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Abstract

Software patterns provide reusable solutions to recurrilegign problems in a particular context. The
software architect or designer must find the relevant pateand pattern languages that need to be consid-
ered, and select the appropriate patterns, as well as thedrdsr to apply them. If the patterns and pattern
languages are written by multiple pattern authors, it migbtnecessary to identify interdependencies and
overlaps between these patterns and pattern languages @nst of the possible multitude of patterns and
pattern combinations that might provide a solution to a garar design problem, one fitting solution must
be selected. This can only be mastered with a sufficient espdor both the relevant patterns and the do-
main in which they are applied. To remedy these issues wederew approach to support the selection of
patterns based on desired quality attributes and systendasign decisions based on patterns. We propose to
formalize the pattern relationships in a pattern languagammar and to annotate the grammar with effects
on quality goals. In a second step, complex design decisimanalyzed further using the design spaces
covered by a set of related software patterns. This appréetps to systematically find and categorize the
appropriate software patterns — possibly even from diffesmurces. As a case study of our approach, we
analyze patterns from a pattern language for distributegcobmiddleware.
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1 Introduction

Software patterns capture reusable design knowledge grettese that provides proven solutions to re-
curring software design problems that arise in particutartexts and domains [45]. In recent years, patterns
have become part of the mainstream of software developrbéiferent types of software patterns have been
published. The most popular software patterns are probddsign patterns (see [21] or the proceedings of
the PLoP conference series). Design patterns can be ampaligdroadly because they focus on everyday
design problems. In addition to design patterns, the peteommunity has created patterns for software ar-
chitecture [12, 46, 49], analysis [20], and even non-IT ¢s@uch as organizational or pedagogical patterns.
There are many other kinds of patterns, and some are spexifigarticular domain. In this article, we focus
on patterns for software architecture and software design.

Consider the relevant patterns in a design situation haea decumented in different pattern texts and
possibly by different pattern authors. In this and similawations, systematically applying software patterns
requires a certain amount of expertise from the softwaraitect or designer, because she/he has to well
understand how a pattern’s solution fits into the overalh#ecture and how other patterns can be applied
to resolve new open issues that might arise as a consequérplyging the pattern. To resolve these
problems, today many pattern authors document patternarasfoarger pattern languages [5], containing
rich pattern interdependencies and extensive examplesserstudies (see for instance [46, 32, 49, 50, 53]).
The purpose is to guide the architect or designer step bytstegach the domain-specific goal of the pattern
language. Once an initial solution has been envisioned sigded using the pattern language, the patterns
can be applied in an incremental refinement process thatafesestep by step a coherent “whole”. Pattern
languages are used for evolving whole architectures throlig process of piecemeal growth (see [2]).

Patterns use a description format that supports the comégpecemeal growth. In his original pattern

concept, Christopher Alexander explains the role of pattém a piecemeal growth process like this [5]:

Each pattern describes a problem which occurs over and geém & our environment, and then
describes the core of the solution to that problem, in suclaatat you can use this solution a

million times over, without ever doing it the same way twice.

A pattern following this concept must capture the possilaleations of the same problem/solution pair. In
other words, a pattern covers a whole problem space and adias] solution space, not only a single prob-
lem and solutioh This has severe consequences for the pattern descriptioraf: patterns are described
with a consistent structure, but the pattern descriptigesa fairly informal, narrative style. In addition,

each pattern author uses a slightly different structuregiting to the author’s preferences and what fits best

1Below we use the term “design space” for this problem andtsnispace.



to the (technical) subject matter. Emphasis is on readgbiinderstanding the language as a whole, and
documenting all relevant variants and related patternspaiteern in a domain.

In contrast to template-like descriptions of a solution farablem, each pattern describes a great number
of variants and possible relationships to other patteges]ihg to a web of patterns that can be applied step
by step. The individual paths through this web of patterescatledpattern sequencg8, 4]. Because this
way a relevant domain can be captured quite completely arebfch pattern all relevant links to other related
patterns are documented, this description format enaliéegimeal growth of a software architecture. This
is a great strength of the pattern approach.

But at the same time, this strength is also a weakness bepatieens require a certain expertise from
the architects both for the relevant patterns and patterguages and for the domain in which the patterns
should be applied. Questions arise like: Which pattern lshbahoose first? Which variant of the pattern
works best? Which pattern should be applied next? Usuadlyatitswers to these questions are not simple.
In each particular design situation the architect must ickemdunctional features as well as quality goals,
such as performance, maintainability, reusability, eteege quality goals are usually competing. That is, no
optimal (i.e. maximal) solution can be found but only a coampise.

The main goal of this article is to supplement the pattersedaapproach and the body of existing pattern
literature? by providing an approach to better support the selectioratiepns and systematic design decisions
based on patterns. We propose a two step approach:

e Firstly, we formally document the grammar of a pattern laaggiand annotate it with the effects on
quality goals. From the pattern language grammar we cawaléne pattern sequences of a pattern
language. During the selection of sequence steps, we cathe@spiality goal annotations to get an

approximate overview of the design decision’s effects aalitpugoals.

e Secondly, we analyze in detail the more complex or difficeign decisions in the pattern language
that can be found in the annotated pattern language grandiniaris done by documenting the design
space [36, 35] for each of these design decisions. A desigoespxplains the considerations and

options of a particular design decision in depth.

The pattern language grammar and the design spaces haveltacl@ented once for a pattern language
(or a set of related patterns). The initial documentatiothefpattern language grammar and design spaces
can be provided by the pattern language author (as in thestadg provided in this article), or it can be

done during an architectural design process (as done in sbitie projects discussed in Section 7). The

2Please note that many existing patterns in the literatuenat documented as part of a pattern language, or miss iagort
links to other, related patterns, for instance, becaussetbther patterns were written later in time. We provide &fical approach

which can be used to connect these patterns to existingpéteguages.



pattern language grammar and the design spaces can subthgdpeeapplied to guide the pattern selection
in many other concrete design situations. They are thezeflso a means to document and reuse the design
knowledge and design rationale from earlier design expeds based on a pattern language. Finally, as
pointed out in Section 7, a pattern language grammar andmispaces documentation can also be used as a

way to communicate design decisions to technical and nomteal stakeholders of a software system.

2 Patterns, pattern languages, and pattern selection
2.1 Definition

Patterns go back to the original pattern concept by the tachChristopher Alexander. In his boaoK,
Pattern Languagé¢b], he describes 253 patterns that guide the creation afesfma people to live, including
cities, houses, rooms, and so on. On the Hillside web sitegd2i&finition of software patterns is presented

that is derived from the discussion in Alexander’s book:

Each pattern is a three-part rule, which expresses a relagtween a certain context, a certain
system of forces which occurs repeatedly in that contexd, acertain software configuration
which allows these forces to resolve themselves.

A single pattern describes one solution to a particulanim@eg problem. The full power of patterns is
only achieved, however, if they are used in the context ofedber to form a web of related patterns, more
commonly known as pattern languag¢l4]. A single pattern can only solve a single problem. Ratén a
pattern language, in contrast, build on each other to gémaraystem. In the language context, the benefits
of a set of related patterns is more than the sum of the bewéftach individual pattern in the set. Simply
connecting the patterns is thus not enough. Patterns hdwetim other patterns in the language that refine

and complete them. Pattern languages have several futitheaateristics:

e A pattern language has a language-wide goal. The purpose tdnguage is to guide the user step by

step to reach this goal. The patterns in a pattern languagecamecessarily useful in isolation.

e A pattern language is generative in nature. Applying thégpatlanguage generates a ‘whole’. The
whole is generated by applying the patterns in the patterguage one after another in an incremental
process of refinement. The basic idea is that each refinertegmtreakes the whole successively more
coherent.

e To generate the whole, the pattern language has to be appléespecific order. This order is defined
by one or more sequences. Depending on the context in whagbetttern language is applied, or which

aspects of the whole are actually required, there can beaeaxjuences through a pattern language.
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e Because the patterns must be applied in a specific sequeatepattern must define its place in the
sequence. To achieve this, each pattern has a section italteahtext, which mentions earlier patterns
that must be implemented before the current pattern can plemented successfully. Each pattern can
also feature a resulting context that describes how to BoatiThis contains references to the patterns
that can be used to help in the implementation of the currattép, or explains how to proceed in the

incremental refinement process of the whole.
2.2 Pattern selection

The selection guidance offered by the different forms otgratdescriptions are highly valuable during
an (iterative) design process. But for systematic designsams based on both functional requirements
and quality goals, a certain amount of expertise is requn@a the architect — both in the existing pattern
literature and in the domain, where the patterns should pbezh

Well-elaborated pattern descriptions nevertheless oot relevant information necessary for an in-

formed design decision:

e Functional requirementsEach pattern describessalutionto a problemin a context That is, the

pattern describes which functional requirements it caepilly fulfill.

e Quality goals:Each pattern contains a description of thecesthat govern the solution to the pattern’s
problem, as well as the positive and negativasequences applying the pattern as a solution. These
sections usually describe in detail the potential influsrafehe pattern on quality goals.

e Pattern variants:In the pattern’solutionand in sections that describe the solution in detail, daffier
variants of the pattern are described.

¢ Related patternsMost pattern description formats contain an implicit or ktp related patterrsec-
tion, pointing for instance to patterns that can be appleddw problems potentially arising as a

consequence of applying the pattern.

As argued above, unfortunately, this information does motgs lead us to systematic design decision
based on patterns. Gamma, Helm, Johnson, and Vlisside$SGtie’) have already considered this as a
problem for their catalog of design patterns: “with morertt20 design patterns in the catalog to choose
from, it might be hard to find the one that addresses a paaticiésign problem” (p. 28, [21]). They then

propose several different approaches to find a design pdttat is right for a particular design problem:

e Consider how design patterns solve design problems



Scan pattern overviews

Study how patterns interrelate

Study patterns of like purpose

Examine a cause of redesign
e Consider what should be variable in your design

Pattern languages lay a stronger emphasis on patterndlatiéons and morphological unfolding of a so-
lution than the patterns in the GoF book by using the abovetioreed process of piecemeal growth. For
pattern selection, however, pattern languages also etherarchitect to study the pattern language in detail.

There are a number of reasons why this might be a problem:

e Selecting from many pattern sourcdhere are usually much more patterns to be considered tisan ju
the 23 design patterns in the GoF book, simply because in mamgains the pattern community has
provided significantly more pattern material since. Thevaboamed selection approaches, however,
require an architect to search through the patterns one byand remember the patterns’ contents. If
a significantly larger body of patterns needs to be undedstits is much work. This can only be mas-
tered easily with sufficient expertise both in the domain fomdhe patterns. If the patterns and pattern
languages are written by multiple pattern authors, it mlggnhecessary to identify interdependencies
and overlaps between these patterns and pattern languesje®fiferent pattern formats and writing

styles must be aligned and mapped.

¢ Reducing complexity of pattern selectidPatterns usually need be understood in the context of other
patterns, from the same pattern source and also from oth@rpaources. The possible number
of pattern combinations to be considered for a given desigblpm thus can be huge, but only a
few of these possible pattern combinations work as a saiubo solving the design problem. It is
desirable to reduce the complexity of the design decisioelinyinating all pattern combinations from

consideration that do not work.

e Selecting from domain-specific pattern sourcése GoF patterns describe general solutions for soft-
ware design. Today many architectural pattern languagesi@mnain-specific and have rich interde-
pendencies to other domain-specific pattern languagescdusider the Remoting Patterns in [49]. In

order to apply this pattern language, you usually have tsiciem patterns from other pattern languages,

3“Intent section” in the GoF book. Today many pattern authuses other overview-like sections, such as pattern thunigbogi
problem/solution-pairs.



such as networked objects [46], resource management [82¢rgl-purpose patterns [21, 12, 6], server-
component patterns [50], language and component integrfb], aspect-oriented composition pat-
terns [53, 51], and so forth. Thus the design decisions ntighbme much more complex, due to these

domain-specific dependencies.

e Balancing quality goals of subsequent design decisigngood pattern language describes for each
individual pattern and for each subsequent design stepaihgeguences on quality goals. There is no
overview of the consequences of a number of related desegs showever. The holistic consequences
have to be deduced by stepwise examination of the pattemesafter another.

e Coping with insufficient pattern materiaNot all domains are covered completely by patterns and not
all patterns are well written. In such cases, a pattern s8eteapproach should allow one tdentify

gapsin the patterns and in their relationships to other patterns

3 Overview of the approach

Our concept is to create the pattern language grammar ardetign spaces once for a pattern language.
Then they can be used for multiple, systematic design aessising the pattern language. Of course, using
the pattern language grammar and the design spaces migité adeedback that improves them. Thus
the pattern language grammar and the design spaces shdue seen as something static that cannot be
changed later dn

Before we can apply our approach we need to identify the aglieguality goals of the patterns in a pattern
language. Of course, the functional goals are importanafdesign decision. Functionality is the ability
of the system to fulfill the task it was created for. A systerattioes not adequately fulfill its functional
requirements is doomed to fail its user’s expectations. relasons for architectural defects and subsequent
architectural reengineering, however, are often not corezewith the functionality of the system, but other
guality goals, such as the system’s performance, mairidityaportability, security, usability, scalability,
time-to-market, or costs. In pattern descriptions we cath the quality goals and concerns addressed by the
pattern in thdorcesandconsequencesections.

The quality of an architecture (or a software system in galh@an be seen as a collection of quality at-
tributes [7]. Even though there are forces and consequencaas architectural pattern that do not directly
relate to quality attributes, most often some quality bttteés depict central aspects of an architectural pat-

tern’s design considerations. We use two systems of quaiitiputes, which complement each other: the

“Note that this view is consistent with the pattern commusitjew on patterns: they are also seen as living documeats th
change over time, for instance, because the technologyrfpleimenting the patterns changes and thus new pattermteana
dependencies to other patterns emerge.



system by Bass, Clement, and Kazman [7] and the ISO @it2énational Standard for the Evaluation of
Software[30]. It is not particularly important for our approach whiquality attributes are used to describe
the quality goals; it is just important that they are welfided in the context of a pattern language so that dif-
ferent readers do not understand different things for tieesi@rm. In other fields than software architecture,
patterns have different kinds of quality goals as forces emisequences, other than architectural quality
attributes. Our approach is nevertheless still applicgiavided that these quality goals are well-defined.

After identifying the quality goals of the patterns we do@mhthe grammar of the pattern language and
annotate it with the effects on quality goals. The formdima allows us to derive the possible pattern
combinations as pattern sequences. This step reducesgsibleacombinations of patterns dramatically, and
thus gives a good overview of the possible pattern comhmnatin the pattern language. It also gives an
overview of the effects on quality goals of the patterns aatigpn combinations.

For the more simple design decisions in the pattern langubggattern language grammar and the pattern
sequences provide a good basis for a design decision. Scsigndbecisions are more complex, however.
For instance, in most cases where multiple variants andnaliiees need to be considered, a more detailed
analysis is needed. Therefore, as a next step, we idengfynibre complex design decisions, described by
the pattern language grammar. For each of them we perfornestigu-option-criteria (QOC) design space

analysis. The result is a detailed decision map for the dedggision in question.

4 Formal documentation of the pattern language grammar
4.1 Pattern language grammars and pattern sequences

As Alexander points out [3, 4], pattern descriptions alonendt really allow a person to generate a good
design, step by step, because they concentrate on the tohtbe patterns rather than laying the emphasis
on morphological unfolding. The creative power lies in tiegsences in which the patterns are applied. For
a given task, the number of possible sequences is huge cedwéh the number of sequences which work.

The informal pattern overview diagrams (Figure 1 shows amgde from [49]), used by many pattern
authors, give a good overview of how the patterns relate they are not sufficient to derive the possible
sequences in which the patterns can be selected during gndéscision. In fact, we can understand the
topology of the patterns in a pattern language as a partatlgred set (poset), and each sequence in the
pattern language is a totally ordered set of patterns fraptitern language [43].

Note that there is more to a pattern language than its togolaglefining characteristic of any language
is its grammar. It is from grammar that we can derive sequeiz@.

In a pattern language, the language elements are indiviidtarns. To support a more systematic design

decision, we transform the pattern overview diagrams ardrtformation in the pattern texts into a formal



INTERFACE DESCRIPTION

CLIENT REQUEST ———————>
HANDLER with HANDLER

communicates,, SERVER REQUEST

Figure 1. Example of an informal pattern diagram (from [49])

pattern language grammar. In order to document the quadi&sgof the design decisions, we annotate the

grammar with expected effects on quality goals. To docuragdttern language as a formal language, and

apply our approach in concrete projects, it is importantriderstand the following two points:

e A pattern does not describe a structural element of the sy&iavhich it is applied, but it can be seen
as anevent in a creative design procedsach pattern describes a whole problem and solution space,
not only a single solution, and thus selecting a pattern méastart a creative design process within
this problem and solution space. The order of the languagraeaits in the sequences thus describes
the temporal order of a design decision. That is, the sequend, B, C' > means that patterd is
selected before patter®, which itself is selected before patterh

The order of pattern application is most often identicaht® ¢rder of pattern selection. It is also possi-
ble, for instance, that some patterns that appear in the patteyn sequence are applied in parallel, or
that a sequence needs to be applied as a whole. Considerstance, a sequence includes the patterns
CLIENT REQUEST HANDLERaNdSERVER REQUEST HANDLERboth from [49]). The fact that one of
these two patterns was selected before the other patterahwhght be important for the documen-
tation of the design rationale, does not imply that the twibgpas must be implemented in that order.
Usually the two patterns are implemented in parallel bee@amplementations of these patterns usually
share common components, and a client component is needesi ta respective server component
and vice versa.

e Aformal pattern language grammar does not necessarilyitdesall possible sequences of the patterns
in a pattern language, but only a number of successful solytaths that have proven to work in the
past. The sequences derived from a formal pattern languagengar need not be complete in the



sense that they cover all possible combinations that mighk wor do they need to work for all time.
As mentioned above, a pattern language grammar should bease® living document that changes
as new pattern combinations are mined, existing patterrbamations become obsolete, other patterns

are added to the pattern language, technology changes, etc.

We propose a two step approach to come to a pattern languagargr. In the first step, we create
a pattern language grammar overview diagram that uses apgrdlencies that can be mapped to formal
language grammars. We annotate each dependency in thisuiagith the expected effects on quality
goals. In the second step, we also document the formal pd#eguage grammar by deriving it from the
overview diagram (this can potentially be automated usitmpd. Note that the pattern language grammar
overview diagrams are not only useful as an intermediafetstereate the pattern language grammar, but as
they are more easy to read than the grammar itself, they soeusleful for discussing design decisions, e.g.
with the stakeholders of a software system. The formal gramm turn, is mainly useful for creating tools,
say, by using a parser generator.

In this paper, we concentrate on examples showing and ewpigthe pattern language grammar overview
diagrams because this representation is more useful fdaeaiory purposes than the formal grammars. We
also present the details of the formal grammars to illusttiaat the diagrams can easily be transformed into

a more formal representation, suitable for providing tagisort.
4.2 Mapping grammars to pattern relationships

In a grammar of a formal language, it is usually possible tvjate production rules for required ele-
ments, optional elements, alternatives, and repetitidvis.can map each of these elements to the possible
relationships that patterns in a pattern language can Rakefind the possible pattern relationships in the
pattern overview diagrams and by scanning the pattern,tagte/ell as by looking at known uses or exam-
ple implementations of the pattern language. In the patexis we search farelated patternsandpattern
variants

The application of a pattern in a design context leads to a cmvwext in which other patterns can be
applied. A pattern can either require another pattern, erue of the other pattern is optional. These two
kinds of pattern relationships thus can be directly mappeti¢ required and optional elements of a formal
language grammar. In the pattern language overview diagraenmark optional pattern relationships as
[ opti on] and required pattern relationships[asequi r ed] .

The alternative element can be mapped to alternative \ari@marked ag var i ant s] ) or alternative
related patterns in a pattern language (markeideas er nat i ves]).[vari ants] and[ al t er nati ves]
default to non-exclusive alternatives (‘or’) because anlgeldom cases design decisions for patterns exclude

each other. An example where exclusive alternatives arg isgbe pattern languadgtate Pattern§l7]. In
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this pattern language, for instance, the absence of therpattATE MEMBER leads to the applicability of the
patternPURE STATE Thus the design decision for one of the patterns meangtéather pattern must not be
selected. In such cases, we qddr) in the notation as follows] vari ants (xor)],[al ternatives
(xor)].

The repetition elements of the formal language grammar eeeled to represent options and alternatives
(more than one option or alternative may be chosen in oness®eg). However, they are not directly mapped
to pattern relationships. This is because in our formabratve interpret patterns as events in the pattern
selection process. Consider the pattern sequende B, C' > and the pattern sequengeA, A, A, B, C >.
These two sequences are semantically equivalent regapditbgrn application and pattern selection. They
both say that the patterns are selected in the otdeB, C'. Please note that both sequences do not say how
often one of the patterns is applied during the sequenceinBtance, if the patternnvOKER [49] is part of
a sequence, this can mean that more thaniemeKER instance needs to be implemented, for instance one
INVOKER per existing remote object type or backend type. In the i@smesequence thelvVOKER needs to
appear only once. For this reason, we eliminate consecuitipiicates from a pattern sequepce

4.3 Pattern language grammar overview diagrams

As mentioned above, first we want to produce pattern langgagemar overview diagrams. In these
diagrams, boxes with the pattern names are connected witvathat are labeled using the relationships
introduced above. Sometimes participants, variants dépe, or components of the domain are described,
which are not patterns themselves, but have an importaatioakhip to the patterns. In the diagrams these
are used like patterns, but they have no box and are rendeggdy.

Each pattern and pattern variant in these diagrams repieesea design solution. Thus the diagram already
provides an overview of the topology of the pattern langu&g to understand the possible design stepsin a
pattern language, we must additionally consider the foot#ise patterns. The forces are a list of factors that
influence the pattern’s solution. In the software architefield, forces are often quality attributes of the
solution. We thus propose to add these quality attributed ¢dher quality goals) to the pattern relationships

in the diagrams using a simple notation: the quality goabi¥ved by an approximated score.
e ++: @ very positive influence on the quality goal can be expected
e +: a positive influence on the quality goal can be expected

¢ 0: no influence on the quality goal can be expected

SPlease note that we discussed this mapping issue only ftareadory purposes: if a tool is used to derive the formal gram
from the pattern language grammar overview diagrams, ofssgwonly repetitions which make sense as patterns sahschice
derived.
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e - a negative influence on the quality goal can be expected
e - - avery negative influence on the quality goal can be expected

If a quality goal is not mentioned, the meaning is identicalite “o-symbol”: no influence on the quality
goal can be expected. In addition to this simple score, sa@r be combined using the slash-symbbt)*
For instance, frai nt ai nabi | ity o/ --” means either no or a very negative influence on maintairgbil
can be expected.

We also allow for comments in diagrams, describing aspbetsare not yet covered by the visible diagram.
These are placed in curly bracketg (*}").

Figure 2 shows an example of a pattern language grammariewetiagram.

[option]
quality goal 4 +
( PatternA )
[variants] Pattern B

quality goal 1 + quality goal 3 ++ )
quality goal 3 - quality goal 4 ++ [required]
{this is a comment}
Pattern C

Figure 2. Example of a pattern sequence diagram

4.4 Deriving a formal pattern language grammar

In a second step, we transform the pattern language gramveariew diagrams into a formal grammar
for the pattern language. A grammarof a languagé. is defined as the tupley = (V, T, P, S), where:

e V is a set of syntactic variables (non-terminals).

e T is a set of terminal symbols, which represent a sub-set ofijhieabetA of the languagd.. The

terminal symbols in a pattern language grammar are pat(antspattern variants).

e Pisasetof production rule§ — Y, meaning thaX can be transformed infg. Both X andY can
contain syntactic variables and terminal symbols. The pectdn rules are applied until all syntactic
variables are transformed into terminal symbols. The teduhis transformation is a pattern sequence

that conforms to the grammar of the pattern language.
e Sisastart symbolS € V, which starts the application of the production rules.

The languagé. is the set of all words that can be derived fro = (V, T, P, S). In a pattern language the

wordsw are the sequences that can be derived from the pattern lgagua
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As an example, let us derive the gramn@EXAMPLE = (VEXAMPLE, TEXAMPLE, PEXAMPLE,
S EXAMPLE)for the example diagram in Figure 2:

V_EXAMPLE ={ patternAselection, patternA, patternAs, patterofstions}
T_EXAMPLE ={"",“ PATTERN A", “ PATTERN A: Pattern A Variant 1",

“ PATTERN A: Pattern A Variant 2", “PATTERN B’, “ PATTERN C’ }
P_EXAMPLE ={ patternAselection— patternAs patternfoptions,

patternA— “ PATTERN A”,

patternA— “ PATTERN A: Pattern A Variant 1,

patternA— “ PATTERN A: Pattern A Variant 2”,

patternAs— patternA,

patternAs— patternA patternAs,

patternAoptions— “”,

patternAoptions— “ PATTERN B’ “ PATTERN C’ }

S EXAMPLE ={ patternAselection}
4.5 Deriving sequences from the pattern language grammar

Using the grammar we can derive sequences that conform fzatbern language. Please note that deriving
sequences from pattern language grammars should not bentameally. Instead we propose to generate a
language parser from the pattern language overview diagiing a parser generator. A tool can then use
the generated parser to validate that the sentences @terp sequences) conform to the language. For
explanatory purposes, we nevertheless will derive two gtarsequences from the example grammar above.
For instance, we can derive a sequence that only seleatsERN A” using the following production rule

transformations:

1. patternAselection

2. patternAs patternfptions
3. patternA "
4

“PATTERN A
Resulting sequence = PATTERN A” >

Please note that in the resulting sequence we have elirditiaeempty element. Another example is to

select the option and both of the two variants BATTERN A”:

1. patternAselection

2. patternAs patternfptions
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3 patternA patternAs PATTERN B’ “ PATTERN C’
4, “PATTERN A: Pattern A Variant 1” patternA ‘PATTERN B’ “ PATTERN C’
5 “PATTERN A: Pattern A Variant 1”7 “PATTERN A: Pattern A Variant 2" “PATTERN B’ “ PATTERN C’

Resulting sequence = PATTERN A: Pattern A Variant 1”, “PATTERN A: Pattern A Variant 2”, “PATTERN B’, ' PATTERN C' >

Often we are faced with multiple pattern languages that fiake among each other. That is, a pattern in
a pattern language is also part of another pattern languaggarenced as a related pattern. In such cases
the pattern appears in two pattern language grammars asieétisymbol. Thus it can be used to compose
sequences from the two pattern languages.

For instance, consider the sequende= <A, B, C> is derived from pattern languadd and the sequence
S2=<X,Y, A, Z> is derived from pattern languade. In the two sequences the same patt¢iis selected.
ThusA can be used as a link frol to L2, and vice versa. For instance, after selectii2gwe can continue
with a design decision fob'1. When we apply the patterns férl, we (most likely) do not need to appl
anymore, because it was already applied during the apigicat S2.

5 Patterns-based design space analysis

The pattern language grammar is a formalism that helps ugstematically understand the topology and
the language element relationships in the pattern langugigemportant, however, to be aware of the pattern
language grammar’s scope of application. Of course, tlsemgoire to a pattern language than grammar [26].
For a pattern language, especially the question of why wesha particular sequence among the possible
alternatives is important.

The annotated pattern language grammar gives an overvigWweopattern language topology and the
effects on quality goals. In some cases, this is enough teedonan informed design decision. A simple
example is d r equi r ed] -relationship: if patterrA requires patter3, the design decision is already clear.
Where a more detailed design decision is needed, the sudrsiigintroduced QOC design space analysis
should be applied. This is especially needed for patteriants and alternatives because here usually many
factors need to be considered at once.

The goal of the QOC design space analysis approach is taafivadly analyze and decompose software
patterns to create an organized “space of design pattetret’us first give a brief motivation for design

spaces in general. Then we explain the details of the approac
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5.1 Design spaces

Design space analysis is a common technique applied tordpedplems in human-computer-interaction
(HCI) and other design disciplines [36, 35]. THesign spacés an explicit representation of alternative
design options and reasons for choosing among those optiorontrast to the traditional conception of
design, which assumes that the output of the design is ornggeifecation or artifact, the output of the design
is conceived as a design space. The design space presesviisntking and reasoning that went into its
creation, the design rationale.

The main purposes of documenting the design rationale snthy are (see [16]):
¢ to serve as a means for communication among design team membe
¢ to transfer design knowledge and expertise between psoyath similar rationales
e to encourage the explicit and systematic consideratioft@fratives

Note that these goals are pretty similar to those of softyateerns. It is thus desirable to combine the
two approaches to their mutual advantage; this is the gadleodpproach proposed in this article.

Design space analysis is one approach proposed for cagtherdesign rationale. Lee and Lai categorize
it as a structure-oriented approach [34], because the appris concerned with the structure of the space
of all design alternatives, which may be constructed cansid the design process after the event. Other
approaches for documenting the design rationale are usprgaess-oriented design rationale or a psycho-
logical design rationale. The structure-oriented appnolowever, is more suitable for the goals pursued in
this article because we want to analyze the design decigicmgattern language, which is also a primarily
structural description of a design process: it capturegebarring temporal structure of pattern sequences
[43].

There is one important difference in our use of design sp&xés traditional perception in HCI. The
traditional view in HCI applies the design space to a comcdetsign, whereas our approach is to build a
more abstract design space around the patterns, whichares#ives abstractions used to describe numerous
concrete designs. The reason for this is the changing nafigeftware: design rationale capture requires a
lot of effort and the created models are hard to maintain.nWitery software change, the design rationale
documentation must be updated, which can only seldom be wiuther the daily pressure in practice. Thus,
with every evolution step, the documented design ratiogate more and more out-of-sync with the system
that is documented. To avoid this problem, we concentrat@aiterns as elements of the design space
because they are more stable in time than the elements afjle sioftware design.
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5.2 QOC design space analysis

MacLean, Young, Bellotti and Moran [36] propose a semi-farmotation, called QOC, foquestions
options andcriteria, to represent the design space around an artifact beingipeod

e thequestionsighlight the key issues to be considered in a design stnati
¢ theoptionsare the possible answers to the questions
¢ thecriteria are the reasons that argue for or against the possible gpicanquestion

QOC-analysis is used for traditional design space creativainly in the HCI field. For the systematic
derivation of a detailed design decision, we also use a gumesstoptions, and criteria notation to visualize
alternatives for design decisions and related design dereions. In addition to the original approach in
HCI, we need to document the mapping of the questions andraptid pattern alternatives and relationships.
The criteria need to be mapped to the functional solutioniserpatterns, as well as the quality attributes that
can be found in the consequences and forces of the pattartise temainder of this section, we explain the
necessary mapping processes and the visual notations used.

The goal of a QOC-analysis is to provide a detailed decisiap for one design decision. As depicted in
Figure 3 the first step of a QOC-analysis is to identify thoattguns that are relevant for a design decision.
The previously performed formalization of the pattern laage grammar delivers those patterns: especially
the alternatives and variants are interesting to be exglargher, and the patterns related to these design
decisions, because they likely lead to complex design tprest We explain the process of mapping the
relationship type “alternatives” first.

For each of the sets of alternatives identified, we must eraatesign space question (Q). The result are
a number of top-level questions. The options belonging &@stjans are the solutions that might solve the
design problem raised by the question. That is, the resgepttterns, pattern variants, and other alternative
solutions are used as options (O) for the question. As showlmei Figure 4 questions are visualized in a box
marked with “Q” and are connected to their options with amarto an option box, marked with “O”.

The next activity is to identify all criteria (C) for the opins. As explained before, the criteria are (mainly)
derived from the forces and consequences documented iattezpdescriptions. Usually alternative patterns
have some overlapping forces and consequences, and soras fthrectly lead to consequences. Thus we
catalog the forces and consequences of all options belgriginne question in one list, and eliminate all
duplicates in this list.

In the next activity we need to map the options to criteriath@ design space diagram we draw a solid
line from the option to the criterion, if and only if the optidulfills the criterion. That is, we can draw such

a line, if the pattern has a positive influence on its forcether criterion is a positive consequence of the
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Identify the patterns relevant
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the sequence analysis)

1
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and alternative solutions as design
space options (O) for this question
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~
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( Map options (O) to criteria (C) )
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and use the set of related patterns/
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Top-Level
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the design decisions in the design
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®

Figure 3. Activities for mapping patterns to a design space

Force/Consequence 1

Force/Consequence 2

Force/Consequence 3

O | Pattern 3

Force/Consequence 4
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O | Pattern1
C

Pattern 2
O attern c

Force/Consequence 5

O | Pattern 4 C
Follow-on
Q Question 3

O | Pattern5 C

Force/Consequence 6

O | Pattern 6 C

Force/Consequence 7

Figure 4. Template for design space visualization
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Top-Level Question 1

Pattern 1| Pattern 2
Force/Consequencell X
Force/Consequence [P X
Force/Consequence8 X X

Table 1. Mapping table template for top-level question 1

pattern. Note that it might be necessary to map one force msamuence to a number of criteria so that an
unambiguous mapping of options to criteria is always pdssib

For convenience we also derive a mapping table for a questi@andesign space containing the same
information, if the mappings between options and criter&laard to read. Table 1 shows such as mapping
table as a template for “Top-Level Question 1” from Figure 4.

Patterns have relationships to other patterns and sonmetinese patterns need to be considered for a
design decision.

For each pattern that is used as an option in the QOC desige spahould be considered whether its
related patterns need to be considered for the QOC desigre.spehis should be assessed by answering
the following question: Does one of the options (i.e. onehef patterns in which the pattern relationship is
mentioned), when the option is chosen, lead to a new, folowlesign question? If this is the case, we should
draw an arrow between the option and the follow-on desigrstijue, as depicted in Figure 4 for “pattern 4”
and “follow-on question 3”. Next, we need to go through theolelprocess again for this new question (i.e.
identify patterns as options and map criteria to these opjio

All pattern relationships that are not directly relatedtie tiesign space should be excluded from consider-
ation in the design space. Thus, the resulting design sgaceaomplete, hierarchical decomposition of one
design problem using patterns and their variants as op{gwistions). Other top-level questions or design
spaces can be used to analyze other design problems covetteel liattern language.

When there are no more pattern relationships left to be densd, the QOC-analysis is finished. Note that
there are no feedback loops depicted in Figure 3 for the shkenplicity. Of course, feedback loops need
to be considered between all activities. If, for instante, identification of a pattern relationship reveals
another alternative in the core patterns, this alternath@uld be added to the core patterns and the whole
process should be applied (again) considering this newnalige.

So far we have discussed how to handle design decisions ftmahalternatives because the QOC-
analysis approach can basically only distinguish betwdtemnative options (O) for a question (Q). Thus,
the approach directly covers alternatives in the pattenguage grammar (i.g.var i ant s] -relationships
and[ al t er nat i ves] -relationships in the pattern language grammar overvi@gmims). But how should

[ opt i on] -relationships anflr equi r ed] -relationships be handled?
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[ r equi r ed] -relationships are very simple: if a pattern implies the aisgnother pattern, there is no extra
design decision necessary. Thus we do not need to perform@&&y@lysis of r equi r ed] -relationships.

[ opt i on] -relationships can be mapped to options (O) in the QOC-amaliBut how to derive the question
(Q) then? We can simply use the opposite of the option, andsiakquestion (Q): “Should the option (O) be
taken?”

Note that a QOC-analysis should only be performed if thermfttion in the annotated pattern language
grammar is not enough to make an informed design decisictiods not make much sense to add a QOC-
analysis for very simplgopt i on] -relationships or its alternatives. Especially if more giendecisions are
part of a larger design decision, it makes sense to perfornO€-@nalysis for that design decision. For
instance, some alternatives might havd apt i on] -relationship as a related pattern, and the option chosen
here influences the decision for one of the alternativesutch somplex cases, where the annotated language
grammar does not reveal the complete interdependencie®G&palysis can provide a much more detailed

view on the design decision, because it captures both atal@nd semantic information.

6 Case study: Remoting patterns

In this section, we describe how we derived a design spacthéremoting patterns, described in [49],
following the approach explained above. The remoting pasgtelescribe the inner workings of distributed
object middleware systems (such as CORBA, Java RMI, .NET d®em or Web Services), and how to
use them for creating distributed systems. The remotintepatanguage consists of 31 patterns, and has
numerous links into other pattern languages and pattetersygs A full design space analysis for the whole
pattern language would be much too long for this article. ¢¢ewe only present a design space analysis for

a part of the remoting pattern language: the asynchronaoesation patterns.
6.1 Overview of the asynchronous invocation patterns

In contrast to synchronous or blocking invocations, asymebus invocations allow a client to resume its
work while a remote invocation is running. The most commonards of client-side asynchrony are de-
scribed by the asynchronous invocation patterns. Devedaga use four asynchronous invocation patterns,

rather than ordinary synchronous invocations, if invamatsynchrony is required:

e The FIRE AND FORGET pattern describes best effort delivery semantics for dsyomous operations

but does not convey results or acknowledgments.

e ThesyNC WITH SERVERpattern describes invocation semantics for sending anaadiealgment back

to the client once the operation arrives on the server sigiethie pattern does not convey results.
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e The POLL OBJECT pattern describes invocation semantics that allow cliemtsoll (query) for the

results of asynchronous invocations, for instance, inageintervals.

e TheRESULT CALLBACK pattern also describes invocation semantics that allowltbet to receive re-
sults; in contrast teoLL OBJECT, however, it actively notifies the requesting client of adymonously

arriving results rather than waiting for the client to parthem.

All four patterns can be used when synchronous invocatiomgaufficient because an invocation should
not block. Developers can UseRE AND FORGETOr SYNC WITH SERVERWhen no result should be sent
back to the client.POLL OBJECTIs appropriate when a result is required and the client hasqaential

programming model, where&&ESULT CALLBACKS require a client with an event-based programming model.

6.2 Annotated pattern language grammar

—— Synchronous Invocation of Void Operation
performance--

reliability+

{supports acknowledgment}

> ( Fire and Forget

[alternatives] performance++

reliabilli(ty-- led
t
{no result handling required} {no acknowledgment}
> ( Sync with Server )
. [alternatives] Peellrefl%rlmsﬂ ce oft
m\(/:(l)_CaUOSnZ| R {supports acknowledgment}
on Client-Side

> Synchronous Invocation with Result
erformance--
supports synchronous

. execution model}

[alternatives]

> Poll Object
reliability o/+ _ erformance++.  [option]
{result handling required} supports synchronous efficiency +
execution model} modifiability +
> Result Callback
erformance++ [option]
supports event system} efficiency +
reliability ++ modifiability +
{RPC style of communication not required}
»> Messaging
_ [option]
efficiency +
modifiability +

'v

(Asynchonous Completion Token )

Figure 5. Annotated pattern language grammar overview for a synchronous invocations

Obviously all four asynchronous invocation patterns ardéually exclusive. Figure 5 shows an overview
of the pattern language grammar. Deciding for one of theepadtas a basis for a client communication model
might have a significant impact on the architecture of thentli For instanCeRESULT CALLBACK requires

an event-based programming model, whemasL OBJECTwWOrKS in a client with a sequential control flow
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as well. Changing a complex client from a sequential corftonl logic to an event-based programming
model is a complex task. Thus a systematic upfront decisioarf invocation architecture is necessary.

Ordinary synchronous invocations are an alternative tolight asynchrony patterns. When examining the
pattern descriptions a sixth alternative becomes obviausessaging infrastructure, for instance following
the messaging patterns explained in [29], can be used as Weatiessaging systems, also called message-
oriented middleware (MOM), messages are not passed frantdb server application directly, but through
intermediate message queues that store and forward thegesssMessaging is inherently asynchronous.
Many messaging protocols provide a reliable means of mess$aliyery, such as an acknowledgment scheme,
and tolerance of temporal failures among peers. Conselguaessaging systems can provide a high level
of reliability to their users.

These six alternatives are shown in Figure 5 with their reSpe quality goals. For the three asynchronous
variants that provide a resulb@LL OBJECT, RESULT CALLBACK, and messaging), we need a way (i.e. an
[ opti on] in Figure 5) to align the result to the invocation: when inatians are performed asynchronously,
it is possible that one client sends multiple invocationieradnother, and results for these invocations arrive
in a different order than the invocations. Thus the ordep®JeCT IDis not sufficient to align invocation and
result. This is solved by thesSYNCHRONOUS COMPLETION TOKENpattern [46] (the respective messaging
pattern is calleccORRELATION IDENTIFIER[29]), which contains information that identifies the inidival
invocation and is sent along with each asynchronous iniamtaf a client.

The asynchronous invocation patterns have relationshipsrne of the basic invocation patterns from the

remoting pattern language; in particular (see also Figyre 6

e The patterrREQUESTORIS used on client-side to construct and forward invocatiénREQUESTORIS

inherently required for implementing the asynchronousa@ation patterns.

e A CLIENT PROXY is a placeholder for the remote object in the client procByspresenting clients an
interface that is the same as the remote object’s, the peigyhie client interact with the remote object
as if it were a local object. Internally, the client proxyrnisfiorms the invocations it receives irnke-
QUESTORInvocations, which theEQUESTORthen constructs and forwards to the target remote object.
The CLIENT PROXY is optional for the asynchronous invocation patterns: # aalight performance
impact, but lets the asynchronous invocations be handlegtbgrated code, which might be beneficial
for maintainability and understandability.

6.3 Formal pattern language grammar

The formal pattern language gramn@rASYNC = (VASYNC, TASYNC, PASYNC, SASYNC)for the

asynchronous invocation patterns can be derived from thgrains in Section 6.2 as follows:
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[option]
maintainability +

4( Fire and Forget >7
pe(rjforman((j:eb-_l_
] understandability + ] i
Client Proxy < < Sync with Server > [required]

Poll Object
—( Result Callback >7

Figure 6. Asynchronous invocations and basic invocation pa tterns

V_ASYNC ={ invocationalternative, invocatioralternatives, resulalternative, resulialternatives, naresultalternative,
no_resultalternatives, pollobjectselection, resultallback selection, messagingglection,
fire_and forgetselection, synavith_serverselection, synwoid_selection, syneesultselection,

cp.invocationoption, actoptions}

T_ASYNC ={ “", “Synchronous Invocation of Void Operation”, ¥IRE AND FORGET, “ SYNC WITH SERVER,
“Synchronous Invocation with Result” PoLL OBJECT, “ RESULT CALLBACK”, “Messaging”,
“REQUESTOR, “ CLIENT PROXY" }

P_ASYNC ={ invocationalternative— no_resultalternatives,
invocationalternative— result alternatives,
invocationalternative— messagingselection,
invocationalternatives— invocationalternative,

invocationalternatives— invocationalternative invocatioralternatives,

no_resultalternative— syncvoid selection,
no_resultalternative— fire_andforget.selection,
no_resultalternative— syncwith_serverselection,
no_result alternatives— no_resultalternative,

no_resultalternatives— no_resultalternative naresultalternatives,

resultalternative— syncresultselection,
resultalternative— poll_objectselection,
resultalternative— result.callbackselection,
resultalternatives— resultalternative,
resultalternatives— resultalternative resulialternatives,
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poll_objectselection— “ POLL OBJECT “ REQUESTOR cp _invocationoption actoption,

result callback selection— “ RESULT CALLBACK” “ REQUESTOR cp_invocationoption actoption,
messagingelection— “Messaging”,

messagingselection— “Messaging” actoption,

fire_and forgetselection— “ FIRE AND FORGET “ REQUESTOR cp _invocationoption,
syncwith_serverselection— “ SYNC WITH SERVER “ REQUESTOR cp_invocationoption,

syncvoid selection— “Synchronous Invocation of Void Operation” REQUESTOR cp _invocationoption,

syncresultselection— “Synchronous Invocation with Result” REQUESTOR cp _invocationoption,

wn

cp.invocationoption— “”,

cp.invocationoption — “ CLIENT PROXY",

actoption— “,
actoption— “ ASYNCHONOUS COMPLETION TOKER }

S ASYNC ={ invocationalternatives}
6.4 Core QOC design space for distributed client-side invations

The core QOC design space for distributed client-side iatioos is shown in Figure 7 and Table 2. The
core question for deciding for a design of a client-side gatoon is: “Which invocation solution should
be chosen on client side?” We can see from the grammar ovediggram that there are six alternatives
to be considered: the four patterns for asynchronous iri@t® the synchronous invocation alternative
(we use this alternative for synchronous void invocatiam$ synchronous invocations with a result), and the
messaging patterns. If we analyze the four pattern degmmpand the two other alternatives to be considered,
we can identify a system of nine forces and consequenceseTdre shown as criteria on the right hand side
of Figure 7.

Let us explain these nine criteria in more detail:

¢ Invocation must not blockA central requirement that differentiates any asynchrenoom any syn-
chronous solution is that in asynchronous solutions tlentkan directly resume with its work, without

having to wait for the reply of the server, whereas the symgbus invocation variants blocks.

e Result required:For nonvoi d remote operations it is necessary to receive a result. Twbheoasyn-
chronous invocations patterrSRE AND FORGETandSYNC WITH SERVER are not able to send back

a result to the client, all other solutions are able to seruk bbasults.

e Acknowledgment requireddometimes clients need to know that an invocation has reathéarget.

FIRE AND FORGETdoes not even send back any acknowledgment of the receipeahessage, all
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c Invocation must
not block

O | Synchronous Invocation C | Result required
: Acknowledgment
O | Fire and Forget C required 9
O | Syncwith Server C ﬁgxﬂggﬂﬁl‘gogram
Which invocation solution
Q should be chosen on client side?
. Event-based program

O | Poll Object C | flow required

Immediate reaction

O | Result Callback C | on resuits required

Predictable message

O Messaging Patterns C flow required

Reliability of message
C transfer required

c Client must get the
result (pull model)

Figure 7. Design space for the asynchronous invocation patt erns: core design decision

other solutions are able to send back acknowledgments. tNate reply (e.g. a result message) is an

implicit acknowledgment.

Sequential program flow requiredSometimes clients need to be written with a sequential piragr

flow logic. Then using purely event-based models, suckesJLT CALLBACKS, is not advisable.

Event-based program flow requiredf clients are written using an event-based programminggesty
sequential models, such as synchronous invocations anedmonn OBJECTVvariants, might be prob-

lematic.

Immediate reaction on results requireBome results must be processed as soon as they are available.
Synchronous invocations arRESULT CALLBACKS actively inform the client about the result, and
are thus advisable in such situations. In contrasit,L OBJECTSrequire the client to get the result,

possibly later in time. Messaging solutions usually candrgigured to support immediate reactions.

Predictable message flow requirednder high volume conditions, messaging might incur protse
such as a bursty and unpredictable message flow. Messagls parduced far faster than they can be
consumed, causing congestion. Messaging solutions untepdome latency due to the processing of
the message queues. Such issues require the messages ratthedtby flow control. This might be
undesirable for application areas that require a predietatessage flow.

Reliability required: If reliability of message transfer beyond simple acknow@ents is required,
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Which invocation solution should be chosen on client side?

Synchronous§ FIRE AND | SYNC WITH | POLL RESULT | Messaging
invocation FORGET SERVER | OBJECT| CALLBACK patterns

Invocation must X X X X X
not block

Result X X X X
required

Acknowledgment] X X X X X
required

Sequential program X X X X X
flow required

Event-based prograr X X X X X
flow required

Immediate reaction X X X
on results requireg

Predictable message X X X X X

flow required

Reliability X
required

Client must get X X X
the result (pull model)

Table 2. Mapping table for core options and criteria

messaging protocols provide an out-of-the-box solutiohemgas all other solutions require hand-

crafting of the reliability functions.

¢ Client must get the result (pull modelj many cases, it is not important, whether the client isrimfed
about the result (push model) or is itself responsible fdtigg the result (pull model). Sometimes,

however, clients need to get the result (e.g. at a specifig)tim

6.5 Adding related patterns and pattern variants to the QOC design space

After we derived the core QOC design space for distributeshtiside invocations in the previous section,
let us now refine the QOC design space by considering relattdrps.

As we want to create a design space that covers the desigsiatefor client-side asynchrony, we can
abstract from all pattern relationships that are not diyetlated to this design issue. For instance, all
invocation asynchrony patterns have a dependency t@theNT PROXY pattern, but whether aLIENT
PROXY is used or whether the client invokes the invocation asysrghpattern implementation directly (using
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the REQUESTORpattern), plays no role in the selection of an asynchroniepat Thus we abstract from the
relation to these two patternsiL.IENT PROXY andREQUESTOR in the QOC design space.

However, other questions — those that arise from the corgmegcision — are of central importance to be
considered in order to come to a sound design. These follodegisions are depicted as extensions to the

core design space in Figure 8. In particular there are tHeviiihg important design decisions:

e If aresultis sent back as a reply to an asynchronous invatatiis — in contrast to synchronous invo-
cations — possible that the client waits for more than onelte$hus we must identify the client-side
object to which the result should be dispatched. An efficaad flexible solution for this problem is
the ASYNCHRONOUS COMPLETION TOKENACT) [46] pattern, which is an option in the pattern lan-
guage grammar overview diagram. Alternatively, if the commication protocol allows for identifying
the receiver based on the connection, we can instantiateece&er objectfOLL OBJECTOr RESULT
CALLBACK) per asynchronous invocation. This incurs some memoryhmaet. Finally, if the client
is also a server, we can make the receiver on client side ateeaigect and send the result as a new

invocation.

e SYNC WITH SERVERrequires an acknowledgment sent from server to client. d3dlgj we explained
all options for sending an asynchronous result back befaséth-their respective consequences. In
addition we can use a synchronous invocation to send theoadkdgment. That means, the client
sends the invocation to the server and blocks. The servesgée acknowledgment immediately and
then processes the messages later asynchronously, bstrseresult for the message back.

e Somehow we need to realize the asynchrony of an asynchromausation on client side; that is, we
need to map the synchronous client program to asynchromyosations and asynchronous replies.
If the operating system and the middleware environment ad@synchronous 1/0O, we can use this
facility, which has little overhead. If only synchronousnomunication is possible, we can spawn a
thread (or process) for each invocation. This incurs a th(peocess) creation overhead and scalability
might be influenced negatively, when a large number of intiona is running in parallel and thus
many threads (processes) need to be managed. The patiemNG [32] can be used to limit the

number of threads and minimize the thread creation overhead

¢ If we decide for a messaging solution, we need to decide faateem for asynchronous result han-
dling. Here, one of the two patterR®LL OBJECTOr RESULT CALLBACK can be used. (Note that the
respective messaging patterns are catledLING CONSUMERaNdEVENT-DRIVEN CONSUMER][29]).
Alternatively, we can block on the message queue. Thisisollias the same consequences as using a
synchronous invocation. The criteria for the three optiaresnot depicted in Figure 8 because we have

shown them already in Figure 7.
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Figure 8. Design space for the asynchronous invocation patt erns: links to pattern variants and other

patterns

7 Validation and experiences in using the approach

To validate our approach, we have used and refined the agpprasented in this article excessively in
projects and case studies over the last couple of years. WWenatize these practical experiences in this
section. Please refer to the referenced papers for a dietiiseussion of the projects and case studies.

In some early projects (both industrial and research syst&ra used the approach intuitively for develop-
ing an understanding of the relevant patterns and domamdscacommunicate the results of a pattern-based
design to project members. The experiments in these psojedped us to refine the approach. Those ex-
periences also revealed that it is useful to integrate tlaesesgrained, structural pattern language grammar
approach with the more fine-grained QOC-based design spabgsss, because the QOC-based design space
analysis reveals semantics of a design decision that crensgen in the pattern language grammar.

In addition, the combination of the two approaches is algguigor communication of design decisions:
for communicating design selections and design ratiomedéetkeholders not involved in the design decision —
especially non-technical stakeholders like managersomess, or end-users — it is useful to present the more
holistic overviews of the pattern language grammar ovendegrams, whereas for technical stakeholders

the much more detailed QOC-analysis is useful for leveggitechnical discussion.
7.1 Industrial Case Study 1: Reengineering a document archié system

In a reengineering project for a large-scale, industriadudoent archive system (see [24]) we were con-
fronted with a monolithic architecture to be migrated to adthern” component-oriented design. We applied

a pattern-based approach, following the patterns for flexdomponent-oriented architectures described in
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[55] and related patterns [21, 12, 46].

We informally documented the relationships among theseepest using applicable pattern sequences. In
addition to early versions of our pattern language grammaneew diagrams, we used tables similar to the
ones derived by our QOC-approach for systematic desigrsibes. These illustrations and tables were also
used in technical discussions with the technical staff efdbmpany (who had not read the pattern texts in
detail), and for company-internal presentations of thelltes Our initial re-design recommendations were
based on a thorough code review, which was enough for gedtiirgt impression of the system, but not for
discussing design decisions and presenting the resultesétdiscussions.

In this project, the pattern language grammar overviewsigtlespace illustrations, and tables were used
for enriching the technical design decisions with the donkamiowledge of the stakeholders in the company.
Also the approach was used to present the technical kno@lgdthe patterns to the companies’ staff. In
other words, we used our approach to bridge the gap betweeeachnical expertise for the pattern domain
and the stakeholders’ domain knowledge about documenivarslgstems. Please note that it was not an
option in this project to a priori require the company stafféad through the complete pattern material; the
visual pattern representations of our approach were aedefitough, and have leveraged an interest in the
patterns.

The case study has shown for one non-trivial case that it $sipte to use the approach to support an
iterative design process. It has also shown that the apprcac be used to communicate complex pattern

material and design rationale both to technical and nohrieal project members.
7.2 Industrial Case Study 2: Reengineering a document archié system

In another industry project we were involved in the desigrefproduct line for multimedia home platform
(MHP) [19] terminals —i.e. digital television receiverkdisettop-boxes (see also [22, 23]). The difficulty in
this project was the design of flexible runtime variationrgsiin the constrained environment of the settop-
box and the television broadcast. To design the productdnelitecture’s variation points, we used the
patterns from [55] and [53, 51], as well as related pattermn 21, 12].

In this project, the main use of our approach was to balarequhlity goals of the individual patterns —we
had a working solution on a personal computer in mind but badlapt it to the particularities of the platform.
We thus used an approach where we used a pattern languagegramalysis that was annotated with the
impacts on quality attributes, as described in Section 4s Whas very useful for combining multiple patterns
from different sources domain-specifically. The resultuigw on the pattern languages and respective case
studies are described in [22].

The case study has shown for one non-trivial case that itssipte to use the approach to organize pattern
material and reduce the complexity of the design decisions.
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7.3 Research Prototypes as Case Studies

The industrial cases explained before have been performtgticontext of existing systems or platforms
and in projects with clear design goals. In addition to tHagger industrial case studies we used the approach
proposed in this article in a number of research prototype&®sign architectures with patterns from scratch.
This work was done to validate that the approach is also u$efiorganizing pattern material in a less
clear and more innovative design situation. That is, we ukedapproach to apply a systematic kind of
pattern-based prototyping.

The goal was always to realize a specific functionality wipedfic quality attributes by experimenting
with the patterns and applying them incrementally (and nangnot-working solutions again). Using an
unsystematic approach, such a proceeding can fail draafigtibecause the wrong patterns are used for a
task, leading to an incremental downgrade of the architedhstead of a refinement, or very long develop-
ment times.

Instead our goal was to come more quickly to a working, intigeaarchitecture by reusing the design
knowledge in the patterns. We applied this approach in theWing research projects:

e We used our pattern language grammars and design spacegtinng from [55] and [53, 51], as well
as related patterns [21, 12], in the implementation of thegy@mming language Frag and &sLIT
oBJECTframework [57, 56, 59].

e We used the pattern language grammar and design spaces fentbting patterns presented before in
two projects:

— SAIWS is an asynchronous invocation framework for Web s&wi(see [54, 61, 60]).

— Leela (see [58, 52]) is a Web services framework that prevaléoosely coupled infrastructure

for remote object federations.

In all those projects we developed an innovative researeh with specific goals in mind first and then
used our approach to come to an implementation that fulfikse goals but does not re-invent the wheel.
Because the initial ideas were quite “open”, it was very hélfhat our approach provides a way to reduce
the number of options in each design step, without removialglg options from the overall space of possible
solutions.

The project experiences show at least that innovative dedigjlowing the approach are possible. The

design and development times fell below the initial expigats, which is also encouraging.
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7.4 Research Project: Technology comparison of AOP framewks

In [53] we illustrate how the pattern language from [51] ipkgd in popular aspect languages and aspect
composition frameworks using more simple pattern overvigagrams [3, 4] and feature-oriented domain
analysis (FODA) [31]. This work can be seen as a direct prestear of the work presented in this article. The
option types in the FODA diagrams can roughly be mapped teldraents of our pattern language grammar
overview diagrams.

The goal in this project was a bit different to the problem aftprn selection though: we used the pattern
language overview diagrams for a comparison of differepeascomposition frameworks. That is, the goal
of this project was a technology comparison.

Even though this is not the main goal of our approach, wegtitisider this project an important experi-
ence, as it shows that the approach can be used for othertteskpattern selection: in this project it has

helped us to perform a technology comparison and to bringabgts across to a broader research audience.
7.5 Validation of support for understanding by non-experts

The approach presented in this article is a supplementhhigge to the pattern languages concept. A
main goal is to support situations in which the pattern lagguitself is highly complex, the pattern material
is not organized well, or patterns from multiple sources tiwesorganized. We claim that our approach works
better than simply scanning the pattern texts.

The case studies and projects explained before show thapgireach can be applied successfully, but they
do not validate that the approach helps non-experts in titerpadomain to understand the patterns better
than they would without the approach. This can hardly bededdid in a typical industrial or research project,
because here it is usually required that experts for thepettare in the project.

We thus validated this claim in a student group of five stusferfthe task of the group was to conduct a
study in the area of security patterns. We have chosen timaotobecause at the time of this study, the field
of security patterns was not completely covered by patteines existing patterns were incomplete and of
varying quality, there was no comprehensive pattern laggdar security patterns, and many links between
the patterns were missing. In other words, the ideal sibnatiat good and coherent pattern descriptions are
existing, was not given in this area.

All five students have visited a patterns introduction ceyreainly covering the GoF patterns [21]) and a
one semester (2 hours/week) course about network sedugityte they joined the group. The project lasted
for one semester.

6This study was conducted by a seminar group at the Viennagisity of Economics in the winter semester 2003/2004. The
participants of that group, supervised by Mark Strembeckldwe Zdun, were: Roland Berger, Jurgen Hasiner, Mareikiegi€ka,
Wilhelm Nowak, and Leila Saleh.
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We instructed the students to first identify the existindgrais in the security domain, summarize them, and
explain the relationships to other patterns. The studduoties] a body of literature containing 49 patterns.
We analyzed the resulting document produced by the studéietshalf the semester: more than 70% of the
pattern summaries were clearly wrong. Especially thereewsany mistakes in the quality goals/forces of the
patterns. Less than 50% of the pattern relationships mesdian the pattern texts were correctly identified.
The students have identified only 2 pattern relationships\ilere not documented in the patterns, and none
of them was correct. The students have not identified anyeoifrthjor gaps in the security pattern landscape.

Next, we introduced the students to the approach describéuis article: they first identified possible
sequences and gaps — in a graphical diagram similar to therpaanguage grammar overview diagrams
used in this article. Next, they mapped the patterns to tyugtials/forces described in the pattern texts us-
ing tables following those used for the results of our QO@hgsis. The result of this process was a pretty
comprehensive overview of the existing pattern materiaghansecurity domain. We also analyzed the final
resulting document, delivered at the end of the semestes: than 10% of the pattern summaries had mis-
takes, especially the interpretation of quality goal®/ésrhas significantly improved. Almost all documented
relationships of the patterns were identified by the stuglesmid the students correctly identified 8 pattern
relationships that were not documented in the pattern .teitso, the students were able to organize the
security pattern landscape in topic clusters. A subsequanparison to the security literature has revealed
gaps in the security pattern landscape.

This experiment shows that the approach described in thdeacan significantly improve a non-expert’s
understanding of incomplete pattern material from mudtgurces. In our interviews with the students, they
confirmed that the more structured and systematic approalged them to improve the results and raised
their confidence in their results.

8 Related work

8.1 Selecting patterns

To describe how to select and apply software patterns is btieeamain goals of our approach. We al-
ready discussed the related work on pattern languageshushprobably the ‘most practical’ other approach
addressing this goal (see for instance the pattern language6, 32, 49, 50, 53] and Alexander’'s work
[2, 5, 3, 4]). Throughout this article we discussed openassuhen selecting patterns using existing software
pattern languages, and explained that our approach supptserthe pattern language concept.

A number of other supplements to pattern languages havedseposed, most of them focusing on enrich-
ing the pattern language with examples, for instance, tavdtaw they can be applied in a particular domain.

In [46] general patterns of networked and concurrent objact supplemented with a more domain-specific
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pattern language on middleware design. In [32] a number sigdecase studies are given for the pattern
language presented, and in [49, 50] technology projecfinstrating the use of the pattern language in a
popular technology) are provided. Note that these appexakhe — in contrast to our approach — parts of the
pattern language descriptions and do not represent s@fteragineering approaches for aiding the applica-
tion of patterns. We also provided a number of case studregdioeral purpose patterns from [21, 12, 46] to
illustrate how they can be applied together in a particuandin: Web servers [41] and XML/RDF parsing
and interpretation [42].

Ziegler [62] proposes a design space-based approach fauintathe dimensions “navigation structure”
and “content structure” onto each other. The goal is to iflenavigational HCI patterns using a systematic
approach. We did not follow this “dimensional” approach &sign spaces, but did instead follow the QOC
approach [36], because an n-dimensional matrix of desigredsions limits the solution space to these
dimensions. When the goal is pattern selection in a pateguage this approach is dangerous: we might not
be able to use important sequence steps that lie outside detfign space dimensions. Ziegler's approach is
useful for mining undocumented software patterns thougbabse the dimensional approach clearly reveals
gaps in the pattern landscape. For all specific combinatibtiee options in the two dimensions that are not
covered by patterns yet, you can seek for this combinatiaxisting systems, and if found multiple times,
it is a candidate for a pattern.

Braga and Masiero [10] propose a systematic approach tdifgdmot spots [44] in a pattern language.
They use different types of hot spots that can be identifiechfthe information present in the elements
of each pattern of the pattern language. The approach thesaisimilar approach to our approach for
understanding a pattern language: elements are identiiedthe pattern texts and mapped to a systematic
framework of hot spot types. The goal of the approach is difiethough: it aims at reducing the complexity
of object-oriented framework development, and thus intaes hot spot types that can be found in object-

oriented frameworks rather than general pattern langualgéanships (as used in our approach).
8.2 Formalization approaches and language support for paéirns and styles

Porter, Coplien, and Winn [43] explain the application oeRdnder's concept for composing pattern
languages using pattern sequences (see [3, 4]) to the seftl@aain using two example pattern languages
from the software domain. A formalism for representing asagpe as a single, totally ordered set of patterns
is proposed. A pattern language is consequently seen asialgarder set (poset).

Henney extends the approach of Porter, Coplien, and Winmgusigrammar-oriented approach for de-
riving sequences [26]. Our approach extends Henney’s apprwith graphical pattern language grammar
overviews which can be used to provide tool support for gramgeneration, annotations for quality goals,
and a subsequent QOC design space analysis.
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Coplien and Zhao [15] propose a formalism for software pageising group theory and symmetry con-
cepts. They argue that many programming languages prowigstiticts to support symmetry, i.e. invariant
changes, and that software patterns describe situatiosgnofmetry breaking, i.e. situations in which the
design of the programming language is not adequate for gyagsbdblem and thus a pattern must be ap-
plied. The proposed pattern formalism is useful to explaifivgare patterns as a design discipline and to
relate them to Alexander’s work. It does not specifically atpattern selection or the design process with
patterns, though, which is the aim of our approach.

A number of approaches have been proposed for the formalfigadion of software patterns (see for
instance [18, 39, 48, 37]). These approaches, however, tavgained much momentum in recent years
mainly because of their complexity and the resulting limiias regarding their practical use. In contrast
to the formalisms described before, these approaches amxplicitly derived from Alexander’'s work on
pattern languages, and they have not been used for archiéiepatterns or whole pattern languages, but just
for some isolated patterns from the GoF book [21]. Similaues arise for approaches proposed for language
support for design patterns [40, 9] or implementations dfgras as aspects [25, 28]. These approaches make
patterns first-class entities of the language or aspectdinark, which means that the formal dependencies
can be used as a guide for selecting a pattern-based soldtios works only at the level of singular pat-
terns and their participants. The approaches provide dtlly uidance in how to design complex software
architectures.

Architectural styles consist of system composition pageand constraints on architectural elements,
which are targeted at families of systems with shared cleniatics [1, 38]. Some studies of styles focus
on the component connectors as the key elements of arahiéstyles (see e.g. [47]). Thus styles provide
some dedicated guidance on how to assemble an architeobanebliilding blocks. Some approaches exist
that further help in the composition of architectural sgyl€or instance, the Alfa framework [38] allows for
systematically composing architectural styles from a nenad architectural primitives.

Similar to pattern formalization attempts, there have bieemalization attempts for architectural styles
(see e.g. [1]). These have similar limitations as the apgres proposed for patterns: they do not consider

the composition of larger architectures from primitivelding blocks [38].
8.3 Other design space approaches in software engineering

A number of approaches utilize the design space approadftinaze engineering. Let us briefly explain
how these approaches relate to our approach.

De Bruin, van Vliet, and Baida [11] propose an approach foppiag the required features of the system,
modeled in a so-called feature space, to the elements obtealked solution space that have an effect on
the realization of the respective features. The approath@bvides a kind of design space, represented as a

33



feature-solution graph. The approach’s main objective igtise and select solution elements by document-
ing feasible architectures. The approach also serves assfbatracing design decisions. In contrast to our
approach, this approach does not explicitly explain how &pithe solution space’s elements to larger soft-
ware architectures and the relationships among archiatlements. This important aspect is an inherent
part of the pattern descriptions used in our approach.

Baum, Becker, Geyer, and Molter [8] use a design space-bgggach to map requirements to com-
ponents. The approach aims at the reuse of components itas@application scenarios. However, no
“foundation” for finding the relevant requirements (likeetpatterns in our approach or the feature space in
[11]) is used, and no iterative analysis process is propesedo identify conflicts. Instead requirements are
captured using the properties of existing components. Dmlys component selection is supported, but no
further architectural decision or documentation.

There are a number of requirements engineering approalcae®osely resemble the design space decom-
position method, used as part of our approach. These agmsacganize the functional and non-functional
requirements of a system. For instance, in goal-orientgdirements engineering [33], goals capture the
objectives a system should achieve. Goals can be relatedeindd in goal graphs. Similarly, soft goal
contribution graphs [13] decompose soft goals (e.g. quatiributes) of a system. These approaches, how-
ever, work at a different level of abstraction than our apgfo their aim is to organize concrete system
requirements systematically, whereas our approach argampatterns (i.e. recurring solutions to recurring
problems) and pattern languages. The (soft) goals usedefmrdposition of the requirements loosely re-
semble the forces of the patterns, which our approach usestasa, but again concrete goals of concrete
systems are working at a different abstraction level thanfdinces of patterns (which can be used over and
over again). A requirements/goals decomposition, howesaan be quite useful in combination with our
approach: the decomposed requirements/goals of a corsystiem can be matched to the decision guides
provided by the pattern language grammars and design spaceder to select the patterns as solutions
supporting specific goals.

9 Conclusion

We presented an approach to systematize the selectionsgro€software patterns in pattern languages.
The approach is feasible because the documentation of ttegrplanguage grammar and the design spaces
has to take place only once (for instance performed by thepetanguage author or during the first design
with a pattern language), and then the pattern languagengearand the design spaces can be applied for
multiple systems (of course they can be refined if infornrateomissing). In contrast to former approaches
(see the discussion in Section 8), our approach is capabketpatterns from many pattern sources, deal with

architectural patterns (not only GoF design patterns),modide domain-specific design decisions based on

34



quality goals and forces. The options in the selection meee first reduced to pattern sequences using a
formal pattern language grammar, and then to a detailed giew single design decision in a QOC design
space. Thus, we significantly reduce the complexity of thigepa selection process — from the selection
among the whole patterns and potential relationships inmabau of pattern catalogs or pattern languages
to an ordered, systematic sequence of documented desigiothsc Throughout the decision process, our
approach explicitly considers the quality goals (forcdghe patterns and their variants.

Itis important to note that our approach is focused on theatison level of patterns and pattern languages
(as in the examples in this article). Thus it should not bedly applied to concrete system designs without
using the pattern language abstraction. That is, it shooide used for organizing concrete system require-
ments, because this would entail the danger that otherlges$esign solutions than those documented as
patterns are not considered, or that patterns as solutrerepplied “blindly” leading to pattern overkill and
abuse. It would be interesting to investigate in how far qapraach can be extended with requirements en-
gineering approaches, such as goal-oriented requireneegiseering [33], to systematically map concrete
requirements to pattern forces.

As discussed in Section 7, our approach can also be usedhfer gbals than only pattern selection. We
mentioned projects where our approach helped in the conwation with (non-technical) stakeholder, for
understanding pattern material, and for technology compafevaluation. We envision further application
areas for the approach: for instance, the pattern languagergars and design spaces can potentially be used
as an input for model-driven tools. As a future work, we wanéxamine these and other further application
areas for the approach in more depth. We also plan to invasttbe use of the approach for pattern language

composition.
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