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Abstract: In this paper we present the Dual Support Apriori for Temporal data 
(DSAT) algorithm. This is a novel technique for discovering Jumping Emerging 
Patterns (JEPs) from time series data using a sliding window technique. Our ap-
proach is particularly effective when performing trend analysis in order to explore 
the itemset variations over time. Our proposed framework is different from the 
previous work on JEP in that we do not rely on itemsets borders with a con-
strained search space. DSAT exploits previously mined time stamped data by us-
ing a sliding window concept, thus requiring less memory, minimum computa-
tional cost and very low dataset accesses. DSAT discovers all JEPs, as in “naïve” 
approaches, but utilises less memory and scales linearly with large datasets sets as 
demonstrated in the experimental section. 

1 Introduction 

Trend mining is a data mining technique directed at the identification of hidden 
trends in time series data. There are various approaches to trend mining, many of 
them founded on time series analysis techniques, but also other established ap-
proaches such as Association Rule Mining (ARM). ARM, in its most standard 
form, is concerned with the identification of patterns (known as frequent itemsets) 
in data within binary valued attributes. The most common framework for ARM is 
the “support-confidence” framework [1]. In this framework “support” is the fre-
quency with which an itemset appears in the input data and “confidence” is a 
measure of the reliability of the identified Association Rules (ARs). An itemset is 
said to be frequent if its support exceeds some user defined support thresholds.  
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In Temporal ARM the attributes in the data are time stamped in some way. One 
category of Temporal ARM is known as Emerging and Jumping Pattern (JEP) 
mining [8]. An Emerging Pattern (EP) is usually defined as an itemset whose sup-
port increases over time according to some “change ratio” threshold. A Jumping 
Pattern (JP) is an itemset whose support changes much more rapidly than that for 
an EP. EPs and JPs are distinguished by their change ratio threshold and thus for 
many purposes can be considered to be synonymous. The discovery of JEPs en-
tails a significant computational overhead due to the large number of itemsets that 
must be identified to facilitate comparison. To avoid this overhead most JEP min-
ing approaches concentrate on a subset of the potential frequent itemsets such as 
the set of maximal itemsets; that is, the itemsets that show the greatest negative or 
positive change in value. The computational cost of comparing all items sets 
across all time stamps tends to render this approach to be, computationally pro-
hibitively, expensive. In this paper we present the Dual Support Apriori Temporal 
(DSAT) algorithm, an approach to JEP mining that utilizes the entire “data space”, 
but avoids the computational overhead, by using a sliding window mechanism. 

The main novelty of the proposed approach is in the adoption of a dual support 
mechanism in which each itemset holds two support counts, called  and 

, that benefits: (i) efficient memory utilization, (ii) few IO overheads and 

(iii) less computation cost. Under the dual support framework  holds the 
support counts of itemsets in the “oldest” data segment that disappears whenever 
the window “slides” and holds support counts for itemsets in the overlap 
between two windows and the recently added data segment as shown in Figure 1. 

1supp

1

2supp
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The dual support mechanism utilises the already discovered frequent itemsets 
from the previous windows and avoid re-calculating support counts for all item-
sets that exists in the overlapped datasets between two windows, this is illustrated 
in section 4. Moreover it only required databases access for the most resent seg-
ment, thus less IO operations and less memory utilization. 

The paper is organized as follows. In section 2 the related work and the prob-
lem domain are described in more detail. Section 3 provides a sequence of defini-
tions. To facilitate understanding of the dual support framework a worked exam-
ple is presented in Section 4. The DSAT algorithm, in its entirety, is then 
presented in section 5 and evaluated in section 6. 

2 Related Work 

There are many commercial applications that produce significant amounts of 
temporal data collected and stored electronically on a daily bases, examples in-
clude: web server logs; supermarket transactional data, and network traffic. There 
are many studies directed at the efficient application of temporal forms of ARM to 
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time stamped data sets [2, 3, 4]. The main issue in temporal ARM is the high 
computational cost of the processing of the data so as to take account of the tem-
poral dimension. Jiang and Gruenwald [5] compare the temporal data processing 
models found in temporal ARM, such as: Landmark, Damped and Sliding Win-
dows and their usage depending on the application area. Jiang and Gruenwald also 
discus issues related to memory management, data structures to store frequent sets 
and various modified ARM algorithms for temporal ARM. 

One category of temporal ARM, as noted in Section 1 above, is Jumping and 
Emerging Patterns (JEPs) mining as first proposed by Dong and Li [8]. In com-
mon with many subsequent JEP algorithms Dong and Li compared maximal item-
sets generated using a Max-Miner style of algorithm [19]. A maximal itemset is a 
frequent (supported) itemset whose supersets are all infrequent (i.e. their support 
value is below the user specified support threshold). By identifying only maximal 
itemsets all frequent itemsets can be found by virtue of the DC property (although 
only the precise support values for the maximal sets are known). The advantage of 
identifying only maximal itemsets is one of computational efficiency. This is par-
ticularly important in the context of JEP mining because of the large number of 
itemsets that must be identified across time stamps. In addition, to facilitate com-
parison of itemsets, a low support threshold must also be used hence adding to the 
magnitude of the problem. However, the maximal frequent set approach does not 
guarantee the identification of all JEP. 

Many JEP mining algorithms have been reported in the literature [6, 7, 9, 10, 
18]. Most of these algorithms adopt a maximal frequents itemset approach as first 
proposed in [8]. For example Tseng et al. [18] extends the work of [8] and pro-
posed EFI-Mine (Emerging Frequent Itemsets) algorithm that discovers JEPs us-
ing the technique similar to data streams [4]. The main issue with these existing 
approaches to JEP mining is that they tend to use only maximal frequent itemsets 
to identify JEPs. Thus, although efficient, they do not guarantee to find all JEPs. 

Our proposed DSAT algorithm differs from the previous work in that we con-
sider all identified frequent itemsets across time stamps. The computational over-
head that is normally associated with this approach is avoided by using the dual 
support concept together with a sliding window approach that requires less mem-
ory and data access than would be required otherwise. 

3 Preliminaries 

In this section a number of formal definitions are presented to facilitate under-
standing of the rest of the paper.  Firstly it is necessary to define the concept of 
classical ARM. Given a set of items  and a database of transac-
tions  where t , 

},...,,{ 21 miiiI =
},...,,{ 21 pIiIiIi=},...,,{ 21 ntttD = i mp ≤  and ; IIij ∈
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where  with IX ⊆ XK =   is a k-itemset or simply an itemset. Let a database 

 be a multi-set of subsets of I as shown in table 1. Each D DT ∈
Y!

supports an 
itemset  if  holds. An AR is an expression , where X, Y 
are itemsets and

IX ⊆ TX ⊆ X
φ=∩YX holds. Number of transactions T supporting an item 

X w.r.t  is called the support ofD X , . 
The strength or confidence for an association rule X => Y is the ratio of the num-
ber of transactions that contain 

||/|}{|)( DTXSupp ∈= | TX ⊆D

YX ∪ to the number of transactions that contain 
X, Conf (X ! Y) = Supp (X U Y)/ Supp (X).  

Emerging patterns, as noted above, are itemsets whose support increases sig-
nificantly from one data set to another i.e. from  to . An itemset iw w 1+i X  is 

called an emerging pattern if the ( ) σ≥Xsupp ( ) δ≥XGR and  where 
δσ and

( ) ∞→X

 are user specified support and growth rate thresholds respectively. 
Jumping patterns are the specialized case of emerging patterns where 

 and this is when . The growth rate of an 

itemset 
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(1) 

Time series databases contain data collected over a period of time and can be 
processed by a sliding window. Each window  represents some sequence of 

time stamped data  where is a single time stamp. The 
amount of data contained in the window may therefore very as the window is pro-
gressed along the time series.  

,

Table 1. Super market database 

Tid Items  Tid Items  
T1 
T2 
T3 
T4 

A, B, C 
B, C, D, E 
B, C, E 
B, E 

D1 

T5 
T6 
T7 
T8 

A, B, C, D 
A, B, C, D 
A, B, C 
A, D, E 

D2 

Suppose we are given a retail dataset covering two days,  and  respec-
tively. The growth rate of an itemset 

1D 2D
X  from  to  is denoted as 

and is defined as in [8]: 
1D 2D

),,( 1+ii DDXGR
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DXsupp
DXsuppXGR =  (2) 

As data in different windows is un-evenly distributed, it is necessary to correct 
the above equation by multiplying it with , otherwise a bias will fa-
vor the EPs process for the dataset with large number of transactions as mentioned 
in [17]. Thus equation 1 will become: 
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Given 0>σ  as support threshold and 1>δ  as growth rate threshold, a fre-
quent pattern X is said to be an emerging pattern from  to  if 1D 2D

( ) δ≥XGR . For the data in table 1, if we set 3=δ , then ABC is an EP and 

ABCD is a JP from  to  because  and 

 and by using equation [2] the 

1D 2D 1)( =ABC
(
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 and  thus 

. But  and  

and by using equation [2] the 
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δ≤BCDGR  thus neither JP nor EP. 
In the proposed dual support framework for discovering JEPs, transactions in 

each window are logically partitioned into three segments as  

except because it only consists  where  as shown in 
figure 1.  

},,{ 321 pppwi =

ii D≤1w },{ 211 ppw = p

1p  holds data that disappears in the next increment,  holds data that is 

overlapped between two windows  and  i.e.  and  

consist of data that is added to  after the increment or window slide as shown 

in the figure 1, where ,  and for . 
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The itemset support counts are denoted as: , where . For 

the first window support count of itemsets in  are recorded into , i.e. 

, and support counts of itemsets in  are recorded into , 

. After the window is incremented, from  to ,  is set to zero 

because the support it holds does not contribute in the next window.  from the 
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first window is copied into  in , and the support count of itemsets from 

 is decremented by . Itemsets from  are generated using  and then 

integrated into the already generated itemsets from . Also,  of any itemset 

from  is incremented if it exists in . 

22S 2w

3p

1w 1p 3p 22S

1w 22S

1w

 
Figure 1 JEPs with dual support framework 

The dual support framework therefore uses less memory, features limited IO 

operations and fewer computations (by utilising the already discovered frequent 

sets from previous windows), and avoids re-calculating support counts for item-

sets that exists between overlapped windows. 

4 Dual Support Framework Example 

In this section we present an example to illustrate the proposed dual support 
framework using a sliding windows technique. Table 2 shows five datasets  to 

 for days starting from 1 to 5. We used days for simplicity but in real applica-
tions this could be any temporal interval. For this application we set window size 
to 3, window slide to 1, support threshold to 25% and growth rate threshold to 2. 

1D

5D

1w

For , data sets  will be used because |  is set to 3 as shown in fig-

ure 2a. The supports for an itemset is calculated in such a way that  under 

 holds the number of occurrences of an itemset for  and  holds the 

number of occurrences of an itemset for the rest of the datasets in . Applying 

1w 3,2,1D |w

1supp

2supp

1w
1D
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DSAT algorithm following 2-frequent itemsets are generated {(A, B), (A, C), (A, 
D), (B, C), (B, D), (C, D)}.  

Table 2. Example transitional data for 5 weeks 

Tid D1 D2 D3 D4 D5 
 Day 1 Day 2 Day 3 Day 4 Day 5 
T1 
T2 
T3 
T4 

A B D 
C D 
B C 
B D 

C D 
A B E 
A C D 
B C D 

A B C D 
C D E 
A C 
A E 

C D 
A B C E 
A C 
A B C D 

A D 
B C E 
A C D E 
C 

 
After generating frequent itemsets the window slides ( );  is added and 

 is removed as shows in figure 2b. Itemsets generated in  are cloned in  

to avoid itemset re-generation.  for the cloned itemsets in  is set to zero 
as it no longer contributes to the current window. 

2w

1w
4D

2w
1D 2w

1supp

 
Figure 2 Sliding Windows for table 2 datasets 

Frequent itemsets are generated using only  and , consequently the 

rest of the itemsets are adjusted.  is then calculated for all generated item-

sets in  from  and is then subtracted from supp  so that the accumulative 

support  of itemsets gives the total support count. 2-

Frequent itemsets generated for  are {(A, B), (A, C), (A, D), (A, E), (B, C), (B, 
D), (C, D)}. {A, E} and {A, C} are the discovered JEPs from the frequent sets for 

 and . This is shown in equation 3. The same procedure is repeated for  

as shows in figure 2 where the only JEP discovered from and  is {C, E}.  

4D 2supp

2

2w

1supp

2

2w

2w

2w

2D
supp= 1 suppsupp ∪

1w 3w

3w
Note that if we have a high support threshold there is an option to eliminate an 

emerging pattern in . This means that a potential frequent itemset in  is no 
longer considered. If we do need to consider this itemset then a lower support 
threshold can be used without adversely affecting the efficiency and memory of 
the system. This is demonstrated in the experiment section. 

1+iw iw
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5 The DSAT Algorithm 

Our DSAT algorithm was developed using tree data structures, in a fashion 
similar to the Apriori algorithm [1], and comprises of two major steps: 

1. Apply Apriori to produce a set of frequent itemsets using the sliding win-
dow approach. 

2. Process and generate a set of JEPs such that the interestingness threshold 
(Growth Rate) is above some user specified threshold. 

Steps involved in the DSAT algorithm are as follows: 
For the initial window 

1. Load the initial dataset \\w1−D  into the memory ( iw ). 
2. Apply ARM algorithm using sliding windows. 
3. Use dual supports for each itemset, 1supp  for 1p , 2supp  for 2p . 
4. Generate frequent sets. 
5. Slide window and carry forward all the frequent sets from iw " 1+iw . 

For the sliding window 
6. Clone the frequent sets from window iw  to incremented window 1+iw . 

7. Decrement 1supp  of itemsets using 1p . 

8. Update itemsets’ 2supp as described in section 4. 

9. Load only the incremented transactions 3p  into memory. 

10. Calculate the 2supp  for all the existing itemsets and generate any new 

itemsets by only considering the incremented time stamp 3p .  

11. Calculate the growth rate of itemsets using both windows iw and 1+iw . 
12. Those itemsets with growth rate ≥  the threshold are emerging patterns 

and the itemsets those support approaches to zero in iw  and have support 

≥  specified jumping threshold in 1+iw  are the jumping patterns 

13. Store JEPs’ for the current window 1+iw . 
14. Go to step 5.  

6 Experimental Evaluation 

In this section the proposed DSAT algorithm is evaluated with different data-
sets in order to asses the quality, efficiency and effectiveness of our approach. In 
the experiments, synthetic and real datasets (with binary and quantitative attrib-
utes) are used.  
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6.1 Datasets 

Table 3 overviews the evaluation datasets. It should be noted that the datasets 
contains both sparse and dense data, since most AR discovery algorithms were de-
signed for these types of problems. 

Table 3. Real and Synthetic datasets used for experiments 

Dataset Type Time Duration Number of 
Transactions 

Distinct 
Items 

Max. Trans. 
Size 

Server Logs [14] Real 11/04/08–15/04/09 49,577 1,372 16 
Point of Sale [15] Real 28/09/07–27/09/08 92,685 3,736 19 
Transglobal [16] Real 12/09/07–08/05/09 8,000 3,000 5 

T10I4D100K [13] Synthetic Not specified 100,000 1,000 29 
The first three datasets comprising transactions recorded for almost one year. 

All the datasets are time stamped and partitioned, except T1014D100K, so that the 
number of transactions varies in each partition. T1014D100K is divided into ten 
equal partitions of size 10K for experimental purpose. The Transglobal dataset 
contained quantitative attributes and we discretised the quantitative attributes to 
binary ones according to the technique proposed in [21]. All the raw datasets were 
cleaned and filtered to make them suitable for temporal ARM analysis. 

6.2 Comparisons with Apriori 

Two sets of experiments were conducted to demonstrate: (i) the efficiency of 
the proposed approach and (ii) the temporal effect on the itemsets (JEPs) as an 
outcome of the ARM analysis. The experiments demonstrated that the proposed 
approach was a useful form of trend analysis. All the experiments were conducted 
on a P4; 1GB, 3GHz machine with windows XP installed using jdk1.4.2.  

6.2.1 DSAT Performance 

To compare the performance of DSAT we modified the classical Apriori algo-
rithm to deal with temporal data in a conventional manner i.e. process each sliding 
window and compare it with the proposed DSAT algorithm. The comparison illus-
trated that DSAT outperformed the Apriori naïve approach for temporal ARM.  

6.2.2 Effect of Varying Data Size and Support Threshold 

Figures 3, 4, 5 and 6 show the execution time for Apriori and the DSAT algo-
rithms on four real and synthetic datasets with quantitative and binary attributes. 
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In the figures T1 represents the execution time for the modified classical Apriori 
ARM and T2 represents the execution time for the proposed DSAT algorithm. 
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Figure 3a Execution time for Server Log 
data by varying windows 

Figure 3b Execution time for Server Log 
data varying support thresholds 
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Figure 4a Execution time for Point of Sale 
data by varying windows 

Figure 4b Execution time for Point of Sale 
data by varying support thresholds 
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Figure 5a Execution time for Transglobal 
data by varying windows 

Figure 5b Execution time for Transglobal 
data by varying support thresholds 
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Figure 6a Execution time for Synthetic data 
by varying windows 

Figure 6b Execution time for Synthetic data 
by varying support thresholds 

 
     For figures 3, 4, 5 and 6 (a), the x-axis represents the varying sliding windows 
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and y-axis represent the execution time in seconds for the algorithms for different 
sliding windows. For figures 3, 4, 5 and 6(b), the x-axis represents the percentage 
support threshold for the datasets and y-axis represents the cumulative execution 
time in seconds for the support thresholds. Support thresholds were selected so 
that the Apriori algorithm could generate frequent itemsets within the given mem-
ory constraints so that execution time statistics could be obtained. 

Two figures, for each dataset, are displayed in order to show that the DSAT 
outperforms the naïve Apriori approach not only on the cumulative execution time 
but also for each sliding window, regardless of various data sizes.  

The figures demonstrate that DSAT outperforms the modified Apriori ARM 
algorithm because DSAT uses already generated frequent itemsets from the previ-
ous windows and thus only needs to generate frequent itemsets for the “most re-
cent” transactions. The execution times in figures (a) are not linear because of the 
varying data sizes in different windows, but near linear in figures (b) as the accu-
mulative windows execution time varies with the support thresholds (the result 
also displays the ARM property that by increasing support the execution time de-
creases and vice-versa, algorithm completion time increases[12]). 

Moreover the classical ARM algorithm utilises more memory, compared to 
DSAT, because the use of very low support thresholds leads to the generation of a 
high number of frequent itemsets. In contrast, DSAT runs more effectively (be-
cause DSAT utilises already generated frequent sets from the previous windows, 
updates their support count for the current window, and only generate the frequent 
sets from the incremented time stamp as illustrated in Section 4).  

6.3 Temporal Effects of Varying Windows and Threshold 

The experiments described in this section show how the varying sliding win-
dows affect the overall ARM analysis in discovering JEPs. Figures 7, 8 and 9 
show the number of Emerging Patterns discovered (figures a), Jumping Patterns 
(figures b) and frequent itemsets (figures c) respectively for three different real 
datasets. The JEPs and the frequent itemsets in the figures are generated by vary-
ing support thresholds. As before the support thresholds were selected so that the 
classical Apriori algorithm would be able to generate large numbers of JEPs so 
that statistical comparison data could be obtained.  
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Figure 7a Figure 7b Figure 7c 
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Figure 8a Figure 8b Figure 8c 
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In figures 7, 8 and 9 the x-axis represents various support thresholds and the y-

axis the number of EPs, JPs and Frequent items in figures a, b and c respectively. 
Each curve represents a window from 1 to 8.  

From the figures, the numbers of JEPs generated are not linear and there are 
abrupt differences in the numbers generated due to the number of transactions var-
ying in each window and that the number of transactions changes as the window 
slides. However there is some linearity for frequent items (Figures 7c, 8c and 9c). 

It can be seen from the figures that more JEPs are generated at lower support 
thresholds as compared to higher ones where in some cases the number ap-
proaches zero. The major issue in finding the JEPs is that they are normally gener-
ated at low support thresholds because an itemset could qualify as a JEP once its 
support at  is low as compared to . A JEP can only be discovered once it 
becomes frequent, or at least is generated in the previous window. 

1−iw iw

6.4 Trend Analysis 

The proposed approach can be usefully employed in trend ARM analysis where 
data is gathered for fixed or continuous time stamps. For example, the support of 
an itemset can be monitored over a period of time and it can help end users deter-
mine the causes any increment or decrement. 

For example, figure 10 shows the support for eight different itemsets, i.e. users’ 
clicks (hits), in web log data that has been monitored for almost a year. Each curve 
represents an individual itemset in terms of its support for one year from April 
2008 till April 2009. The x-axis in the figure represents time in terms of sliding 
windows and the y-axis the number of time users hits the web pages (itemset).  

The website was launched in March 2008, and it can be seen from the figure 
that the support for the itemsets is low at start up. However, the number of hits in-
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}
creased as more users visited the website, thus increasing the itemsets’ support 
count. From the figure, the itemset {  has support zero in the first two win-
dows and it emerges as a Jumping pattern at the third window slide; the support 
kept increasing till the seventh window until it once again disappear in the eighth 
window. That is because initially page 375 did not exist in the website but was 
later added (as evidenced by the “jump” in support in the third window). How-
ever, later (in the eighth window) it was again removed from the site and the sup-
port returns to zero. 
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Figure 10 Varying itemsets supports over time 

The JEP technique described in this paper is relevant for trend analysis because 
it not only explicitly highlight trends, but also gives an indication about what fac-
tors are influential in boosting or decreasing the relationship between items. 

7 Conclusions and Future Work 

We have presented a novel approach to efficiently extract JEPs in temporal 
data by using a sliding window coupled with a dual support mechanism. The ad-
vantages of the framework are less memory utilization, limited IO and fewer com-
putations by utilising the previously computed frequent sets. This avoids re-
calculation of support counts that already exist in between overlapped windows. 

The approach has been realized in the form of the DSAT algorithm. The 
evaluation of this algorithm has produced some very encouraging results. Future 
work will involve enhancing the efficiency of the algorithm by adopting a T-Tree 
data structure [11] that uses indexing to further enhance the computational effi-
ciency. Furthermore larger datasets and parallelisation of the DSAT algorithm will 
be investigated. We anticipate that a stream processing technique [20] would be 
particularly suitable for this purpose. 
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