SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2008; 38:1333-1364
Published online 26 February 2008 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.870

I

Developing legacy system
migration methods and tools
for technology transfer

Andrea De Lucial>* T, Rita Francese!, Giuseppe Scanniello?
and Genoveffa Tortora'

1Dipam'mento di Matematica e Informatica, University of Salerno,
Via Ponte Don Melillo, 84084 Fisciano (SA), Italy

2Dz'pam'memo di Matematica e Informatica, University of Basilicata,
Viale Dell’Ateneo, Macchia Romana, 85100 Potenza, Italy

SUMMARY

This paper presents the research results of an ongoing technology transfer project carried out in coopera-
tion between the University of Salerno and a small software company. The project is aimed at developing
and transferring migration technology to the industrial partner. The partner should be enabled to migrate
monolithic multi-user COBOL legacy systems to a multi-tier Web-based architecture. The assessment of
the legacy systems of the partner company revealed that these systems had a very low level of decompos-
ability with spaghetti-like code and embedded control flow and database accesses within the user interface
descriptions. For this reason, it was decided to adopt an incremental migration strategy based on the
reengineering of the user interface using Web technology, on the transformation of interactive legacy
programs into batch programs, and the wrapping of the legacy programs. A middleware framework links
the new Web-based user interface with the Wrapped Legacy System. An Eclipse plug-in, named MELIS
(migration environment for legacy information systems), was also developed to support the migration
process. Both the migration strategy and the tool have been applied to two essential subsystems of the
most business critical legacy system of the partner company. Copyright © 2008 John Wiley & Sons, Ltd.

Received 23 March 2007; Revised 12 October 2007; Accepted 3 December 2007

KEY WORDS: legacy systems; migration to the Web; reengineering; technology transfer

*Correspondence to: Andrea De Lucia, Dipartimento di Matematica e Informatica, University of Salerno, Via Ponte Don
Melillo, 84084 Fisciano (SA), Italy.
TE-mail: adelucia@unisa.it

Contract/grant sponsor: MiUR (Ministero dell’Universita e della Ricerca); contract/grant number: PRIN-2006-2006098097
Contract/grant sponsor: TOCAI (Tecnologie Orientate alla Conoscenza per Aggregazioni di Impresa in internet); contract/grant
number: FIRB 2005

Copyright © 2008 John Wiley & Sons, Ltd.

1334 A. DE LUCIA ET AL. S &E

1. INTRODUCTION

Many legacy systems are business critical and can operate up to 24h a day. They are written in
some legacy language such as COBOL and are often dependent on other applications in their
environment. Several options are available for replacing such legacy systems. Typical solutions
include discarding the legacy system and building a replacement system, freezing the system and
using it as a component of a new larger system, and modifying the system to give it a new
lease on life. Changes may range from a simplification of the system through a reduction in size
and complexity, to preventive maintenance operations such as redocumentation, restructuring, and
reengineering, to an adaptive maintenance process entailing interface modification, wrapping, and
migration [1]. These alternatives are not mutually exclusive, and the decision as to which approach,
or combination of approaches, to take is generally based on an assessment of the quality and
business value of the system [2—5]. However, often other non-technical factors influence the decision
as to how to deal with legacy systems, factors such as the need to move to a modern Internet-
based infrastructure in order to remain competitive in the global market [6]. In this case, system
migration is the only viable alternative [6], since the risk of replacing the legacy system might be
unsustainable [7]. This is mainly due to the effort required to redevelop the system from scratch
when its documentation is lacking, the business logic is encoded in the programs, and the original
implementers are no longer available [8].

Generally, the migration of a legacy system is a complex task, which is influenced by several
concerns. One concern, pointed out by Brodie and Stonebraker [8], is that the migration of a
legacy system depends on its decomposability. A legacy system is classified as being decomposable,
semi-decomposable, or non-decomposable, depending on how its user interface, application logic,
and database software components are separated. Application logic, databases, and user interfaces
are inseparable in non-decomposable systems, whereas in semi-decomposable systems the user
interfaces are separated from the application logic and the database. On the other hand, application
logic, databases, and user interfaces are all separable in decomposable systems. Of course, the
less the system decomposability, the more difficult the migration will be [8]. The separation of
the presentation logic from the application logic and the database access logic is a labor-intensive
activity [9], which depends on the quality of the system and the number of interactive programs. The
encapsulation of the legacy system using wrapping technologies is a viable alternative to preserving
past investments and reducing risks and development costs [10—14]. Legacy information systems
or part of them can be encapsulated in a modernized set of legacy components, thus enabling the
integration with newly developed or purchased applications through the wrapper interface. This
approach also enables an incremental migration of the original system [6,8,15-17].

In this paper, we present the research results of an ongoing technology transfer project conducted
in cooperation with a small Italian software company—MTSys srl. The project goal is to develop
and transfer to the partner company methods and tools to migrate multi-user COBOL legacy systems
to a multi-tier Web-based architecture. To identify the most suitable migration strategy, we first
performed an assessment of the legacy systems of the partner company in terms of business value
and software quality. The assessment revealed that these systems had a low decomposability level
and spaghetti-like code. It also unveiled several complex problems, such as embedded control
flow with database accesses in the user interface description. As a result of the assessment, we
decided to adopt an incremental migration strategy aimed at wrapping the legacy system at the user
interface level.

Copyright © 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:1333-1364
DOI: 10.1002/spe

S &E DEVELOPING LEGACY SYSTEM MIGRATION METHODS AND TOOLS 1335

The adopted migration strategy is based on the reengineering of the user interface using Web
technology, the transformation of interactive legacy programs into batch programs, and the wrapping
of the programs. A communication middleware enables the new client to interact with the wrapped
legacy programs. The middleware is a generic component developed so that it can be used in
the migration of any legacy system, thus enabling the software engineer to focus only on the
reengineering of the user interfaces and on the wrapping of the legacy programs. We also decided to
develop an Eclipse plug-in, named migration environment for legacy information systems (MELIS),
to fully support the migration of the legacy systems of our partner company according to the phases
of the proposed strategy. The migration strategy and tool have been then applied within a pilot
migration project conducted on two essential subsystems of the business partner. The pilot project
was carried out by two teams, each composed of an academic researcher and a practitioner with
the purpose of evaluating the migration process and tool in the company environment. Indeed, the
final goal of the project is to make the partner company an owner of the MELIS plug-in and the
accompanying methods as well.

The remainder of this paper is organized as follows: related work is discussed in Section 2; the
proposed migration strategy is described in Section 3; and the migration process and supporting tool
are outlined in Section 4. The evaluation of the migration process and supporting tool is presented
in Section 5. Discussion and final remarks conclude the paper.

2. RELATED WORK

Several approaches have been presented during the past two decades for the migration of mono-
lithic and procedural legacy systems to distributed architectures such as client—server architectures
[13,18,19], distributed object architectures [11,12,15,20], and Web-based architecture and service-
oriented architecture (SOA) [9,10,21-25]. Encapsulation is one of the three main alternatives to
reuse legacy systems within distributed software architectures. The other two are reengineering
and redevelopment. Encapsulation involves the least costs and the least risks reusing existing
programs and databases with a minimum of change [7,26]. Encapsulating legacy systems usually
requires reengineering the legacy user interface using technologies of the new environment in which
the legacy system has to be accessed. User interface reengineering involves reverse engineering
to abstract a user interface conceptual model and forward engineering to re-implement the user
interface. Several approaches based on data-flow analysis [27], state transition diagrams (STDs)
[10,28], knowledge engineering [29,30], and business process information [31] have been proposed
to reengineer legacy user interfaces.

To encapsulate legacy systems at different granularity levels, wrapping techniques can be adopted.
In general, four kinds of wrappers [32] have been identified in the literature depending on what is
being wrapped: database wrappers, system services wrappers, application wrappers, and function
wrappers. Database wrappers are gateways to existing databases. They allow newly developed appli-
cations to access data stored in a legacy database. System service wrappers provide a customized
access to standard system services. User programs can also invoke such services without the knowl-
edge of their internal interfaces. Application wrappers encapsulate batch processes or online transac-
tions to allow new client applications to include the legacy components as objects. Finally, function
wrappers offer an interface to invoke individual functions within a wrapped program. Wrappers
are also used in the reference architecture proposed by Zdun [25] for bringing a legacy application

Copyright © 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:1333-1364
DOI: 10.1002/spe

1336 A. DE LUCIA ET AL. S &E

to the Web. This architecture takes into account several other aspects, including authentication,
session management, dynamic content creation, and presentational abstractions. In this way the
author provides a conceptual understanding of which components are required for reengineering a
larger system to the Web.

The idea of wrapping existing software components for reuse in a new architecture did not come
out of the research community. Indeed, the idea of encapsulating legacy systems in wrappers comes
from industry, where it was born as a child of expediency. However, wrapping technologies are
now mature and include commercial solutions, i.e. WebSphere Studio Enterprise Developer [33]
offered by IBM. For example, this tool can be used to develop Struts-based Web applications that
access existing COBOL programs running on CICS.

As a rule, wrappers should use some kind of communication middleware to connect themselves
to the user applications. On the input side, the wrapper receives incoming requests, whereas on the
output side, it takes the results from the Wrapped Legacy System and sends them back to the user
program. This is, in essence, what wrapping is all about [26]. Different wrapping approaches have
been presented in the literature, which differ mainly in how they support the migration strategy and
in the technology they use to encapsulate the legacy software. Generally, there are two types of
approaches to wrap legacy systems: the white-box and the black-box. Weiderman [34] categorized
the white-box and the black-box wrapping techniques as follows: ‘the white-box transformation
encompasses a form of reverse engineering that emphasizes deep understanding of individual
modules and internal restructuring activities. The black-box transformation encompasses a form
of reverse engineering that emphasizes shallow understanding of module interfaces and wrapping
activities’. However, there is no universally best way to wrap legacy systems or part of them [14].
The choice of a wrapping technique depends on the program type, the availability of source code,
and its quality.

2.1. Black-box wrapping approaches

Lin et al. [12] propose a black-box wrapping technique to reuse MS-Windows software as a
CORBA object. These ready-made applications rarely have their source code available and most
of them are non-decomposable; thus, they can be regarded as black-box entities. The wrapper
implementation requires the wrapper to redirect the input/output data streams and to generate a
CORBA interface. The windows task input channel is redirected using an event message simulation
for mouse and keyboard devices, whereas the wrapped application saves the output data in the
clipboard space using the output redirection mechanism. The CORBA-IDL is adopted to create
the CORBA interface. Wrapping through black-box technique is also used in [35] for integrating
COTS MS-Windows applications in a distributed system using Java technologies. The proposed
architectural style supports a three-phase process, where the components are first encapsulated,
constructing a server-side Java object by wrapping an MS-Windows application, secondly, by
including a coordinator to integrate the wrapped applications, and thirdly by constructing a user
interface implemented in Java to manipulate the integrated applications.

A similar approach is presented in [36]. The authors propose a process consisting of three
phases (i.e. adaptation, encapsulation, and integration) to reuse the functionality of MS-Windows
applications. MS-Windows applications can be easily encapsulated so that software engineers can
integrate them using a specific standard three-tier framework, such as CORBA or Java RMI. To
this end, three design patterns I/O adapter, wrapper facade, and coordinator have been adopted.

Copyright © 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:1333-1364
DOI: 10.1002/spe

S &E DEVELOPING LEGACY SYSTEM MIGRATION METHODS AND TOOLS 1337

The stepwise usage of these patterns creates a processing sequence of reusing applications into
a new software system. Similarly, Goedicke and Zdun [37] propose a pattern-based approach to
wrap legacy components as black-box entities. Different patterns are proposed to wrap a system
at different granularity levels. An architectural pattern language is used to generate flexible black-
box architectures. To assess the migration strategy and the wrapping techniques, the authors also
propose a pilot project on a C legacy system for Windows NT.

Bovenzi et al. [10] use wrapping technology to transform character-based user interfaces to any
Web-based client device. This approach exploits a black-box technique for capturing the dynamic
and static models of the user interfaces and reproduces them on the client devices with the support
of a software wrapper. XML and XSLT technologies are used to reproduce the user interface of
the original legacy system. The wrapper is designed to satisfy service stability, data integration,
and application integration requirements. STDs are used to specify the behavior of the wrapper:
each state of the STD is associated with a different state of the user interface, whereas transitions
allow the passage between consecutive states to be defined. The authors propose a methodology
and a toolkit to design the wrapper and to support its application. In particular, the tool supports
the user in the specification of the STD nodes. An extension of the approach for migrating to SOAs
in which the reverse engineer can model the interactions is proposed in [38].

The black-box wrapping techniques have the advantage that they can be reused without intimate
knowledge of the component’s internals. Unfortunately, incremental migration strategies are not
effectively supported as the wrapped component can be neither customized nor adapted. In fact, these
strategies require activities (such as user interface reengineering, decomposition and restructuring
of legacy programs, and encapsulation of legacy systems at different granularity levels) that can
be performed only when the source code is available. In our paper, we also focus on white-box
wrapping techniques.

2.2. White-box wrapping approaches

Sneed [14] proposes the use of wrapping techniques and tools to fully automate the wrapping process
and provides guidelines on how to wrap batch programs, subprograms, and online transaction
(interactive) programs. Batch programs are adapted to read and write XML-documents in lieu
of files. For subprograms, parameters are set from an incoming XML-message. Finally, online
programs are transformed into data-driven subprograms that process an XML-document. Indeed, to
wrap an online program, it is necessary to switch off all of those operations that are communicating
with the environment. The masks with their fixed fields and attributes are replaced with an XML-
type document, whereas the logic of the program is left as it was. The difference with respect to
our approach is the communication with the environment, which is implemented using a shared
memory.

Sneed [39,40] extends the approach provided in [14] to enable the reuse of legacy components
in an SOA. However, this kind of migration is often a complex task and generally requires a
careful analysis of the feasibility and magnitude of the effort involved [23]. Indeed, several char-
acteristics of the system such as its language, age, and architecture as well as the target SOA can
affect the migration results. The service-oriented migration and reuse technique [23] utilizes this
information to identify the risks of a migration project in a systematic way, producing as output
a service migration strategy. It also provides decision elements supporting the feasibility of the
migration.

Copyright © 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:1333-1364
DOI: 10.1002/spe

1338 A. DE LUCIA ET AL. S &E

Many of the strategies proposed to migrate legacy systems to the Web use white-box wrap-
ping techniques and are conceived for decomposable or semi-decomposable software systems
[6,21,22,41]. For example, Aversano et al. [6,21] propose integrating an existing COBOL system
into a Web-enabled infrastructure. The original system is semi-decomposable, with a client
component represented by graphical user interface and a server component represented by
COBOL programs including the application logic and database. The graphical user interface
is manually migrated to Microsoft ASP Web technologies, whereas the server component is
wrapped by means of dynamic link libraries. The difference with respect to our approach is the
decomposability of the system to migrate, which in our case is not decomposable; this makes
the synchronization between the Web user interface and the wrapped legacy components more
complex.

Bodhuin et al. [22] describe an approach to migrate decomposable COBOL systems into a
Web-enabled architecture based on model view controller (MVC). The software components of
the original legacy system are identified using slicing techniques. These components are then
restructured and converted into JAVA classes by using the PERCobol tool [42]. These Java classes
correspond to a model of the target architecture, whereas the model of the migrated system is
represented by JSP pages. Similar to our approach, the Web pages are generated from XML files
extracted from the original character-based graphical user interface. Our approach is different
because of the non-decomposability of the legacy systems to migrate. Rather than decomposing
and restructuring the legacy system to wrap it at the application level, the low decomposability in
our case required wrapping the legacy system at the presentation level and designing and devel-
oping a generic middleware component enabling the communication and synchronization of the
Web user interface and the wrapped legacy code. The same authors [41] present an approach and a
tool based on PERCobol to migrate non-decomposable legacy systems to a two-tier Web-enabled
architecture. A screen proxy is introduced for handling the requests coming from or going to the
user interface. A temporary file is used to enable the communication between the screen proxy
and the reengineered graphical user interface. This approach comes very close to our approach,
although our approach is suited for migrating monolithic legacy systems to multi-tier Web archi-
tectures. Moreover, the authors do not tackle problems related to embedded side effects and control
flow in the user interface description. User interfaces in COBOL are described using SCREEN
SECTIONS, which define dialogs that ACCEPT and DISPLAY statements use. These statements
are used to display output data on the user interface and to receive input data from the user inter-
face, respectively. Furthermore, an ACCEPT statement can trigger ACUCOBOL-GT procedures
both before and after the user has filled in a value in an entry field of a SCREEN SECTION. As
discussed in the following sections, embedded control flows in the user interface definition make
the automatic migration of the legacy user interface very challenging and might require that the
software engineer evaluates different alternatives to improve the efficiency of the reengineered user
interface.

3. THE MIGRATION STRATEGY

The goal of the project is to devise a strategy and develop the supporting technology to enable
the software personnel of the industrial partner to migrate their core legacy systems from a client/
server to a Web-based environment. The partner company has been developing and maintaining

Copyright © 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:1333-1364
DOI: 10.1002/spe

S &E DEVELOPING LEGACY SYSTEM MIGRATION METHODS AND TOOLS 1339

standard business-oriented software packages for 30 years. It started with the development of
COBOL systems for minicomputers in the 1970s. In the 1980s, the company first moved its COBOL
development to UNIX workstations and then to personal computers with MS-DOS. The legacy
systems developed in the previous decade were migrated to the PC in order to broaden their
market segment of smaller users. As part of this migration, the partner transferred its software
first to Micro Focus COBOL for MS-DOS in the 1980s and then to ACUCOBOL for MS-DOS
in the 1990s. At the end of the 1990s, the ACUCOBOL development environment was upgraded
to the ACUCOBOL-GT version, which supports the development of graphical user interfaces for
Windows. The ACUCOBOL-GT compiler generates intermediate code from the COBOL SCREEN
SECTIONS, which is executed by the runtime environment.

3.1. Assessing the current systems

The first step in preparing a migration should be to assess the current systems. In this project, to
identify the most suitable migration strategy, we assessed the quality of the legacy systems with the
greatest business value that the partner company has developed and marketed in the years. These
systems were selected interviewing the management of our partner company as they had knowledge
on the needs of the customers and of the number and costs of the systems’ usage licenses. Among
the legacy systems that the management identified as business critical for the company, we selected
in particular the ones that the customers required to access on the Web.

Concerning the quality of the legacy systems, all the available resources should be considered in
terms of documentation, source code, fault history, operational profile, provided services, end users,
maintainers, and managers. Owing to the lack of documentation, we could analyze only the source
code (static analysis) and the system execution behavior (dynamic analysis) and put clarifying
questions to the maintenance personnel who had some knowledge of the systems. Unfortunately,
many of the original developers of these systems were no longer working for the company. Thus,
we had to use commercial tools to comprehend the legacy systems and to collect various metrics
on the software complexity. These tools only partially met our requirements, due to the fact that
analysis and reverse engineering tools for the ACUCOBOL dialect were lacking. For this reason,
we had to develop some ad hoc tools that were later integrated into the migration environment
described in Section 4.

The assessment of the legacy systems revealed a very low level of decomposability, due to
the fact that the presentation logic was not separated from the application logic and data access
logic [8]. This was a result of the compiler constructor’s decision to allow application logic and
database accesses to be built into the display and accept operations of the SCREEN SECTIONs
(presentation layer). This situation, combined with the fact that the code was mainly unstructured
with extensive use of GOTOs, forced us to define a migration strategy aiming at reengineering the
user interface using Web technologies and wrapping the legacy programs at the presentation level.
This strategy requires the definition and the implementation of a communication middleware to
connect the new Web user interface with the wrapped programs of the legacy system. It is worth
noting that this strategy is the less expensive and risky in the case of non-decomposable legacy
systems. Redeveloping the systems was not considered a suitable alternative due to the lack of
analysis and design documentation and the high risks involved. Furthermore, the partner company
management wished to change as least as possible in order to reach the primary goal, i.e. running
the system on the Web.

Copyright © 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:1333-1364
DOI: 10.1002/spe

1340 A. DE LUCIA ET AL. S &E

3.2. Defining the target environment

The next step in preparing a migration is to define the target environment. The target architec-
ture defined here is depicted by the deployment diagram of Figure 1. The interactive programs
of the legacy system have to be converted into batch programs (Wrapped Legacy System) and all
interactions with the user, i.e. accept and display operations, have to be redirected to the Middle-
ware component, which establishes a communication link between the migrated user interface and
the application logic of the legacy system. The user interface is divided into two components,
the Reengineered GUI and the GUI Deliverer. The Reengineered GUI includes the Java Server
Pagesi replacing the SCREEN SECTIONSs of the original system, whereas the GUI Deliverer
includes the Java Servlets and Beans used to manage the control logic of the new Web user interface
and access the functionalities of the Wrapped Legacy System through the Middleware component.
The GUI Deliverer accesses the Reengineered GUI to obtain the Web pages required to accomplish
a given function. The GUI Deliverer component is accessed by the Web Browser using the HTTPS
(HTTP over secure socket layer) protocol.

We planned the implementation of the Middleware as a dynamic link library (DLL) running on
the same node as the Wrapped Legacy System. The DLL was developed using the programming
language Delphi®. To enable the communication between the GUI Deliverer and the Middleware

Server
Client

<<https>> GUI Deliverer -—-- L1
Web Browser B =] Reengineered GUI

T]

<<SOAP>>

Seryice

Middleware

[}

[} T

1 { <<start>>
[}

[}

[}

! | Wrapped Legacy
| | System

Figure 1. The target software architecture.

¥The technologies used for the implementation of the Web-based user interface were imposed as a constraint by our partner
company.

§Delphi was required by the partner company due to the experience of the practitioners involved in the project.

Copyright © 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:1333-1364
DOI: 10.1002/spe

S &E DEVELOPING LEGACY SYSTEM MIGRATION METHODS AND TOOLS 1341

component, we wrapped the latter using JNI (Java Native Interface). In case the Web server and the
Middleware run on the same node, no further communication middleware is needed. Otherwise,
when it is required that these components run on different nodes, a communication middleware
(e.g. RMI or SOAP) has to be used. In our case, we used SOAP as the partner company wished to
access the Wrapped Legacy System over the Web.

The Middleware first starts the Wrapped Legacy System when required. Successively, it manages
the communication between the reengineered user interface and the Wrapped Legacy System using
a shared memory and semaphores. The Middleware component provides two different interfaces to
the wrapped legacy program and the new user interface, respectively. The first interface is provided
to the wrapped legacy program to set and obtain information from the Web-based user interface.
This interface includes six functions, whose names and corresponding descriptions are given in
Table I. To establish a communication link between the new Web user interface and the application
logic of the legacy system, the software engineer has to use these functions to redirect the accept
and display COBOL operations to the Middleware component.

Figure 2 shows an excerpt of a wrapped legacy program. In particular, it shows how the display-
Cobol function in Table I is employed to wrap a display operation on the SCREEN SECTION
SCREEN-2 of the subsystem GSTO000 used to evaluate the migration strategy and the tool (see
Section 5). The function displayCobol is invoked after having called the section PASSAGGIODATI-
SCREEN-2, which is in charge of writing in the shared memory the data to visualize in the Web
user interface. On the other hand, an accept operation requires to access only the shared memory
to obtain the data coming from the new Web-based user interface. This is performed in the section
LETTURADATI-SCREEN-2.

The second interface is provided to the GUI Deliverer software component to access the func-
tionalities of the Wrapped Legacy System. Details on this interface are reported in Table II. Figure 3
shows how the method GetSharedMem in Table 1I is used to obtain the name of the next SCREEN

Table I. Middleware component interface provided to the wrapped COBOL program.

Function Description

Cblwait This function suspends the execution of the legacy system until the Middleware
component does not return a value. It takes as input parameter the session id that
is passed by content.

CblClearSharedMemory This function removes any data from the shared memory. The input parameter is
the session id that is passed by content.
CblSetSharedMemory This function is used to write data in the shared memory. It takes as input the

session id and two strings. These strings represent the variable name and its
value. All the variables are passed by content.

CblGetSharedMemory This function is used to read data from the shared memory. It takes as input two
parameters. The former is the session id, whereas the latter is a reference to the
data coming from the Web user interface that the Middleware component has
previously written.

displayCobol This function is used to simulate the DISPLAY statement. It takes as input
parameters the session id, the name of the legacy program, the screen name, and
the display type. All the parameters are passed by value.

CblExit This function is invoked to stop the communication between the wrapped legacy
code and the reengineered Web-based user interface. The input parameter is the
session id, which is passed by content.

Copyright © 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:1333-1364
DOI: 10.1002/spe

1342 A. DE LUCIA ET AL.

01 SCREEN-2, exception esci-2.
02 LABEL "Ragione Sociale" size 21 line 5 COL 2
COLOR E-COL-1.
02 ENTRY-FIELD USING CSTOOORAGSOC lines 0,5 COL + 2
COLOR E-COL-ACC
BEFORE INIT-RAGSOC
AFTER after-RAGSOC.

* display screen-2
perform PASSAGGIODATI-SCREEN-2.
MOVE 'screen-2' to NOME-SCREEN.
MOVE x'00' to NOME-PROG (7:1).
MOVE x'00' TO NOME-SCREEN (9:1).
MOVE 'insert' to op-dll.
MOVE x'00' to op-dll (7:1).
set environment 'DLL CONVENTION' to "1".
call 'C:\WRAPPER.d11'.
call 'displayCobol' using by content SESSION
by content NOME-PROG
by content NOME-SCREEN
by content op-dll
giving RET-DLL.
cancel 'C:\WRAPPER.d1l'.
set environment 'DLL CONVENTION' to "0".
* accept screen-2 on exception continue.
perform LETTURADATI-SCREEN-2.
perform after-RAGSOC.
perform after-natgiu.
perform ctr-sedediv.
perform ctr-sesso.
PASSAGGIODATI-SCREEN-2 SECTION.
set environment 'DLL_CONVENTION' to "1".
call 'C:\WRAPPER.d11l"'.
call 'CblClearSharedMemory' using by content SESSION
giving RET-DLL.
move x'00' to name-CSTOOORAGSOC (13:1).
move 0 to RET-DLL.
move CSTOOORAGSOC to value-CSTOOORAGSOC.
move x'00' to value-CSTOOORAGSOC (100:1).
call 'CblSetSharedMemory' using by content SESSION
by content name-CSTO00RAGSOC
by content value-CSTOOORAGSOC giving RET-DLL.

LETTURADATI-SCREEN-2 SECTION.
move 'N' TO ret-x.
move 'l' to name-CSTOOORAGSOC (13:1).
move space to nome-file.
set environment 'DLL CONVENTION' to "1".
call 'C:\WRAPPER.d1l1l"'.
call 'CblGetSharedMemory' using by content SESSION
by reference nome-file
giving RET-DLL.

Figure 2. Wrapped legacy code.

SECTION to visualize. This figure also shows how the GUI Deliverer redirects the control to the
appropriate Web-based subsystem.

The dynamic behavior of a given migrated legacy system in terms of interactions between the
user and the software components of the target architecture is depicted by the sequence diagram

Copyright © 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:1333-1364
DOI: 10.1002/spe

SRE

DEVELOPING LEGACY SYSTEM MIGRATION METHODS AND TOOLS 1343

Table II. Middleware component interface provided to the GUI Deliverer.

Function

Description

int startCobol(String session)
int Sync(String session)

int CreateSharedMem(String
session)

int SetSharedMem(String

session, String content)

String GetSharedMem(String
session)

int Exit(String session)

This method is used to start the Wrapped Legacy System. It takes as input
parameter a string containing the session id.

This method is used to make the new user interface in a wait state. The
new user interface waits until the Middleware component returns the
control. It takes as input a string containing the session id.

This method creates the shared memory enabling the communication
between the reengineered Web-based user interface and the wrapped
legacy code. It takes as input parameter a string containing the session id.
This method is used to write in the shared memory, thus enabling the
communication with the wrapped legacy code. It takes as parameters two
strings. The former string represents the session id, whereas the latter
contains the data that the legacy code will process.

This method reads data from the shared memory. It takes as input
parameter a string representing the session id. The output parameter is a
string containing the whole content of the shared memory. Data in the
string are organized in pairs. Each pair is constituted of a variable name
and its value. This string also contains the name of the SCREEN
SECTION to visualize.

This method is invoked to stop the communication between the
reengineered Web-based user interface and the legacy code. It takes as
input a string representing the session id.

SharedMemoryCont line =

}

Middleware dllCall = new Middleware();

dllCall.GetSharedMem (sessionID) ;

String nameScreen = line.getNameScreen();
if (nameScreen.compareToIgnoreCase ("SCREEN-1")==0) {
gotoPage ("/SCREEN1_servletController", request, response);

if (nameScreen.compareToIgnoreCase ("SCREEN-2")==0) {
gotoPage ("/SCREEN2 servletController", request, response);

Figure 3. An excerpt of the GUI Deliverer component.

of Figure 4. To better clarify how the communication between the reengineered user interface
and the application logic of the legacy system is synchronized, we have considered an object for
each interface of the Middleware software component. In particular, Middleware Interface A and
Middleware Interface B represent the interface objects provided to the Wrapped Legacy System
and the new Web-based user interface, respectively. All messages sent from the GUI Deliverer to
the Middleware B or from the COBOL program to the Middleware A are synchronous. It is worth
noting that for clarity reason this diagram does not show how the shared memory and semaphores
are used to enable the communication and synchronization between the reengineered user interface
and the Wrapped Legacy System. Rather, we use asynchronous messages between the two interface

objects of the middleware

to model such a communication and synchronization.

Copyright © 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:1333-1364

DOI: 10.1002/spe

1344 A. DE LUCIA ET AL. S &E

:User
: :GU1 Deliver :Middleware Interface B :Middleware Interface A ‘Wrapped Legacy System :Reengineered GUI|
o
T T T T :
i { j i !
startMigratedSystem() | ; ! ! |
h i 1 i !
startCobol() ! ! i }
1 1 !
startWrappe{dProgram : }
1 1 !
1 |
Sync() : ; Chiwait() |
|
displayRequested |
|
displayRequested i
________________ ‘
T displayCobol(ScreenName) }
|
displayPerformed(ScreenName})| }
~— |
screenName i
- !
t |
' |
; |
f getPage(screenName) }
| | | s
: webPageToShow U
Koo b 8 R O
webPageToShow ! |
K- L i |
I] |
i I !
insertEntryFieldValue() | [|
h | I
submit() ; |
' |
SetSharedMemy() ! i
1
acceptRequested i
|
entryFieldValuelnserted |
| entyrieityaleinsens) |
I |
! !
! acceptCobol() }
|
1
EntryFieldValueAccepted |
________________ |
- — |
] 1] |
L { | ! i
] 3 1 1
L I I

Figure 4. Interactions among the components of the migrated legacy system and the user.

The GUI Deliverer component starts the Wrapped Legacy System through the Middleware Inter-
face B. Once the COBOL program has been started, it calls the Middleware Interface A through
the function Cblwait, so that it can wait for a display request from the Web user interface. At
the same time, the Web user interface calls the Sync method asking for the next Web page to
show. The control is then returned to the COBOL program, which calls the displayCobol func-
tion, passing the information concerning the next SCREEN SECTION to display. This information
is in turn returned to the GUI Deliver, which gets the Web page corresponding to the SCREEN
SECTION and shows it to the user. Once the user has submitted the form, the values of the
entry fields are written in the shared memory and the control is returned to the COBOL program,

Copyright © 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:1333-1364
DOI: 10.1002/spe

S &E DEVELOPING LEGACY SYSTEM MIGRATION METHODS AND TOOLS 1345

which performs the accept operation by calling the acceptCobol function of the middleware that
reads the values of the entry fields from the shared memory. At that point, the application logic
of the COBOL program processes the information coming from the user interface until next
display is performed and the information on the Web page to visualize is returned to the GUI
Deliverer.

3.3. Identifying problems and risks

The third step in preparing a migration is to identify potential problems and risks involved. In this
case, the migration was complicated by the extensive inclusion of embedded control flows and
database accesses in the user interface descriptions within the SCREEN SECTIONs. A COBOL
SCREEN SECTION contains the user interface input and output operations similar to javascript,
where the program logic can be embedded into the HTML forms. As mentioned before, the COBOL
statements for displaying output data on the screen and receiving input data from the screen are
the DISPLAY and ACCEPT statements. An ACCEPT statement can trigger ACUCOBOL-GT
procedures (COBOL paragraphs similar to methods in Java) both before and after the user has filled
in an ENTRY FIELD on the screen. This is performed by specifying the name of the procedures to
be invoked in the BEFORE and AFTER clauses of the ACCEPT statement. The BEFORE clause
allows a procedure to be performed or the ENTRY FIELD to be initialized before an input value is
accepted, whereas an AFTER clause performs a specified procedure after the input value has been
accepted. Figure 5 shows an excerpt of an ACUCOBOL-GT program. In particular, this figure shows
a chunk of the declaration of the SCREEN SECTION SCREEN-2 and how the clause AFTER of the
ENTRY FIELD CSTOOOSN and the clause BEFORE of the ENTRY FIELD CO001SMOLDIV are
used. The code of the procedures invoked in these clauses, i.e. CTR-NORDSUD and INIT-CODICI,
is shown as well.

Generally, the clauses BEFORE and AFTER increase the difficulty of separating the presen-
tation logic from the application logic and database access logic and make it almost impossible
to completely automate the migration process. Unfortunately, this bad practice is not limited to
COBOL. It can also be found in modern applications where Java methods and database accesses
are built into Web pages.

In case the legacy program to migrate includes BEFORE clauses within a given SCREEN
SECTION that trigger ACUCOBOL-GT procedures accessing the system database, these proce-
dures have to be wrapped as they cannot be migrated to the client. In most cases, this requires
that these procedures are placed within the legacy program before invoking the function display-
Cobol of the Middleware component. On the other hand, when the legacy program contains
AFTER clauses within a given SCREEN SECTION triggering procedures accessing the system
database, the effect of each procedure has to be properly assessed. For example, in case AFTER
clauses trigger procedures that do not affect the values of other entry fields of the SCREEN
SECTION, the procedures can be grouped and processed after the SCREEN SECTION has been
accepted. For example, in Figure 2 the server-side checks on the entry field values filled in
by the user are placed after the accept operation has been wrapped by performing the section
LETTURADATI-SCREEN-2, which includes the call to the function CblGetSharedMemory of
the Middleware. More complex is the case when the procedures triggered by the AFTER clauses
affect the values of other entry fields in the SCREEN SECTION. Dependencies among entry
fields require to be analyzed by the software engineer, who might decide to change the interaction

Copyright © 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:1333-1364
DOI: 10.1002/spe

1346 A. DE LUCIA ET AL. SR:E

01 SCREEN-2, exception esci-2.
02 entry-field using CSTOOOAPERI lines 0,5 col + 2 UPPER
COLOR E-COL-ACC
AFTER CTR-IMPRESA. ...
01 SCREEN-4, exception esci-4.
02 entry-field using CO0001SMOLDIV (1) PIC Z(5),9(2) lines 0,5
col + 2
right
COLOR E-COL-ACC
BEFORE INIT-CODICI.
CTR-IMPRESA SECTION.
COo01.
IF CSTOOOAPERI NOT = 'S' AND NOT = 'N'
MOVE ' VALORE ERRATO ' TO MESSAGL
perform errore
SET W-SCR-GOTO TO TRUE
GO CO009.
DISPLAY SCREEN-2.
CO09. EXIT.
INIT-CODICI SECTION.
CT1.
IF COOO01ACODCON = SPACES GO TO CT9.
PERFORM SETTA-FILE-2
PERFORM OPEN-FILE-2
MOVE COO01ACODCON TO TBCODAZ-KEY
READ TBCODAZ INVALID KEY

PERFORM CLOSE-FILE-2.

Figure 5. An excerpt of an ACUCOBOL-GT program.

sequence according to some design goals, while preserving the semantics of the SCREEN SECTION
dialogue.

Another potential problem involved in the migration of COBOL legacy concerns the programming
of events. Events are used to communicate actions (e.g. a key pressed or a mouse button pressed)
taken by the user on graphical objects (i.e. buttons, tabs, etc.). In the wrapping of a legacy program,
events have to be properly considered to make the communication between the new user interface
and the wrapped legacy code effective. For example, in case the actual user interface contains tabs,
these have to be properly simulated in the wrapped legacy code.

4. THE MIGRATION PROCESS

The Middleware in the target architecture shown in Figure 1 is a generic component developed
so that it can be used in the migration of any legacy system. The migration effort can then be
concentrated on the wrapping of the legacy programs and on the reengineering of the user interface.
Figure 6 shows the migration process as an activity diagram enhanced by object flow. The rounded
rectangles represent process phases, whereas the rectangles represent the intermediate artifacts
produced during the process phases.

Copyright © 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:1333-1364
DOI: 10.1002/spe

S &E DEVELOPING LEGACY SYSTEM MIGRATION METHODS AND TOOLS 1347

:Legacy code

:User interface model

—

= Wrapping

7 S~

~
7 REN

V2 :Enhanced user interface model

:Restructured code

N
N E

N :Web based |

N

N
A\\ -

Integration and Deployment

Y4

:Target system

Figure 6. The migration process.

Owing to the embedded control flows and database accesses within the SCREEN SECTION
descriptions, the migration process could not be fully automated. There has to be human interaction.
Human interaction, however, requires a deep comprehension of the original system, which can be
achieved only through dynamic and static analyses. This was the rationale for developing the MELIS
tool kit. It was meant to support the software engineer during all phases of the migration process,
including the compilation and deployment of the reengineered user interface and of the wrapped
legacy programs. In the following subsections, we describe the four phases of the migration process:

Pre-processing;

Wrapping;
GUI-Reengineering;
Integration and Deployment;

and how they are supported by MELIS.

Copyright © 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:1333-1364
DOI: 10.1002/spe

1348 A. DE LUCIA ET AL. S &E

4.1. Pre-processing

The Pre-processing phase provides details on the types and attributes of each graphical object
composing a SCREEN SECTION. Information on each SCREEN SECTION is collected, such as
its name, its position on the screen, and the number of ENTRY FIELDs and LABELSs composing
it. As a result of this phase, the BEFORE and AFTER clauses associated with an ENTRY FIELD
are classified as follows:

e format checking operations, which can be easily migrated to the client. The code implementing
these types of operations is embedded in the XML file produced in the Pre-processing phase
as client-side scripting code;

e database accesses or application logic operations, which cannot be migrated to the client and
have to be placed in the wrapped program.

MELIS uses an ACUCOBOL-GT parser to transform the structures of the SCREEN SECTIONSs
of a legacy program into an XML file. This file is hierarchically organized to describe the code
associated with each screen. As depicted in Figure 7, the first level shows the names of the SCREEN
SECTIONS. The graphical objects of a SCREEN SECTION with their corresponding BEFORE and
AFTER clauses are shown at the second and third levels, respectively. These clauses are depicted
as leaf nodes of a tree together with the names of the associated control procedures (see left-hand
side of Figure 7).

4.2. Wrapping

During the Wrapping phase, the interactive programs of a legacy system are transformed into batch
programs. To achieve this objective, the software engineer has to transform the embedded procedures
into client beans and restructure the COBOL code. In particular, he/she has to decide whether to
migrate the BEFORE and AFTER clauses to the client or to keep them in the wrapped legacy code.
Information on the BEFORE and AFTER clauses to be migrated to the client is encoded in the user
interface model, thus providing an enhanced user interface model.

MELIS automatically classifies the control checks and highlights the corresponding legacy code
with different background colors! (see Figure 7). For example, the code highlighted in dark shade
contains either PERFORM statements or data access statements such as READ and WRITE. In
case the legacy code contains a PERFORM statement, the software engineer has to verify whether
or not the invoked code can be migrated to the client side as a javascript function. Conversely,
the code highlighted in light shade does not have any interaction with the legacy system, as, for
example, the validation of the date format. Therefore, it can be translated directly into javascript to
be migrated to the client side.

The sample in Figure 7 shows the code associated with the entry field CSTOOOAPERI of the
SCREEN SECTION SCREEN-2. The AFTER clause associated with that field verifies whether the
field contains the character ‘S’ or ‘N’. Since interactions with the database are not required, this
check can be migrated to the client. MELIS also proposes some default scripts that can be reused, as
shown in the Suggestion Code window on the bottom right-hand side of Figure 7. The set of default

TFor black and white printing, the colors are reported on the right-hand side of the screen shot.

Copyright © 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:1333-1364
DOI: 10.1002/spe

S &E DEVELOPING LEGACY SYSTEM MIGRATION METHODS AND TOOLS 1349

B MELTS - Migrate Original Controls =100 x|
Procedure Section Section Cobol Code
= SCREEN_SECTION - CTR-IMPRESA SECTION. =]
- SCREEM SCREEMN-1 cobDL.
=] SCREEMN SCREEN-2 N0EEA4 IF CSTODDAPERI NOT = 'S' AND NOT = 'N* red
LABEL - Ragione Sodale - DDEERS HOVE ' VALORE ERFATO ' TO HESSAGL o
[ENTRY-FIELD - CSTO00RAGSC -1
ki b S OEECL SET W-5CR-GOTO TO TRUE
Lgrqﬁl'r\'r'p':’v : n0sECT 2o coos. grey
E'\.IIR:’-F[ELEZ-Z‘DCST - DEECE DISPLAY SCREEN-2.
LEEEL - Comune - coog. EXLT. T yellow
ENTRY-FIELD - CSTOOOMICOM _I;I
LABEL - C.A.P.[Pr, MordfSud. i Le
ENTRY-FIELD - C3TOO0GCAPL
\'-F[ELD-ESTEIJMPQOI LINE 4:Find PERFORN, check the statement! =
&) ENTRY-EIELD - CSTO00S ; LINE 5:Find 5ET, cheok the stacement !
T LEEEL - Impresa (5) - LIME 7:Find DISPLAY, check that is not a REFMESH'J‘J
L 3

[=) ENTRY-FIELD - CSTOOOAPERT= _.I
after: CTR-TMPRESA

LABEL - Teleforo | Fac - JavaScript |Suggﬁtinn code |
ENTRY-FIELD + CONOSNUMTE! Javascript Code | ‘enabla 15
ENTRY-FIELD - COO0SMUIMFA
LABEL - Do, Fis.Div.Sede SiF function CTR=IAPRESA (withilerec,entryValue=) { ;I
=1 ENTRY-FIELD - CSTOOOATEST if (entryValue == '§' || entrwWalue == 'N'}{
After: CTR-SEDEDIV return TEus:
Before: int-SECEDTY]
LABEL - Sede Div, (MaM.)- if (withhlert) {
ENTRY-FIELD - CSTOOOASEDL alect {"INJERIRE I/N'");
LAEEL - Comune - i
ENTRY-FIELD - CSTOO0ASI return false:
LABEL - AP, | Provincia - i
ENTRY-FIELD - CSTOO0SCAPE -
ENTRY-FIELD - CSTOOOAPRO: = _.J ¥
4| | »
Yisualzzation Type |for Soreen Jection vI i] LI

I Orizzonkaljvertical Spit iﬂ _e_;_uﬂ

Figure 7. Migrating controls on the client side.

scripts can be modified introducing new javascript functions or modifying the existing ones. The
javascript code associated with a BEFORE/AFTER clause is embedded in the XML file produced
in the Pre-processing phase. An excerpt of the XML file corresponding to the AFTER clause of
the entry field CSTOOOAPERI of the SCREEN SECTION SCREEN-2 is shown in Figure 8.

The check operations using the database or the application logic of the original COBOL program
cannot be migrated to the client, and the code performing these checks has to be kept in the Wrapped
Legacy System. The COBOL code is wrapped in three steps. In the first step, the WORKING
STORAGE SECTION is enhanced with the declaration of variables to be associated with the
graphical objects detected during the Pre-processing phase. For each graphical object, two new
variables are introduced giving the name of the graphical object and its value provided as an input
to the Wrapped Legacy System or as an output of the Middleware component. The declaration of
these variables is automatically included in the wrapped legacy code by MELIS (see Figure 9).

In the second step, a set of instructions for enabling the legacy system initialization and synchro-
nization with the Web application is inserted. For example, Figure 10 shows the COBOL code
that initializes the communication between the Wrapped Legacy System and the Middleware

Copyright © 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:1333-1364
DOI: 10.1002/spe

1350 A. DE LUCIA ET AL.

<LABEL> Impresa (S/N) <visualizza>7</visualizza>
<SIZE>14</SIZE>
<COLONNA>52</COLONNA>
</LABEL>
<ENTRY-FIELD> CSTO00APERI<visualizza>7</visualizza>
<COLONNA>+2</COLONNA>
<ALIGN>upper</ALIGN>
<After controllo="presente">CTR-IMPRESA<CodeJS><! [CDATA[function
CTRIMPRESA (withAlert,entryValue) {
if (entryValue == 'S' || entryValue == 'N') {
return true;
}
if (withAlert) {
alert ("INSERIRE S/N!");
}
return false;
}11></Codeds>
</After>

Figure 8. The javascript code associated with an AFTER clause.

W ~ELIS

Restrocture Legacy Code

* i S = e s = a

77 NOME-PROG PIC X(7) VALUE 'G3TOOQ'.
77 NOME=3CEEEN FIC X(I0).

77 BRET=-DLL TN3IGNED=-INT.

77 SESSION PIC X(33).

77 ep-dil PIC X(7) VALVE 'isviev',

\ 77 pet-x PIC X.
77 nome-file PIC X(40) VALUE 'c:\pass.cxc'.
(f—— Uariabili messziare a: SCREEN-1)
77 pama-annocompace PIC X (100) VALUE 'annocowpetca',
77 value-annocompete PIC X(100).
77 pame-dep-az PIC X(100) VALUE 'dep-ac'.
77 value-dep-az PIC X({100).
77 name-CSTOODRAGSOC PIC X(100) VALUE 'CSTOOORAGSCOC'.
\,17 wvalue-CSTOOORAGSOC PIC X(100) .
(#-— Variabili associate az SCREEN-Z)
77 name-CSTODDRAGSOC PIC X({100) VALUE 'CSTOOORACSOC'.
77 valuse-CSTODORAGSOC PIC X(100) .
77 name-CSTOODADOMFISC PIC ¥(100) VALUE 'CSTOODADOMFISC! .
77 valus=CSTOOOADONFISC PIC X(100).
77 name-CSTOODACOMDF PIC X({100) VALUE *'CSTOOOACOMDI'.
77 valus-CSTOOOACOHDF PIC X({100).
77 name-CSTOODSCAPIF PIC X(100) VALUE 'CSTOOOSCAPDF'.
77 valua-CSTODOSCAPDF PIC X100 . _Iﬂ
L

4

Suggerimenti |Ln.n I Leemat llml
[n=ert supporting variables?) ;l — |
euse

. s o]

Figure 9. Automatic declaration of supporting parameters.

Copyright © 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:1333-1364
DOI: 10.1002/spe

S &E DEVELOPING LEGACY SYSTEM MIGRATION METHODS AND TOOLS 1351

set environment 'DLL CONVENTION' to "1".
call 'C:\WRAPPER.d11'.

call 'Cblwait' using by content session.
cancel 'C:\WRAPPER.d11'.

set environment 'DLL CONVENTION' to "O".

Figure 10. COBOL code used to start the execution of the wrapped legacy code.

set environment 'DLL CONVENTION' to "1".
call 'C:\WRAPPER.d11l'.

call 'Cblexit' using by content SESSION
cancel 'C:\WRAPPER.d11l'.

set environment 'DLL CONVENTION' to "O".

Figure 11. COBOL code used to stop the execution of the wrapped legacy code.

component. Let us note that MELIS automatically inserts these statements analyzing the data flow
of the original legacy system. On the other hand, the COBOL code depicted in Figure 11 is used
to interrupt the communication between the wrapped legacy code and the Middleware component
and it is invoked when the migrated legacy system is closed. Also this COBOL code fragment is
automatically inserted by MELIS.

In the third step, all of the DISPLAY and ACCEPT statements are commented out and replaced by
calls to COBOL sections, thereby encapsulating the communication with the Middleware. MELIS
automatically creates two COBOL sections and supports the software engineer in the replace-
ment of the DISPLAY and ACCEPT statements with PERFORM statements to these two sections.
Figure 2 shows an excerpt of wrapped legacy code, where ACCEPT and DISPLAY statements of
the SCREEN SECTION SCREEN-2 (whose structure is shown in Figure 7) are commented and
replaced with calls to the Middleware component. The excerpt of the COBOL code also shows the
sections PASSAGGIODATI-SCREEN-2 and LETTURADATI-SCREEN-2, which are used to write
and read data in the shared memory, respectively. In particular, the section PASSAGGIODATI-
SCREEN-2 is used to pass the data from the wrapped legacy code to the new user interface. The
data will be then formatted and properly visualized in the reengineered Web-based user interface.
On the other hand, the wrapped legacy program uses the section LETTURADATI-SCREEN-2 to
obtain the values that the user has filled in the entry fields of the SCREEN SECTION SCREEN-2.
These values are then used to execute the application logic of the original legacy system.

Since server-side checks generally have to be handled in the code replacing the DISPLAY and
ACCEPT statements with calls to the Middleware, the interaction between the new Web user inter-
face and the wrapped system could be intensive. By default, MELIS put all server-side checks
corresponding to BEFORE clauses before the wrapped display and all server-side checks corre-
sponding to AFTER clauses after wrapped accept (see Figure 2), as this choice minimizes the
interactions between the Web and the legacy parts of the migrated application. The software engi-
neer can make different decisions about the AFTER clauses and change the code of the Web user
interface and of the wrapped program in case the triggered procedures affect the values of other
entry fields in the SCREEN SECTION, as discussed in Section 3.3. For example, the software
engineer can preserve the sequence of the checks, or he/she can try to improve the performances

Copyright © 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:1333-1364
DOI: 10.1002/spe

1352 A. DE LUCIA ET AL. S &E

by minimizing the interactions between the Web and the legacy components, while preserving the
semantics of the SCREEN SECTION dialogue. In all cases, the error handling is delegated to the
Wrapped Legacy System.

4.3. GUI-Reengineering

In the GUI-Reengineering phase, MELIS automatically generates all the components of the target

Web application according to the MVC architectural pattern. In particular, MELIS generates a

Web-based subsystem for each SCREEN SECTION contained in an ACUCOBOL-GT program.
These subsystems are composed of the following four components:

e a JSP page, representing the Reengineered GUI of the original system;

e a javabean, having as fields all the entry fields of the SCREEN SECTIONS. It is generated
from the XML file created earlier when processing the SCREEN sections. It stores the data
provided by the Wrapped Legacy System;

e two servlets, one dedicated to the Middleware synchronization and the other to the data
exchange with the Wrapped Legacy System component. The first servlet instantiates the bean
containing the information coming from the Middleware and redirects the control to the
reengineered user interface displaying the information. The second servlet receives the input
data used to fill in the bean, which in turn is passed to the Middleware when an input operation
is required.

MELIS also generates two additional servlets for the system to be migrated. The first servlet
enables the GUI Deliverer software component to start the Wrapped Legacy System, whereas the
second servlet is responsible for the selection of the reengineered user interface component to
display according to the legacy system request.

The appropriate look and feel obtained by adopting cascading style sheets (CSS) allows the
developers to easily modify the reengineered user interface. Figures 12 and 13 depict a typical legacy
user interface and the corresponding reengineered Web user interface. In particular, Figure 13 shows
the JSP page within the browser integrated in MELIS together with the corresponding scripting
code. It is worth noting that the look and feel of the Web-based interface was very similar to the
original one. Indeed, the partner company imposed such a constraint to avoid forcing the end-users
to change their working habits. On the other hand, new user requirements on the Reengineered GUI
could be easily implemented by simply editing the associated CSS file.

In case the software engineer does not change the sequence of server-side checks defined by
default by MELIS, the user interface is automatically generated. Otherwise, the software engineer
has to make some changes that are compatible with the sequence of server-side checks.

In the graphical user interface of the original legacy system, it could happen that some buttons are
not active. Thus, the software engineer could decide of not including this button in the reengineered
graphical user interface. For example, some buttons in Figure 12 are no longer needed; hence,
they were not migrated. Furthermore, two kinds of buttons were identified in the analyzed legacy
systems, native system calls and ACUCOBOL-GT program performing features, which are not
dependent on the application logic of the running program. For example, the button on the right-
hand side of the bar in Figure 13 invokes the native calculator of the client system, whereas the
other button invokes a Web page presenting features of the original system.

Copyright © 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:1333-1364
DOI: 10.1002/spe

DEVELOPING LEGACY SYSTEM MIGRATION METHODS AND TOOLS

1353

i Datl Generali Utente : adm
14 | tew B0 o8 fal - Wy
frne L2004 gy (03] [RZIENDH EDILIZIF |

fnegrafico |Inps-Irpef| INAIL |Retributivo|Dotksgli|

Ragione Sociale
Indirizze

Comune

C.a.P./Pr. Kord/Sud.
Telefons / Fax
Dom_Fis_Biv. Sede 5/H

REIINDS EDILIZIA
UIk BOMR

EaR:
EGEENCE [S][

|
| Impresa (3/W) 5]

Sede Div. [Via N.)
Comung]
C.h.P. / Prouincia
Data Nascita Ditta
Comune Naseita |
Katura Gluridica

S¢ Pers Flalca-Sesso
Data Nascita

Luoge / Previncia
Codice Fiscale K506 JGFHJGFLORJ |
Partita I_U.A.
Codice Cometa
Settore Cod. Laser

Lates] it |

Figure 12. Legacy user interface.

W 2t SR e - Dl Ul Lok

M D Relwier Sorce Wevgsie Sesdh Pl ACKCORAG] Run widew Pl

|9'0"i'_-*':il-aiu|uld|b-=-'|dl s, [

LY. P
rw——

+ L gt Cherd ety |
L oo Framey
= . Coyramm 'Webs Promtn
= v
& o wos
& g
Fomk E System Ubeary e 50]
e R
o B e o gl
gy Tk - O\ S
Vo s L e it
g et - C o
i Wb dpp Lbrarms |
g
E -y
o gt
F o wellurderd
G ML
G wesie
iy el

SCHERML e

|| Impeen (509)

") SRl I [T ——— -

CETiwH - Trand Gonerali

B O
] =

Asas | JAR(_ IL

= ==

| E—
| —

 —
| L
| J

Fagone Sousle
Indres
oo
C AP My HerdSud

[T

b b
LT
£ WIStE="1297: Dagisne Sociale
£ FIATEETIENYS i i5put DARESTCOTOOORASEOC" LypestrEnt™

br TnliEiaso

il put = *CETOOOADONE TS0 wype="cenc™ olsaw="campi_di_tewto® valus="

eluss=*campl_di_tests” onblurs"afterfAS8OC (Erwe, 1hiS. value)

= jevaBeanICRITN] . geoC I TOOOAICNT TSC ()

Figure 13. Reengineered user interface.

Copyright © 2008 John Wiley & Sons, Ltd.

Softw. Pract. Exper. 2008; 38:1333-1364
DOI: 10.1002/spe

1354 A. DE LUCIA ET AL. S &E

4.4. Integration and Deployment

Finally, in the Integration and Deployment phase, the Wrapped Legacy System and the Web-
based user interface are integrated to produce the target system. During this phase, the code of the
Wrapped Legacy System is re-compiled using the ACUCOBOL-GT compiler included in MELIS.
The reengineered Web-based graphical user interface components (i.e. the generated beans, servlets,
and dynamic pages) are deployed on the Server node, whereas the compiled code of the wrapped
legacy program is deployed on the Service node. MELIS also allows Tomcat to be started inside
Eclipse by using the Eclipse Web Tool Platform. In the Integration and Deployment phase, the
software engineer should also perform regression testing to prove the functional equivalence between
the original legacy system and the migrated system. Test cases can be derived from the legacy
system and used to exercise the target system in order to identify possible differences in the behavior.
Note that MELIS does not provide specific support to automatically derive test cases and prove
the functional equivalence. Finally, when all the process phases are accomplished, the migrated
application is enabled to run.

= .a:ﬁll':'- : £L
plore 1 X
.Fd_; htlp:ﬁl?z.lﬁ-ﬁ.ﬂ.z:aﬂﬁﬂ,”' 5 ‘:(:/ -_-II_ huDI_”lg?.lﬁs.U.EISUSDfNBWGSTD - ﬁ
GSTO00 - Dati Generali £ GSTO00-Dati =R
G81000-Datl) []
Anno [zo0e | a2. [
I Amacrafce II [nas . Irpef” ” IMALL
4] m I [»
visual. stum. G €] Q3 B~

i Mt e b

by

Figure 14. GST000 Web executed on mobile device with two different browsers.

Copyright © 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:1333-1364
DOI: 10.1002/spe

S &E DEVELOPING LEGACY SYSTEM MIGRATION METHODS AND TOOLS 1355

Once the legacy application has been migrated, it can be used through any Web Browser, including
browsers on mobile devices. In the latter case, the reengineered user interface appears differently
depending on the browser. For example, Figure 14 shows the migrated interface within the Web
Browsers Opera Mobile (Figure 14(a)) and Internet Explorer Mobile (Figure 14(b)) on the Palmtop
iPAQ RX3115 equipped by 300 MHz processor with 64 Mb of RAM and Windows Mobile 2003
Second Edition as operating system. In particular, Opera Mobile attempts to better dispose the
graphical objects, whereas Internet Explorer Mobile preserves the original layout.

S. EVALUATION

To evaluate the migration process and tool as well as to start transferring the migration technology to
the practitioners of the partner company, we initialized a pilot migration project on the most business
critical system of the company. This system was used by many key customers to support their
payroll, tax, and social security management, as well as to regulate their employee relationships.
This also happened to be the oldest legacy system of the partner company, having been developed,
evolved, and marketed over the last 30 years. The evolution of this system was driven by all of the
business and technology changes occurring during this time period. The first release dated 1978
and the system was finally migrated to ACUCOBOL-GT in 2002. It is a multi-user system with a
two-tier client—server software architecture in which both the presentation and application layers
are running on the client and the centralized database consisting of virtual storage access method
(VSAM) files is situated on the server. The synchronization of concurrent accesses to VSAM files
is handled by the ACUCOBOL-GT runtime environment.

Table III shows some descriptive statistics of the legacy system. There is a large number of READ
and WRITE statements, which are used to access the data layer. The READ and WRITE statements
are uniformly distributed among the programs. The static analysis also revealed an abnormally large
number of GOTO statements spread across all of the programs in the system that provides an idea
of the spaghetti-like structure of the consider legacy system: GOTOs are more than 5% of the total
LOCs (not only the PROCEDURE DIVISION LOCs). The large number of GOTOs contributed

Table III. Statistics of the analyzed COBOL system.

Number of files 2875
Number of programs 569
Total LOCs 613081
Total number of CALL 5355
Total number of READ 4755
Total number of WRITE 5082
Total number of RE-WRITE 635
Total number of GOTO 32544
Number of programs with SCREEN SECTIONs 376
Number of SCREEN SECTIONs 474
Total number of DISPLAY 4991
Total number of ACCEPT 1272
Total number of BEFORE 3416
Total number of AFTER 6487
Total number of global variables 110
Copyright © 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:1333-1364

DOI: 10.1002/spe

1356 A. DE LUCIA ET AL. S &E

to the difficulty in comprehending the control flow structure and made the programs difficult to
change. In a real reengineering project, it would have been necessary to remove the GOTOs and
to restructure the code. The objective of this project was, however, not to increase the quality of
the system but to migrate it to the Web. This is where migration projects differ from reengineering
projects [26].

We also observed that 66% of the programs contained SCREEN SECTIONs and that 4.7% of
LOC:s in these programs were in the SCREEN SECTIONs. The DISPLAY and ACCEPT operations
in these SCREEN SECTIONs were interleaved with the business rules and the database accesses.
This fact combined with the GOTO-driven control flow made it very difficult to decompose the
system. A code inspection also confirmed that the system was not decomposable into software layers.
On the positive side, the system was divided up into independent subsystems, each implementing
a different business function, and the communication among them was limited to common global
variables and file sharing (see Table III). The large number of BEFORE and AFTER statements
indicated that the interactions between the graphical user interface and the application logic and
database component were very intensive. This was due to the continuous checking and updating
of fields in the graphical user interface. These concerns made the migration of the legacy system
complex and time consuming.

5.1. The pilot project

Our tool supported migration process was tested on two complex and essential subsystems of
the total system. The migration project group was composed of two teams, each composed of an
academic researcher and a practitioner from the partner company. Each team was responsible for
migrating one of the two subsystems. The selected subsystems—one for supplier management and
another for user registry—contained most of the problems that could be encountered during the
migration of the other subsystems of the partner company. The COBOL source files of these two
subsystems were named GST000.cbl and GSTO001.cbl, respectively; thus, in the following we will
refer to them as GST000 and GSTOO1.

The graphical objects in the user interfaces of GST000 and GST0O01 are shown in Tables IV and V,
respectively. These tables also include information on the distribution of the BEFORE and AFTER
operations. GST000 contains 26 BEFORE and 41 AFTER clauses, whereas GST001 contains 111
BEFORE and 112 AFTER clauses, respectively. Of course, the larger the number of BEFORE and
AFTER statements, the more complex and time consuming the migration process is.

To better understand the complexity of the two pilot subsystems, some other measures provided by
MELIS are shown in Table VI. Both GST000 and GST001 contain calls to subprograms. However,

Table IV. Screen sections of GST000.
SCREEN SECTION Label Entry-field Push-button BEFORE AFTER

Screen-1 2 3 0 2 2
Screen-2 21 25 2 3 10
Screen-3 28 27 2 5 9
Screen-4 20 23 2 1 3
Screen-5 38 32 2 9 11
Screen-6 46 43 2 6 6
Copyright © 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:1333-1364

DOI: 10.1002/spe

S &E DEVELOPING LEGACY SYSTEM MIGRATION METHODS AND TOOLS 1357

Table V. Screen section of GST001.
SCREEN SECTION Label Entry-field Push-button BEFORE AFTER

Screen-1 1 3 0 1 1
Screen-2 31 38 2 20 21
Screen-3 38 54 2 37 37
Screen-4 33 32 2 4 4
Screen-5 32 31 2 0 0
Screen-6 29 29 2 0 0
Screen-7 38 41 2 18 18
Screen-8 39 41 2 28 28
Screen-9 17 19 2 1 1
Screen-10 13 9 2 2
Table VI. GST000 and GSTO0O01 statistics.
GSTO000 GSTO001
LOC 6691 13779
READ 12 27
WRITE 4 3
REWRITE 4 5
GOTO 89 223
CALL 127 498
PERFORM 81 251

Table VII. Some statistics of the migrated GST000 and GST001 subsystems.

GSTO000 GSTO001
LOC 8268 18789
LOC added by the tool 1447 4601
LOC manually added 130 389

the only interactive programs are the two main programs, whereas all the subprograms are batch
programs (i.e. they contain no SCREEN SECTION).

Some descriptive statistics of the migrated subsystems are presented in Table VII. The first row
reports the LOCs in the original subsystem, whereas the LOCs added by the tool and the developers
are shown in the second and third rows, respectively. The manual coding was required because
some of the procedures triggered by AFTER clauses affected the values of other entry fields in
the SCREEN SECTIONs. Manual coding was also required to handle the tab pushed events of the
graphical user interface of the original ACUCOBOL-GT subsystems, as MELIS currently does not
provide an automatic support for events.

5.2. Discussion

The difference between the automatically added and manually coded LOCs reveals that the migration
environment effectively supported the applied migration strategy. For example, the migration team

Copyright © 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:1333-1364
DOI: 10.1002/spe

1358 A. DE LUCIA ET AL. S &E

Table VIII. BEFORE/AFTER migration for GST000.
BEFORE AFTER

SCREEN SECTION Client Server Client Server

Screen-1 0 2 0 2
Screen-2 0 3 8 2
Screen-3 0 5 6 3
Screen-4 0 1 1 2
Screen-5 0 9 6 5
Screen-6 0 6 6 0

Table IX. BEFORE and AFTER clauses migration for GSTOOI.
BEFORE AFTER
SCREEN SECTION Client Server Client Server

Screen-1 0 1 0 1
Screen-2 0 20 20 1
Screen-3 0 37 27 10
Screen-4 0 4 0 4
Screen-5 0 0 0 0
Screen-6 0 0 0 0
Screen-7 0 18 5 13
Screen-8 0 28 21 7
Screen-9 0 1 0 1
Screen-10 0 2 0 2

manually coded only 8.2% of the LOCs required to wrap GST000, whereas for GST001 the
percentage of manually coded LOCs was only 7.7%. This low percentage of manual work indicates
that MELIS effectively supported the wrapping of the legacy code, by reducing the number of
LOC:s that the developers had to manually code.

Tables VIII and IX denote the numbers of BEFORE and AFTER clauses whose code has been
migrated to the Web-based user interface (client) or kept in the wrapped legacy programs (server)
for GSTO00 and GSTOOL1. It can also be seen that the code associated with the BEFORE clauses was
never migrated to the client, since the BEFORE clauses were used primarily to query the database.

The effort required to migrate the two subsystems (expressed in terms of person/h) as well as
the distribution of effort among the different phases of the migration process is shown in Table X.
Let us note that we considered together the efforts to perform the comprehension of the programs
and the Pre-processing phase. This is due to the fact that the Pre-processing phase requires a little
effort, as it is automatically performed by MELIS. As expected, most of the migration effort was
required to comprehend the legacy system and to perform the Wrapping phase.

Some preliminary performance measurements were made to compare the migrated and the orig-
inal legacy subsystems. For this, we used Apache (version 2.2.0) as a Web Server and Tomcat
(version 5.5.16) as a Web container. Moreover, a PC equipped by a 3.6 GHz Intel Pentium IV with
1.5 GB of RAM, a 100 GB Hard Disk and Windows XP Professional SP 2 as operating system was

Copyright © 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:1333-1364
DOI: 10.1002/spe

S &E DEVELOPING LEGACY SYSTEM MIGRATION METHODS AND TOOLS 1359

Table X. Migration efforts for GST000 and GST001 (person/h).

Migration phase GSTO000 GSTO001
Comprehension and Pre-processing 19 26
Wrapping 10 16
GUI-Reengineering 5 9
Integration and Deployment 5 7
Total effort 39 58

Table XI. Times to display original SCREEN SECTIONs and new Web user interfaces of GST000.

Original legacy subsystem Migrated subsystem
SCREEN SECTION Display Accept Display Accept
Screen-1 0.07 0.05 0.04 0.06
Screen-2 0.40 0.30 0.02 0.10
Screen-3 0.45 0.30 0.01 0.08
Screen-4 0.42 0.30 0.03 0.10
Screen-5 0.40 0.30 0.05 0.11
Screen-6 0.47 0.30 0.05 0.16
Mean time 0.31 0.22 0.02 0.08

Table XII. Times to display original SCREEN SECTIONs and new Web user interfaces of GSTO0O1.

Original legacy subsystem Migrated subsystem
SCREEN SECTION Display Accept Display Accept
Screen-1 0.11 0.07 0.03 0.07
Screen-2 0.49 0.36 0.02 0.11
Screen-3 0.56 0.36 0.03 0.09
Screen-4 0.47 0.36 0.04 0.11
Screen-5 0.44 0.36 0.03 0.09
Screen-6 0.51 0.36 0.04 0.11
Screen-7 0.57 0.36 0.04 0.13
Screen-8 0.55 0.36 0.04 0.13
Screen-9 0.36 0.36 0.02 0.08
Screen-10 0.35 0.36 0.02 0.08
Mean time 0.40 0.30 0.02 0.09

used as a server, whereas the client machines were PCs connected using a LAN. Tables XI and XII
show the times expressed in seconds required to display the original SCREEN SECTIONS and the
corresponding Web-based user interfaces of GST000 and GST001. These tables also indicate the
time to accept data from the original SCREEN SECTIONSs and that required for the corresponding
Web-based user interfaces. The reported times include the time to perform the field checks and the
database accesses as well as the execution of the application logic for the original and the migrated
subsystems.

Copyright © 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:1333-1364
DOI: 10.1002/spe

1360 A. DE LUCIA ET AL. S &E

It is noteworthy that the visualization of the reengineered SCREEN SECTIONs required less
time than the original user interface. In particular, we observed that each time a user passes from
one SCREEN SECTION to another, the data of the SCREEN SECTIONS are repetitively reloaded
by accessing the database. The difference between the input/output operations of the original
subsystem is mainly due to the time required to perform read/write operations on the VSAM files.
Since VSAM files are not indexed, the time required to write a record is less than the time required
to read a record from the same file. We also observed that the time to accept input fields, to check
them, and update the database is the same for all SCREEN SECTIONSs except the Screen-1 of
both migrated subsystems. This is because once an accept operation is invoked within a given
SCREEN SECTION, the legacy code uses a COBOL program to update the fields of each SCREEN
SECTION. The significant difference between the times to display the original and the migrated
user interfaces is a result of the graphical engine of the ACUCOBOL-GT virtual machine. Indeed,
the graphical engine requires more time than the Web application to display the user interface.

This can be regarded only as a preliminary assessment of the performances of the migrated
system. As the legacy system is multi-user, we need to compare the performances of the new and
old versions of the system in a multi-user scenario, where different users concurrently access the
system. Indeed, although the legacy system is based on a fat-client architecture, where both the
presentation and the application logics are executed on the client, the migrated version is based
on a thin-client Web architecture, where the application logic and also part of the presentation are
executed on the server. Therefore, such an experimental assessment would be useful to identify
the characteristics that the server machine should have to match the performance of the migrated
version of the system with the performance of the original one.

However, we wish to point out that accesses to the centralized database embedded in the user
interface of the legacy system also represent a bottleneck for the performance of the legacy version
of the user interface; these accesses are generally optimized during the Wrapping phase of the
migration process.

Finally, even if the new architecture were to result in worse performances than the legacy one,
an advantage induced by the migration to the Web is the reduction in the management costs, as
the system functionality is accessed through a Web Browser independent of the hardware/software
platform of the user and without the need of re-installing the client application as a consequence
of software evolution.

6. CONCLUSION AND LESSON LEARNED

This paper has presented a strategy for the migration of legacy information systems implemented
in ACUCOBOL-GT to a Web-based multi-tier architecture using migration environment for legacy
information systems (MELIS). MELIS is an integrated migration environment developed as an
Eclipse plug-in to support all different phases of the migration process.

Both the migration process and the tool were developed and tested within a technology transfer
project funded by MTSys s.r.1., a small Italian software company. This pilot project was intended
to discover the most suitable method for migrating the ACUCOBOL-GT legacy software developed
by the partner company to the Internet. We defined a migration strategy aimed at reengineering
the user interface using Web technologies and at wrapping the presentation layer of the legacy
systems. A middleware component was also developed to enable the communication of the new

Copyright © 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:1333-1364
DOI: 10.1002/spe

S &E DEVELOPING LEGACY SYSTEM MIGRATION METHODS AND TOOLS 1361

user interface with the Wrapped Legacy System. It is worth noting that the strategy is general, while
its implementation is for legacy systems implemented using the ACUCOBOL-GT programming
language. Extending MELIS to other COBOL dialects designed for PCs with Windows operating
systems is not a difficult task, as this does not require major changes in the target infrastructure and
in the DLL middleware component. On the other hand, adapting MELIS to other hardware /software
platforms might be more complex.

Transferring innovative technologies and tools to practitioners has long been investigated in the
area of software technology [43—46]. In particular, Pfleeger and Menzes [43] suggest the need for
building a technology transfer model to gain a better understanding of how technology adoption
works in individual organizations. Usually, such a model entails an evaluation performed by intended
users of the technology to see whether it solves their problem. For this reason, we tested the
proposed migration strategy and the tool MELIS in a pilot migration project to migrate two critical
subsystems of the industrial partner. Each subsystem was migrated by a team composed of an
academic researcher expert of Web technologies and a practitioner expert of the legacy environment.
The need for building such mixed teams was due to the lack of Web and migration knowledge
on the part of the industrial partner and due to the lack of business knowledge on the part of the
academic partner. The motivation of the industrial partner for moving to the Web was less a desire
to be technically innovative than the need to accommodate the changing business requirements of
its customers. It is mostly the end users who wish to introduce new technologies. The software
houses themselves are more conservative. They act only when they are forced to [46].

Such a position on the part of the partner company makes the technology transfer quite chal-
lenging. It requires a two-phase transfer of the migration technologies. In the first phase, we are
doing training on the job by selecting other pilot projects where the most experienced practitioners
of the partner company will be involved. We are also performing controlled experiments with prac-
titioners with different levels of experience to evaluate the advantages of using the migration tool
with respect to traditional software development tools (see [47] for details). In addition to the pilot
projects, these experiments have the goal of introducing the migration technology in the partner
company and getting feedback that might help to improve the migration process and tool.

Although in the first phase of the technological transfer project the company practitioners partic-
ipated only as pilot subjects of the migration experiment, the final goal is to make the partner
company an owner of the MELIS tool and the accompanying methods. For this reason, in the
second phase, it is planned to train key practitioners in the use of the technologies used to develop
MELIS and to involve them in sub-projects for evolving MELIS. Examples of sub-projects, whose
need emerged from the pilot project and the controlled experiments, are as follows:

(i) improving the support for the comprehension of the legacy system and
(i1) improving the usability of MELIS, by adding functionality to support bug detection and
fixing.

In accordance with the final goal of the technology transfer project, we have considered two
important issues in the design of MELIS and of the target infrastructure of the migration process,
as discussed in Section 3. The first issue is to take into account the technologies the practitioners
are already familiar with, such as the selection of the hardware/software platform for the target
architecture and the development of the communication middleware. The second issue is the design
of an extensible architecture for MELIS based on the Eclipse framework. This will make the partner
company able to address new problems that might emerge during the migration of their legacy

Copyright © 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:1333-1364
DOI: 10.1002/spe

1362 A. DE LUCIA ET AL. S &E

systems. Some of these problems have already been identified during the assessment of the legacy
systems, such as the opportunity of adopting typical load balancing techniques to distribute the load
among different computational nodes and to improve the concurrency, scalability, and multi-access
of the legacy systems migrated with MELIS. Furthermore, the assessment of the legacy system
used in the pilot migration project showed that one of the bottleneck of the legacy systems is the
database, implemented using VSAM files. Thus, it is likely that the industrial partner will soon
plan a data migration to relational databases as well as the separation of the data access code from
the application logic code.

The research value of this experimental migration project is mainly the experience gained in
dealing with a real-life situation, in which the prerequisites for an ideal software migration are
seldom present and in which there are many constraints. Changing a running system is always
associated with risks. Therefore, the owner of that system wishes to change as least as possible in
order to reach the primary goal. The primary goal here was to obtain the system to run on the Web.
All other desirable goals, such as restructuring the programs and migrating the database, had to be
sacrificed to achieve the main goal within the time and budget constraints imposed. It is the fault
of researchers that they feel tempted to change everything necessary to create the perfect system.
We managed to avoid that temptation in this project and restricted ourselves to the essential.

ACKNOWLEDGEMENTS

The authors would like to thank Vincenzo Venezia, Giovanni Vildacci, as well as the programmers of MTSys
s.r.1. for the stimulating discussion and the precious suggestions. Special thanks are due to Marianna Borriello,
Massimo Colosimo, Vincenzo Coppola, Rosario Di Leva, Aniello Napolitano, and Nicola Vitiello, who imple-
mented different components of MELIS and the target architecture of the migration process. The authors are
also grateful to the anonymous reviewers for their insights and feedbacks to several key issues covered in this
work.

The work described in this paper is supported by the project METAMORPHOS (MEthods and Tools for
migrAting software systeMs towards Web and service Oriented aRchitectures: exPerimental evaluation, usability,
and technology tranSfer), funded by MiUR (Ministero dell’Universita e della Ricerca) under grant PRIN-2006-
2006098097. The work described in this paper is also supported by the project TOCAI (Tecnologie Orientate
alla Conoscenza per Aggregazioni di Impresa in internet) under grant FIRB 2005.

REFERENCES

—_

. Pigoski TM. Practical Software Maintenance—Best Practices for Managing Your Software Investment. Wiley: New York,
NY, 1997.

2. Bennett K, Ramage M, Munro M. Decision model for legacy systems. IEE Proceedings Software 1999; 146(3):153—159.

3. De Lucia A, Fasolino AR, Pompella E. A decisional framework for legacy system management. Proceedings of the
International Conference on Software Maintenance, Florence, Italy, 2001. IEEE CS Press: Silver Spring, MD, 2001;
642—-651.

4. Sneed HM. Planning the reengineering of legacy systems. IEEE Software 1995; 12(1):24-34.

5. Visaggio G. Value-based decision model for renewal processes in software maintenance. Annals of Software Engineering
2000; 9(1-2):215-233.

6. Aversano L, Canfora G, De Lucia A. Migrating legacy system to the Web: A business process reengineering oriented
approach. Advances in Software Maintenance Management: Technologies and Solutions, Polo M (ed.). Idea Group
Publishing: U.S.A., 2003; 151-181.

7. Sneed HM. Risks involved in reengineering projects. Proceedings of the 6th IEEE Working Conference on Reverse
Engineering, Atlanta, GA, 1999. IEEE CS Press: Silver Spring, MD, 1999; 204-211.

8. Brodie ML, Stonebraker M. Migrating Legacy Systems. Morgan Kaufmann: San Francisco, 1995.

Copyright © 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:1333-1364
DOI: 10.1002/spe

S &E DEVELOPING LEGACY SYSTEM MIGRATION METHODS AND TOOLS 1363

18.
19.

20.

21.

22.

23.

24.
25.
26.
217.
28.
29.

30.

31.

32.
. IBM WebSphere software: Legacy modernization with WebSphere Studio Enterprise Developer, 2002. http:/www.

34.
35.

36.

. Canfora G, Cimitile A, De Lucia A, Di Lucca GA. Decomposing legacy programs: A first step towards migrating to

client—server platforms. Journal of Systems and Software 2000; 54:99-110.

. Bovenzi D, Canfora G, Fasolino AR. Enabling legacy system accessibility by Web heterogeneous clients. Proceedings

of the 7th European Conference on Software Maintenance and Reengineering, Victoria, BC, Canada, 2003. IEEE CS
Press: Silver Spring, MD, 2003; 73-81.

. Chiang CC. Wrapping legacy systems for use in heterogeneous computing environments. Information and Software

Technology 2001; 43(8):497-507.

. Lin JM, Hong ZW, Fang GM, Jiau HC, Chu WC. Reengineering windows software applications into reusable CORBA

objects. Information and Software Technology 2004; 46(6):403-413.

. Sneed HM. Encapsulating legacy software for use in client/server systems. Proceedings of Working Conference on

Reverse Engineering, Monterey, CA, 1996. IEEE CS Press: Silver Spring, MD, 1996; 104—119.

. Sneed HM. Wrapping legacy COBOL programs behind an XML-interface. Proceedings of Working Conference on

Reverse Engineering, 2001. IEEE CS Press: Silver Spring, MD, 2001; 189-197.

. Canfora G, De Lucia A, Di Lucca GA. An incremental object oriented migration strategy for RPG legacy systems.

International Journal of Software Engineering and Knowledge Engineering 1999; 9(1):5-25.

. Rahgozar M, Oroumchian F. An effective strategy for legacy systems evolution. Journal of Software Maintenance:

Research and Practice 2003; 15:325-344.

. Wu B, Lawless D, Bisbal J, Wade V, Grimson J, Richardson R, O’Sullivan D. The butterfly methodology: A gateway-free

approach for migrating legacy information systems. Proceedings of 3rd IEEE International Conference on Engineering
of Complex Computer Systems, Como, Italy, 1997. IEEE CS Press: Silver Spring, MD, 1997; 200-205.

Butler JG. Mainframe to Client/Server Migration. Computer Technology Research Corp.: Charleston, SC, 1996.

Sneed HM, Nyary E. Downsizing large application programs. Journal of Software Maintenance: Research and Practice
1994; 6(5):105-116.

Serrano MA, Carver DL, Montes de Oca C. Reengineering legacy systems for distributed environments. Journal of
Systems and Software 2002; 64(1):37-55.

Aversano L, Canfora G, Cimitile A, De Lucia A. Migrating legacy systems to the Web: An experience report. Proceedings
of the 5th European Conference on Software Maintenance and Reengineering, Lisbon, Portugal, 2001. IEEE CS Press:
Siver Spring, MD, 2001; 148-157.

Bodhuin T, Guardabascio E, Tortorella M. Migrating COBOL systems to the Web by using the MVC design pattern.
Proceedings of the 9th Working Conference on Reverse Engineering, Virginia, U.S.A., 2002. IEEE CS Press: Silver
Spring, MD, 2002; 329-338.

Lewis G, Morris E, Smith D. Analyzing the reuse potential of migrating legacy components to a service-oriented
architecture. Proceedings of the Conference on Software Maintenance and Reengineering, 2006. IEEE CS Press: Silver
Spring, MD, 2006; 15-23.

Litoiu M. Migrating to Web services: A performance engineering approach. Journal of Software Maintenance and
Evolution: Research and Practice 2004; 16:51-70.

Zdun U. Reengineering to the Web: A reference architecture. Proceedings of 6th European Conference on Software
Maintenance and Reengineering, Budapest, Hungary, 2002. IEEE CS Press: Silver Spring, MD, 2002; 211-216.

Sneed HM. Encapsulation of legacy software: A technique for reusing legacy software components. Annals of Software
Engineering 2000; 9(1-4):293-313.

Merlo E, Gagn PY, Gilard JF, Kontogiannis K, Hendren L, Panangaden P, De Mori R. Reengineering user interfaces.
IEEE Software 1995; 12:64-73.

Stroulia E, ElI-Ramly M, Iglinski P, Sorenson P. User interface reverse engineering in support of interface migration to
the Web. Automated Software Engineering 2003; 3(10):271-301.

Moore M. User interface reengineering. PhD Dissertation, College of Computing, Georgia Institute of Technology,
Atlanta, GA, 1998.

Moore M, Moshkina L. Migrating legacy user interfaces to the internet: Shifting dialogue initiative. Proceedings of
Working Conference on Reverse Engineering, Brisbane, Australia, 2000. IEEE CS Press: Silver Spring, MD, 2000;
52-58.

Zhang Q, Chen R, Zou Y. Reengineering user interfaces of E-commerce application using business processes. 22nd
International Conference on Software Maintenance, 2006. IEEE CS Press: Silver Spring, MD, 2006; 428—437.

Orfali R, Harkey D, Edwards J. The Essential Distributed Objects Survival Guide. Wiley: New York, NY, 1996.

redbooks.ibm.com/redbooks/pdfs/sg246806.pdf [24 December 2007].

Weiderman N, Northrop L, Smith D, Tilley S, Wallnau K. Implications of distributed object technology for reengineering.
http://www.sei.cmu.edu/pub/documents/97.reports/pdf/97tr005.pdf [24 December 2007].

Lin JM, Hong ZW, Fang GH, Lee CT. A style for integrating MS-Windows software applications to client—server systems
using Java technology. Software: Practice and Experience 2006; 37(4):417-440.

Hong ZW, Lin JM, Fang GM, Jiau HC, Chiou CW. Encapsulating Windows-based software applications into reusable
components with design patterns. Information and Software Technology 2006; 48(7):619—629.

Copyright © 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:1333-1364

DOI: 10.1002/spe

1364 A. DE LUCIA ET AL. S &E

37.

38.

39.

40.

41.

Goedicke M, Zdun U. Piecemeal legacy migrating with an architectural pattern language: A case study. Journal of
Software Maintenance and Evolution: Research and Practice 2002; 14(1):1-30.

Canfora G, Fasolino A, Frattolillo G, Tramontana P. Migrating interactive legacy systems to Web services. Proceedings
of the Conference on Software Maintenance and Reengineering, 2006. IEEE CS Press: Silver Spring, MD, 2006; 24-36.
Sneed HM, Sneed SH. Creating Web services from legacy host programs. Proceedings of 5th International Workshop
on Web Site Evolution, Amsterdam, The Netherlands, 2003. IEEE CS Press: Silver Spring, MD, 2003; 59-65.

Sneed HM. Integrating legacy software into a service oriented architecture. Proceedings of the Conference on Software
Maintenance and Reengineering, 2006. IEEE CS Press: Silver Spring, MD, 2006; 3—14.

Bodhuin T, Guardabascio E, Tortorella M. Migration of non-decomposable software systems to the Web using screen
proxies. Proceedings of the 10th Working Conference on Reverse Engineering, Victoria, BC, Canada, 2003. IEEE CS
Press: Silver Spring, MD, 2003; 165-174.

. Legacy J. http://www.legacyj.com/lgcyj_percl.html [24 December 2007].

. Pfleeger SL, Menezes W. Marketing technology to software practitioners. IEEE Software 2000; 17(1):27-33.

. Raghavan SA, Chand DR. Diffusing software engineering methods. IEEE Software 1989; 6(4):81-90.

. Redwine ST, Riddle WE. Software technology maturation. Proceedings of 8th International Conference on Software

Engineering, London, U.K., 1985. IEEE CS Press: Silver Spring, MD, 1985; 189-200.

. Rogers EM. Diffusion of Innovation (4th edn). Free Press: New York, NY, 1995.
. Colosimo M, De Lucia A, Francese R, Scanniello G. Assessing legacy system migration technologies through controlled

experiments. Proceedings of 23rd IEEE International Conference on Software Maintenance, Paris, France, 2-5 October
2007. IEEE CS Press: Silver Spring, MD, 2007; 365-374.

Copyright © 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:1333-1364

DOI: 10.1002/spe

