
which would result in their execution. This allows instructions to be moved from both
instruction streams without the need for global data flow analysis or a branch prediction
scheme.

The conditional compaction program builds a flow graph for the basic blocks in a

function, and classifies each block according to the nature of the branch instruction it

contains (see Figure 3). The blocks which are candidates for conditional compaction are
held in a "compaction" list. The conditional compaction program repeats the process of
removing and conditionally compacting the block at the head of the list until the list is
empty. Initially only type 2 and type 3 blocks (i.e. blocks which end with an
unconditional or conditional branch) are candidates for conditional compaction. These
blocks are placed in the compaction list in sequential code order. Thereafter any block
not present in the list is added to the head of the list whenever the compaction process
results in the movement of instructions which may permit further compaction to take
place.

The block at the head of the list is removed for conditional compaction and is
referred to as the C_block. If the C_block is type 2 the compaction program attempts to
move instruction$ from the branch target block into the C_block's locally compacted
schedule. If the C_block is type 3, and the branch is forwards, the scheduler favours
the removal of short branches by attempting to move instructions from the sequential
successor block, before considering the branch target block. If the branch is backwards
the scheduler favours the compaction of inner loops by considering the branch target
block before the sequential successor block.

S M Gray 8

Givén a C_block and its successor the scheduler computes the set of instructions
from the successor block, excluding a branch, which could possibly be moved into the
C_block. This is referred to as the conditionally available set (CASet). For a type 2
block the CAset contains a copy of the branch target's sequential code up to, but not
including, a branch. For a type 3 block the CASet consists of conditionally executed
copies of those instructions from the successor block, excluding a branch, which can
be conditionally executed on the value of the Boolean variable which determines the
C_block's branch. The scheduler merges the CAset into the sequential code for the
C_block, to form a single unit, and uses a variation on the local compaction algorithm
given in Figure 2 to schedule instructions from the CASet into the C_block's locally
compacted schedule. The instructions corresponding to those which are successfully
scheduled in the C_block are removed from the successor, and the remaining sequential
code is locally rescheduled.

If instructions are moved out of a successor block which can be reached from more
than one predecessor (i.e. from blocks other than the C_block) then compensation code
must be introduced on to the alternative execution paths to ensure the correctness of the
code. Hence the scheduler only attempts to move instructions from a sequential
successor block if it cannot be reached from any other block (i.e. the sequential
successor is not a branch target). This avoids the introduction of a branch over the
compensation code, and is the reason type 1 blocks are never considered for conditional

compaction.
Scheduling Branch Instructions in Parallel

If the conditional compaction process succeeds in moving all the non-branch
instructions from a branch target or sequential successor block which is type 2, 3 or 4 it
may be possible to move the remaining branch instruction into the C_block's
penultimate LIW. It may also be possible to move a BSR instruction from an otherwise
empty sequential successor block, but a BSR instruction cannot be moved from a
branch target block, as this would result in the processor saving the incorrect return
address.

Moving branches across basic block boundaries results in several new types of
block, which can also be candidates for conditional compaction. The nature of the new
block depends on the type of the C_block, the type of the successor, and whether the
successor is a sequential successor or a branch target. Figure 4 shows the nature of the
blocks which result when branches are moved out of sequential successor blocks.
Figures 5 and 6 show the nature of the blocks which result when branches are moved
from the targets of unconditional and conditional branches.

If the conditional compaction process results in a block obtaining a new sequential
successor, or a new branch target, the block is returned to the compaction list for

repeated scheduling. For example, Figure 7 shows the locally compacted HARP code

S M Gray 9

for the statement

if (Trial(k) I (k==0))
return(true)

else
Remove(i,j)

which is taken from the body of a for loop found in the Trial function of the puzzle
benchmark. Blocks 1 to 5 represent the if then else statement, and the last block
contains the housekeeping code to exit the function. Blocks 2, 3 and 4 are held in the
compaction list. Figure 8 shows the result of conditionally compacting block 2.
Referring to the locally compacted code (Figure 7): block 2 branches forwards so its
sequential successor block, block 3, is considered before its branch target block. The
scheduler computes the CASet which is {F B6 NE B7, R17, #0}, schedules this
instruction in parallel with block 2's branch (BT B6, Lab33), and removes the
corresponding NE instruction from block 3. The remaining branch (BT B7, Lab32)
cannot be moved into block 2's penultimate long instruction word; and block 3 can only
be entered from block 2, so no compensation code is required. The scheduler then
considers the branch target block, block 4. Again the scheduler computes the CASet,
which is {T B6 MOV RS5, #1}, schedules this instruction in parallel with block 2's
branch (BT B6, Lab33), and removes the corresponding MOV instruction from block
4. However, in this case it is possible to move the remaining branch (BRA Lab26) into
block 2's penultimate long instruction word (see Figure 6 (i)), resulting in the single
branch instruction (BT B6, Lab26) in block 2. All the instructions in block 4 have now
been moved into block 2, but block 4 is also block 3's sequential successor, so a copy
of block 4 is required as compensation code.

Block 2 now has a new branch destination block so it is returned to the compaction
list where it is reselected as the C_block, and the process is repeated. The first five
instructions from the new branch destination (the last block) are successfully scheduled
in block 2 on the condition T B6. These instructions are removed from the end block,
and block 2's branch destination is adjusted accordingly (Lab411). The end block has
several other predecessors besides block 2, so a block of compensation code,
containing the scheduled instructions, is introduced as the end block's sequential
predecessor. Block 2's compaction is now complete, resulting in the code given in
Figure 8.

Finally Figure 9 shows the result of conditionally compacting block 3. Referring to
the partially compacted code given in Figure 8: block 3 branches forwards so the new
block of compensation code is considered before the branch target block. The
instruction MOV RS5, #1 is scheduled in parallel with block 3's branch (BT B7, Lab32)
on the condition F B7. The new block's branch, BRA Lab26, is then moved into block
3's penultimate long instruction word (see Figure 4(i)), on the condition F B7,

S M Gray 10

resulting in a block with two branches BT B7, Lab32 and BF B7 Lab26 (the
unconditionally executed equivalent of F B7 BRA Lab26). The block of compensation
code could only be entered from block 3, so block 5 is now block 3's sequential
successor. Block 3's first branch instruction BT B7, Lab32 is thus redundant, and is
removed, leaving block 3 with a new sequential successor, block 5, and a new branch
target block (the last block's compensation code). Block 3 is then returned to the
compaction list and the process is repeated. All the instructions in block 5 are scheduled
in block 3, including the branch (see Figure 4(iii)). Block 5 can only be entered from
block 3, so no compensation code is introduced. All the instructions in the last block's
compensation code are scheduled in block 3 on the condition F B7, and the branch
destination is adjusted accordingly (Lab411), but the compensation code is still required
as it still has other predecessors. Block 3's compaction is now complete, resulting in
the code given in Figure 9.

The sequential code for the if then else statement consists of sixteen instructions.
This is reduced to twelve long instruction words in the locally compacted code, and
seven long instructions words in the final conditionally compacted code. Hence there 1s
a saving of nine cycles over the sequential code, and five cycles over the locally
compacted code, each time the outer for loop containing the conditionally compacted if

then else statement is executed.
INVESTIGATION

The investigation was to study the speedup of conditionally compacted code, scheduled
for multiple-instruction-issue mod.ls with different function unit configurations, over

the equivalent sequential code running on a single-instruction-issue model.
The Benchmarks

The experiments were conducted using the C versions of the Stanford integer
benchmarks!! running on a simulation of the HARP model which allows the user to
specify the total number of instructions contained in a long instruction word (subject to
a maximum of two branches). The benchmarks were compiled into sequential HARP
code using the GNU-CC generated compiler, and the conditional compaction algorithm
was used to fill 52.5% of the branch delay slots with instructions from the branch
destinations and sequential successor blocks. Table 1 lists the programs and gives the

dynamic instruction count for the conditionally compacted sequential code.
Experimental Parameters and Results

In order to examine the effect of varying the number of branch, memory reference and

ALU instructions which can be scheduled in parallel we defined the four base

S M Gray 11

configurations of the HARP machine model specified in Table 2. We then measured the
speedups of the individual benchmarks running on variations of the four base
configurations which allow one, two, three or four ALU instructions to be scheduled in
parallel with the branch and memory reference instructions. The speedup for a
particular benchmark, running on a particular instance of the model, was calculated as
the ratio of the dynamic instruction count for the benchmark's conditionally compacted
sequential code to the dynamic instruction count for the appropriately scheduled parallel
code. Figure 10 shows the harmonic means of the speedups of the eight benchmark
programs for the sixteen configurations of the model (the full set of results is given in
Appendix 1). These results show that, for this particular set of benchmarks, the
maximal performance for all four base configurations is reached when the number of
ALU instructions per long instruction word is increased to three.

Comparing the harmonic means of the speedups obtained for the three ALU
variations of each of the base configurations. The 1blm configuration achieves an
average speedup of 1.56. Allowing two branch instructions to be scheduled in parallel
with one memory reference marginally increases this speedup by a factor of 1.92% to
1.59. However allowing two memory reference instructions to be scheduled in parallel
with one branch increases the speedup over the 1blm model by a factor of 7.69% to
1.68. This result demonstrates the importance of providing at least two data cache ports
in the target architecture. Prohibiting the parallel execution of memory reference
instructions results in longer locally compacted blocks (since each memory reference
instruction requires a long instruction word) and often prevents the scheduler from
moving memory reference instructions out of a successor block into the C_block. This
in turn prevents the scheduler from taking advantage of the potential for paiallel
branches provided by the 2blm model, since the movement of a branch instruction
from a successor block is not attempted until the block is otherwise empty.

Finally the 2b2m three ALU configuration of the model achieves a speedup of 1.72
which represents a 10.26% increase in performance over the 1blm model. This result
is encouraging, but the 1.72 speedup obtained for the C benchmarks is significantly
less than the speedup of 2.55 obtained for a similar set of Modula-2 benchmarks
running on the same configuration of the model.!2 This is partly due to differences in
the optimisations performed by the sequential compilers, but is mainly a reflection of
the comparative terseness of the C code. In particular C lacks the array bounds
checking provided by Modula-2, which leads to shorter basic blocks with less potential
for compaction. Given the brevity of the C code it was felt that better results could be
obtained by using the procedure inlining facility provided by the GNU-CC generated
compiler to remove subroutine calls which inhibit the performance of the scheduler. As
with the non-inlined code the maximal performance for all four base configurations of
the model was obtained when a maximum of three ALU instructions were scheduled
per long instruction word. Table 3 shows the harmonic means of the speedups of the
non-inlined and inlined code, obtained using the three ALU variations of the four base

S M Gray 12

configurations of the model (the full set of results for the three ALU variations of the
inlined code are given in Appendix 2). As can be seen from these results procedure
inlining increases the speedups obtained for all four configurations, with the 2b2m
model achieving a speedup of 1.85 over the equivalent conditionally compacted
non-inlined sequential code.

CONCLUSIONS

This paper describes a global compile-time scheduling technique, called conditional
compaction, which is targeted at general-purpose code. The technique, which uses the
concept of conditional execution to move instructions across basic block boundaries, is
notable for its simplicity. Conditional execution removes the need for global data flow
analysis, or a branch prediction scheme, and the algorithm does not incorporate any of
the optimisations, such as register renaming or loop unrolling, designed to increase
low-level parallelism.

The paper presents the results of an investigation into the speedups obtained for the
C versions of the Stanford integer benchmarks scheduled for machines with different
functional unit configurations. The study shows that an average speedup of 1.72 is
obtained for conditionally compacted non-inlined code scheduled for a "realistic"
machine which supports the parallel execution of two branch, two memory reference
and three computational instructions. This result is increased to a speedup of 1.85 when

procedure inlining is used to increase the potential for parallelism in the sequential code.
ACKNO YLEDGEMENTS

We wish to thank Dave Whale for his work in implementing the HARP simulation, and
Liang Wang and Fleur Steven for producing the sequential C compiler. This work was
supported by SERC Research Grant GR/F88018.

REFERENCES

1. M. Johnson, Superscalar Microprocessor Design, Prentice Hall, 1991.

2. I.R. Ellis, Bulldog: A Compiler for VLIW Architectures, The MIT Press,
Cambridge, Massachusetts, 1986.

3. S. Weiss and J . E. Smith, 'A study of scalar compilation techniques for
pipelined Supercomputers', Proc. ACM 2nd International Conference on
Architectural Support for Programming Languages and Operating Systems,
105-109, October 1987.

4. M. Lam, 'Software Pipelining: An effective scheduling technique for VLIW
machines', Proc. ACM SIGPLAN '88 Conferen‘ce on Programming Language
Design and Implementation, 318-327, June 1988.

S M Gray 13

10.

11.

12.

M. D. Smith, M. Horowitz and M. S. Lam, 'Efficient superscalar performance
through boosting', Proc. ACM 5th International Conference on Architectural
Support for Programming Languages and Operating Systems, 248-259, October
1992.

S. Moon and K. Ebcioglu, 'An efficient resource-constrained global scheduling
technique for superscalar and VLIW processors', Proc. IEEE 25th Annual
International Symposium on Microarchitecture, 55-71, December 1992.

G. B. Steven, S. M. Gray and R. G. Adams 'HARP: A parallel pipelined RISC
processor', Microprocessors and Microsystems, 13, (9), 579-587 (1989).

R. G. Adams, S. M. Gray and G. B. Steven, 'Utilising low level parallelism in
general purpose code: The HARP project', Microprocessing and
Microprogramming, 29, (3), 137-149 (1990).

G. B. Steven, 'A novel effective address calculation mechanism for RISC
microprocessors', ACM Computer Architecture News, 16, (4), 150-156 (1988).
S. Davidson, D. Landskov, B. Shriver and P. W. Mallet, 'Some experiments in
local microcode compaction for horizontal machines', IEEE Trans. Comput.,
C-30, (7), 460-477 (1981).

R. P. Weicker, 'An overview of common benchmarks', IEEE Computer, 65-75,
December 1990.

R. G. Adams, S. M. Gray and G. B. Steven, 'HARP: A statically scheduled
multiple-instruction-issue architecture and its compiler', submitted to 2nd
Euromicro Workshop on Parallel and Distributed Processing, Malaga, Spain,
January 1994.

S M Gray 14

IF
RF

ALU/MEM

S M Gray

Fetch long instruction from Icache (Instruction cache)
Instruction decode

Fetch registers from GP and Boolean register file
Calculate branch addresses in PC unit

Calculate memory addresses in address units

ALU operation for computational or relational instructions
Calculate Boolean result in Boolean unit

Wait for data from memory for a load instruction
Output data for a store instruction

Write result of computational or load instruction into the
general-purpose register file

Write the result of a relational, Boolean or

Boolean load instruction into the Boolean register file

Figure 1. The HARP instruction pipeline

15

WHILE there are still instructions to be scheduled (excluding a branch and NOP) DO
Generate the current long instruction word (CLIW)
Compute data available set
REPEAT
Find the instruction in the data available set, with the highest priority, which will
fit into the CLIW
IF such an instruction exists THEN
Schedule the instruction in the CLIW
Update the data available set
END
UNTIL No more instructions can be scheduled in the CLIW

Add the CLIW to the long instruction word list

Figure 2. The local compaction algorithm

S M Gray 16

Block Type Block Ends With

Any instruction other than a branch
An Unconditional Branch (BRA)
A Conditional Branch (BT or BF)
Return from Subroutine (JR)
Branch to Subroutine (BSR)

oA W =

Figure 3. Classification of a block according to the nature of its branch

S M Gray 17

(1) C_block type 3; Sequential Successor Block type 2

type 3
F B4 BT B4, LabG
e
type2 BF B4, LabB BT B4, LabG

BRA LabB

(ii) C_block type 3; Sequential Successor Block type 3

type 3
F B4 BT B4,LabG =~
FB4 BT B5, LabB BT B4, LabG
type 3

: FB4 FBS5
FB5 BT BS, LabB

(iii) C_block type 3; Sequential Successor Block type 4 or 5

type 3
F B4 BT B4 LabG
—_—
type 4 or 5 FB4JRRA or BT B4 LabG

F B4 BSR RA, LabB

\ JR RA or BSR RA, LabB

Figure 4. Moving branches from sequential successor blocks

S M Gray 18

(i) C_block type 2; Branch Target Block type 2

type 2

\LBM LabG

type 2 e type 2

N

BRA LabB

BRA LabB

(ii) C_block type 2; Branch Target Block type 3

type 2

\BRA LabG
S type 3

type 3

FBS BT B5, LabB
FB5 BT B35, LabB

(iii) C_block type 2; Branch Target Block type 4

type 2
\BRA LabG
e type 4
type 4
\ JRRA

JRRA

Figure 5. Moving branches from unconditional branch targets

S M Gray 19

(i) C_block type 3; Branch Target Block type 2

type 3
type 3
BT B4, LabG .
F B4
F B4
type 2 BT B4, LabB
BRA LabB
(ii) C_block type 3; Branch Target Block type 3
type 3
BT B4, LabG
F B4 I
type 3
T B4 BF B5, SS T B4 BT BS, LabB
F B5 v
BT B5, LabB
F B4
Sequential
Successor
(SS)
(iii) C_block type 3; Branch Target Block type 4
type 3
BT B4, LabG I
F B4
4
ope F B4
: TB4JRRA
- JRRA

S M Gray

Figure 6. Moving branches from conditional branch targets

20

yoorg Ise] 5 UOT)OUNJ [BLIT, 1TX9 4 dON

\2:R:1)

dON

8ZI#°dS dS aav (dS)0 ‘va a1 (ds)91 ‘619 a1
(dS)z1 14 Al ds)g ‘L1a a1 97qe1

S oorg # ([)oaoway « dON
$67qe] ‘v ¥sd 619 ‘99 AOIN 819 ‘64 AOIN TEqel

¥ H3ooid . dON
& ONI) UINJAT 97qe1 vidd 1# ‘G4 AOIN £eqeT

€ {o01d dON

zeqe1Ld 19

+ 1591 & O# ‘L1 ‘L9 AN

3Ao0[g dON

geqe1'od Ld

« J1SAT WINJAT IS 0# ‘c¥ ‘9d AN

THo01d dON

% ODIBHL « y67qe1 VY ¥Sd Gd ‘LTI AON

reference and 4 ALU instructions per LIW)
21

Figure 7. Locally compacted if then else statement (allowing a maximum of 2 branch, 2 memory

S M Gray

oI IseT dON
v ar

dON T11+9eT
gz1# ‘dS ‘dS Aav (ds) ‘vaai (d@s)91 ‘6194 AT

apo) uopesuaduro) (dS)71 8194 a1 d9)g‘L1aal 9zael
dON

S yooid S67aRT VI ¥Sd 619 ‘99 AON ST ‘STIAON TE9qeT
dON
apo) uoyesusdwo) 9zqe1 viad T# ‘9 AOW
€ yoord dON
Teqe1Ld ld
7 Y001 g71# ‘dS ‘dS AV 94 L ds)o‘v4aiodl (dS)91 ‘614 @199 L

(dS)T1 ‘8194 a194d L

(dS)8 ‘L1a a19d.L I# ‘G4 AON 99 L

O# ‘LTI ‘LA EN9E A

[19qe1°9d 1d

0# ‘S ‘9g AN

T #2019

$67qe1 VI ¥Sd

dON
S ‘LTI AON

Figure 8.Conditionally compacting block 2 of the if then else statement

22

S M Gray

yofg e dON
VI ar
dON TT1t9eT
3poD gz 1# ‘dS ‘dS dav (ds)o ‘vaal (dS)9i ‘619 a1
uonesusdwo) (@S)z1 ‘8194 a1 (dS)8 ‘L1H a1 9¢qed
€ Yooid gzI#'dSds aav Ldd (dS)0o‘vaaILgd (ds)91 ‘619 a1Ldd
(dS)z1 QT @ILad (dS)8 LT QTLad S6TArTVYdSE LAl 61d ‘QIAOW LDl SIICIAONLEL 1# ‘CI AOW L9 d 1T¥Qe1 ‘L9 a9
7 Pold gZI#dS‘dsaavodl (dS0vIdaI9dl (dS)91 ‘6194 @194 L
@S)zr ‘814 @19d .l (dS)8°L1d4a19d.l 1#‘CIAONOG.L O#°LI¥ LE9EAN9Td 11¥qe1‘9d 14
0# ‘S ‘994 AN
1 oo1g dON
y67qe1 VI IS ¥ ‘LITAON

Figure 9.Conditionally compacting block 3 of the if then else statement

23

S M Gray

o
e E E E E
= — — A
S o .o o o
5 = Q = O
14}
o
=
(@]
Q
Q
vl
[ay]
M *
— L0
— <t
=
- —
)
O
- - g
7
! £
‘ -
)
- Q <
o
B~
i >
=
[T T T T T T T T T (@)
© ™~ © L <t NP
h) D ol h ot e
sdnpoeads yreuryouaq

21 JO UeolWl JTuouLIe

Figure 10. Average speedups for different configurations of the machine model

S M Gray 24

Program Description Dynamic Instruction Count
for Conditionally Compacted

Sequential Code
Bubble Bubble sorts 200 elements 280063
Intmm Multiplies two 25 x 25 integer matrices 359372
Perm Computes the permutations of 7 elements 393099
 (recursive)
Puzzle Forest Baskett's program which recursively 41234
solves a cube packing problem
Queens Solves the 8 queens problem 10 times 257526
Quick Recursive quicksort of 500 elements 88798
Towers Solves the Towers of Hanoi for 11 discs 288072
(recursive)
Tree Performs a binary tree sort of 500 elements 181382

Table 1. The Benchmark Programs

S M Gray 25

Base Configuration Maximum no. of branch and memory reference

1blm
2blm
1b2m
2b2m

S M Gray

instructions per LIW

1 branch, 1 memory reference -
2 branch, 1 memory reference
1 branch, 2 memory reference
2 branch, 2 memory reference

Table 2. Base configurations of the HARP machine model

26

Harmonic Mean of Speedups

Base Configuration

1blm 2blm 1b2m - 2b2m
non-inlined 1.56 1.59 1.68 1.72
code
inlined 1.68 1.72 1.81 1.85
code

Table 3. Comparing the performance of conditionally compacted non-inlined and
inlined sequential code for the 3 ALU variations of the four base configurations of the
model

S M Gray 27

6671 69} LG} 6€°1 uea\ oluoweH 0

6
vyl z9.ls2l 2 29.52! At 169/21 ge’l 8.G59€! zselsl CERH 8
8g°1L govesl 851 20ve8l vSL 215981 9et AR 2.088%2 lamoy L
0¥'L 902€e9 vt 902€9 8¢e’ | 8LSY9 r4AR" 2882L 86,88 3oinb 9
85"} Z6¥E9L LG°1L ZLSe9lL yX-M" 2SLE91 9yl TE69L1L 925152 sueenb S
v8°1L z8eze v8 1 16€22 G/'L 919¢2 A ¥926¢ yeely znd 14
6S°L 80v.Lve 651 80v.LVe LG} L€0162 AN G1699¢2 660E6€ wied €
66°L £5€081 661 £07081 86°1 £59181 oyl 118182 2.E6G¢E wuwiul 4
0S'L gzelsl oS’ €2el8l 0S'1L €2e.l81 6¥° 1 225881 £90082 8lqanq b
A7V v dnpeeds MV + SeI0AD NV £ dnpeads NV € S9PAD NIV g dnpsads N1V 2 S8lPAD NV | dnpeeds N1V | sepAD bes $8J0A0D Boid
uopeinbyuon wiqg dnpsedsasny
X
ol
m
o
o
<
96"} 9571 " 8e'l ues|\ dluoweH 0}
: 6
eyl 89.921 eyl 89/921| eVl 89/92} ze'L zes.lel zZ8el8l aol} 8
eg'L 996881 €51 995881} 0S°L 9.9261 zeL goegle 72,0882 19Mmo} L
ge't v1299 ge't v1299 LTk 92089 AARY 2882L 86.88 _Joinb 9
gg'} 2S5.891 GS'L 251691 G5} 26669} 9y TE69L1 925.S¢ susanb S
181 £5.22 -1 89/22 2L gLove oy'L 85562 vegLYy znd 4
yS L 059vSs¢e " 059vSe 251 /2862 A S16992 660E6€E wied €
86°1 L09L8L 86" 1 159181 96°t 10628+ oy LLELST TLEBSE wuwiul 2
0S'L £2cL81 0S'1L €2eL8l 051 £zel8l 6¥° 1L zes8sl £9008%2 e|qanq L
NV ydnpeeds NIV ¥ sapphy v £ dnpeeds NV € selpAD My z dnpeads NTv g sejoAkd N1V | dnpeeds Ny 1 se|oky beg sejohkD Boid

uoieinbyuoy wiqi dnpeedsasniv

28

S M Gray

cl'} 69°I Syt ues|\ oluowlieH 0}

gLt
6
oSt yociel 05t 1 TARAN JA ggLeet 6L £€80€1} zgelsl 90l} 8
08l 6286651 08'1 6286G 9L’} 6E6E9} 0S°'1 929161 2.,088%2 lamoy L
oyl €€609 oYt ££609 eyl Svee9 1z 96¥ 1L 86.88 yoinb 9
0L’} 0S0LG1 0LL 0L0LG}H 0L} 0LELSG) AN 00SY91 925.52 susanb S
G8'l Loeze g8’ glLeze Sl sesee Lyl v8162 14X AR znd 14
761 889202 761 889202 1671 L1€902 €8} G86vie 660E6€ wJad €
m b gveost 66} z26€081 86" 1 Zr9Lsl 0y} 99€.6¢ TLE6SE Wil 4
9°1 122L91 197} 12291 L9°1 122.91 6¥° L 12€881 £90082 8lqanq b
v v dnpesds AV ¥ S8IPAD NV € dnpeeds MV € Sel0A0 Nv g dnpeeds NIV 2 SBIPAD NV L dnpesds NV | S8I0AD bes s9j0AD Boid
\ uoneinbyuoy wggg dnpesdsasny
89°L 89°1 S9°1 Syl uea dluowieH 0 |
6
8v'L 0/zzel 8v'L oLzzel 8y 0lzzel L€} £802¢€! Z8el8l oo} 8
L1 £66G91 vLL €66591 69'1 E0LOL} vt 06L.6} 2.088¢ 1amo} L
ge'l R 444°) 8e’L R 444°) Ge'lL £5.59 ve'l 96¥1LL 86.88 #oinb 9
89'} oLeest 891 0lLEESt 89°1L 0GS€ESL XMt 005v91L 925.5¢2 ~“sugenb S
28l 2L9z2e 4" 18922 gLl LEBET 0’1 8.¥62 veZly - znd 14
8L 0€£6602 181 0£6602 r8° L Lssele LL'} ggeezee 660€6€ wJed €
86°L 065181 86°1 0v9L8lL 96°L 06828} oyt 99€.5¢ TLEBSE wwiul 2
19°} 12eL9l 197} 122L91 19°1 12291 6¥°1L 12e8sl £90082 8|qanq L
NV p dnpeads NV ¥ sepAD NV £ dnpeeds NV € seloAD NV g dnpeads NV 2 sepAD NV L dnpeeds NIV Sej0AD bag Boid

uoneinbyuod wgql dnpsadsasny

Appendix 1
29

S M Gray

g8l

LS}
ge'¢e
¢S’}
AN
g8t
yv'e
0L'¢c
697}

nv e
dnpeadg

uonyesnbyuod

0gestlt
lviect
L1¥8S
28605}
9Leee
S¥609}
CLOLLE
602991t

niv e
s8j9AD

wgqe

nive
dnpeads

uonenbuo)

8529t}
68Lv2}
61619
cccesh
£89¢3
€81891
gLOLLL
60299}

niv ¢
$aj0AD

weqi

cl'}

LG
10°¢
9y’
8G°L
787}
00°¢
oL'¢
0g't

niv €
dnpaads

uonelnblyuon

8p0D peulju] Jo 8oUBWIOMad

LYL6BLI
glecevlt
€8909
viveEQL
L6Ecd
L00.6}
AT YA
L1E98E

niv e
$9|9AD

wiqe

89°}

0g'F
86"}
8€"}
gs'}
1871
267}
oL'¢c
05"t

niv e
dnpeads

uonelnbyuon

§G/.0¢t
toesvi
L6 EY9
$59G91
89.¢¢
Syev0c
8L0LLE
L1E98 L

nv e
$9[0AD

wiai

ues|y oluouwleH ¥ |

Z8ci8lL 994}
2.088%2 1amo}
86.88 yoinb
925152 sussnb
veely znd

660€6¢ wied
2LE665€ wwiul
£9008¢ 8|qdnq

(peuljui-uou)
bag so|0AD Boid

el
A8
[
ot

QNN W ONOD

Appendix 2

30

S M Gray

