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Abstract: Today, mobility and persistence are important aspects of distributed computing.
They have many fields of use such as load balancing, fault tolerance and dynamic recon-
figuration of applications. In this context, Java provides many useful mechanisms for the
mobility of code via dynamic class loading, and the mobility or persistence of data via object
serialization. However, Java does not provide any mechanism for the mobility/persistence
of computation (i.e., threads).

We designed and implemented a new mechanism, called Java thread serialization, that is
used to build thread mobility or thread persistence. Therefore, a running Java thread can,
at an arbitrary state of its execution, migrate to a remote machine where it resumes its
execution, or be checkpointed on disk for possible subsequent recovery. With our services,
migrating a thread is simply performed by the call of our go primitive, and checkpoint-
ing/recovering a thread is performed by the call of our store and load primitives.

Several projects have recently addressed the issue of Java thread serialization, e.g., Sumatra,
Wasp, JavaGo, Brakes, JavaGoX, Merpati. Some of them have attempted to minimize the
overhead incurred by the thread serialization mechanism on thread performance, but none
of them has been able to completely avoid this overhead.

We propose a generic Java thread serialization mechanism that does not impose any perfor-
mance overhead on serialized threads. This is achieved thanks to the use of type inference
and dynamic de-optimization techniques. In this paper, we describe the design and im-
plementation details of our thread serialization prototype in Sun Microsystems’ JDK. We
report on experiments conducted with our prototype, present a comparative performance
evaluation of the main thread serialization techniques, and confirm the elimination of the
performance overhead with our thread serialization mechanism.

Key-words: mobility, persistence, serialization, threads, checkpoint/restart, migration,
type inference, dynamic deoptimization, Java, JVM
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Mise en Oeuvre Efficace de la Sérialisation, Mobilité et
Persistance des Threads Java

Résumé : La mobilité et la persistance des applications sont des aspects importants dans
les systémes distribués. La mobilité et la persistance ont plusieurs domaines d’utilisation,
tels que la répartition de charge, la tolérance aux pannes ou la reconfiguration dynamique
des applications. Dans ce contexte, Java fournit des mécanismes pour la construction
d’applications mobiles ou persistantes, tels que les outils de mobilité du code (chargement
dynamique de classes) ou les fonctions de mobilité/persistance des données (la sérialisation
d’objets). Cependant, Java ne fournit pas de mécanisme pour la mobilité/persistance de
Pexécution (threads).

Nous avons cong¢u et mis en ceuvre un nouveau mécanisme de sérialisation de thread Java
qui permet de mettre en place la mobilité et la persistance des threads. Ainsi, un thread
Java peut, au cours de son exécution, migrer vers une machine distante pour y poursuivre
son exécution, ou étre sauvegardé sur disque pour une reprise ultérieure de son exécution.
Avec nos services, la migration d’un thread se fait tout simplement par 'appel de notre
primitive go et la sauvegarde/reprise d’un thread se fait par ’appel de nos primitive store
et load.

Plusieurs projets de sont récemment intéressés au probléme de sérialisation de threads Java,
tels que Sumatra, Wasp, JavaGo, Brakes, JavaGoX et Merpati. Certains projets ont tenté
de minimiser le surcott induit par leur mécanisme de sérialisation de thread, mais aucun
projet n’a réussi & supprimer ce surcoit.

Nous proposons un mécanisme générique de sérialisation des threads Java qui n’induit aucun
surcoit sur les performances de threads sérialisés. Ceci est obtenu grice a ’application de
techniques d’inférence de type et de dés-optimisation dynamique. Dans ce rapport, nous
présentons les choix de conception qui nous ont permis d’annuler le surcotit et décrivons laet
détails de mise en ceuvre de notre prototype de sérialisation de threads dans le JDK de Sun
Microsystems. Nous décrivons les expérimentations effectuées avec notre prototype, présen-
tons les résultats de I’évaluation de performances comparant les principales techniques de
sérialisation de threads et confirmons ainsi I’élimination de tout surcoit avec notre service
de sérialisation des threads Java.

Mots-clés : mobilité, persistance, sérialisation, threads, sauvegarde/reprise, migration,
inférence de type, dés-optimisation dynamique, Java, JVM
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1 Introduction

Today, mobility and persistence are important aspects of distributed applications and have
several fields of use [35, 13]. Application mobility can be used to dynamically balance the
load between several machines in a distributed system [38, 20], to reduce network traffic by
moving clients closer to servers [16], to dynamically reconfigure distributed applications [24],
to implement mobile agent platforms [41, 11], to tackle user nomadism in mobile computing
environments [3], or as a machine administration tool [39]. Application persistence can be
used for fault tolerance [26, 48] or for application debugging.

In the context of distributed applications, the object paradigm has proven to be well
suited and the Java Virtual Machine (JVM) is now considered as a reference platform [21, 31].
Today, the JVM is ported on almost every platform and can therefore be viewed as a
universal machine. Among the services provided by the JVM to facilitate the development
of distributed applications are:

e Object serialization. The serialization service allows the transfer of Java objects be-
tween several nodes or the storage of objects on disk.

¢ Dynamic class loading. The dynamic class loading service enables the transfer of Java
code between several nodes.

Therefore, Java provides useful services for the mobility and the persistence of code
and data. However, Java does not provide any service enabling mobility or persistence
of running applications (control flows, i.e., processes/threads). Thus, if a running Java
application migrates to a new location, only using object serialization and class loading, the
execution state of the application is lost. In other words, when arriving on its new location,
the migratory application can access its code and its re-actualized data but it has to restart
the execution from the beginning. Consequently, the provided Java services are not sufficient
for enabling the mobility or persistence of Java control flows.

Several projects have recently addressed the issue of Java thread mobility or Java thread
persistence. Some of them have attempted to minimize the overhead incurred by their
mechanisms on thread performance, but none of them has been able to completely avoid
this overhead. Such an overhead has several reasons:

e Additional instructions inserted in the application code (code executed by the thread);
this is the case for the Wasp [19], JavaGo [43], Brakes [47] and JavaGoX [42] thread
mobility systems.

e Extension of the Java interpreter, as in the Sumatra thread mobility system [1], and
the Merpati [44] and ITS [6] thread mobility and persistence systems.

e Non-compliance with Java JIT (Just-In-Time) compilation (execution optimization),
e.g., CIA [28], Sumatra, ITS and Merpati.

All the above-mentioned systems impose a performance overhead because of code injec-
tion, Java interpreter extension or non-compliance with JIT compilation.

RR n° 4662
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1.1 Contributions

We designed and implemented new services that make Java threads, i.e. executions, mobile
or persistent. With these services, a running Java thread can, at an arbitrary state of its
execution, migrate to a remote machine where it resumes its execution or be checkpointed
on disk for a possible subsequent recovery. With these services, migrating a Java thread
is simply performed by the call of our go primitive, and checkpointing/recovering a thread
is performed by the call of our store and load primitives. At a lower level, we propose a
new mechanism, called Java thread serialization. Similarly to object serialization, thread
serialization allows Java programmers to access the state of threads and transfer it between
several nodes (for mobility), or to store it on disk (for persistence).

The proposed Java thread serialization/mobility /persistence services do not affect the
“normal” performance of threads. In this paper, we describe how we built such services. The
scientific contributions of the paper are:

1. The design of an extended Java virtual machine that supports Java thread serialization
with the following properties:

(a) The Java language syntax is not modified.
(b

)

) The Java compiler is not modified.
(c) The existing Java API is not affected.
)

)

(d) (d) A new Java API is proposed for a generic thread serialization mechanism.

(e

(e) A high-level Java API for thread mobility and thread persistence is provided
on top of thread serialization.

2. The implementation details of a zero-overhead Java thread serialization mechanism.
This implementation is mainly based on two techniques:

(a) Type inference.

(b) Dynamic de-optimization.

3. Our performance evaluation comparing several thread serialization approaches and
confirming that our mechanism is the unique system that does not affect the “normal”
performance of threads.

Our prototype is freely available from:
http://sardes.inrialpes.fr /research/JavaThread/
It has been successfully integrated into the Suma metacomputing platform for fault tolerance
purpose, where it was used as a basic service for the implementation of global uncoordinated
checkpointing /recovery for parallel computations [10]. In addition to Suma’s designers, there
were about 200 downloads from users, testers, students and researchers working with our
thread serialization service.

INRIA
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1.2 Roadmap

The rest of the paper is structured as follows. Section 2 discusses the related work and sec-
tion 3 presents the Java Virtual Machine’s characteristics that are necessary to understand
the rest of the paper. Section 4 describes our overall design to support Java thread serial-
ization. Following this, sections 5 and 6 respectively focus on the implementation details
of thread serialization and thread mobility /persistence. Sections 7 and 8 are respectively
devoted to the experiments and performance evaluation. Finally, section 9 presents our
conclusions.

RR n° 4662
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2 Related work

Many systems have been developed providing mobility or persistence of control flows, i.e.,
processes/threads, considering either homogeneous or heterogeneous processor architectures,
e.g., Charlotte [2], Sprite [15], Emerald [30], Ara [40]. There are a number of surveys
discussing these features [35, 13]. In this paper, we focus our attention on providing such
mechanisms in the Java environment. Our objective was to answer the following questions:

e Is it possible to provide thread serialization/mobility /persistence in Java?
e At which conditions regarding performance?

In the following, we first place our research in the context of complementary works in
the area of middleware systems, and then focus on related work in the area of Java thread
serialization.

2.1 Context of our research

Our work focuses on the design and implementation of a Java thread serialization mechanism
on top of which thread mobility and persistence are built.

What the mechanism does. As Java object serialization, thread serialization allows a
thread execution state to be saved in a data structure, that is copied on a disk to implement
persistence or transmitted to a remote machine for mobility purpose.

What the mechanism does not do. As object serialization, thread serialization does not
deal with distribution, object sharing between threads, synchronization, nor the management
of IO objects (sockets or files). Thread serialization is intended to be a basic mechanism used
for the implementation of a middleware environment which addresses the above problems.
The middleware may implement a distributed object space or a higher level distributed
synchronization service, and thus ensure that the de-serialization of a thread is consistent
with the implemented distributed object management or synchronization service. Figure 1
illustrates how thread serialization takes place in such a middleware. Let us here consider
three examples:

e A mobile agent system. In such a middleware, agents are generally well encapsulated
Java object containers that migrate using object serialization. Thread serialization
could therefore be used instead of object serialization in order to transform agents’
weak mobility (i.e., data mobility) into strong mobility (i.e. computation/thread mo-
bility). In the Aglets mobile agent system [27], interactions between agents are based
on message exchanges, and Java object sharing management is thus avoided. A de-
tailed work on the isolation of Java applications is presented in [12].

e A shared object system, e.g., Ajents [29] and Javanaise [22]. The latter project is a
Java distributed replicated object system, where synchronization of replicas is based
on the entry consistency protocol [5]. Such a system could be combined with thread

INRIA
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Middleware (mobile agents, checkpointing, etc.)

Y N

Specialized Specialized |
object sharing synchronization
N service J service J
‘ Object serialization ‘ ‘ Thread serialization ‘

Java Virtual Machine

Figure 1: Thread serialization: a basic component in a middleware environment

serialization in order to build a complete distributed thread migration service that
benefits from replication and synchronization.

e A distributed system responsible for managing IO objects. Accent/Mach [49] and
Condor [32] are examples of systems that respectively provide transparent access to
communication channels and files (i.e., location/distribution are hidden). The same
functionalities could be implemented by a Java based middleware, where thread mo-
bility and persistence would benefit from transparent access to IO objects.

2.2 Related work

In this section, we focus on the research conducted in the area of Java thread serialization,
where some projects propose Java thread mobility systems, e.g., Sumatra [1], Wasp [19],
JavaGo [43], Brakes [47], JavaGoX [42], CIA [28], and others propose both Java thread
mobility and thread persistence, e.g., ITS [6] and Merpati [44].

The main issue when building Java thread serialization is to be able to access the thread’s
execution state, a state that is internal to the Java virtual machine and is not directly
accessible to Java programmers. In order to address this issue, two main approaches are
followed:

e JVM-level approach.
e Application-level approach.

The most intuitive approach to access the state of a Java thread is to add new functions to
the Java environment in order to export the thread state from the JVM. In the Sumatra [1],
Merpati [44], ITS [6] and CIA [28] projects, the JVM is extended with new mechanisms that

RR n° 4662
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capture a thread state in a serialized and portable form, and later restore a thread from its
serialized state. This solution grants full access to the entire state of a Java thread. But its
main drawback is that it depends on a particular extension of the JVM; the provided thread
serialization mechanism can therefore not be used on existing virtual machines.

In order to address the issue of non-portability of the thread serialization mechanism
on multiple Java environments, some projects propose a solution at the application level,
without relying on an extension of the JVM. In this approach, the application code is
transformed by a pre-processor, prior to execution, in order to attach a backup object to
the Java program executed by the thread, and to add new statements in this program. The
added statements manage the thread state capture and restoration operations and store the
state information in the backup object. The backup object can therefore be serialized using
object serialization. Several Java thread migration systems follow this approach: Wasp [19]
and JavaGo [43] provide a Java source code pre-processor while Brakes [47] and JavaGoX [42]
rely on a bytecode pre-processor. The key advantage of application-level implementations is
the portability of the provided mechanisms to all Java environments. However, they are not
able to access the entire execution state of a Java thread, because some part of the state is
internal to the JVM [8]. The resulting systems are therefore incomplete.

On the other hand, whatever the level of implementation (JVM or application), all
existing solutions impose a performance overhead on threads. Indeed, the JVM-level systems
suffer from inducing a significant overhead on thread performance (+335%, +340%, cf.
section 8) because some of them extend the Java interpretation process (e.g., Sumatra,
Merpati, ITS) and none of them supports Java JIT compilation (execution optimization).
And the application-level systems impose a non negligible performance overhead (+88%,
+250%, cf. section 8) due to the statements added to the original code of the thread.

To summarize, Java thread serialization mechanisms are characterized by four properties:

o the genericity of thread serialization, i.e., the ability to use it in different contexts such
as mobility, persistence,

e the completeness of the accessed thread state,
e the portability of the serialization mechanism across different Java environments,

e and the efficiency of the mechanism, i.e., its impact on the performance of thread
execution.

Regarding the existing solutions, the thread serialization systems based on a JVM-level
implementation verify the completeness requirement but lack in efficiency and portability.
And the thread serialization systems proposed at the application level are portable but they
are neither efficient nor complete. Furthermore, except Merpati and ITS, all the existing
implementations propose Java thread serialization mechanisms that are restricted to thread
mobility. Merpati allows Java threads to benefit from both mobility and persistence but
it lacks in genericity because the proposed mobility /persistence services are predefined and
can not be adapted to applications’ needs; while ITS proposes a generic implementation of

INRIA
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adaptive Java thread serialization. Finally, the existing Java thread serialization systems
are summarized in Figure 2.

System Implementation Genericity Completeness | Portability | Efficiency
approach
- No No
Wasp | Application-level (thread mobility only) No Yes© | (verhead)
- No No
JavaGo | Application-level (thread mobility only) No Yes © (overhead)
A No No
Brakes | Application-level (thread mobility only) No Yes © (overhead)
— No No
JavaGoX | Application-level (thread mobility only) No Yes © (overhead)
No No
Sumatra JVM-level (thread mobility only) Yes © No (overhead)
No No
CIA JVM-level . Yes © No (incompatible
(thread mobility only) with JIT)
No No
Merpati JVM-level (non-adaptable thread mobility, Yes © No (incompatible
persistence) with JIT)
Yes
ITS JVM-level (adaptable thread © Yes ® No No
serialization, mobility, (overhead)
persistence)

Figure 2: Existing Java thread serialization systems

RR n° 4662
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3 Background: JVM characteristics

This section recalls the JVM characteristics that are necessary to understand the rest of
the paper. The Java Virtual Machine is the runtime environment on which applications
developed in the Java object-oriented language can run. A program developed in Java is
generally compiled in order to generate bytecode, a binary format which can be interpreted
by a JVM. As the JVM is ported on most contemporary machines, a compiled (bytecode-
based) Java program is portable between different machines.

The architecture of the Java environment is illustrated by Figure 3 where the JVM is
presented as an abstraction of a homogeneous machine with a defined set of instructions
(bytecode), an execution engine (an equivalent of a hardware processor) and runtime data
areas used, for example, for memory and process management. In the following, we detail
the bytecode properties we are interested in, and the operating principles of the JVM’s
execution engine and runtime data areas.

Java Virtual Machine (JVM)

instructions set execution runtime data
(bytecode) engine areas
inst. set| exec. | data inst. set | exec. | data | ...
engine || areas engine | areas
J \ /X J J J J
Solaris / Sparc )\ Windows / X86

Figure 3: Architecture for the Java Environment

3.1 Bytecode

The Java bytecode provides an instruction set that is very similar to the one of a hardware
processor. Each instruction specifies the operation to be performed, the number of operands
and the types of the operands manipulated by the instruction. For example, the iadd, ladd,
fadd and dadd instructions respectively apply on two operands of type int, long, float and
double (cf., the prefixing letter), and return a result of the same type.

The execution of bytecode in the JVM is based on a stack, called the operand stack.
Figure 4 illustrates the execution of the iadd instruction which adds two integer operands.
Before the invocation of the iadd instruction, two integer operands are pushed on the stack,
and after the operation is completed, the integer result is left on top of the stack.

INRIA
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val 2

val 1 iadd res
= >

Before After

Figure 4: Addition of two integers in the JVM

3.2 Execution engine

The first generation of JVM was based on an interpreted scheme in which the Java in-
terpreter translates each bytecode instruction into the execution of native code. In order
to improve performance, the second generation of JVM has integrated Java Just-In-Time
(JIT) compilers, which compile Java methods into native code [45]. The subsequent JVM’s
execution engines perform much faster.

3.3 Runtime data areas

Timothy Lindholm and Franck Yellin define in the Java Virtual Machine Specification several
runtime data areas [31]. Here, we focus on the data areas describing the execution state of
a Java thread, as illustrated by Figure 5:

e The Java stack. A Java stack is associated with each thread in the JVM; it consists of
a succession of frames. A new frame is pushed onto the stack each time a Java method
is invoked by the thread and popped from the stack when the method returns. A
frame includes a table containing the local variables of the associated method and an
operand stack that contains the partial results (operands) of the method. The values
of local variables and operands may be of several types: integer, float, Java reference,
etc. A frame also contains registers such as the program counter (pc) and the top of
the stack.

o The object heap. The heap of the JVM includes all the Java objects created during
the lifetime of the JVM. The heap associated with a thread consists of all the objects
used by the thread (objects accessible from the thread’s Java stack).

e The method area. The method area of the JVM includes all classes that have been
loaded by the JVM. The method area associated with a thread contains the classes
used by the thread (classes where some methods are referenced by the thread’s stack).

In addition to the above-mentioned data areas, and in order to support native methods,
the JVM specification mentions a native stack associated with a thread [31]. The structure
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of the native stack is not specified, it depends on the underlying operating system. Notice
that the Java stack is managed for the execution of bytecode by a thread, i.e., when the
underlying execution engine is a Java interpreter. But when a Java method is JIT compiled,
the invocation frame of this method is not managed on the Java stack anymore but on the

native stack.

Class
reference
=

Method area Java stack Object heap

»“"| operand m

operand stack

e operand 1
Frame
N

S variable n
Ss local variables
Java stack ~Jvariable T

Figure 5: Java thread state
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4 Design of thread serialization

Here are the design principles and choices of our Java thread serialization mechanism.

4.1 Design principles

The thread state serialization /de-serialization service enables, on the one hand, the capture
of the current state of a running thread, and on the other hand, the restoration of a previously
captured state in a new thread: the new thread starts running at the point at which the
execution of the previous thread was interrupted.

Thread serialization consists, more precisely, in interrupting the thread during its execu-
tion and extracting its current state. This extraction amounts to build a data structure (a
Java object) containing all information necessary for restoring the Java stack, the heap and
the method area associated with the thread. To build such a data structure, the Java stack
associated with the thread is scanned in order to identify its current Java frames, the objects
and classes that are referenced from these frames, and the bytecode index for each frame
(i-e., a portable value of the pc). After thread serialization, the resulting data structure can
be transmitted to another virtual machine in order to implement thread mobility, or it can
be stored on disk for persistence purpose.

Symetrically, thread de-serialization consists first in creating a new thread and initializing
its state with a previously captured state. After that, the Java stack, the heap and the
method area associated with the new thread are identical to those associated with the
thread whose state was previously captured. Finally, the new thread is started, it resumes
the execution of the previous thread.

4.2 Main issues and design choices

The design of a Java thread serialization mechanism tackles serveral issues, such as the
accessibility of the execution state of Java threads, the portability of this state, and the
provision of an overhead-free and a generic thread serialization mechanism.

4.2.1 Non-accessible thread state

The state of Java threads is internal to the JVM. This state is not accessible by Java
programs and can therefore not be directly captured. For facing this problem, we extended
the JVM in order to be able, on the one hand, to externalize the state of Java threads (for
thread serialization), and on the other hand, to initialize a thread with a particular state
(for thread de-serialization).

4.2.2 Non-portable thread state

Unlike the heap and the method area that consist of information portable on heterogeneous
architectures (respectively Java object and bytecode), the Java stack is implemented in most

RR n° 4662
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JVMs as a native data structure (C structure). Therefore, the representation of the infor-
mation contained in the Java stack depends on the underlying architecture. For a serialized
thread to be portable on heterogeneous platforms, the thread serialization mechanism must
translate the non-portable data structure representing a state (C structure) into a portable
data structure (Java object), and thread de-serialization must perform the symmetric pro-
cess.

Translating the Java stack into a portable data structure consists, more precisely, in
translating the native values of local variables and operands (c.f., section 3.3) into Java
values. This translation requires the knowledge of the types of the values. But the Java
stack does not provide any information about the types of the values it contains: a four bytes
word may represent a Java reference as well as an int value or a float value. Therefore, the
main issue here is to infer the types of the data stored in the Java stack.

The only place where these types are known is the bytecode of the methods that push the
data on the stack. As explained in section 3.1, a bytecode instruction which pushes a value
on a Java stack is typed and determines the type of this value. The most intuitive solution
is thus to modify the Java interpreter in such a way that each time a bytecode instruction
pushes a value on the stack, the type of this value is determined and stored “somewhere” (i.e.,
on a type stack associated with the thread). Our first prototype of Java thread serialization
followes this approach, it is called ITS (Interpreter-based Thread Serialization) [6]. But
the drawback of this solution is that it introduces a significant performance overhead on
thread execution, since additional computation has to be performed in parallel with bytecode
interpretation. In order to avoid any overhead, type inference must not be performed during
thread execution but only at thread serialization time. We propose a solution in which the
bytecode executed by the thread is analyzed with one pass, at thread serialization time.
With this analysis, the type of the stacked data is retrieved and used to build the portable
data structure that represents the thread’s Java stack. Thus, the Java interpreter is kept
unchanged and no performance overhead is incurred on the serialized thread. This approach
is called CTS (Capture time-based Thread Serialization) [7, 9].

4.2.3 Overhead-free thread serialization

As discussed in section 2.2, the existing Java thread serialization mechanisms either focus
on providing a complete solution at the JVL-level or proposing a portable system at the
Java language-level; but none of them tackles the performance overhead issue. One of the
first criticisms addressed to Java was its poor performance; therefore, an important effort
was made by Java/JVM designers in terms of execution optimization which led to today’s
efficient JVM. Consequently, for a new Java facility to be widely accepted, it must not
degrade the performance of the applications which use it. Therefore, our primary objective
has been to provide a thread serialization mechanism that does not impose any overhead on
the execution of serialized threads. In order to avoid any performance overhead, we followed
two principles:

INRIA
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e No additional computation is performed in parallel with bytecode interpretation: ev-
erything is done at serialization time. This is achieved by using a type inference
technique applied at thread serialization time as detailed in section 5.1.

e Compatibility of thread serialization with today’s Java JIT compilation techniques.
The problem here is to be able to perform thread serialization even if the thread’s
Java stack does not really reflect the current execution state of the thread. This is
the case when some Java methods currently executed by the thread are JIT compiled
(i-e., their execution is based on the threads’ native stack and not on the Java stack).
In order to face this problem, we propose to use a dynamic de-optimization technique
as described in section 5.2.

4.2.4 Generic thread serialization

One of our motivations was to provide a generic Java thread serialization mechanism which
allows the programmer to adapt the serialization policy in order to meet applications’ needs.
With a generic thread serialization mechanism, various high level services can be built, such
as thread mobility or thread persistence; and particular policies can be implemented such
as mobility on wireless terminals or persistence using data base systems.

4.2.5 Miscellaneous

Complementary questions regarding the issues and design choices of thread serialization may
be asked at this point:

e Is thread serialization initiated by the serialized thread itself (self-serialization) or can
it be initiated by another thread (preemptive serialization)?

e How is the execution context associated with native methods (frames on the native
stack) managed when a thread serialization operation occurs?

e Does the introduction of a thread serialization mechanism violate Java security?

In this paper, we focus on the design and implementation details of a complete and
efficient mechanism for Java thread self-serialization without native methods. Further details
on how the above issues are tackled can be found in [8].
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5 Implementation of thread serialization

As described earlier, the main issues that we faced and the main design choices that we
made when designing Java thread serialization are the following:

e To have access to a Java thread state, we extend the JVM.

e To provide portable thread state, we propose a type inference technique.

e To build a zero-overhead thread serialization, we combine type inference with dynamic
de-optimization techniques.

e To propose serveral uses of thread serialization, we provide a generic design of the
serialization mechanism.

In the following, we describe how we extended the JVM with the type inference (see
section 5.1) and dynamic de-optimization techniques, before giving an overview of the API
of our generic Java thread serialization mechanism, and finally describing its current imple-

mentation status.

5.1 Type inference

The proposed type inference mechanism aims at building a type stack that reflects the types
of the values (local variables and operands) contained in the thread’s Java stack. Like the
Java stack, the type stack consists of a succession of frames that we call type frames (see
Figure 6). A type frame on a type stack is associated with each Java frame on the Java
stack. A type frame contains two main data structures: a table that describes the types of
the local variables of the associated method and an operand type stack that gives the types

of the partial results of the method.

| operand , g type of op,, |\
I ©
< \
operand , | § [fypeofop| |
o S .- o
I ) £
& &
© L]
g Q
3 o 5
variable , | 2 |type of var,| /
Java [ variable, g fype of var,|/ ype
stack -8-- stack

Figure 6: Type stack vs. Java stack
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The type stack of a thread is built as follows. At thread serialization time, an empty type
stack is initially associated with the thread’s Java stack. And for each frame on the Java
stack, an empty type frame is initially pushed onto the associated type stack. The types of
the local variables and operands of the Java frame are then inferred as follow. The bytecode
of the associated method is parsed from the beginning of the method to the exit point of the
method (the exit point is given by the Java frame’s pc and represents the last instruction
executed in the method). Following this code path, the parsed bytecode instructions are
analyzed and the types of the values they manipulate are inferred and stored in the type
frame, as local variable or operand types.

The main problem when inferring the types occurs when several paths exist between the
beginning of the method’s code and the method’s exit point. In this case, which path should
be followed for type inference? It is important to notice here that different code paths may
assume different types for a same item (local variable or operand) on the Java stack. Let
us illustrate this problem through an example of a Java method m represented by a Java
source code, its equivalent bytecode and the associated execution flow graph (see Figure 7).
In this program, local variables ¢ and j are declared in block 1 and represent values of type
int, and local variable k represents a value of type int in block 2 and of type float in block 3.
This variable is implemented by the same entry in the local variable table of the Java frame
(a variable at index 2, manipulated at lines 7 and 12 in the bytecode).

When serializing the thread executing method m, and given the non-typed Java frame and
bytecode of m, how are the types of the local variables/operands of method m determined?
Four cases are possible here:

1. The exit point (pc value) is in block 1. In this case, there is only one possible path
from the beginning of the code to the exit point. The analysis of this path determines
that the local variable ¢ is an #nt value thanks to the method signature, and the local
variable j is an int value thanks to the instruction istore 1 at line 1 of the bytecode?
(see Figure 7).

2. If the exit point is in block 2, then the only one path reaching that point is block 1-
block 2. When analyzing this path, the local variables ¢ and j are recognized as being
int values (as in the first case) and the int type of the local variable k is determined
thanks to the instruction istore_ 2 at line 7 of the bytecode?.

3. In case the exit point is in block 3, there is only one path reaching that point: block 1-
block 3. This case is similar to the second one; the only one difference is that path
analysis recognizes the variable k as being a float value thanks to the instruction
fstore_ 2 at line 12 of the bytecode?.

4. Finally, if the exit point is in block 4, then two paths exist: either block 1-block 2-block 4
or block 1-block 3-block 4. In this case, which code path should be followed for type
inference? Is variable k of type int or of type float?

2In case the exit point is after the store instruction, otherwise the variable is not yet used and determining
its type is unnecessary.
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Figure 7: Example of bytecode execution

Our solution to this problem is based on two correctness properties of the Java byte-
code [17]:

Correctness properties:

At any given point in the program, no matter what code path is taken to reach that
point:

P1: The operand stacks built by following each code path contain the same types.
P2: The local variables built by following each code path are of the same types or
are unused if the types differ.

As a consequence of the P2 correctness property, following either path block 1-block 2-
block 4 or path block 1-block 3-block 4, variable k is no more used and its type is undefined.
And according to the P1 correctness property, an operand built following two different code
paths has the same type. Therefore, any of the existing code paths can be used for type
inference.

To summarize, we implemented an algorithm that infers the types of the values (local
variables and operands) on a Java frame, and more generally on a thread’s Java stack, in
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one pass of the bytecode. This algorithm is applied at thread serialization time; it amounts
to:

e determining, for the code of each method currently executed by the thread, any code
path starting from the beginning of the method’s code and reaching the method’s exit
point (pc value), and

e inferring the types of the manipulated values from the bytecode instructions contained
in this path.

Finally, our type inference algorithm builds a type stack that reflects the types of the
values on the thread’s Java stack. The resulting type information is then used in order to
capture the thread’s Java stack in a portable form.

5.2 Dynamic de-optimization

The type inference technique described in the previous section requires access to the thread’s
Java stack. But the Java stack may sometimes not reflect the current execution state of
the thread, because of Java JIT compilation. In this case, the execution of JIT compiled
methods is no longer based on the thread’s Java stack but on the native stack. The issue
here is to permit thread serialization even in the presence of JIT compilation. That was
one of our main objectives: not to trade thread performance for the provision of thread
serialization.

Here, the thread serialization mechanism would need functions that allow it to restore
Java frames from native frames produced by the JIT compiler, and then to be able to apply
the type inference technique.

Sun Microsystems’ HotSpot virtual machine includes a mechanism which performs dy-
namic de-optimization. This mechanism transforms the native frames associated with JIT
compiled methods into Java frames [34].

Dynamic de-optimization was first used in the Self’s source-level debugging system; it
shields the debugger from optimizations performed by the compiler by dynamically de-
optimizing code on demand [25]. This allows the programmer to debug his program at the
source code-level even in presence of compilation optimizations.

In the HotSpot VM, dynamic de-optimization was introduced in order to deal with the
inconsistency problem rising from the combination of method inlining performed by JIT
compilation and dynamic class loading. Figure 8 illustrates this problem with an example
where a method m1 calls a method m2 of a class C1. For optimization purpose, the JIT
compiler may inline m2 in m1. But this inlining may become invalid if C2, a subclass of C1
that overrides m2, is dynamically loaded and if the getInstanceOfC1 called in method m1
return an instance of C2. Here, dynamic de-optimization is used to revert from inconsistent
optimized (i.e., compiled/inlined) code to a valid interpreted code.

Dynamic de-optimization was used in the context of debugging systems and dynamic
class loading systems. Here, we use it in a thread serialization system as follows. At
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serialization time, in case some Java methods were JIT compiled, dynamic de-optimization
is invoked on the thread’s JIT compiled frames. This leads to retrieve the Java frames
that would have been produced by the Java interpreter. Therefore, the type inference
algorithm described in section 5.1 can be applied to these Java frames, and the thread can
be serialized. It is important to notice here that if dynamic de-optimization is used at thread
serialization time, re-optimization must be used at thread de-serialization time in order not
to trade performance of serialized threads. Finally, Java applications that use our thread
serialization mechanism continue to benefit from JIT compilation, before and after thread
serialization: they execute exactly in the same conditions as on an unmodified JVM.

void m1() { class C1 {

C1o; void m2() {

for (...){ }
o = getinstanceOfC1(); ||}
0.m2();

} class C2 extends C1 {

/I Overridden method
} void m2() {

}
}

Figure 8: Method inlining and dynamic class loading

5.3 API of thread serialization

Our Java thread serialization mechanism is proposed in a new Java package, called java.lang.threadpack.
This package provides many classes such as the ThreadState class whose instances represent

the execution state of Java threads and the ThreadStateManagement class that provides the
necessary features for Java thread serialization.

Figure 9 illustrates a part of the application programming interface (API) of the Thread-
StateManagement class. The capture method performs the serialization of a Java thread
and returns the captured thread state as a result of the method, as a ThreadState object.
Symmetrically, the restore method performs thread de-serialization. It creates a new Java
thread, initializes its state with the ThreadState argument, starts the new thread and returns
it as a result of the method. The de-serialized thread resumes the execution of the thread
whose state was previously captured and passed as an argument of the restore method.

With the proposed thread serialization mechanism, it is possible to build higher-level
services such as specialized thread mobility or thread persistence, thanks to our captute-
AndSend and receiveAndRestore methods. To motivate the usefulness of these methods, let

INRIA



Efficient Java Thread Serialization

21

java.lang.threadpack

Class ThreadStateManagement

public final class ThreadStateManagement extends Object

The ThreadStateManagement class provides several useful services for the capture and
restoration of Java thread states.

Method Summary

static ThreadState

capture()

Captures the state of the current Java thread and returns it as a
ThreadState object.

static Thread

restore(ThreadState threadState)

Creates a new Java thread, initializes it with a previously captured
state and starts its execution.

static void

captureAndSend(Sendinterface snditf, boolean toStop)

Captures the state of the current Java thread and sends it (o a
remote node or to the disk) by calling the sendState method of the
Sendinterface interface.

static Thread

receiveAndRestore(Receivelnterface revitf)

Receives the state of a Java thread by calling the receiveState
methed of the Receivelnterface interface, creates a new Java
thread, initializes it with the received state and starts its execution.

Figure 9: Thread serialization mechanism

us consider an example. The implementation of thread mobility upon thread serialization
could naively be performed as described in Figure 10 where:

e On the source site, a thread starts executing Part I of method m and then migrates
to a target site by first performing thread serialization using our capture primitive,
before transmitting the thread state to the target site using, for example, Java object

serialization.

e On the target site, the migrating thread is received by first receiving its execution state
(e.g., using object de-serialization and dynamic class loading) and then performing
thread de-serialization using our restore primitive. Here, the de-serialized thread would
resume its execution starting at Part 2 of method m.

But with this solution, the de-serialized thread will resume its execution at the point
following the thread serialization operation that is state transmission (part (b) of method
m in Figure 10 and not Part 2).

In order to tackle this problem, we propose the captureAndSend method that allows the
programmer to specify the way a thread state is handled after a capture operation: the
captured state can for example be sent to a remote machine for mobility purpose, it can
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void m() { void serverReceiver {
I Part 1
/I Thread mobility: Departure /I Thread mobility: Arrival
/I (a) Thread serialization /| State reception
ThreadState state = ThreadState state = receive(IP, port);

ThreadStateManagement.capture();

/I Thread de-serialization

/I (b) State transmission Thread =
transmit(state, 1P, port); ThreadStateManagement.restore(state
)
/I Part 2
}
}
Source site Target site

Figure 10: Naive implementation of thread mobility

be stored on disk to implement persistence, etc. The specialization of the handling of the
captured state is specified by the first argument of the captureAndSend method. Indeed,
this argument implements our SendInterface interface and so provides a sendState method
that is called by our captureAndSend method just after the capture of the thread state (see
Figure 11). The second argument of the captureAndSend method is a boolean that specifies
if the thread whose state is captured is stopped or resumed. This argument is, for example,
set to true in the case of thread migration and is set to false for remote thread cloning.

Symmetrically, the receiveAndRestore method specifies the way a thread state is received
before it is restored: the state can for example be received from a remote machine, or it
can be read from disk, etc. The specialization of the way the thread state is received is
possible thanks to the argument of the receiveAndRestore method: this argument imple-
ments our Receivelnterface interface and so provides a receiveState method that is called by
our receiveAndRestore method just before the restoration operation (see Figure 11). This
behavior is similar to the UNIX fork.

Finally, captureAndSend and receiveAndRestore are proposed as generic methods that
can specialize thread serialization to application needs.
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public static void captureAndSend public static Thread receiveAndRestore
(Sendinterface sndltf, (Receivelnterface revltf) {
boolean toStop) {

ThreadState state; ThreadState state;
Thread thread;

/I Thread state capture

state = /I Thread state handling
ThreadStateManagement.capture(); state = rcvltf.receiveState();

/| Thread state handling /I Thread state restoration

sndltf.sendState(state); thread =

ThreadStateManagement.restore(state);

/I Resuming or stopping the thread
if (toStop) return thread,;
Thread.currentThread().stop();

Figure 11: Generic thread serialization

5.4 Implementation status

The type inference system, described in section 5.1, has been implemented in Sun Microsys-
tems’ JDK 1.2.2. Our first prototype of Java thread serialization is therefore proposed as
an extension of JDK 1.2.2.

We have then experimented with the de-optimization functions provided by JDK 1.3.1
(HotSpot) and showed that we were able to retrieve the Java frames from the JIT compiled
frames. We are currently completing the port of the type inference system from JDK 1.2.2
to JDK 1.3.1 in order to produce an integrated prototype of our solution as described in
sections 5.1 and 5.2. The performance evaluation presented in section 8 is thus based on
our extended JDK 1.2.2. Table I summarizes the characteristics of the implementation of
our system for Java thread serialization, mobility and persistence.

Java code lines | 2500 (+0.2% of original JDK 1.2.2’s Java code)
C code lines | 17500 (+3% of original JDK 1.2.2’s C code)
Supported OS/processors | - Solaris 2.5.1/2.6 on Sparc
- Solaris 2.5.1/2.6 on x86
- Windows NT/95/98 on x86

Table I. Implementation results of Java thread serialization
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6 Thread mobility and thread persistence

One of our main motivations was to provide a generic thread serialization mechanism that
can be used to implement various higher level services such as thread mobility and thread
persistence. Therefore, besides our mechanism for capturing/restoring the state of Java
threads, we provide higher-level services for the mobility and the persistence of Java threads.

Making a thread mobile is the action of capturing the current execution state of the
thread, sending this state to a target machine and restoring the state in a new thread on
the target machine: the new thread resumes the execution in the state left by the original
thread.

In the same way, making a thread persistent is, first, the action of capturing the current
state of the thread and saving it on disk and then, the ability to restore the saved state in
a new thread: the new thread resumes the execution of the previous thread.

Java thread mobility and Java thread persistence facilities are respectively provided by
our Mobile ThreadManagement and Persistent ThreadManagement classes, in the java.lang.threadpack
package.

6.1 API and implementation of thread mobility /persistence

Our MobileThreadManagement class provides the necessary services for the mobility of Java
threads. Figure 12 illustrates a part of the API of this class. The go method transfers the
execution of a running Java thread to a Java virtual machine identified by an IP address and
a port number. And the arrive method enables the reception of a migrating Java thread.

java.lang.threadpack
Class MobileThreadManagement
public final class MobileThreadManagement extends Object
The MobileThreadManagement class provides several useful services for making Java threads
mobile.
Method Summary
static void | go(String tagetHost, int targetPort)

Moves the execution of the current thread argument to the machine
specified by the host name and the port number arguments.
static Thread | arrive(String tagetHost, int targetPort)

Receives a thread on the machine specified by the host name and
the port number arguments.

Figure 12: Java thread mobility service

The go method is implemented as a combination of our thread serialization mechanism
with Java object serialization in order to transmit the captured thread state (see Figure 13):

INRIA



Efficient Java Thread Serialization

25

e The go method calls our captureAndSend method which first captures the current state

of the thread.

e As presented in section 5.3, captureAndSend is a generic method; it is adapted here

using an instance of the MySender class.

e The MySender class implements our SendStatelnterface interface and thus provides a
sendState method. Here, this method aims at establishing a connection to a machine
and sending the ThreadState object using object serialization.

public static void go(String targetHost,
int targetPort) {

MySender sndltf = new
MySender(targetHost,
targetPort);

ThreadStateManagement.
captureAndSend(sndltf, true);

class MySender
implements SendlInterface {

String host;
int port;
MySender(String host, int port) {

this.host = host;
this.port = port;

public void sendState
(ThreadState state) {

/I Send state to <host, port>.

Figure 13: Implementation of the go method

The arrive method is implemented as a combination of our thread de-serialization mech-
anism with Java object de-serialization and dynamic class loading in order to receive the

thread state (see Figure 14):

e The arrive method calls our receiveAndRestore method.

e The receiveAndRestore method is a generic method that is adapted here using an

instance of the MyReceiver class.

e The MyReceiver class implements our ReceiveStateInterface interface and therefore
provides a receiveState method; this method aims at accepting a connection on a par-
ticular machine/port, and then receiving a ThreadState object using de-serialization.
The classes associated with this ThreadState object are received relying on the Java

dynamic class loading mechanism.
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o After that, the receiveAndRestore method restores the received thread state in a new
Java thread (cf., section 5.3).

public static Thread arrive class MyReceiver
(String targetHost, implements Receivelnterface {
int targetPort) {
String host;
int port;
MyReceiver revitf = new
MyReceiver(targetHost, MyReceiver(String host, int port) {
targetPort); this.host = host;
this.port = port;
return ThreadStateManagement. }

receiveAndRestore(revlif);
public ThreadState receiveState()

/I Receive a state on
/I <host, port> and return it.

Figure 14: Implementation of the arrive method

It is important to notice that the presented Java thread mobility service proposes a de-
fault behavior, where all Java objects and classes used by the mobile thread are transmitted
with the thread. In other words, default thread serialization behaves as default object se-
rialization and class loading. But Java object serialization and dynamic class loading are
themselves generic facilities that can be specialized in order to build various thread trans-
mission and storage policies. Object serialization can, for example, be specialized in order
to specify a particular management of IO objects included in the thread’s heap, such as
Socket objects that may be closed at serialization time, and recreated and reconnected at
de-serialization time. And dynamic class loading can be specialized in order to use a partic-
ular URL for fetching thread’s classes. We can also imagine go and arrive methods that rely
on wireless transport protocols instead of IP in order to perform thread migration between
JVM installed on wireless hosts [14].

In the same way, the Persistent ThreadManagement class provides several functions for
the persistence of Java threads. A part of its API is illustrated by Figure 15. The store
method saves the current state of a Java thread in a file specified by a name and the load
method restores a Java thread from a state saved in a file identified by a name. These two
methods are also implemented using our captureAndSend and receiveAndRestore generic
methods.
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java.lang.threadpack
Class PersistentThreadManagement
public final class PersistentThreadManagement extends Object

The PersistentThreadManagement class provides several useful services for making Java
threads persistent.

Method Summary
static void | store(String fileName)

Saves the state of the current thread in the file specified by the
name argument.

static Thread | load(String fileName)
Restores the execution of a Java thread from the state stored in the
file specified by the name argument.

Figure 15: Java thread persistence service

Finally, the MobileThreadManagement and Persistent ThreadManagement classes are two
possible adaptations of our generic Java thread serialization service. In the same way and de-

pending on application requirements, the generic thread serialization service can be adapted
to build other tools that meet specific applications’ needs.
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7 Experiments with thread mobility /persistence

This section gives an idea of how our thread mobility and persistence services can be used
by applications; through three experiments. The first experiment shows the usefulness of
strong mobility (mobility of computation/thread), the second experiment shows how to build
a dynamic reconfiguration tool on top of our mobility service, and the third experiment
describes how the Suma metacomputing platform’s designers use our thread persistence
mechanism for fault tolerance purpose.

7.1 Strong mobility: Mobile recursive Fractal

Two degrees of application mobility can be distinguished: weak mobility and strong mo-
bility [18]. With weak mobility, only data state information and application’s code are
transferred. Therefore, on the new location, the mobile application has its actualized data
but restarts execution from the beginning. With strong mobility, the code of the application,
the state of data and execution are transferred: the application on the destination location
resumes its execution at the point where it was interrupted on the source location.

The use of weak or strong mobility depends on applications’ needs. Let us consider a
recursive Java application; how such an application is made mobile?

e Weak mobility does not consider the state of execution (thread’s state and in particular
thread’s Java stack), so frames corresponding to recursive calls and previously pushed
onto the Java stack are lost after transmission and the execution restarts from the
beginning.

e Strong mobility captures the execution state and allows the execution to be resumed
after transmission.

igration i migration
& migra é%

Site 1 Site 2 Site 3

Figure 16: Mobile Fractal

For demonstration purpose, we experimented a recursive graphical Java application: the
Dragon fractal curve where a small dragon appears at a certain depth of recursion [33].
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We implemented a Java Dragon application and used our thread mobility service in order
to transfer the application, when it is running, on several sites. Figure 16 illustrates this
experiment. Here, the Dragon application is first started on a first site, then transmitted to
a second site where it resumes its execution and finally transferred to a third site where it
completes its execution. The transfer of the thread calculating the fractal is performed by
calling the go method of our Mobile ThreadManagement class. Finally, this Dragon Fractal
demonstration application illustrates the usefulness of thread mobility (i.e., strong mobility).

7.2 Dynamic reconfiguration: Mobile Talk

This second experiment shows how our mobility service can be combined with adapted
object serialization and dynamic class loading, in order to build a dynamic reconfiguration
tool.

User 1 User 2
Serialization ¢
"—%1— * "—’7—
CHost1 THost2

ﬂ Migration

Dynamic
class

loading De-Serialization

Host 3

Figure 17: Mobile Talk

We consider a Talk application where two remote users exchange messages. Initially, each
user starts an instance of the Talk application on its personal computer with a graphical
user interface. Each user has two communication channels: an input channel to receive
messages from the remote user and an output channel to send messages to the remote user.
During the talk, one of the users decides to transfer its application to a minimal host with
limited physical characteristics (a mobile phone for example) and to resume its execution.
This dynamic reconfiguration of the Talk application is illustrated by Figure 17; it has the
following requirements:
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e Moving a running application from one host to another. This is performed by our
thread mobility mechanism which takes into account the current state of the applica-
tion.

e Handling communication channels during transfer. This is achieved by specializing
Java object serialization. Indeed, serialization of the communication channel objects
can be adapted in order to send a particular message to the remote user informing
him about the next migration and then to close the connections. Symmetrically, de-
serialization of the communication channel objects can be adapted in order to recreate
new channels and re-establish the connection with the remote user.

o Replacing the graphical user interface by a textual user interface when arriving on the
destination host because of the limited physical characteristics. This can be performed
by adapting Java dynamic class loading in order to use a textual user interface instead
of the graphical one on the mobile phone.

Fiinally, this dynamic reconfiguration experiment shows how our thread serialization /mobility
mechanism can be combined with other Java mechanisms (object serialization, dynamic class
loading) in order to build higher level services.

7.3 Fault tolerance: Global checkpointing/recovery

The SUMA (Scientific Ubiquitous Metacomputing Architecture) is a distributed platform
that supports the execution of parallel Java computations [23]. These parallel computations
communicate through message passing that is implemented in SUMA using mpiJava, a Java
interface to the Message Passing Interface (MPI) [4].

SUMA: Scientific Ubiquitous Metacomputing
Architecture
(a parallel Java computation platform)

o ‘ Parallel ]
Communication i checkpointing/recovery
i sub-system ; sub-system 1

il

‘ mpiJava [PersistentThreadManagement

Figure 18: Global checkpointing/recovery in a metacomputing system

INRIA



Efficient Java Thread Serialization 31

SUMA'’s designers extended their platform with a new facility: parallel checkpointing
and recovery for fault tolerance purpose. This is illustrated by Figure 18, where the imple-
mentation of parallel checkpointing/recovery is based:

e On the one hand, on our Java thread persistence mechanism in order to perform local
checkpoints and recoveries of individual computations.

e And on the other hand, on a protocol proposed by Mostefaoui et al. in [36, 37] to
implement global uncoordinated checkpointing and recovery of parallel computations.

Therefore, our Java thread persistence mechanism was successfully integrated into the
SUMA platform. The implementation details and performance evaluation regarding this
integration are deeply discussed by Cardinale et al. in [10].
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8 Evaluation

This section first describes our evaluation environment, and then presents the performance
figures of our Java thread mobility /persistance mechanisms before giving the results of a
comparative performance evaluation that we made between several Java thread serialization
systems.

8.1 Evaluation environment

The performance results presented here were obtained in the following environment:

e Pentium III, 1 GHz mono-processor, 256 MB RAM,
e Windows NT, SP 4,

e Sun Microsystems’ Java Development KIT /Version 1.2.2, also known as Java 2 SDK /Version
1.2.2.

8.2 Evaluation of thread mobility /persistence

This section presents the performance figures of the Java thread mobility and persistence
mechanisms proposed by our CTS system:

e the cost of migrating a Java thread between two machines,
e and the cost of checkpointing/recovering a Java thread.

The time spent in a Java thread migration operation depends on the size of the thread state
at migration time. The size of a thread state depends, among others, on the number and the
size of frames pushed onto the Java stack associated with the thread. In the following, we
focus our attention on the influence of the number of frames on the cost of our mechanisms.
In order to vary the number of frames pushed onto the thread’s Java stack, we use a recursive
program (the factorial function).

Figure 19 describes, on the left-hand side, the variation of the cost of a thread migration
operation according to the number of frames on the thread’s Java stack at migration time.
The cost of thread migration lineraly varies from 30 ms to 190 ms when the number of
frames on the thread’s stack is between 1 and 100. Figure 19 gives, on the right-hand side,
the ratio of the basic operations (i.e., state capture, transfer and restoration) to a migration
operation. It shows that the cost of thread migration is mainly due to the cost of thread
state transfer. Indeed, in a thread migration operation, between 2% and 9% of the time is
devoted to state capture and less than 3% is required for state restoration, while 89% to
95% of the time is necessary to state transmission. Therefore, reducing the cost of state
transmission would significantly reduce the overall migration latency. In our Java thread
migration mechanism, the implementation of state transmission partly relies on Java object
serialization. The resulting performance can be improved by using Java externalization
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rather than object serialization. Indeed, externalization allows applications programmer to
write its own object transmission policy by only saving the information necessary to rebuild
object graphs. Externalization may be until 40% faster than object serielization [46].
Besides thread migration, we measured the cost of checkpointing a running Java thread
and saving its state on disk, and the cost of reading a thread state from disk and recovering
the execution. Figure 20 gives the cost of a Java thread checkpointing operation and the
cost of a thread recovery operation, according to the number of frames on the thread’s Java
stack at checkpointing time. We notice that these two costs vary linearly when the number
of frames on the thread’s Java stack varies. And according to Figure 21, 86% to 95% of the
time of thread checkpointing is spent in writing the thread’s state on disk, and 96% to 99%
of the time of thread recovery is spent in reading the thread’s state from disk. Similarly to
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thread migration, the checkpointing and recovery latencies can be improved by improving
disk read/write operations.
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Figure 21: Ratio of state capture/write to thread checkpointing and state read/restoration
to thread recovery

8.3 Comparative evaluation

In this section, we present the results of our comparative performance evaluation of several
Java thread serialization systems. In this evaluation, two measurements have been reported
(see Figure 22):

E1

E2>

ayaya
|
|

Without serialization With serialization

Figure 22: Performance overhead vs. thread serialization latency

e The performance overhead on code execution. It is defined as the difference between
the necessary time to execute the application code on a system that provides thread
serialization (E2a + E2b) and the necessary time to execute the same code on a system
that does not provide thread serialization (E1), that is (E2a + E2b) - E1.
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e The latency of serialization. It is defined as the sum of the time necessary to thread
serialization and thread de-serialization, that is S.

We have taken into account both performance overhead and serialization latency in order
to show when a cost is paid with thread serialization. And in order to explain how these costs
vary according to several thread serialization techniques, we installed and configured several
Java thread serialization prototypes, which cover all the approaches to thread serialization
as described in section 2.2:

e JavaGo [43], an application-level system based on a pre-processor of the Java applica-
tion source code executed by the serialized Java thread,

e Brakes® [47] and JavaGoX [42], two application-level systems based on a pre-processor
of the bytecode executed by the serialized thread,

e ITS [6], the first JVM-level solution that we proposed, based on an extension of the
Java interpreter,

e and finally CTS, our final JVM-level solution, based on type inference and dynamic
de-optimization techniques integrated into the JVM.

The Sumatra [1] and Merpati [44] projects are no longer maintained, and the current
implementation of thread serialization in CIA [28] is in progress. We were thus unable to
include these systems in our comparative evaluation.

The following subsections 8.3.1 and 8.3.2 respectively discuss our evaluation of perfor-
mance overhead and serialization latency.

8.3.1 Performance overhead

In order to evaluate the variation of the performance overhead on a thread according to
the amount of computation performed by the thread, we wrote a benchmark based on the
Fibonacci recursive algorithm. The performance overhead incurred by the different thread
serialization systems was evaluated as follows:

e For the JavaGo, Brakes and JavaGoX thread mobility systems, the pre-processor of the
systems is first applied to the Fibonacci benchmark. And because the pre-processor
only applies on programs that call the “move” method of the underlying thread mobility
system, we extended the Fibonacci program in such a way that it calls the "move"
method. And in order to evaluate the performance overhead separately from the
serialization latency, the “move” method must not be executed by the benchmark, and
is thus placed inside an if-block with a false condition (see Figure 23). Finally, this
benchmark is run on the standard JVM.

3In this comparative evaluation, we used the fastest implementation of Brakes’ thread serialization,
namely “brakes-serial”.
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e For the ITS system, we wrote a benchmark that is based on the original (non-extended
with “move”) Fibonacci program. This benchmark is run on the ITS-related extension
of the JVM.

e For the CTS system, the original Fibonacci benchmark is run on the CTS-based ex-
tension of the JVM.

static boolean toMove = false;

int fibo(int n) {
if (n==0){
/I False migration
if (toMove)
move(“//IP:port/”);
return 1;
}elseif (n==1)
return 1;
else
return (fibo(n — 1) + fibo(n — 2));

Figure 23: Extended Fibonacci program

The above mentioned benchmarks were run using several Fibonacci’s parameter values
(i-e., 20, 25, 30). The obtained results were compared to the ones obtained when running the
original Fibonacci benchmark on the standard JVM, in order to calculate the performance
overhead incurred by each system. The resulting overheads are presented in Figure 24:

e JavaGo [, Brakes l and JavaGoX B incur a non-negligible performance overhead
(+88% to +250%), due to the code inserted by the pre-processor in the application
code. Among these systems, JavaGo incurs the highest overhad because it adds Java
code to the application’s source code while Brakes and JavaGoX follow a more fine-
grained approach that adds code at the bytecode level.

e ITS [ ] imposes a significant overhead (+335% to +340%) due to the additional pro-
cessing performed by the underlying extended Java interpreter at almost each bytecode
interpretation.

e CTS M does not incur any performance overhead, because it does not impose any
additional computation.

In Figure 24, the illustrated performance figures result from benchmarks running without
Java JIT compilation. This was necessary in order to be able to compare the ITS system with
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other systems. Indeed, ITS is based on an extended Java interpreter and can therefore only
be used in interpreted mode (without JIT compilation). The effective performance overheads
(with JIT compilation) incurred by the other systems (JavaGo, Brakes, JavaGoX, CTS) are
presented in Figure 25. Finally, even if JIT compilation reduces the performance overhead
incurred by JavaGo, Brakes and JavaGoX, it does not cancel it (+45% to +106%), thus
heavily penalizing serializable Java threads.
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Figure 24: Performance overhead / Fibonacci benchmark (JIT disabled)
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Figure 25: Performance overhead / Fibonacci benchmark (JIT enabled)
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8.3.2 Serialization latency

The previous section shows that CTS is the only Java thread serialization system that does
not incur a performance overhead on serializable threads. This behavior is not magic: it is
due to the fact that with CTS, all additional processing is transferred to thread serialization
time. In this section, we aim at discussing the relationship between, on the one hand, the
variation of the performance overhead on a serialized thread and, on the other hand, the
variation of the thread serialization latency.

In order to be able to compare the latency of Java thread serialization using different
systems, these systems must be as similar as possible. But the evaluated systems implement
different thread serialization and transfer policies. To homogenize the comparative evalua-
tion environment, and to be as close as possible to the thread serialization operation itself
(and not to the network transfer), we built mid-level thread serialization operations for all
the evaluated systems:

e We first implemented a common thread state “transfer” mechanism which is simply
based on default Java object serialization and system class loading.

e We then built mid-level thread serialization mechanisms for JavaGo, Brakes and Jav-
aGoX by modifying the implementation of these systems in order to replace their state
transfer mechanism by the new one.

e We finally built mid-level thread serialization mechanisms for ITS and CTS by com-
bining the new state transfer mechanism to ITS and CTS’s thread serialization mech-
anisms.

The mid-level thread serialization mechanisms implemented for each system were then
used as a basis for benchmarking these systems and comparing their thread serialization
latencies.

Let us now focus on the implementation of the latency benchmark. Thread serialization
latency varies when the size of the thread state varies, e.g., number and size of Java frames
pushed on the Java stack, number and size of objects in the heap. The latency benchmark
that we present in this paper was written in such a way that we fixed the number of objects
used by the serialized thread and focused on the variation of the number of Java frames on
the thread’s Java stack. To vary the number of frames on the thread’s stack, the serialization
latency benchmark program first performs recursive calls to a Java method. When it reaches
the deepest recursive call (N frames), the benchmark runs a ping-pong program using the
thread serialization facility of the benchmarked system in order to measure the average
latency of a thread serialization operation when the thread has a particular state size (N
frames).

In addition to the comparative evaluation of the thread serialization latency using dif-
ferent systems, we conducted a complementary evaluation that illustrates the relationship
between the variation of the serialization latency and the variation of the performance over-
head on a serializable thread. In order to achieve this goal, the two evaluations were per-
formed with similar evaluation parameters. Indeed, the variation of the serialization latency
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was evaluated according to the number of frames on the thread’s Java stack when the thread
is serialized; and the variation of the performance overhead on the execution of a program
was evaluated according to the number of frames that this execution pushes on the thread’s
stack.

For measuring this performance overhead, we wrote a benchmark program that performs
recursive calls which vary the number of frames.

Finally, the performance overhead and serialization latency were obtained as follow:

e With JavaGo, Brakes and JavaGoX, the benchmark programs were first written fol-
lowing the programming constraints of each system and then passed through the pre-
processor before they were run on the standard JVM.

e For ITS and CTS, the benchmark programs were written using the thread serialization
functions provided by these systems and run on the underlying extended JVM (i.e.,
respectively ITS and CTS).

Figure 26 and Figure 27 illustrate, for JavaGo [ |, Brakes I, JavaGoX M, ITS [ | and
CTS M, the variation of, on the left-hand side, the performance overhead on a serializable
thread, and on the right-hand side, the thread serialization latency. In Figure 26, the thread
is serialized when it has five Java frames on its Java stack and in Figure 27, the thread is
serialized when there are ten frames on its Java stack. The two figures show that:

e For the application-level systems (JavaGo, Brakes, JavaGoX), the overhead on the
serialized thread and the serialization latency are inversely proportional. This is ex-
plained by the fact that the more processing is performed during the execution of the
thread (overhead), the less processing is required at serialization time (latency). We
also notice that with these benchmarks, Brakes and JavaGoX present similar behaviors
due to their similar bytecode-level approach.

e The performance overhead of ITS lies between the overhead of the Java source-level
system (JavaGo) and the overhead of the bytecode-level systems (Brakes, JavaGoX).
But in this case, the inverse proportion with latency is not present: ITS presents
a higher serialization latency, compared to JavaGo, Brakes and JavaGoX. This is
certainly due to the fact that ITS captures the complete thread state (see section 2.2)
and thus performs more processing at serialization time.

e CTS does not impose any performance overhead but it presents the highest thread
serialization latency because everything is done at serialization time. Furthermore, it
is important to notice that our current intermediary implementation of CTS does not
yet include dynamic de-optimization. Thus, the final implementation would probably
present a more significant latency due to the integration of dynamic de-optimization
and re-optimization.

To summarize, our evaluation experiments show that:
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o With JavaGo, Brakes and JavaGoX, a part of the cost of the provided functionality is
added to the “normal” performance of the serialized thread, and the other part is put
in the serialization latency. These two costs are inversely proportional.

e ITS behaves similarly to the above-mentioned systems, but it presents an important
drawback: it is not compatible with JIT compilation. It is an interesting academic
experiment but is probably not an effective solution for today’s Java applications.

e With CTS, we show that it is possible to build a zero-overhead Java thread serialization
facility. Indeed, apart from the thread serialization operation itself, the performance
of the thread when it is running its own application code does not change. Here, the
cancellation of the performance overhead is not magic; it is obtained by transferring
all additional cost to the serialization latency.
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Figure 26: Performance overhead vs. serialization latency, thread serialized with 5 frames

(JIT disabled)

As a result of this evaluation, we can identify two kinds of behaviors in the existing Java
thread serialization systems:

(a) Serialization systems that provide a low serialization latency by adding an overhead
on the serialized threads; this behavior is probably interesting for applications with
frequent serialization operations, e.g., mobile agent based applications

(b) Serialization systems that do not modify the “normal” performance of the serialized
threads and put all additional cost in the serialization operation; this kind of behavior
targets applications where serialization is necessary but occurs rarely such as admin-
istration of distributed systems.
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9 Conclusions

Java provides most of the functions required to transmit the code (i.e., dynamic class load-
ing), and to transmit or store data (i.e., object serialization). However, Java does not provide
any mechanism for the transmission/storage of the computation (i.e., threads).

We propose a thread serialization mechanism that allows Java programmers to access the
execution state of a Java thread as a Java object, and thus to build Java thread transmission
and storage facilities. Our thread serialization mechanism is generic: we used it as a basis for
the implementation of thread mobility and thread persistence services. With these services,
arunning Java thread can, at an arbitrary state of its execution, migrate to a remote machine
and resume its execution, or be checkpointed on disk and then recovered.

Recently, several projects attempted to provide thread serialization in the Java envi-
ronment; but the proposed solutions are limited in terms of performance: they impose a
significant overhead on threads performance. The objective of this paper was twofold:

e to detail the implementation techniques that are necessary to build a zero-overhead
Java thread serialization system (the CTS - Capture-time Thread Serialization - sys-
tem), and

e to exhibit the benefits of this system in term of performance via a comparative evalu-
ation of several Java thread serialization approaches.

We implemented the CTS thread serialization system within Sun Microsystems’ Java
Virtual Machine. The lessons learned from this experiment are:

e It is possible to extend the Java Virtual Machine with thread serialization, mobility
and persistence facilities without redesigning the whole JVM.

e The proposed thread serialization/mobility /persistence mechanisms do not incur any
performance overhead on threads. This was possible thanks to the use of two tech-
niques:

— A type inference technique which permits to build a thread serialization mecha-
nism that is totally separated from the JVM interpreter and does therefore not
impact bytecode interpretation performance.

— A dynamic de-optimization technique which allows thread serialization to be com-
pliant with Java JIT compilation.

Type inference and dynamic de-optimization are widely used techniques applied in the
context of code verification and program debugging. We showed how to use them in the
context of thread serialization.

The second result of our work comes from the performance evaluation that we reported on
for the comparison of our thread serialization prototype with other prototypes implementing
different approaches. This evaluation shows that:
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e Java thread serialization based on an extension of the Java interpreter is non-compliant
with JIT compilation, and is therefore not a realistic solution for today’s Java appli-
cations.

e Application-level Java thread serialization is probably an interesting solution for appli-
cations that require frequent thread serialization operations, e.g., mobile agent based
applications.

e CTS is an effective solution for applications where thread serialization is necessary
but occurs rarely and for which the “normal” behavior of applications must be kept
unchanged, e.g., distributed system administration.

In this paper, we described our work towards the provision of basic mechanisms for
an overhead-free Java thread serialization/mobility /persistence system. We restricted our
discussion to the design and implementation issues in a local environment (i.e., a local
JVM), and we did not discuss the problems rising from using our serialization facility to
build large distributed systems. Some elements of response are presented in [10], where the
authors describe how they use our Java thread serialization mechanism for fault tolerance
purpose, and how they built a checkpoint/restart facility for parallel computations in the
Suma metacomputing system. Further experiments have to be conducted in order to evaluate
the use of our thread serialization system to build large mobile distributed applications.
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10 Software availability

The CTS implementation of Java thread serialization is available from
http:/ /sardes.inrialpes.fr /research/JavaThread
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