
A Sliding Windows based Dual Support
Framework for Discovering Emerging Trends
from Temporal Data

M. Sulaiman Khan1, F. Coenen2, D. Reid1, H. Tawfik1, R. Patel3, L. Archer3

Abstract: In this paper we present the Dual Support Apriori for Temporal data
(DSAT) algorithm. This is a novel technique for discovering Jumping Emerging
Patterns (JEPs) from time series data using a sliding window technique. Our ap-
proach is particularly effective when performing trend analysis in order to explore
the itemset variations over time. Our proposed framework is different from the
previous work on JEP in that we do not rely on itemsets borders with a con-
strained search space. DSAT exploits previously mined time stamped data by us-
ing a sliding window concept, thus requiring less memory, minimum computa-
tional cost and very low dataset accesses. DSAT discovers all JEPs, as in “naïve”
approaches, but utilises less memory and scales linearly with large datasets sets as
demonstrated in the experimental section.

1 Introduction

Trend mining is a data mining technique directed at the identification of hidden
trends in time series data. There are various approaches to trend mining, many of
them founded on time series analysis techniques, but also other established ap-
proaches such as Association Rule Mining (ARM). ARM, in its most standard
form, is concerned with the identification of patterns (known as frequent itemsets)
in data within binary valued attributes. The most common framework for ARM is
the “support-confidence” framework [1]. In this framework “support” is the fre-
quency with which an itemset appears in the input data and “confidence” is a
measure of the reliability of the identified Association Rules (ARs). An itemset is
said to be frequent if its support exceeds some user defined support thresholds.

1 Department of Computer Science, Liverpool Hope University, L16 9JD, UK email:
{khanm,reidd,tawfikh}@hope.ac.uk
2 Department of Computer Science, University of Liverpool, L69 3BX email: frans@liv.ac.uk
3 Transglobal Express Ltd. Wirral, UK email: {reshma,lawson}@transglobal.co.uk

M. Sulaiman Khan , F. Coenen , D. Reid , H. Tawfik , R. Patel , L. Archer

In Temporal ARM the attributes in the data are time stamped in some way. One
category of Temporal ARM is known as Emerging and Jumping Pattern (JEP)
mining [8]. An Emerging Pattern (EP) is usually defined as an itemset whose sup-
port increases over time according to some “change ratio” threshold. A Jumping
Pattern (JP) is an itemset whose support changes much more rapidly than that for
an EP. EPs and JPs are distinguished by their change ratio threshold and thus for
many purposes can be considered to be synonymous. The discovery of JEPs en-
tails a significant computational overhead due to the large number of itemsets that
must be identified to facilitate comparison. To avoid this overhead most JEP min-
ing approaches concentrate on a subset of the potential frequent itemsets such as
the set of maximal itemsets; that is, the itemsets that show the greatest negative or
positive change in value. The computational cost of comparing all items sets
across all time stamps tends to render this approach to be, computationally pro-
hibitively, expensive. In this paper we present the Dual Support Apriori Temporal
(DSAT) algorithm, an approach to JEP mining that utilizes the entire “data space”,
but avoids the computational overhead, by using a sliding window mechanism.

The main novelty of the proposed approach is in the adoption of a dual support
mechanism in which each itemset holds two support counts, called and

, that benefits: (i) efficient memory utilization, (ii) few IO overheads and

(iii) less computation cost. Under the dual support framework holds the
support counts of itemsets in the “oldest” data segment that disappears whenever
the window “slides” and holds support counts for itemsets in the overlap
between two windows and the recently added data segment as shown in Figure 1.

1supp

1

2supp
supp

2supp

The dual support mechanism utilises the already discovered frequent itemsets
from the previous windows and avoid re-calculating support counts for all item-
sets that exists in the overlapped datasets between two windows, this is illustrated
in section 4. Moreover it only required databases access for the most resent seg-
ment, thus less IO operations and less memory utilization.

The paper is organized as follows. In section 2 the related work and the prob-
lem domain are described in more detail. Section 3 provides a sequence of defini-
tions. To facilitate understanding of the dual support framework a worked exam-
ple is presented in Section 4. The DSAT algorithm, in its entirety, is then
presented in section 5 and evaluated in section 6.

2 Related Work

There are many commercial applications that produce significant amounts of
temporal data collected and stored electronically on a daily bases, examples in-
clude: web server logs; supermarket transactional data, and network traffic. There
are many studies directed at the efficient application of temporal forms of ARM to

A Sliding Windows based Dual Support Framework for Discovering Emerging Trends from
Temporal Data
time stamped data sets [2, 3, 4]. The main issue in temporal ARM is the high
computational cost of the processing of the data so as to take account of the tem-
poral dimension. Jiang and Gruenwald [5] compare the temporal data processing
models found in temporal ARM, such as: Landmark, Damped and Sliding Win-
dows and their usage depending on the application area. Jiang and Gruenwald also
discus issues related to memory management, data structures to store frequent sets
and various modified ARM algorithms for temporal ARM.

One category of temporal ARM, as noted in Section 1 above, is Jumping and
Emerging Patterns (JEPs) mining as first proposed by Dong and Li [8]. In com-
mon with many subsequent JEP algorithms Dong and Li compared maximal item-
sets generated using a Max-Miner style of algorithm [19]. A maximal itemset is a
frequent (supported) itemset whose supersets are all infrequent (i.e. their support
value is below the user specified support threshold). By identifying only maximal
itemsets all frequent itemsets can be found by virtue of the DC property (although
only the precise support values for the maximal sets are known). The advantage of
identifying only maximal itemsets is one of computational efficiency. This is par-
ticularly important in the context of JEP mining because of the large number of
itemsets that must be identified across time stamps. In addition, to facilitate com-
parison of itemsets, a low support threshold must also be used hence adding to the
magnitude of the problem. However, the maximal frequent set approach does not
guarantee the identification of all JEP.

Many JEP mining algorithms have been reported in the literature [6, 7, 9, 10,
18]. Most of these algorithms adopt a maximal frequents itemset approach as first
proposed in [8]. For example Tseng et al. [18] extends the work of [8] and pro-
posed EFI-Mine (Emerging Frequent Itemsets) algorithm that discovers JEPs us-
ing the technique similar to data streams [4]. The main issue with these existing
approaches to JEP mining is that they tend to use only maximal frequent itemsets
to identify JEPs. Thus, although efficient, they do not guarantee to find all JEPs.

Our proposed DSAT algorithm differs from the previous work in that we con-
sider all identified frequent itemsets across time stamps. The computational over-
head that is normally associated with this approach is avoided by using the dual
support concept together with a sliding window approach that requires less mem-
ory and data access than would be required otherwise.

3 Preliminaries

In this section a number of formal definitions are presented to facilitate under-
standing of the rest of the paper. Firstly it is necessary to define the concept of
classical ARM. Given a set of items and a database of transac-
tions where t ,

},...,,{ 21 miiiI =
},...,,{ 21 pIiIiIi=},...,,{ 21 ntttD = i mp ≤ and ; IIij ∈

M. Sulaiman Khan , F. Coenen , D. Reid , H. Tawfik , R. Patel , L. Archer

where with IX ⊆ XK = is a k-itemset or simply an itemset. Let a database

 be a multi-set of subsets of I as shown in table 1. Each D DT ∈
Y!

supports an
itemset if holds. An AR is an expression , where X, Y
are itemsets and

IX ⊆ TX ⊆ X
φ=∩YX holds. Number of transactions T supporting an item

X w.r.t is called the support ofD X , .
The strength or confidence for an association rule X => Y is the ratio of the num-
ber of transactions that contain

||/|}{|)(DTXSupp ∈= | TX ⊆D

YX ∪ to the number of transactions that contain
X, Conf (X ! Y) = Supp (X U Y)/ Supp (X).

Emerging patterns, as noted above, are itemsets whose support increases sig-
nificantly from one data set to another i.e. from to . An itemset iw w 1+i X is

called an emerging pattern if the () σ≥Xsupp () δ≥XGR and where
δσ and

() ∞→X

 are user specified support and growth rate thresholds respectively.
Jumping patterns are the specialized case of emerging patterns where

 and this is when . The growth rate of an

itemset

GR () 0, 1 →DXsupp
X from to is defined as: 1D 2D

"
"
"

#

""
"

$

%

∞=

supp
supp

X
0

)(

{iw =

≠
=

)0)
)0)

=
=

otherwise

XsuppandD
XsuppandD
(0),

,(0),

1

1

iw
} it

D
D

Xsupp
Xsupp

),
),
(
(

1

2

,... wt

X
X

(
(
(
(

2t

D
D
, 2

2

if
if

1t

GrowthRate

(1)

Time series databases contain data collected over a period of time and can be
processed by a sliding window. Each window represents some sequence of

time stamped data where is a single time stamp. The
amount of data contained in the window may therefore very as the window is pro-
gressed along the time series.

,

Table 1. Super market database

Tid Items Tid Items
T1
T2
T3
T4

A, B, C
B, C, D, E
B, C, E
B, E

D1

T5
T6
T7
T8

A, B, C, D
A, B, C, D
A, B, C
A, D, E

D2

Suppose we are given a retail dataset covering two days, and respec-
tively. The growth rate of an itemset

1D 2D
X from to is denoted as

and is defined as in [8]:
1D 2D

),,(1+ii DDXGR

A Sliding Windows based Dual Support Framework for Discovering Emerging Trends from
Temporal Data

),(
),()(

1

2

DXsupp
DXsuppXGR = (2)

As data in different windows is un-evenly distributed, it is necessary to correct
the above equation by multiplying it with , otherwise a bias will fa-
vor the EPs process for the dataset with large number of transactions as mentioned
in [17]. Thus equation 1 will become:

||/|| 21 DD

2

1

1

2

),(
),()(

D
D

DXsupp
DXsuppXGR ×= (3)

Given 0>σ as support threshold and 1>δ as growth rate threshold, a fre-
quent pattern X is said to be an emerging pattern from to if 1D 2D

() δ≥XGR . For the data in table 1, if we set 3=δ , then ABC is an EP and

ABCD is a JP from to because and

 and by using equation [2] the

1D 2D 1)(=ABC
(

, 1D
)

supp
3=), 2DABC(supp δ≥

2=
BCD

ABC
), 2D

,(Dsupp

GR
(ABCD

, similarly

 and thus

. But and

and by using equation [2] the

0) =, DABCD
) →ABCD

(supp
(GR

1

∞
supp

1)1 =D
)
,BCD

(
(supp 2)2 =

δ≤BCDGR thus neither JP nor EP.
In the proposed dual support framework for discovering JEPs, transactions in

each window are logically partitioned into three segments as

except because it only consists where as shown in
figure 1.

},,{ 321 pppwi =

ii D≤1w },{ 211 ppw = p

1p holds data that disappears in the next increment, holds data that is

overlapped between two windows and i.e. and

consist of data that is added to after the increment or window slide as shown

in the figure 1, where , and for .

2p
= iD

3p =

iw

1

2p

1+iw

,, 54 tt

12 +∩ iDp

}{ 6t

3p

+iw
}2{1 tp = }{ 3t= 2w

The itemset support counts are denoted as: , where . For

the first window support count of itemsets in are recorded into , i.e.

, and support counts of itemsets in are recorded into ,

. After the window is incremented, from to , is set to zero

because the support it holds does not contribute in the next window. from the

21 ii SandS

1p

2p

1w w

iwi =

11S

12S

|| 111 pS =
|| 212 pS =

12S

2 11S

M. Sulaiman Khan , F. Coenen , D. Reid , H. Tawfik , R. Patel , L. Archer

first window is copied into in , and the support count of itemsets from

 is decremented by . Itemsets from are generated using and then

integrated into the already generated itemsets from . Also, of any itemset

from is incremented if it exists in .

22S 2w

3p

1w 1p 3p 22S

1w 22S

1w

Figure 1 JEPs with dual support framework

The dual support framework therefore uses less memory, features limited IO

operations and fewer computations (by utilising the already discovered frequent

sets from previous windows), and avoids re-calculating support counts for item-

sets that exists between overlapped windows.

4 Dual Support Framework Example

In this section we present an example to illustrate the proposed dual support
framework using a sliding windows technique. Table 2 shows five datasets to

 for days starting from 1 to 5. We used days for simplicity but in real applica-
tions this could be any temporal interval. For this application we set window size
to 3, window slide to 1, support threshold to 25% and growth rate threshold to 2.

1D

5D

1w

For , data sets will be used because | is set to 3 as shown in fig-

ure 2a. The supports for an itemset is calculated in such a way that under

 holds the number of occurrences of an itemset for and holds the

number of occurrences of an itemset for the rest of the datasets in . Applying

1w 3,2,1D |w

1supp

2supp

1w
1D

A Sliding Windows based Dual Support Framework for Discovering Emerging Trends from
Temporal Data
DSAT algorithm following 2-frequent itemsets are generated {(A, B), (A, C), (A,
D), (B, C), (B, D), (C, D)}.

Table 2. Example transitional data for 5 weeks

Tid D1 D2 D3 D4 D5
 Day 1 Day 2 Day 3 Day 4 Day 5
T1
T2
T3
T4

A B D
C D
B C
B D

C D
A B E
A C D
B C D

A B C D
C D E
A C
A E

C D
A B C E
A C
A B C D

A D
B C E
A C D E
C

After generating frequent itemsets the window slides (); is added and

 is removed as shows in figure 2b. Itemsets generated in are cloned in

to avoid itemset re-generation. for the cloned itemsets in is set to zero
as it no longer contributes to the current window.

2w

1w
4D

2w
1D 2w

1supp

Figure 2 Sliding Windows for table 2 datasets

Frequent itemsets are generated using only and , consequently the

rest of the itemsets are adjusted. is then calculated for all generated item-

sets in from and is then subtracted from supp so that the accumulative

support of itemsets gives the total support count. 2-

Frequent itemsets generated for are {(A, B), (A, C), (A, D), (A, E), (B, C), (B,
D), (C, D)}. {A, E} and {A, C} are the discovered JEPs from the frequent sets for

 and . This is shown in equation 3. The same procedure is repeated for

as shows in figure 2 where the only JEP discovered from and is {C, E}.

4D 2supp

2

2w

1supp

2

2w

2w

2w

2D
supp= 1 suppsupp ∪

1w 3w

3w
Note that if we have a high support threshold there is an option to eliminate an

emerging pattern in . This means that a potential frequent itemset in is no
longer considered. If we do need to consider this itemset then a lower support
threshold can be used without adversely affecting the efficiency and memory of
the system. This is demonstrated in the experiment section.

1+iw iw

M. Sulaiman Khan , F. Coenen , D. Reid , H. Tawfik , R. Patel , L. Archer

5 The DSAT Algorithm

Our DSAT algorithm was developed using tree data structures, in a fashion
similar to the Apriori algorithm [1], and comprises of two major steps:

1. Apply Apriori to produce a set of frequent itemsets using the sliding win-
dow approach.

2. Process and generate a set of JEPs such that the interestingness threshold
(Growth Rate) is above some user specified threshold.

Steps involved in the DSAT algorithm are as follows:
For the initial window

1. Load the initial dataset \\w1−D into the memory (iw).
2. Apply ARM algorithm using sliding windows.
3. Use dual supports for each itemset, 1supp for 1p , 2supp for 2p .
4. Generate frequent sets.
5. Slide window and carry forward all the frequent sets from iw " 1+iw .

For the sliding window
6. Clone the frequent sets from window iw to incremented window 1+iw .

7. Decrement 1supp of itemsets using 1p .

8. Update itemsets’ 2supp as described in section 4.

9. Load only the incremented transactions 3p into memory.

10. Calculate the 2supp for all the existing itemsets and generate any new

itemsets by only considering the incremented time stamp 3p .

11. Calculate the growth rate of itemsets using both windows iw and 1+iw .
12. Those itemsets with growth rate ≥ the threshold are emerging patterns

and the itemsets those support approaches to zero in iw and have support

≥ specified jumping threshold in 1+iw are the jumping patterns

13. Store JEPs’ for the current window 1+iw .
14. Go to step 5.

6 Experimental Evaluation

In this section the proposed DSAT algorithm is evaluated with different data-
sets in order to asses the quality, efficiency and effectiveness of our approach. In
the experiments, synthetic and real datasets (with binary and quantitative attrib-
utes) are used.

A Sliding Windows based Dual Support Framework for Discovering Emerging Trends from
Temporal Data
6.1 Datasets

Table 3 overviews the evaluation datasets. It should be noted that the datasets
contains both sparse and dense data, since most AR discovery algorithms were de-
signed for these types of problems.

Table 3. Real and Synthetic datasets used for experiments

Dataset Type Time Duration Number of
Transactions

Distinct
Items

Max. Trans.
Size

Server Logs [14] Real 11/04/08–15/04/09 49,577 1,372 16
Point of Sale [15] Real 28/09/07–27/09/08 92,685 3,736 19
Transglobal [16] Real 12/09/07–08/05/09 8,000 3,000 5

T10I4D100K [13] Synthetic Not specified 100,000 1,000 29
The first three datasets comprising transactions recorded for almost one year.

All the datasets are time stamped and partitioned, except T1014D100K, so that the
number of transactions varies in each partition. T1014D100K is divided into ten
equal partitions of size 10K for experimental purpose. The Transglobal dataset
contained quantitative attributes and we discretised the quantitative attributes to
binary ones according to the technique proposed in [21]. All the raw datasets were
cleaned and filtered to make them suitable for temporal ARM analysis.

6.2 Comparisons with Apriori

Two sets of experiments were conducted to demonstrate: (i) the efficiency of
the proposed approach and (ii) the temporal effect on the itemsets (JEPs) as an
outcome of the ARM analysis. The experiments demonstrated that the proposed
approach was a useful form of trend analysis. All the experiments were conducted
on a P4; 1GB, 3GHz machine with windows XP installed using jdk1.4.2.

6.2.1 DSAT Performance

To compare the performance of DSAT we modified the classical Apriori algo-
rithm to deal with temporal data in a conventional manner i.e. process each sliding
window and compare it with the proposed DSAT algorithm. The comparison illus-
trated that DSAT outperformed the Apriori naïve approach for temporal ARM.

6.2.2 Effect of Varying Data Size and Support Threshold

Figures 3, 4, 5 and 6 show the execution time for Apriori and the DSAT algo-
rithms on four real and synthetic datasets with quantitative and binary attributes.

M. Sulaiman Khan , F. Coenen , D. Reid , H. Tawfik , R. Patel , L. Archer

In the figures T1 represents the execution time for the modified classical Apriori
ARM and T2 represents the execution time for the proposed DSAT algorithm.

Server Logs

2

7

12

17

22

27

32

37

W1 W2 W3 W4 W5 W6 W7 W8

Sliding Windows

Ex
ec

ut
io

n
Ti

m
e

Server Logs - T1

Server Logs - T2

Server Logs

2

22

42

62

82

102

122

142

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Support Threshold

Ex
ec

ut
io

n
Ti

m
e

Server Logs - T1

Server Logs - T2

Figure 3a Execution time for Server Log
data by varying windows

Figure 3b Execution time for Server Log
data varying support thresholds

Point of Sale

0

5

10

15

20

25

30

35

W1 W2 W3 W4 W5 W6 W7 W8

Sliding Windows

Ex
ec

ut
io

n
Ti

m
e

Point of sale - T1

Point of sale - T2

Point of Sale

10

30

50

70

90

110

130

150

170

190

0.01 0.03 0.05 0.07 0.09

Support Threshold

Ex
ec

ut
io

n
Ti

m
e

Point of sale - T1

Point of sale - T2

Figure 4a Execution time for Point of Sale
data by varying windows

Figure 4b Execution time for Point of Sale
data by varying support thresholds

Transglobal

0

5

10

15

20

25

30

35

40

W1 W2 W3 W4 W5 W6

Sliding Windows

Ex
ec

ut
io

n
Ti

m
e

Transglobal - T1

Transglobal - T2

Transglobal

2

22

42

62

82

102

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Support Threshold

Ex
ec

ut
io

n
Ti

m
e

Transglobal - T1

Transglobal - T2

Figure 5a Execution time for Transglobal
data by varying windows

Figure 5b Execution time for Transglobal
data by varying support thresholds

T1014D100K

0

10

20

30

40

50

60

70

W1 W2 W3 W4 W5 W6

Sliding Window s

Ex
ec

ut
io

n
Ti

m
e

T1014D100K - T1

T1014D100K - T2

T1014D100K

15

65

115

165

215

265

315

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Support Threshold

Ex
ec

ut
io

n
Ti

m
e

T1014D100K - T1

T1014D100K - T2

Figure 6a Execution time for Synthetic data
by varying windows

Figure 6b Execution time for Synthetic data
by varying support thresholds

 For figures 3, 4, 5 and 6 (a), the x-axis represents the varying sliding windows

A Sliding Windows based Dual Support Framework for Discovering Emerging Trends from
Temporal Data
and y-axis represent the execution time in seconds for the algorithms for different
sliding windows. For figures 3, 4, 5 and 6(b), the x-axis represents the percentage
support threshold for the datasets and y-axis represents the cumulative execution
time in seconds for the support thresholds. Support thresholds were selected so
that the Apriori algorithm could generate frequent itemsets within the given mem-
ory constraints so that execution time statistics could be obtained.

Two figures, for each dataset, are displayed in order to show that the DSAT
outperforms the naïve Apriori approach not only on the cumulative execution time
but also for each sliding window, regardless of various data sizes.

The figures demonstrate that DSAT outperforms the modified Apriori ARM
algorithm because DSAT uses already generated frequent itemsets from the previ-
ous windows and thus only needs to generate frequent itemsets for the “most re-
cent” transactions. The execution times in figures (a) are not linear because of the
varying data sizes in different windows, but near linear in figures (b) as the accu-
mulative windows execution time varies with the support thresholds (the result
also displays the ARM property that by increasing support the execution time de-
creases and vice-versa, algorithm completion time increases[12]).

Moreover the classical ARM algorithm utilises more memory, compared to
DSAT, because the use of very low support thresholds leads to the generation of a
high number of frequent itemsets. In contrast, DSAT runs more effectively (be-
cause DSAT utilises already generated frequent sets from the previous windows,
updates their support count for the current window, and only generate the frequent
sets from the incremented time stamp as illustrated in Section 4).

6.3 Temporal Effects of Varying Windows and Threshold

The experiments described in this section show how the varying sliding win-
dows affect the overall ARM analysis in discovering JEPs. Figures 7, 8 and 9
show the number of Emerging Patterns discovered (figures a), Jumping Patterns
(figures b) and frequent itemsets (figures c) respectively for three different real
datasets. The JEPs and the frequent itemsets in the figures are generated by vary-
ing support thresholds. As before the support thresholds were selected so that the
classical Apriori algorithm would be able to generate large numbers of JEPs so
that statistical comparison data could be obtained.

Emerging Patterns (Server Logs)

0

500

1000

1500

2000

2500

3000

3500

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Window=2
Window=3
Window=4
Window=5
Window=6
Window=7
Window=8

Jumping Patterns (Server Logs)

0

20

40

60

80

100

120

140

160

180

200

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Window=2
Window=3
Window=4
Window=5
Window=6
Window=7
Window=8

Frequent Patterns (Server Logs)

0

1000

2000

3000

4000

5000

6000

7000

8000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Window=2
Window=3
Window=4
Window=5
Window=6
Window=7
Window=8

Figure 7a Figure 7b Figure 7c

M. Sulaiman Khan , F. Coenen , D. Reid , H. Tawfik , R. Patel , L. Archer

Emerging Patterns (POS)

0

50

100

150

200

250

300

350

400

450

500

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Window=2
Window=3
Window=4
Window=5
Window=6
Window=7
Window=8

Jumping Patterns (POS)

0

50

100

150

200

250

300

350

400

450

500

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Window=2
Window=3
Window=4
Window=5
Window=6
Window=7
Window=8

Frequent Patternss (POS)

0

500

1000

1500

2000

2500

3000

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Window=2
Window=3
Window=4
Window=5
Window=6
Window=7
Window=8

Figure 8a Figure 8b Figure 8c

Emerging Patternss (Transglobal)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Window=2

Window=3

Window=4

Window=5

Window=6

Jumping Patternss (Transglobal)

0

100

200

300

400

500

600

700

800

900

1000

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Window=2

Window=3

Window=4

Window=5

Window=6

Frequent Patternss (Transglobal)

0

1000

2000

3000

4000

5000

6000

7000

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Window=2

Window=3

Window=4

Window=5

Window=6

Figure 9a Figure 9b Figure 9c

In figures 7, 8 and 9 the x-axis represents various support thresholds and the y-

axis the number of EPs, JPs and Frequent items in figures a, b and c respectively.
Each curve represents a window from 1 to 8.

From the figures, the numbers of JEPs generated are not linear and there are
abrupt differences in the numbers generated due to the number of transactions var-
ying in each window and that the number of transactions changes as the window
slides. However there is some linearity for frequent items (Figures 7c, 8c and 9c).

It can be seen from the figures that more JEPs are generated at lower support
thresholds as compared to higher ones where in some cases the number ap-
proaches zero. The major issue in finding the JEPs is that they are normally gener-
ated at low support thresholds because an itemset could qualify as a JEP once its
support at is low as compared to . A JEP can only be discovered once it
becomes frequent, or at least is generated in the previous window.

1−iw iw

6.4 Trend Analysis

The proposed approach can be usefully employed in trend ARM analysis where
data is gathered for fixed or continuous time stamps. For example, the support of
an itemset can be monitored over a period of time and it can help end users deter-
mine the causes any increment or decrement.

For example, figure 10 shows the support for eight different itemsets, i.e. users’
clicks (hits), in web log data that has been monitored for almost a year. Each curve
represents an individual itemset in terms of its support for one year from April
2008 till April 2009. The x-axis in the figure represents time in terms of sliding
windows and the y-axis the number of time users hits the web pages (itemset).

The website was launched in March 2008, and it can be seen from the figure
that the support for the itemsets is low at start up. However, the number of hits in-

A Sliding Windows based Dual Support Framework for Discovering Emerging Trends from
Temporal Data

}
creased as more users visited the website, thus increasing the itemsets’ support
count. From the figure, the itemset { has support zero in the first two win-
dows and it emerges as a Jumping pattern at the third window slide; the support
kept increasing till the seventh window until it once again disappear in the eighth
window. That is because initially page 375 did not exist in the website but was
later added (as evidenced by the “jump” in support in the third window). How-
ever, later (in the eighth window) it was again removed from the site and the sup-
port returns to zero.

375,318

Temporal Trends

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8
Time Period (sliding windows)

Nu
m

be
r o

f w
eb

 c
lic

ks

186, 195
186, 820
194, 288
237, 288
267, 429
318, 332
318, 375
332, 375

Figure 10 Varying itemsets supports over time

The JEP technique described in this paper is relevant for trend analysis because
it not only explicitly highlight trends, but also gives an indication about what fac-
tors are influential in boosting or decreasing the relationship between items.

7 Conclusions and Future Work

We have presented a novel approach to efficiently extract JEPs in temporal
data by using a sliding window coupled with a dual support mechanism. The ad-
vantages of the framework are less memory utilization, limited IO and fewer com-
putations by utilising the previously computed frequent sets. This avoids re-
calculation of support counts that already exist in between overlapped windows.

The approach has been realized in the form of the DSAT algorithm. The
evaluation of this algorithm has produced some very encouraging results. Future
work will involve enhancing the efficiency of the algorithm by adopting a T-Tree
data structure [11] that uses indexing to further enhance the computational effi-
ciency. Furthermore larger datasets and parallelisation of the DSAT algorithm will
be investigated. We anticipate that a stream processing technique [20] would be
particularly suitable for this purpose.

Acknowledgement: we would like to thanks Dr. Maybin Muyeba for his valuable feedback and
contribution in the research. Also, we would like to thank Michelle Verity and the team at
LearnHigher, Mr. Ikram proprietor of the News Agency for providing the Server Logs and Point
of Sale data respectively.

M. Sulaiman Khan , F. Coenen , D. Reid , H. Tawfik , R. Patel , L. Archer

References

1. Agrawal, R. & Srikant, R., 1994. Fast algorithms for mining association rules. In Proc. 20th
Int. Conf. Very Large Data Bases, VLDB. 487-499.

2. Li, H.F. & Lee, S.Y., 2009. Mining frequent itemsets over data streams using efficient win-
dow sliding techniques. Expert Systems with Applications, 36(2P1), 1466-1477.

3. Lee, C.H., Chen, M.S. & Lin, C.R., 2003. Progressive partition miner: An efficient algo-
rithm for mining general temporal association rules. IEEE Transactions on Knowledge and
Data Engineering, 1004-1017.

4. Chang, J.H. & Lee, W.S., 2004. A sliding window method for finding recently frequent
itemsets over online data streams. Journal of Information Science and Engineering, 20(4),
753-762.

5. Jiang, N., 2006. Research issues in data stream association rule mining. ACM Sigmod Re-
cord, 35(1), 14-19.

6. Imberman, S.P. and Tansel, A.U. and Pacuit, E., 2004 An Efficient Method For Finding
Emerging Frequent Itemsets,3rd International Workshop on Mining Temporal and Sequen-
tial Data, 112-121.

7. Bailey, J., Manoukian, T. & Ramamohanarao, K., 2002. Fast algorithms for mining emerg-
ing patterns. Lecture notes in computer science, 39-50.

8. Dong, G. & Li, J., 1999. Efficient mining of emerging patterns: Discovering trends and dif-
ferences. In Proceedings of the fifth ACM SIGKDD international conference on Knowl-
edge discovery and data mining. ACM New York, NY, USA, pp. 43-52.

9. Rioult, F., Mining strong emerging patterns in wide SAGE data. In Proceedings of the
ECML/PKDD Discovery Challenge Workshop. Citeseer, pp. 484-487.

10. Grandinetti, W.M., Chesnevar, C.I. & Falappa, M.A., 2005. Enhanced Approximation of
the Emerging Pattern Space using an Incremental Approach, Proceedings of VII Workshop
of Researchers in Computer Sciences, Argentine, 263-267

11. Coenen, F., Leng, P. & Ahmed, S., 2004. Data structure for association rule mining: T-trees
and P-trees. IEEE Transactions on Knowledge and Data Engineering, 774-778.

12. M. Sulaiman Khan, Muyeba, M., Tjortjis, C. & Coenen, F., 2007. An Effective Fuzzy
Healthy Association Rule Mining Algorithm (FHARM). In Proc. 7th Annual Workshop on
Computational Intelligence UKCI 2007.

13. IBM Synthetic Data Generator,
http://www.almaden.ibm.com/software/quest/resources/index.html

14. Server Logs data set is the courtesy of LearnHigher: http://www.learnhigher.ac.uk
15. Point of Sale data is provided by a News Agent/Grocery Store in Walsall
16. Freight forwarding enterprise data is provided by Transglobal Express Service

http://www.transglobalexpress.co.uk
17. Cremilleux, B., Soulet, A. & Rioult, F., 2003. Mining the strongest emerging patterns char-

acterizing patients affected by diseases due to atherosclerosis. In proceedings of the work-
shop Discovery Challenge, PKDD’03. 59-70.

18. Tseng, V. S., Chu, C.J. & Tyne Liang, 2006. An Efficient Method for Mining Temporal
Emerging Itemsets From Data Streams. International Computer Symposium, Workshop on
Software Engineering, Databases and Knowledge Discovery.

19. Bayardo Jr, R.J., 1998. Efficiently mining long patterns from databases. ACM SIGMOD
Record, 27(2), 85-93.

20. Kapasi, U.J. et al., 2003. Programmable stream processors. Computer, 54-62.
21. M. Sulaiman Khan, Muyeba, M. & Coenen, F., 2009. Effective Mining of Weighted Fuzzy

Association Rules, Rare Association Rule Mining and Knowledge Discovery: Technologies
for Infrequent and Critical Event Detection, Advances in Data Warehousing and Mining
(ADWM) Book Series, IGI Global. ISBN: 978-1-60566-754-6, 47-64.

