N
N

N

HAL

open science

Designing Generic Algorithms for Operations Research
Bruno Bachelet, Antoine Mahul, Loic Yon

» To cite this version:

Bruno Bachelet, Antoine Mahul, Loic Yon. Designing Generic Algorithms for Operations Research.
Software: Practice and Experience, 2006, 36 (1), pp.73-93. 10.1002/spe.682 . hal-00107137

HAL Id: hal-00107137
https://hal.science/hal-00107137
Submitted on 16 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00107137
https://hal.archives-ouvertes.fr

Designing Generic Algorithms
for Operations Research

Bruno Bachelét Antoine Mahu? and Loic Yort
LIMOS, UMR 6158-CNRS,
Université Blaise-Pascal, BP 10125, 63173 Aubiére, France

Research Report LIMOS/RR03-20

Ibruno.bachelet@isima.fr - http://frog.isima.fr/bruno
2antoine.mahul@isima.fr - http://frog.isima.fr/antoine
3loic.yon@isima.fr - http:/frog.isima.fr/loic

Abstract

Design solutions have been proposed to implement genetdcstiaictures, however there is no
technique that advanced for algorithms. This article dises various problems encountered when
designing reusable, extensible, algorithms for operati@search. It explains how to use object-
oriented concepts and the notion of genericity to desigordlgns that are independent of the data
structures and the algorithms they handle, but that cdnirgtiract deeply together. An object-
oriented design is often considered to be less efficientalaassical one, and operations research
is one of these scientific fields where efficiency really mattelence, the main goal of this article
is to explain how to design algorithms that are both generitefficient.

Keywords: object-oriented design, operations research, algoritmpleémentation, genericity,
reusability.

Résumé

Des solutions de conception ont été proposées pour imptémedas structures de données gé-
nériques. Cependant il n'existe pas de technique aussiiéwgiour les algorithmes. Cet article
discute de différents problémes rencontrés dans la canoeghalgorithmes réutilisables, exten-
sibles, pour la recherche opérationnelle. Il explique ceminatiliser les concepts orientés objet et
la notion de généricité pour concevoir des algorithmesapuii mdépendants des structures de don-
nées et des algorithmes qu’ils manipulent, mais pouvamméms interagir fortement entre eux.
Une conception orientée objet est souvent considérée camuites efficace qu'une conception
dite classique, et la recherche opérationnelle est 'urededomaines scientifiques ou I'efficacité
est vraiment importante. Ainsi, le principal but de cetdtiest d’expliquer comment concevoir
des algorithmes qui sont a la fois génériques et efficaces.

Mots clés : conception orientée objet, recherche opérationnelleJémentation d’algorithme,
généricité, réutilisabilité.

Abstract

Design solutions have been proposed to implement genddacstfactures, however there
is no technique that advanced for algorithms. This artideusses various problems encoun-
tered when designing reusable, extensible, algorithmgderations research. It explains how
to use object-oriented concepts and the notion of gengtcdesign algorithms that are inde-
pendent of the data structures and the algorithms they amali that can still interact deeply
together. An object-oriented design is often considerdxttiess efficient than a classical one,
and operations research is one of these scientific fieldsendfficiency really matters. Hence,
the main goal of this article is to explain how to design alldpons that are both generic and
efficient.

Keywords: object-oriented design, operations research, algorithplémentation, gener-
icity, reusability.

Introduction

The authors of this article work on various projects in thédfigf operations research: they use
optimization techniques for graph problems in hypermegliacronization (cf. [3]) or in bus
routing (cf. [12]), and neural approximation in communicatnetworks (cf. [8]). In all these
studies, developing generic but efficient algorithms hanleechallenge.

By generic we mean software components that are extensible (theavimehcan be adapted
to fit various goals, which is also calledusability), and independent (although they can interact
deeply together, the components must be as independenttobteer as possible). This indepen-
dence means for algorithms to abstract both the data staescéund the algorithms they handle.

When an object-oriented design is said to be inefficients misually due to an overuse of
inheritance. But, what really leads to an inefficient impéeration with inheritance is the notion
of virtuality, and more precisely, the dynamic polymorphishat is induced. Virtual methods
require more time to be executed. The cause is not the pophiszn mechanism itself but the
fact that it can prevent thilining of the method (i.e. the call to the method is replaced by
the body of the method itself), cf. [11] and [7]. Although sealesign solutions exist to attempt
avoiding dynamic polymorphism (e.g. thelegation cf. [6]), the genericity seems to be preferred
in languages that can afford it. The massive use of gengtedids togenericprogramming (cf.
[10]). In this article, we propose to use both object-omehand generic programming to avoid
dynamic polymorphism when calling critical methods.

Section 1 briefly recalls the solutions to design generia détuctures and how to conceive
algorithms as independent as possible of them. Sections2pi® simple design solutions that
basically make the algorithms more generic. However, tlagyrot answer some recurrent situa-
tions. Section 3 explains that algorithms may need to adekstata to the parameters they receive,
but in order to maintain the encapsulation of such algorithircan not be expected from the caller
of the algorithm to prepare the parameters for these additidata. Some solutions are proposed
to keep the algorithm generic. Section 4 explains that, siomes, a problem can be modeled by
several ways, and that different models of the same probkembe managed at the same time.
Solutions are proposed to facilitate the shift from one nhtml@nother, and the exchange of data
between them.

Research Report LIMOS/RR03-20
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, ClermBatrand, France, 2003.

1 Generic Data Structures

1.1 Inheritance versus Genericity

To design efficient and generic data structures, the solwionmonly used is the genericity that
provides not a single class but a parameterizable classa ineetamodel, for a data structure. It
describes how the class should be, some of the data typesipaf@tes being parameters. Hence,
for different sets of parameters, the metamodel is ingttedti providing parameterized classes,
for which the full compilation and optimization process isrfiormed, completely identical to
equivalent handwritten classes. That means genericitydesign has no direct impact on its
efficiency.

Arc incomingArcs targetl Node
*
ArcData —<) .. ougangArcs source| .. —— NodeData
*
* *
Flow L Geographic

+ flow: red number Graph + x_coardinate: red number
+ minimum: red number +y_coadinate: red number
+ maximum: red number

Figure 1:Graph model with inheritance.

Let consider a clagsr aph that represents a graph in operations research (a grapmsosed
of nodes and arcs, where each arc links two nodes). The aopr®vtide a data structure that can
be used to model various kinds of graphs, e.g. flow graphsmbdel flows moving from point to
point or geographical graphs that model spots with cootdgand roads that separate them. That
means the data structure must be able to carry various gsa tn both the arcs and the nodes of
the graph.

A model using inheritance is proposed in Figure 1 (in thigckrt all the diagrams are pre-
sented with UML, cf. [9]). It defines superclasddsdeDat a andAr cDat a that represent the
data carried respectively by the nodes and the arcs of thehgia the two previous examples,
that means subclassé$ ow (to model flow graphs) an@eogr aphi ¢ (to model geographical
graphs) must be defined. An algorithm manipulating, foransg, flow graphs will expect the data
on the arcs to belong to the claBsow. Thus, to use this algorithm for another kind of graphs,
the FI ow class must be inherited and some of its methods overridder. t®the nature of the
algorithms developed on such graphs, these methods sheutdlled very often and dynamic
polymorphism for them may lead to inefficiency.

Thus, a model with genericity is proposed in Figure 2. ThesgaNodeDat a andAr cDat a
becomeconceptgor interface$, cf. [2], of respectively the parametéfdlandTA of the metaclass
Graph. This way, flow or geographical graph types can be instattisimply after defining
classed~| ow and Geogr aphi ¢, which must satisfy respectively the concepiscDat a and
NodeDat a so the graph can handle them. The major drawback of this appris that all the
nodes (respectively all the arcs) must carry the same kimthif. It is a recurring problem when
considering inheritance versus genericity to design a stat@ture. However, the generic design
can be combined with the inheritance design, but the effigigiained by the former will be lost
by the dynamic polymorphism of the latter.

Research Report LIMOS/RR03-20
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, ClermbBatrand, France, 2003.

TA, TN «interface»
Graph ArcData
e

i «in'plen'ents »i
| Flow

* TATN | | * TATN | +flow: red number

Arc g 3 Node =y + minimum: red number
incormingArcs target + maximum: red number
—Ta] | 5 N
ougangArcs source

‘ | ZAS

i«bind» l«bind»

| § : «interface»

Arc<Flow,Geographic> «bind>| Node<Flow,Geographic> NodeData
- data: Flow - data: Geographic

* i * «inplements »i
! Geographic
+ x_coardinate: red number
3 +y_coadinate: red number

Graph<Flow,Geographic> \ -

Figure 2:Graph model with genericity.

1.2 Independence from Data Structures

The design of data structures with the generic approacheprtivbe efficient (e.g. the STL [2]).
But this is not enough to ensure the independence of theitgw from the data structures they
handle. To achieve this purpose, the solution commonly issedpropose one or more classes that
become interfaces between the algorithm and the datawteuthandles. Usually, an interface is
proposed for each kind of operations on the data structweinBtance, to search through a data
structure, the well-knowiterator interface (cf. [5]) is used. We can also imagine an interface
access global informations on the data structure such sgés

o
Iteratorl “r- _ Colleaion1
T o] + next() o riend> T getiterator() - Iterator1<T>
«interface» 7 | +|sEndO:bod-ea1
Iterator 3 + getElement() : T
«inmplements » |
+ e (e S
+isEnd() : bodear 3 T
rosBemen: T | Iterator2 “-7- Colledion2 ‘
A\ | friend
! T + next() SRS T getlterator() : Iterator2<T>
« USES » +isEnd() : bodean
+ getElement(): T
S
Algorithm == _ _
-] T: type of the dements of in caledion,
+run(l) I: type of theiterator.

Figure 3:Algorithm parameterized on the iterator type.

Research Report LIMOS/RR03-20
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, ClermbBatrand, France, 2003.

Iterator oy
(from Colledionl) i
Colledionl
| + next(nested cl
ot T ' " isEng() - bodea « dass» (N + getlterator() : Iterator<T>
«interface» + getEl t0: T
[terator
+7 «inplemrents » T
+isEnd() : bodea Iterator_ T
+ getElement() : T (from Colledion2) Colledion2 T «ifplenents »
A i
' + next() « nested class»
| +isEnd() : bodean (T + getiterator() : Iterator<T>
| + getElement() : T
1<C USES »
: feeeeew | T typedf theelementsin the calledion, - [T
- : T,C-+ | C:typecf thecolledion «interface»
Algorithm - Colledion
+ run(C) + getlterator() : Iterator<T>
<« Uses »

Figure 4:Algorithm parameterized on the data structure type.

In our discussion, we will consider a single iterator ireed, but it can be generalized to any
other interface. Some designs propose that the algoritbgives directly the iterators instead of
the data structure, this way the algorithm is completelyepehdent of the data structure, e.g. a
collection (cf. Figure 3). However, if many iterators argquiged by the algorithm, the caller must
provide all of them, which leads to a partial break of the @sodation of the function: details have
to be known from the caller so it provides the relevant imst The following example illustrates
how to use the collection from the modeling of Figure 3:

met hod Al gorithnxT, > :run(l i)
while not i.isEnd() do
...i.getEl ement()...

i.next();
end whil e;
end net hod;

A better design would be to propose a parameterizable verdfighe algorithm where the
parameter is the type of the data structure the algorithndlearn(cf. Figure 4). The collection
is still provided to the algorithm, but the meta-algorithsnindependent of it. However, the data
structure needs to implement a specific concept: with thatie example, the collection must
provide methods that create iterators on its own structlitee type of the iterator must also be
provided by the data structure as shown in Figure 4 with ttetedetypel t er at or . It means
a completely independent collection will need an adaptéorbethe algorithm can use it. The
following example illustrates how to use the data strucfrom the modeling of Figure 4:

met hod Al gorithnkC, T>::run(C c)
c.lterator i = c.getlterator();

while not i.isEnd() do
...i.getEl enent()...

i.next();
end whil e;
end et hod;

Research Report LIMOS/RR03-20
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, ClermbBrtrand, France, 2003.

2 Toward Generic Algorithms

The previous section explains how to make an algorithm iaddent of the data structures it han-
dles. The same way, this section recalls a design solutiorate it independent of the algorithms
it manipulates. In a second part, various techniques acesiged to make an algorithm extensible.

2.1 Abstraction of Algorithms

As shown in the previous section, an algorithm can be modisealclass with a methodun()

for instance, that is called to perform the algorithm. Maeo such a class can aggregate the
parameters of the algorithm, thus instances will repretbenalgorithm with different parameters.
Based on this modeling, the design pattsimategy(cf. [5]) allows to make components indepen-
dent of an algorithm: as itis represented by a class, it isiptesto define an abstract superclass to
gather all the algorithms that solve a same problem. As shiovagure 5, the classical problem
of the shortest path between two nodes in a gr&ttof t est Pat hAl go abstract class) can be
solved with various algorithms (cf. [1]Bel | manAl go, Di j kst raAl go...

MinCogFlowAlgo
«akstract » spAgo A\ + corstructor(a: ShartestPathAlgo).
Abstrad methad.). ShortegPathAlgo + setParameters(...) I
- run(Graph " run(...)
__|-+ default() : ShortestPathAlgc

return new Dij kstraAl go; %
Gaph*g=...;7 spalgo=a;5

‘ ‘ Spal go.run(g);

BellmanAlgo DijkgraAlgo
+ setParameters(...) + setParameters(...)
+ run(Graph) + run(Graph)

Figure 5:Abstraction of algorithms.

Therun() method of theShor t est Pat hAl go class is abstract so the subclasses must
override it. This way, the different shortest path algarithbecome interchangeable in any algo-
rithm that manipulatesShor t est Pat hAl go (e.g. M nCost FI owAl go). The virtuality im-
plied here will not impact the whole efficiency of the desigacause the algorithms are supposed
to have complex behavior, so the time requested in the calhemésm to the method is insignif-
icant compared to the execution time of the method itselfwéier, asShor t est Pat hAl go
provides a common interface for all the algorithms, it cahlv@used to parameterize the algo-
rithms. A specific method must be added to each algorithm, seg Par anet er s() , whose
duty is to initialize the parameters of the algorithm.

Bel | manAl go S
M nCost FI owAl go f

new Bel | manAl go;
new M nCost FlI owAl go(s);

s.setParaneters(...);
f.setParanmeters(...);
f.orun(...);

The example above, based on the modeling of Figure 5, shatsttis possible to decide
which shortest path algorithm to use inside the minimum ffostalgorithm at the execution time.
The algorithm must be created and parameterized befora ibeaised in the methadun() of
the minimum cost flow algorithm. Note that the duty of thet Par anet er s() methods can
be performed by the constructors of the classes. It is alpoiitant to provide a method in the

Research Report LIMOS/RR03-20
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, ClermbBatrand, France, 2003.

abstract clasShort est Pat hAl go to return a default algorithm object of one of its concrete
class to the final user. Basically, it will be the class thatisognized to be the most efficient, but
we can imagine a more sophisticated approach where, f@nost an analysis of the structure of
a graph allows to select the best algorithm to solve a spgaifislem on this graph.

2.2 Extension of Algorithms

This section discusses three ways of making an algorithmnsitile, the idea being that some
parts of its code are delegated in separate methods thaeaaplaced by the user. This way the
behavior of the whole algorithm can be modified, whereas ittt code is not (and can not be)
altered. Moreover, the user does not need to know all thélsletzout the implementation of the
algorithm, only relevant information on the methods he eglace is necessary.

2.2.1 Virtual Method Approach

The design pattertemplate methodcf. [5]) is a classical solution to make an algorithm ex-
tensible. It externalizes parts of the methodn() of an algorithm into virtual methods, e.g.
operationl() andoperation2() in Figure 6, called thgparameter methods Hence,
through inheritance, these methods can be overridden tifyrtbeir behavior, leaving the body
of run() unchanged.

«abstract »
Algorithm

N + setParameters(...)
e run(l)

“|"#operationX(...)

DN _|-#operationZ..)

T

Virtual methad. operationi(...);

6bérati on2(...);
Virtua methad. ..

Algorithm1

Algorithm2

+ setParameters(...)
#operationX(...)
#operationd...)

+ setParameters(...)
#operationX(...)
#operationd...)

Figure 6:Extension of an algorithm, virtual method approach.

The major drawback of this approach is obviously the use®fiynamic polymorphism that
may lead to inefficiency, especially when the parameter austlare fast and often called. Another
disadvantage is the rigidity to extend an algorithm: it ipassible at the execution time to propose
an extension of the methods but those defined by the subglastge algorithm.

2.2.2 Abstract Visitor Approach

To make the extension more flexible, the notiowisftor is introduced in [5]. It proposes to embed
the parameter methods into objects. More precisely, aovipibssesses methods that match the
parameter methods. To be operational, the algorithm mygeggte a visitor, which provides the
missing parts in its un() method. The visitor can be provided to the algorithm durisgcon-
struction, or later, before the call to thein() method, or even as argument of then() method.

In Figure 7, inside the un() method of theAl gori t hmclass, avi si t or object that imple-
ments theVi si t or interface is used to call its embedded parameter metbpds at i on1()
andoperation2().

Research Report LIMOS/RR03-20
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, ClermbBatrand, France, 2003.

N Algorithm
fffffffff e vaw
+ setParameters(...) _ visitor| «abstract »
+run(...) Vigtor
\ + operationX(...)
+ operation?...)
VI éi tor.operationl(...);
VI éi tor.operation2(...);
Vidtorl Vidtor2
+ setParameters(...) + setParameters(...)
+ operationX(...) + operationX(...)
+ operationd...) + operationd...)

Figure 7:Extension of an algorithm, abstract visitor approach.

The following example shows the flexibility of this approadhis possible to decide, during
the execution, which visitor to use to run the algorithm. léger, the major drawback, due to the
virtuality of the parameter methods, remains.

Visitorl v = new Visitorl;
Al gorithma = new Al gorithm(v);

v.setParaneters(...);
a.setParaneters(...);
a.run(...);

2.2.3 Visitor Interface Approach

To finally avoid the dynamic polymorphism, the visitor mugicbme a parameter, not of the
run() method, but of thél gori t hmclass itself. That means the class becomes parameteriz-
able with the type of the visitor as parameter. Thus, as shieWwigure 8, the algorithm aggregates

a visitor that must satisfy i si t or concept.

Algorithm
I «uses» > «interfacex
vistorf v/ | Visitor
+opa'ation](...)
trun(.) | visitor. operationi(...); + operationd...)
+ getvisitor() : V N
AN visitor.operation2(...); |
boeee Algorithm<Vistor1> >—VSO"yigtory |- o
| «I eents »
«hbind>: + setParameters(...)
: + operationX(...)
+ operationd...)
| Algorithm<Vistor2> (>—MSO " yigtor2 |
+ setParameters(...)
+ operationX(...)
+ operationZ...)

Figure 8:Extension of an algorithm, visitor interface approach.

Research Report LIMOS/RR03-20
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, ClermbBatrand, France, 2003.

The following example illustrates this modeling. This apgarh is very similar to the previous
one, but the dynamic polymorphism is avoided, thus ther@ikss of efficiency. Nevertheless,
the flexibility proposed with the abstract visitor approasHost. As in the previous approach,
the visitor could be provided directly as an argument of thiestructor ofAl gor i t hm instead
of being automatically created by the algorithm. This wag ¥isitor interface approach can be
combined with the abstract visitor approach to provide Kiixy.

Al gorithnxVisitorl> a = new Al gorithnxVisitorl>;

a.getVisitor().setParanmeters(...);
a.setParaneters(...);
a.run();

2.3 Conclusion

To obtain a "good" genericity of the algorithms, it seemsani@gnt to apply the strategy pattern
with the solutions proposed here to make the componentpémdient, and to combine it either
with the visitor interface approach (when efficiency matteor with the abstract visitor approach
(when flexibility is preferred), to allow sufficient extehdsity for the algorithm. Note that the STL
proposes the notion déinctor that is similar to the notion of visitor interface. Other apgches
are proposed, for instance in [4] that defines generic vassid many behavioral design patterns
introduced in [5].

3 Managing Extensions of Data Structures

When designing generic algorithms, it is often necessaextend a data structure, so its elements
provide additional attributes that an algorithm may terapbr need. For instance, to solve a
minimum cost flow problem some algorithms require to affgmvtential to the nodes of the graph.
However, the nodes of flow graphs do not possess such data eard mot be expected from the
caller of the algorithm to add this data, it would break theagrsulation of the component.

« abstract »
AbdractE xtenson

+ clone() : AbstradExtensior

Extendon

-vaue T

_{ return new Ext ensi on<T>(this); ﬁ

+ clone() : AbstradExtensior ™ B

Figure 9:Ext ensi on class.

The first idea is to add a "free" attribute to the nodes of tlaglyr This attribute is a reference
to an object of a clas8bst r act Ext ensi on. When a graph is built, no data is pointed. Then,
if an algorithm needs to add data, it can make the "free"aitiei reference an object belonging
to a class inherited fromdbst r act Ext ensi on. The parameterizable clagxt ensi on is
proposed to offer a generic way of encapsulating an entigidénan object with the interface
Abst r act Ext ensi on.

Research Report LIMOS/RR03-20
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, ClermBatrand, France, 2003.

This first approach requires that before an algorithm useibe" attribute it must memorize
the data another algorithm may have stored in it and restavace its process finishes. It is
typically a stack, so the second idea is to replace the "fattebute by a stack of "free" attributes.
When an algorithm needs to add data, it must put it on top okthek and remove it after its
process.

However, the execution of some algorithms may be iteratind, between two iterations other
actions can be performed. For instance, for the learninig pvitning of a neural network, there are
two independent iterative algorithms: the learning aldponi that modifies, at each iteration, the
weight of the neural network, and the pruning algorithm thay remove, at each iteration, some
arcs that prove to be useless. The whole process is to pedome iterations of the learning,
then one of the pruning and repeat until certain conditimessatisfied. Both the learning and
the pruning need to put additional data on the nodes of thehgifzat must remain between two
iterations of each algorithm. That means the order in whiehalgorithms add data to the nodes
can not be modeled as a stack. Any algorithm can add or reraba@ay time, its own data on the
nodes.

«interface»
Colledion

. _| C: typedf the caledion,
{«implements » | T: type of the dements in the call edion

- - C,T"
ExtensonM anager ---—7-—--

« abstract »
4. «uses » AbdractExtenson

+ attach(AbstradtExtension) : index + clone() : AbstradExtensior
+ detach(index) .

«interface»
Extendable

ExtensonM anager «indexed »

<Colledion1<Node>, Node>

i«imjemarts»
+ attach(AbstradExtension) : index 3
+ detach(index) €@ Colledion1l<Node> _ Node

.

Graph

Figure 10:Additional data management modeling.

Figure 10 presents a solution to design a data structurec#imatmanage the insertion or the
removal of data on a set of elements. The example of a caleofinodes in a graph is considered.
Instead of manipulating a collection of nodes directly, egh theCol | ect i on1<Node>class
(cf. Figure 4), the graph handles an object of the clasisensi onManager that implements
theCol | ect i on interface, so no changes in the code of@eph class is required (except for
the declaration of the collection of nodes). ThHst ensi onManager class is an adapter that
aggregates a collection; any call to methods of@bel ect i oninterface is delegated to its inner
collection.

The duty of arExt ensi onManager object is to manage the addition or the removal of an
Ext ensi on object for each node of the set it encapsulates. Hence, arithlp, that wants to
add an extension, calls itst t ach() method with a template of the extension to clone and to

Research Report LIMOS/RR03-20
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, ClermbBatrand, France, 2003.

10

put on each node. An index is returned indicating the locadithe extension in the indexed lists
the nodes aggregate. Thus, it allows the algorithm to dyrestk a node for a specific extension,
using this index. Finally, to remove an extension, the allgor calls thedet ach() method
with the index as argument so the manager knows which extemnsiremove from the nodes. To
manipulate the sets of extensions, the manager uséthendabl e interface implemented by
the nodes.

«interface»
Extendable «abstract »
AbdgractExtenson

+ getExtensiors() : ExtensiorSel

+ clong() : AbstradExtensior

*

§« inplerrents » «indexed »

Node

+ getExtensiors() : ExtensiorSet %ﬁﬂ E xtensonSet

+ get(index) : AbstradExtensior
+ set(index, AbstradExtension)

return extensions; ﬁ

Figure 11:Ext endabl e interface implemented with delegation.

Two solutions are possible to implement et endabl e interface. First, thdNode class
can delegate the management of the extension list to and#ss;, e.gExt ensi onSet in Figure
11. Second, the interfadext endabl e can become a class that manages the extension list (as
the Ext ensi onSet in the previous design), and tidode class inherits fronExt endabl e,
cf. Figure 12. This specialization is efficient because noaalyic polymorphism is implied. In
this second design, implementation is inherited fromERé endabl e class. It arises problems
with languages that forbid multiple implementation inkemce, that meansode can not inherit
implementation from another class, which may be importansbéme designs.

Extendable «indexal » «abstract »

‘o ion(index) : Abstra ion +| AbdractExtenson
+ setExtension(index, AbstradExtension) + clone() : AbstradExtensior

Node

Figure 12:Ext endabl e interface implemented with specialization.

In terms of maintenance and reusability, this design allmedd arExt ensi onManager
without modifying the data structure that aggregates tligira collection, e.g.G aph. The
structure of the class that aggregates the extensions h&s @ modified, it only requires to ag-
gregate an object of thext ensi onSet class or to inherit from th&xt endabl e class, both
solutions providing the set of extensions. Dynamic polysh@dm has been avoided as much as
possible, however algorithms need to downcast the extensiomAbst r act Ext ensi on to
Ext ensi on<T>. That means some type checking at the execution time isrezfjuivhich usu-
ally leads to inefficiency because the extensions are siagkethat we can reasonably assume to
be called very often. The efficiency is ensured only if thjzatghecking is avoided, which is possi-
ble with langages such as C++ that proposes the checkinly fwinstructiondynamni ¢_cast)

Research Report LIMOS/RR03-20
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, ClermbBatrand, France, 2003.

11
or not (with its instructiorst at i ¢_cast).

4 Maintaining Several Models of a Same Problem

Another recurring problem is to deal with several models @i@blem at the same time. For
instance, a graph can also be modeled as a matrix, and hlgeritften need to managésaaph
object and the equivalemat r i x model. An algorithm may need to convert tBeaph object
into aMat ri x object, perform some optimization, and data from ke r i X object must be
interpreted to modify th& aph object. The simplest solution is a converter object thavioes

a method to transform a graph into a matrix, and another trpngt the results back from the
matrix to the graph. The drawback of this approach is obvieash time a modification is made
on the graph, the converter object must be called to reboitdptetely the matrix.

« i » «interface»
VirtualM atrix |- /TPOTES > II\/I atrix
Graph —< 1 (&) Virtua matrix
«interface» « i » -
IGraph |« mpleEnts > VirtualGraph
—— Matrix (b) Virtua graph

Figure 13:virtual data structure.

A second design solution can be proposed: one of the two coempe,Gr aph or Matri X,
can be "virtual". This means only one of the two data stresynhysically exists, and the other one
is simply an adapter of the other. Figure 13(a) propodésrd ual Mat r i x class thatimplements
the Mat ri x interface and aggregates the graph to convert. Each timetechef theMat ri x
interface is called, th¥i rt ual Mat ri x object delegates the execution to its associated graph.

On the contrary, Figure 13(b) proposes to make the grapltsteuvirtual. With this de-
sign solution, the graph (respectively the matrix) can belifiexl at any time because each time
information for the matrix (respectively for the graph) éxjuested, it is built from the graph (re-
spectively from the matrix) structure. However, if the nogth of the virtual component need time
to be executed, the design is inefficient. It should be usednvthe methods are fast, the best
being that they only provide a mapping from matrix (respetyi from graph) elements to graph
(respectively to matrix) elements.

The third solution consists in maintaining several physicadels of a problem at the same
time. It means there are two classgsaph andMat r i x, and when a modification occurs in the
Gr aph object, it must be reflected in that r i X object (for the sake of simplicity, the opposite
case is not considered). That means algorithms will maaipun adapter of thér aph class, e.g.
bser vedG aph, that follows the samé&r aphl nt er f ace interface. Moreover, the design
patternobserver(cf. [5]) is implemented for the observed graph, which meaxtsrnal objects,
the observers, can ask observer managers in the observeld trde informed when certain
operations occur. The observed graph decides to notifgliévant changes to one or more of its
observer managers, which inform then the observers. Anrefise@eceiving a notification, can
decide to modify the matrix in order to keep the coherencé tie graph. Thus, any algorithm
can manipulate th€bser vedG aph as any graph, and each time a relevant operation occurs,
the matrix is modified. This solution is efficient only if a faalls to the observers are performed.

Research Report LIMOS/RR03-20
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, ClermbBatrand, France, 2003.

12

Algorithm «interface»
LSS Graphlnterface

EaS
§<<in1:>|en”ents »
Graph
Ob=erverM anagerl —
+ attach(Observerl) 4 ObservedGraph
Observerl —— + detach(Observer1)
< updde + update(..) + natify(...)
M atrix
Ob=erverM anager2 —
Observer2 — 4+ 2‘13%(&56\/622))
+ deta SENVer,
<updde |, ndatey..) + natify(..)

Figure 14:Maintaining several models.

To conclude, the first solution can be used only if the modelsat requested to be maintained
together. If a direct mapping between the elements of thentadels can be achieved, the second
solution with a single adapter is efficient. Finally, if thelation between the models is more
complex and two physical models are necessary, the thinapp should be chosen. In all these
solutions, dynamic polymorphism has been avoided.

Conclusion

The object-oriented paradigm focusing more on the data ¢timathe behavior of a program, it
seems better suited to build reusable data structures thasalrle algorithms. However, it is
possible to provide design solutions to model generic afidieft algorithms combining the
object-oriented and the generic programming. This arficksents how to make a component
independent of both the data structures and the algorithhandles. It also explains how to bring
extensibility in the code of an algorithm, without losing gfficiency. We also discuss recur-
ring problems, such as how to manipulate additional infdimmeon data structures without losing
neither the efficiency nor the genericity of the design; amchsas keeping several models of a
problem up-to-date at the same time. The design soluticesepted along this article have been
implemented and their reusability and extensibility eigreced successfully in several operations
research projects.

References

[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlietwork Flows - Theory,
Algorithms, and ApplicationsPrentice Hall, 1993.

[2] Matthew H. Austern. Generic Programming and the STL: Using and Extending the C++
Standard Template LibraryAddison-Wesley, 1999.

[3] Bruno Bachelet, Philippe Mahey, Rogério Rodrigues, aniz Fernando Soares. Elastic
Time Computation for Hypermedia Documents.9BMidia’2000Q pages 47-62, 2000.

Research Report LIMOS/RR03-20
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, ClermbBatrand, France, 2003.

13

[4] Alexandre Duret-Lutz, Thierry Géraud, and Akim Demaill Generic Design Patterns in

C++. In6th USENIX Conference on Object-Oriented TechnologiesSystemspages 189—
202, 2001.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John iMissDesign Patterns: Elements
of Reusable Object-Oriented Softwareddison-Wesley, 1995.

[6] Ralph E. Johnson and Jonathan Zweig. Delegation in Ca+lournal of Object-Oriented
Programming volume 4-11, pages 22-35, 1991.

[7] Stanley B. Lippmaninside the C++ Object ModelAddison-Wesley, 1996.

[8] Antoine Mahul and Alexandre Aussem. Neural-Based Qualf Service Estimation in
MPLS Routers. IrBupplementary Proceedings of ICANN ' @ages 390-393, 2003.

[9] Pierre-Alain Muller. Instant UML Wrox Press, 1997.

[10] David R. Musser and Alexander A. Stepanov. Generic Rmogning. InLecture Notes in
Computer Sciencerolume 358, pages 13-25. Springer-Verlag, 1989.

[11] Martin J. O’'Riordan. Technical Report on C++ Perforrm@anTechnical report, International
Standardization Working Group ISO/IEC JTC1/SC22/WG21D20

[12] Loic Yon, Alain Quilliot, and Christophe Duhamel. Dasice Minimization in Public Trans-
portation Networks with Elastic Demands: Exact Model ang¥ached Methods. 1R1st
IFIP TC 7 Conference2003.

Research Report LIMOS/RR03-20
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, ClermbBatrand, France, 2003.

