SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2009; 39:973-1002
Published online 8 May 2009 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.923

Specifying features of an RI
evolving software system

Thein Than Tun!* T, Tim Trew?, Michael Jackson!,
Robin Laney' and Bashar Nuseibeh!

1Department of Computing, The Open University, Milton Keynes MK7 6AA, U.K.
2NXP Semiconductors, High Tech Campus 37, 5656 AE Eindhoven,
The Netherlands

SUMMARY

Software development is increasingly concerned with maintaining and extending existing software systems
to meet the evolving user requirements. Many of these systems are feature-rich and are developed incre-
mentally. As structures of existing software systems—in addition to the user requirements—influence the
specifications, specifying these systems poses unique challenges. This paper reports on our experience of
applying an engineering approach to specifying an evolving feature-rich television software system. In this
approach, features are specified modularly by first fitting their problems to known problem patterns, and
then analyzing typical concerns—meaning the potential causes of errors—associated with those patterns.
In cases where the existing design poses difficulties when fitting problems to patterns, we transform its
structure using known design mechanisms so that the problems fit the patterns. After deriving speci-
fications of individual features, possible interactions between features are detected, before declaratively
specifying resolutions to undesired interactions. As the concerns of features and their composition are
addressed separately, the specifications derived are modular, thus, providing rich treaceability to their
requirements. As well as discussing how features may be specified using natural language, we also show
how their descriptions may be formalized using a form of temporal logic called the Event Calculus, and
prove their correctness using an off-the-shelf tool. Copyright © 2009 John Wiley & Sons, Ltd.

Received 19 March 2008; Revised 13 February 2009; Accepted 19 February 2009

KEY WORDS: software features; evolution; specifications; feature composition; problem frames

1. INTRODUCTION

It is widely recognized that incremental or evolutionary development of software is now the
rule, not the exception: even where evolution was not initially envisaged by the developer,

*Correspondence to: Thein Than Tun, Department of Computing, The Open University, Milton Keynes MK7 6AA, U.K.
TE-mail: t.t.tun@open.ac.uk

Contract/grant sponsor: EPSRC; contract/grant number: EP/C007719/1

Copyright © 2009 John Wiley & Sons, Ltd.

974 T. T. TUN ET AL. S &E

it is necessitated by feedback from customers and users, by evolving requirements, and by
competitive market pressures [1,2]. The evolutionary dimension highlights the need for clarity in
the relationship between changing customer requirements and a stable yet maintainable system
structure. Our goal is to understand how requirements for features, or ‘coherent and identifiable
bundle[s] of system functionality’ [3], can be systematically mapped to software modules, and
vice versa, and to make that mapping a practical intellectual tool in software development and
maintenance.

A simple example from feature-rich consumer television (TV) software illustrates the need for
such an intellectual tool. TVs in the past had few features and they were relatively simple and
easy to implement. For example, the problem of turning the audio on and off in response to the
user command could be solved by a simple program involving as little as ten lines of code. As the
software system evolves, new features are continually added. These include features to suppress
noises when TV signals are unstable, to mute the sound when the child lock is on, and so on. As a
result, this seemingly easy operation of muting and unmuting the TV sound becomes very complex.
Giving assurance that the system will continue to function correctly after new features have been
introduced becomes a challenge. There are several ways to approach this problem. For instance,
Philips has used a domain-specific TV architecture [4] and the Koala component model [5], based
on build-time binding of reusable components. Anton and Potts [6] have studied the functional
evolution of a long-lived software system in order to understand the nature and extent of this
evolution.

In this paper we apply an engineering approach that addresses this challenge by focusing on
two specific issues. Developers are better at solving specific software problems with which they
are familiar. One key part of our solution, therefore, is a way to make unfamiliar and complex
problems familiar and simpler by decomposing, transforming and fitting subproblems into known
patterns of problem structures, called problem frames [7]. Formal analysis can be helpful when
reasoning about critical parts of a system. Therefore, we apply a lightweight formal description
language called the Event Calculus (EC), and in doing so we extend this language to make our
descriptions succinct, and perform rigorous analysis when necessary. The main contribution of the
paper is an engineering approach to specifying evolving feature-rich software, by drawing on past
development experience and formal analysis.

1.1. Overview of the methodology

Figure 1 shows an overview of the methodology used in this paper. In this methodology, user
requirements for features in TV software, as in many real software development projects, are
assumed to be expressed in an informal Natural Language (NL). The requirements statements
describe software problems in the physical world context which need to be solved.

Problem analysis. The Problem Frames (PF) approach is used to analyze those problems
by fitting each of them into one of the known basic frames—such as the required behavior,
commanded behavior, information display, simple workpieces and transformation frames—or
a composite frame [7]. A problem fitted to a frame is typically described using a Problem
Diagram (PD), with accompanying NL descriptions of the requirement and the problem world
context in the diagram. Unlike the requirements statements given by the user, these descriptions
are separated and structured according to the chosen frame. Feature specifications are then

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:973-1002
DOI: 10.1002/spe

S &E SPECIFYING FEATURES OF AN EVOLVING SOFTWARE SYSTEM 975

AL PF PD+ NL \1 PF PD + NL

Requirements S
for Features
—

Incremental
Specifications

Feature
Evolution

Problem
Analysis

Feature >

Specifications

EC

Analysis

PD+ EC PF PD+ EC

Feature
—=>{ Composition

Formal
Specifications

System
Specification

Figure 1. Overview of our methodology.

derived using cause-to-effect and effect-to-cause reasoning on thosedescriptions. Each PF has
encoded some knowledge about the typical concerns of a type of software problem. By fitting
problems of TV features into basic and composite frames, specifications of these features and
their composition benefit from the developer’s past experience of dealing with similar problems.

The description of a solution to the problem(s) posed by a user requirement for a feature is
called a feature specification. These specifications are modular in the sense that they can be mapped
onto the requirements easily. When specifying incremental features (due to new requirements), the
existence of partial solutions in the existing design often contributes to the complexity of problem
structures.

Feature evolution. Two rules are introduced in order to add wrappers which transform and
simplify complex problem structures and fit them into known PFE. Therefore, the concerns of
features can still be analyzed by applying the frames. By treating existing components as black
boxes, modular specifications for those features are derived using the same approach used in
the problem analysis. Again, we use PDs and their NL descriptions to describe the incremental
specifications.

The specifications derived so far are expressed using NL, reflecting the widespread practice in real
development. However, for specifications of certain critical features, deviation from the expected
behavior is not acceptable, and therefore their correctness needs to be checked rigorously.

Formal analysis. The EC is used to formalize relevant NL descriptions of PDs, and prove the
soundness and completeness of the specifications with respect to their requirements through
logical deduction. This reasoning can be done both manually and with the help of off-the-shelf
reasoning tools. In this paper, the Discrete EC Reasoner [8,9] is used to prove the correctness
of feature specifications.

Although specifications for individual features have been derived, the overall system behavior has
not yet been specified. One major difficulty of composing individual features is the inconsistencies
between their requirements. Having clear and explicit problem structures and descriptions helps to
identify the potential interactions between features.

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:973-1002
DOI: 10.1002/spe

976 T. T. TUN ET AL. S &E

Feature Composition. Overlapping elements between problem structures of different features
are identified as potential sites for feature interactions and their defined properties are examined
in the context of the composition. When necessary, compositional wrappers are introduced
and specified to detect and resolve runtime conflicts.

1.2. Organization

The remainder of the paper is organized as follows. Section 2 introduces the key concepts in the
PF approach and EC, before the PF approach is applied to derive informal specifications of two
features in Section 3. Descriptions of a simple feature are formalized and analyzed using the EC in
Section 4. Section 5 describes application of simple rules and general patterns for evolving existing
designs when implementing new features, and discusses how an incremental feature specification
may be formalized and analyzed. Possible interactions between three features are detected and
resolved in Section 6. Concluding remarks are given in Section 7.

2. PRELIMINARIES

We begin with a short discussion of the PF approach by summarizing its basic vocabulary and how
we will apply this approach in specifying the features in TV software. The discussion is illustrated
by a simple feature of user-commanded muting and unmuting of the TV sound. This section also
gives an overview of our choice of formalism, EC.

2.1. Descriptions in the PF approach

Specifying a feature using the PF approach begins with an analysis of the problem and its context.
The PF approach emphasizes that descriptions of each problem should cover three things:

e the problem world domains that are relevant to the problem,
e the requirement that needs to be satisfied, and
e the machine, a programmed computer, that the developer needs to build.

In addition to these descriptions, there should be an adequacy argument that justifies how the
description of the machine, or the specification, together with the descriptions of the problem world
domains, are sufficient in satisfying the requirement [7]. In our specification of features in TV
software, we will follow this separation of descriptions.

2.2. The mute/unmute feature

With this relatively simple feature of most TVs, the problem is that of muting/unmuting the TV
sound in response to user commands. An analysis of the problem using the PF approach involves
fitting the problems into some known frames, and considering their concerns. For example, this
muting/unmuting problem can be fitted to a frame called the Commanded Behavior frame [7]. In
doing so, we typically draw a problem diagram, such as the one in Figure 2, to describe the structure
of the problem, i.e. the requirement, the problem world domains, the machine, and how they are
connected to each other.

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:973-1002
DOI: 10.1002/spe

SPECIFYING FEATURES OF AN EVOLVING SOFTWARE SYSTEM

977

i1_SU p_S
c1_MC, c1_SU Sound Speaker _
Unit T\ - ~
Mute \>(/ Mute/
Controller) \ Unmute)
j1_UR 4 7
Infrared User ~ / S __-~-
d1_1IU .
Unit R Control o_UR

c1-MC:MC!{setMuteOn, setMuteOff}
d1.IU:IU!{toggleMute}
j1_.UR:UR/{signalMuteButton}
o_.UR:UR!{pressMuteButton}

c1.SU:SU{MuteOn}
i1_.SU:SU!{start AudioStream, stopAudioStream}
p-S:S!{NoSound}

Figure 2. Problem diagram for muting/unmuting.

2.2.1. Requirement
The NL description of the user-commanded muting/unmuting problem in TV software is given as
follows:

When the user presses the mute button on the TV remote control, muting and unmuting of the
TV sound should be toggled.

In Figure 2, this requirement is indicated by the dotted oval Mute/Unmute. Dotted and solid lines
are called interfaces. These interfaces represent a set of phenomena, classes of events and properties
controlled and shared by the domains involved. The dotted lines o_UR and p_S, representing the
requirement phenomena, reference some phenomena of the User ~ R Control domain (‘When
the user presses the mute button on the TV remote control’), and constrains some phenomena of the
Speaker domain (‘muting and unmuting of the TV sound should be toggled’). These phenomena
are often referred to as reference and constraint phenomena, respectively.

2.2.2. Problem world domains

Problem world domains, represented by plain rectangles in Figure 2, are some abstraction or
projection of objects in the physical world with which the machine is concerned. Table I describes
the relevant properties of the problem world domains in Figure 2. These properties of the domains
are assumed to be pre-determined, and therefore cannot be modified by software engineers. For
example, the fact that the remote control produces infrared signals—rather than some other signals—
when its buttons are pressed cannot be changed by software engineers.

Interfaces between problem world domains, such as j/_UR and i/ _SU, represent a set of shared
phenomena between the domains involved. A special case of shared phenomena, at the interface
between problem world domains and the machine such as d/_IU and ¢l _MC, is called the specifi-
cation phenomena. When an event class or a property is shared between two domains, one domain
typically controls it, and the other domain observes it. In the description of the interface j/_UR,
UR!signalMuteButton means that generation of an instance of the event (henceforth an event) signal-
MuteButton is controlled by the domain User ~ R Control, while the Infrared Unit only observes

Softw. Pract. Exper. 2009; 39:973-1002
DOI: 10.1002/spe

Copyright © 2009 John Wiley & Sons, Ltd.

978 T. T. TUN ET AL. S &E

Table I. Descriptions of problem world domains.

Domains Descriptions

User ~ R Control When the user presses the mute button on the remote control (0_UR), the property
of the remote control MutelsPressed becomes true for an instant if the control is
functioning properly. When MutelsPressed is true, the control sends out an instance of
the event class for muting/unmuting (henceforth an event) signalMuteButton (j1_UR)

Infrared Unit On receipt of the event signalMuteButton from a source near the TV (jI_UR), Infrared
Unit sets MuteRequired to true for an instant. When MuteRequired is true the event
toggleMute 1is fired (d1_1U)

Sound Unit The event setMuteOn makes MuteOn true and the event setMuteOff makes MuteOn
false (cI-MC). Sound Unit stops the audio stream to the speaker, denoted by the
event stopAudioStream, when MuteOn becomes true, and starts the audio stream to the
speaker, denoted by the event startAudioStream, when MuteOn becomes false (j/_UR)

Speaker On receipt of the event startAudioStream the speaker produces the audible sound, and
similarly on receipt of the event stopAudioStream the speaker produces no audible
sound (p_S)

it. In our descriptions of phenomena, by convention, property names begin with capital letters and
event names begin with small letters.

2.2.3. Specification

In software development, the requirement and properties of the domains relevant to the requirement
are given, and the task of specifying the software is to find specifications of machines, represented
by a rectangle with two vertical stripes in Figure 2. The important obligation here is that the specifi-
cation, within the context of the relevant problem world domains, must satisfy the requirement [7].

2.3. The EC

First introduced by Kowalski and Sergot [10], the EC is a system of logical formalism, which
draws from first-order predicate calculus. It can be used to represent actions, their deterministic
and non-deterministic effects, concurrent actions and continuous change [11]. We chose EC as our
formalism because it is suitable for describing and reasoning about event-based temporal systems.
Several variations of EC have been proposed, and the version we adopted here is based on the
discussions in [12].

2.3.1. Key predicates

This predicate calculus has three main sorts: (i) sort .o/ for actions, or events, with variables a,
al, a2, ..., (il) sort Z# for fluents, or boolean states, with variables f, f1, f2, f3, ..., and (iii)
sort J for time points with non-negative integer variables ¢, t1, 2, 3, Predicates are relations
between these sorts and the standard predicates in EC are summarized in Table II. The table says,
for example, that the Happens predicate is a subset of the relations between events and time

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:973-1002
DOI: 10.1002/spe

S &E SPECIFYING FEATURES OF AN EVOLVING SOFTWARE SYSTEM 979

Table II. Basic and auxiliary predicates of the Event Calculus.

Predicate Syntax Meaning

HappensC.of x T~ Happens(A, T) Action A occurs at time T

HoldsAtCF x T HoldsAt(F, T) Fluent F holds at time T

InitiatesC. o/ X F x T Initiates(A, F, T) If action A happens at time 7', fluent F becomes true at
time T+1

TerminatesC.of/ X # x.7 Terminates(A, F, T) If action A happens at time 7, fluent F becomes false at
T+1

<CT xT T1<T2 Time point T'1 is before time point 72

ClippedTT xF x T~ Clipped(T'1, F, T2) Fluent F is terminated between times 7'1 and 72

Clipped(t1, f,t2) & Ja, t[Happens(a,t) AN tl <t <12 A Terminates(a, f,t)] (EC1)

HoldsAt(f,t2) < [Happens(a,tl) A Initiates(a, f,t1)A

. , (EC2)
t1 < t2 A =Clipped(t1, f,12)]

Figure 3. Some domain-independent rules in the Event Calculus.

points, written Happens C .o/ x 7, where Happens(A, T) indicates that the event A occurs at time
T. Similarly, the predicate HoldsAt(F, T') indicates that the fluent F is true at time 7', and so on.

2.3.2. Domain-independent rules

In addition to standard predicates, EC has domain-independent rules which define a theory of how
fluents change their values over time. In Figure 3, the rule (EC1) says that Clipped(t1, f,t2) is a
shorthand for writing that an event with a terminating effect on the fluent f occurs between 71 and ¢2.
The rule (EC2) says that if an event a has happened and initiated the fluent f at time #1, which
is before time ¢2, and if the fluent f is not terminated between 71 and ¢2, then the fluent f will
hold at time 2. There are other EC domain-independent rules such as these, but we have included
only the rules necessary for our discussions. These rules are assumed to be complete, meaning that
fluents cannot change their values without following such explicit rules.

2.4. Using the EC in the PF approach

The way that the EC can be used in the PF approach is discussed in [13]. In addition, if an event or
a fluent is a part of an interface—especially, if the event or fluent is involved in a problem structure
transformation—we will parameterize its name with the name of the interface. For example, we
will write Happens(el(p),t1) to say that the event el is generated by a controlling domain at the
interface p at the time #1. For readability, we parameterize the event and fluent names only when
necessary.

Similarly when describing the effect of an event on a fluent that is controlled by a domain, we will
parameterize the fluent name with the name of the domain. For example, Initiates(e1(p), f2(DB), t)

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:973-1002
DOI: 10.1002/spe

980 T. T. TUN ET AL. S &E

says that when the event el occurs at the interface p, the fluent f2 controlled by Domain B becomes
true. Given an action Happens(el(p),t1) and the domain rule Initiates(el(p), f2(DB), t), we may
conclude that the fluent 2 of Domain B is true at 1141 according to (EC2). Like fluent and
event names, parameterized names of fluents and events are also unique. For example, given two
interfaces pl and p2, and an event name e, if pl # p2, then e(pl) Ze(p2).

When describing the behavior of a wrapper machine, we will also use the predicate
PassedOn(e(pl),t,e(p2),d), which is a shorthand to say that if the event e at the inter-
face pl happens at the time #, another event e at the interface p2 happens at time t+d.
Formally,

PassedOn(e(pl),t,e(p2),d) déf[Happens(e(pl), t)Ad >0— Happens(e(p2),t+d)] (DRI)

The predicate PassedOn guarantees that the event gets passed on eventually. In some cases, it
may be necessary for a wrapper machine to ignore an event completely by not passing it on. An
easy, implicit way to do this, for example, is not to have an appropriate PassedOn predicate in the
description of the wrapper machine. When it is necessary to say explicitly that a wrapper does not
pass on an event, we will say Fail(e(pl),t,e(p2)) meaning that when the event e at interface p1
occurs at time ¢, the corresponding event e at the interface p2 will be generated at a time point in
infinity, oo.

Fail(e(pl),t,e(p2)) dgPassea’On(e(pl), t,e(p2),00) (DR2)

In the same way that a wrapper may delay events being communicated between some domains,
it may also delay reporting of fluents changing their values

Report(f1(pD),t, f1(pl), d)dg[HoldsAt(fl(pl), 1)<
(DR3)

HoldsAt(f1(p1"),t+d) nd > 0]

The above definition (DR3) says that whatever the value of the fluent f1 at interface p1 at time ¢,
the fluent f1 at the interface p1’ at time ¢ +d has the same value, and vice versa.

3. PROBLEM ANALYSIS

Having fitted the problem of muting/unmuting to the Commanded Behavior frame in Section
2, we now show how to specify the Mute/Unmute feature. Methodologically, we will perform
informal cause-to-effect and effect-to-cause reasoning in order to derive the feature specification.
As a result of fitting the muting/unmuting problem to a known frame, we will also examine the
typical concerns of the frame, and revise the specification if necessary. We then reason about the
correctness of a specification informally using the adequacy argument. Finally, we discuss how
problems of complex features may also be fitted to known composite frames, and how specifications
of those features are derived.

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:973-1002
DOI: 10.1002/spe

S &E SPECIFYING FEATURES OF AN EVOLVING SOFTWARE SYSTEM 981

3.1. Specifying a simple feature

There are several approaches to finding specifications for machines such as the Mute Controller; for
example, [14—17] suggest systematic techniques for obtaining specifications from requirements. We
highlight the general idea of deriving specifications from requirements in the PF approach before
discussing the application of a lightweight approach with explicit temporal reasoning in Section 4.
In the PF approach, requirements are always expressed in terms of requirement phenomena at
the interfaces such as p_S and o_UR, while specifications are always expressed in terms of speci-
fication phenomena at the interfaces such as ¢/ _MC and dI_IU. Therefore, finding a specification
for a machine is in effect a systematic rewrite of the descriptions of the requirement phenomena
into appropriate descriptions of the specification phenomena. Refining descriptions of the reference
phenomena such as those at 0_UR typically requires cause-to-effect reasoning, and refining descrip-
tions of the constraint phenomena such as those at p_S typically requires effect-to-cause reasoning.
For example, the Mute/Unmute requirement refers to the phenomena at o_UR by saying:

When the user presses the mute button on the TV remote control, ...

If the remote control is functioning properly, MutelsPressed becomes true for an instant, which
fires the event signalMuteButton according to the description of User ~ R Control in Table 1.
Therefore, the requirement can be rewritten in terms of the event at j/_UR as follows:

When the event signalMuteButton is fired, ...

If the remote control generating the event signalMuteButton was near the TV, the description of
Infrared Unit in Table I allows this event to be rewritten in terms of the event at dI_IU as follows:

When the event toggleMute is fired, ...

Refining the constraint phenomena p_S requires a different reasoning approach. In this case, we
have to ask what must happen at i/_SU, and c¢/_MC, in order that there is no speaker sound at p_S.
According to our domain description, to mute or unmute the sound, Sound Unit should fire either
stopAudioStream or startAudioStream at il _SU. Generating those events at i/ _SU is determined by
whether MuteOn of Sound Unit is true or false. MuteOn in turn is set true or false by the setMuteOn
and setMuteOff events, respectively, at c/_MC. We can therefore conclude that setMuteOn will
lead to the TV speaker producing no audible sound, and setMuteOff will lead to the TV speaker
producing audible sound. The constraint phenomena at p_S which say:

...muting and unmuting of the TV sound should be toggled.

can now be rewritten as:

... the event setMuteOff should be fired if MuteOn is true, and the event setMuteOn should be
fired if MuteOn is false.

This completes our search for the specification of the Mute Controller machine. By conjoining
the descriptions of machine phenomena at d/_IU and cI_MC, we obtain the specification for the
Mute Controller, which says:

When the event toggleMute is fired, the event setMuteOff should be fired if MuteOn is true,
and the event setMuteOn should be fired if MuteOn is false.

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:973-1002
DOI: 10.1002/spe

982 T. T. TUN ET AL. S &E

3.2. Addressing concerns

Fitting a feature to a known problem pattern enables us to apply past experience of solving
Commanded Behavior problems to the muting /unmuting problem. These concerns serve as a check-
list of issues to consider when analyzing a particular feature specification.

For example, the behaviors of human agents in a Commanded Behavior frame are not necessarily
causal: they are biddable [7]. If the TV takes some time units to mute or unmute the sound, an
obvious concern to consider is disobedience: what happens if the user presses the mute button
several times very quickly? Stakeholders may decide to address the concern in a number of ways:
for example, by weakening the requirement (‘it does not matter whatever happens if the user presses
the mute button too many times too quickly’), or by writing a stronger specification (‘once the
user command is received, ignore repeated commands for 5 time units’). In the latter case, the
specification may be rewritten as follows:

When the event toggleMute is fired and it has not been fired for 5 time units, the event setMuteOff
should be fired if MuteOn is true, and the event setMuteOn should be fired if MuteOn is false.

Physical domains, though considered causal, may have reliability concerns: what if the faulty
Infrared Unit does not faithfully toggle the muting when the event signalMuteButton is fired? In
that case the Mute Controller will fail to satisfy the requirement. If this is a critical requirement,
stakeholders may want to have other ways of muting/unmuting the sound.

There is an identity concern: what if the mute signal is generated by a device other than the
TV user with a remote control? Clearly, there is a possibility of interferences: the sound may be
muted when the users want them unmuted and vice versa. The developer will have to ask: Is that
acceptable to the stakeholders?

There is also an initialization concern: should the TV have its sound muted or unmuted when
the TV is switched on for the first time?

There are several benefits in considering known concerns when analyzing specifications: (i) since
these concerns are informed by past experience, perhaps by experience of design errors, repeat
of similar design mistakes can be prevented, (ii) since these concerns are relatively simple and
intuitive, the search space for potential errors can be narrowed, and (iii) questions raised by these
concerns can lead to a better understanding of the specification and its limitations. This is the basis
for our claim that we are applying an engineering approach.

3.3. Adequacy argument

The adequacy argument is typically a causal argument linking the reference phenomena of a require-
ment to its constrained phenomena. For example, an informal adequacy argument for the Mute
Controller specification runs as shown in Figure 4. The argument shows that the specification for
the mute/unmute feature is sound (i.e. correct with respect to our descriptions). In Section 4, with
the help of the reasoning tool, we will attempt to show that the specification is also complete (i.e.
there is no other plausible explanations in our descriptions for, for example, the sound being turned
on and off).

It is, however, important to note that the casuality link from the phenomena at 0o_UR to the
phenomena at p_S holds only under certain conditions of the domains involved. These conditions
include (i) the remote control device functions correctly and (ii) the remote control is near the TV.

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:973-1002
DOI: 10.1002/spe

S &E SPECIFYING FEATURES OF AN EVOLVING SOFTWARE SYSTEM 983

0-UR When the user with the remote control presses the mute button, ...
0-UR—jI1_UR since the remote control is functioning correctly, it generates the
signal for the mute button, and ...
j1_.UR-d1_IU since the control is near the TV, the infrared unit picks up the signal,
and notifies that the muting should be toggled, and ...
d1_-IU-c1_-MC since the machine, depending on whether the speaker is already
producing sound or not, generates the events for muting and
unmuting when notified that the muting should be toggled, and ...
c1_-MC—i1_SU since the sound unit knows exactly whether the sound signals are
passing to the speaker or not at any time, and since it starts and stops
sound signals to the speaker correctly in response to the mute/unmute
events it receives, and ...
11.SU-p-S since the speaker mutes or unmutes the sound depending on whether
the sound signals are coming in or not, ...
p-S the speaker will be muted if it was not mute, and unmuted if it was
muted, thus satisfying the requirement.

Figure 4. Informal adequacy argument for the Mute Controller specification.

Furthermore, there are also limitations on how we can interpret such a causality link. For example,
the description assumes that it is the user with the remote control that produces the control signal
for muting, and say, not a cat that happens to step on the remote control.

For this reason, the notion of the specifications being sound and complete is bound by the
completeness and consistency of the problem world domain descriptions we are working with, and
by our interpretation of these descriptions. One can reasonably argue that there is always a part
of the problem world missing in our domain descriptions which may turn out to be significant
for the specification to be sound and complete. Expertise and experience of domain experts, when
systematically recorded and exploited, may provide a degree of certainty for success in dealing
with this issue.

3.4. Specifying complex features

We now consider the problem in a child lock feature. With the child lock feature of the TV, owners
of the TV can selectively ‘lock’ specific channels in order that they are not accessible by certain
viewers. Typically when the child lock is enabled for a particular channel, the screen should be
blanked and the sound turned off when the TV is tuned to that channel. In this section we consider,
for clarity, only the part of this feature related to controlling the TV sound. In practice, users access
this lock through a menu item protected by a PIN, which although related, is a separate problem,
and is not discussed here.

The PD for this feature is described in Figure 5. It is interesting to note the difference between
this diagram and the PD for the muting/unmuting feature in Figure 2. Child lock settings are
persistent—once the lock is enabled, it should remain enabled until it is disabled—and the problem
fits a composite frame. This means that there are two subproblems in this feature: one concerned
with the issue of the user setting the child lock on/off for a particular channel (ChLock Setter),
and the other concerned with the issue of muting/unmuting according to the status of the lock and
the channel to which the TV is currently tuned (ChLock Controller).

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:973-1002
DOI: 10.1002/spe

984 T. T. TUN ET AL. S &E
ChLock c3_cc Sound i3SV u_S
Controller Unit Speaker
N
NN

19t | \ 7 child Lock\\

Child b_TAD Tuner ~ — =3 Mmuter
Antenna ~ - \
Lock o / Unmute ,
b_TAD emodulator b_TAD , N o __ -

t3a_CS | /
ChLock Infrared User ~ / v_UR
Setter d3_I1U Unit i3_UR R Control

t3b_CL:CL!{ChannelID, LockEnabled} ¢3-CC:CC!{setMuteOn, setMuteOff}
t3a_-CS:CS!{ChannellD, LockEnabled} d3_1U:IU{toggleChLock }
i3_SU:SU!{start AudioStream, stopAudioStream} u-S:S{NoSound}
b_-TAD:TAD!{CurrentChannellD} j3_-UR:UR!{signalChLockButton}
v_UR:UR!{pressChLockButton}
Figure 5. Problem diagram for the child lock feature.
3.4.1. Requirement

The requirement of this simplified child lock feature is informally stated below:

If the user has enabled the child lock for a particular TV channel, when the TV is tuned to
that channel, the TV sound should be muted on that channel, until the lock for the channel is
disabled.

3.4.2. Problem world domains

Many of the problem world domains in Figure 5 are the same as those in Figure 2. The new domain
Child Lock in Figure 5 records whether child lock is enabled—indicated by whether LockEnabled is
true or false—for each channel identified by a channel ID. Tuner~Antenna~Demodulator has the
property that indicates the ID of the channel to which the TV is currently tuned (CurrentChannellD).

3.4.3. Specifications

By following the informal approach discussed in Section 3.1, we can first obtain the specification

of the ChLock Setter described below:

When the event toggleChLock happens, LockEnabled should be set to true for the channel 1D
of the current channel if LockEnabled was previously false; LockEnabled should be set to false
for the channel ID of the current channel if LockEnabled was previously true.

Similarly, we can describe the specification of the ChLock Controller as follows:

If the ID of the currently tuned channel is LockEnabled, the event setMuteOn should be fired. If
the ID of the currently tuned channel is not LockEnabled, the event setMuteOff should be fired.

Copyright © 2009 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

Softw. Pract. Exper. 2009; 39:973-1002

S &E SPECIFYING FEATURES OF AN EVOLVING SOFTWARE SYSTEM 985

3.4.4. Addressing concerns

As in the previous example, disobedience, reliability, identity and initialization are obvious
concerns.

4. FORMAL ANALYSIS OF A SIMPLE FEATURE

We now show how to use the EC in the PF approach as an aid to make the descriptions precise,
perform rigorous analysis when necessary, and provide a basis for automated analysis. Methodolog-
ically, we first formalize the requirements, domain descriptions and the specification of a feature, in
this case, the Mute/Unmute feature. Then we outline the structure of the formal argument, which,
although more detailed, closely resembles the informal adequacy argument. The correctness of the
specification is then proved using tool-assisted logical deduction. Since we give full explanations
of all formulae we use, we hope that the discussions can be followed without having to read the
formulae in detail. First we show how to formalize the descriptions of requirements, problem world
domains and machine specification of the muting/unmuting problem in Figure 2.

4.1. Formalizing requirement

We begin by formalizing the requirement for the mute/unmute feature given in Section 2.2.1.
Translation of NL statements into the EC is quite straightforward.

The formula below (R1a) says that if the user presses the mute button and if the sound is on
when the button is pressed, the system should switch off the sound quickly. The variable mutedelay
in the formula defines how many time units ‘quickly’ means.

HoldsAt(NoSound, t) <— Happens(pressMuteButton, t 1) A

—HoldsAt(NoSound, t1) At1 <t <tl4mutedelay (R1a)

The following formula (R1b) says that if the sound is off when the button is pressed, the system
should switch on the sound quickly.

—HoldsAt(NoSound, t) <— Happens(pressMuteButton,t1) A

HoldsAt(NoSound, t1) At1 <t <t1+mutedelay (R1b)

4.2. Formalizing relevant domain properties

We also formalize the necessary properties of problem world domains described in NL in
Section 2.2.2 and Table I as shown below:

Initiates(pressMuteButton, MutelsPressed, t) <

(D1)
HoldsAt(ControlWorking, t)
Happens(autoTermMIP, t) < HoldsAt(MutelsPressed, t) (D2)
Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:973-1002

DOI: 10.1002/spe

986 T. T. TUN ET AL. S &E

Terminates(autoTermMIP, MutelsPressed, t) (D3)
Happens(signalMuteButton, t) <— HoldsAt(MutelsPressed, t) (D4)
Initiates(signalMuteButton, MuteRequired, t) (D5)
Happens(autoTermMR, t) <— HoldsAt(MuteRequired, t) (D6)
Terminates(autoTermMR, MuteRequired, t) (D7)
Happens(toggleMute, t) < HoldsAt(MuteRequired, t) (D8)
Initiates(setMuteOn, MuteOn, t) (D9)
Terminates(setMuteOff , MuteOn, t) (D10)
Happens(stopAudioStream, t) <— HoldsAt(MuteOn, t) A
—HoldsAt(MuteOn,t—1) (P1D
Initiates(stopAudioStream, NoSound, t) (D12)
Happens(startAudioStream, t) <— —HoldsAt(MuteOn, t) A
HoldsAt(MuteOn,t —1) (P13)
Terminates(startAudioStream, NoSound, t) (D14)

The descriptions say that when the user presses the mute button, the property MutelsPressed of
the remote control unit becomes true, if the control is working properly (D1), and the property
MutelsPressed remains true for a time unit (D2 and D3); if MutelsPressed is true, the event
signalMuteButton is generated by the remote control unit (D4), which sets MuteRequired of the
infrared unit to true (D5), and MuteRequired remains true for one time unit (D6 and D7); when
MuteRequired is true, the event toggleMute is fired (D8); when the event setMuteOn is fired, MuteOn
becomes true (D9); when the event setMuteOff is fired, MuteOn becomes false (D10); on property
MuteOn becoming true, the event stopAudioStream is fired (D11), which stops the speaker producing
audible sound by making NoSound true (D12); and similarly on property MuteOn becoming false,
the event startAudioStream 1is fired (D13), which makes the speaker produce audible sound by
making NoSound false (D14). Notice that we have at least one Initiate and one Terminate predicate
for each fluent, suggesting a degree of completeness of the predicates.

4.3. Formalizing the specification

In the entailment defining the relationship between the requirement (R), properties of the problem
world domains (W), and the specification (S), W, S E R, we have now defined (W) and (R) for this
particular subproblem. That is, we now have [(D1)A---A(D14)], S F R1. The question then is:
What is the (minimal) specification of S so that this entailment holds? There are two main ways to
find such specifications: one we may call correctness by construction, and the other correctness by
proof . In [14], we discuss an example of the former, where we use a systematic refinement technique
to derive specifications, supported by an automated tool [18]. In this paper, we follow the latter

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:973-1002
DOI: 10.1002/spe

S &E SPECIFYING FEATURES OF AN EVOLVING SOFTWARE SYSTEM 987

approach. Therefore, we will simply formalize the informal specification given in Section 2.2.3
before proving it.

The following partial specification (S1a) says that the Mute Controller should generate the event
setMuteOn when the event toggleMute is fired and MuteOn is false.

Happens(setMuteOn, t1) < S1a)
a
Happens(toggleMute, t1) A—HoldsAt(MuteOn, t1)

Similarly, the following partial specification (S1b) says the Mute Controller should generate the
event setMuteOff when the event toggleMute is fired and MuteOn is true.

Happens(setMuteOff , t1) < sib)
Happens(toggleMute, t1) A HoldsAt(MuteOn, t1)

4.4. Adequacy argument

It is now possible to prove, or give a formal argument for, the soundness and completeness of
the specifications. The proof below relies on the uniqueness of names (i.e. no two names refer to
the same thing) denoted by the U operator, and completeness of predicates (i.e. circumscription)
denoted by the CIRC operator [12].

Suppose that when the user presses the mute button on the remote control at the time point 0,
the TV has the sound on, the control is working and it is near the TV. In EC, this can be translated
into the following statements:

Happens(pressMuteButton, 0) 1)
HoldsAt(ControlWorking, 0) (I12)
HoldsAt(ControlNearTV , 0) I3)

—HoldsAt(NoSound, Q) (I4)

For consistency, we make explicit that the fluents MuteRequired and MuteRequired are also false
at the same time point

—HoldsAt(MuteRequired, 0) I5)
—=HoldsAt(MuteOn, Q) 16)

First we will structure the formal adequacy argument by constructing a simple proposition for
the proof.

Proposition. Let £ = (D1)A(D3) A(D5)A(DTYA (D) A(DI0O)ADI2)ADI14), Aj =(11), Ay =
(S1a)A(D2)ADAYADO)A (DB)ADI)ADI13), Q="U [pressMuteButton, autoTermMIP, autoTerm
MR, signalMuteButton, toggleMute, setMuteOn, stopAudioStream, startAudioStream] A U [Control

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:973-1002
DOI: 10.1002/spe

988 T. T. TUN ET AL. S &E

Working, MutelsPressed, MuteRequired, ControlNearTV, MuteOn, NoSound],I'=(I12) A--- A (16),
and EC=(EC1)A(EC?2). Then we have,

CIRC(Z; Initiates, Terminates) A CIRC[A A Ay; Happens]A

(P1)
QAT AECERIa)

Proof. In this deductive proof, we suppose mutedelay to be 5 time units. As in the informal adequacy
argument, we will follow these steps: (1) obtain the specific goal we are proving, (2) relate the
reference phenomena to appropriate machine phenomena, (3) deduce the machine action, and (4)
relate the machine action to the controlled phenomena. The first step simply prepares for the proof
and can be done manually. For the remaining steps of the proof, we use the tool Discrete EC
Reasoner [8,9] to encode the left-hand side of Proposition (P1) as a SAT problem and use the solver
Relsat [19,20] to find all the possible models. If the solver finds exactly one model showing that
NoSound becomes true within the time required, the specification is both sound and complete.

The first step is straightforward: (I1), (I2), the value of mutedelay and (R1a) yield the goal to
prove as HoldsAt(NoSound, t2) At2 <5. The remainder of the proof is generated by the tool, and
is annotated and shown in Figure 6.

For the second step, the tool first deduces, from (i) the event pressMuteButton happening at time
point 0, (ii) the fluent ControlWorking holding at time point 0, and (iii) the (EC2) rule, that the
fluent MutelsPressed is true at time point 1. Then from (D2) and (D4) the tool obtains the events
autoTermMIP and signalMuteButton at time point 1. The fluent MuteRequired becomes true in the
next time point as a result of the event signalMuteButton, (D5) and (EC2). The fluent MutelsPressed
is then terminated by autoTermMIP. As a result of the fluent MuteRequired becoming true, the
events foggleMute and autoTermMR are generated at the same time, according to (D6) and (D8).

0 <-- time point

ControlNearTV(). <-- a given fluent

ControlWorking() .

Happens (PressMuteButton(), 0). <-- occurrence of a given or deduced event
1

+MuteIsPressed(). <-- a fluent becoming true

Happens (autoTermMIP(), 1).

Happens (signalMuteButton(), 1).
2

-MuteIsPressed() . <-- a fluent becoming false
+MuteRequired() .

Happens (ToggleMute (), 2).

Happens (SetMuteOn(), 2).

Happens (AutoTermMR(), 2).

3
-MuteRequired() .
+MuteOn() .
Happens (Turn0ffSound(), 3).
4
+NoSound () .
P <-- end of proof
Figure 6. Tool-generated proof of P1.
Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:973-1002

DOI: 10.1002/spe

S &E SPECIFYING FEATURES OF AN EVOLVING SOFTWARE SYSTEM 989

For the third step, the tool immediately deduces the event setMuteOn from the event the event
toggleMute and the given fact that MuteOn was false, according to (S1a).

For the fourth step, the tool deduces that the fluent MuteOn becomes true in time point 3, which
fires off the event stopAudioStream according to (D11). As a result, the fluent NoSound becomes
true according to (D12) and (EC2) at time point 4. Since this is the only model found by the solver,
the specification is both sound and complete. The other case of the TV initially having the sound
off can be proved in the same fashion. U

5. EVOLVING FEATURE SPECIFICATIONS

Suppose that, having solved the muting/unmuting problem, it came to light that a variation, albeit
a small variation, of the muting/unmuting functionality is required. The requirement of this new
feature of ‘beep when mute button is pressed’ is as follows:

When the user requests TV to mute, the TV should beep before muting or unmuting.

When the Mute Controller machine has already been implemented, it is desirable not to have to
change its specification directly.

The problem context of the new feature is similar to the muting/unmuting feature in Figure 2.
Since we prefer not to modify the Mute Controller, it will be taken as a given domain in our
new problem context in Figure 7, where the label M denotes the fact that the Mute Controller is
an implemented machine. The presence of the implemented machine makes it difficult to fit the
beeping problem into the Commanded Behavior frame as it is not clear where the machine should
be introduced. In order to fit this problem into a frame, we will first transform this problem structure.

5.1. Transformation rules
If a problem structure does not neatly fit a frame, we may apply some of the following transformation
rules in order to make the problem better fit a frame.

1. Given an interface p_DA between a machine and a world domain, we may insert a new
machine between the two domains as indicated in Figure 8. In doing so, the control of the

c1_MC, c1_8SU Sound _su
Unit Speaker
Mute
ControllerIv
Infrared User ~
di_Iu Unit j1_UR R Control
c1_MC:MC!{setMuteOn, setMuteOff} i1_SU:SU!{start AudioStream, stopAudioStream,
c1_SU:SU!{MuteOn} makeBeepSound}
d1_IU:IU{toggleMute} j1_.UR:UR!{signalMuteButton}

Figure 7. Problem world domains for the new feature.

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:973-1002
DOI: 10.1002/spe

990 T. T. TUN ET AL. S &E

Domain p-DA Domain Domain p_DA W pr_w Domain
A B A rapper B
p-DA:DAY...} p-DA:DAY{...}
(al) (bl) p-W:W!{...}

Figure 8. Transformation Rule #1: Domain addition: (al) before adding a wrapper and
(b1) after adding a wrapper.

DA
Domain P W 1 pr_Wi Domain
A rapper B
qQ’'_W2 q_DC
Domain Domain
w
A rapper2 c
r_DA rr_W2
(a2)
W
p_DA P Domain
| B
Domain
Wrapper
A W pp g_DC
I Domain
C
r_DA W
(b2)

Figure 9. Transformation Rule #2: Merging domains: (a2) before merging and (b2) after merging.

phenomena is preserved: for example, if the phenomena of p_DA are controlled by Domain
A before the transformation, they are still controlled by Domain A after the transformation.
The specification of the Wrapper domain determines if and how the phenomena at the two
interfaces p_DA and p’_W are related.

2. Given two machines, we may merge them while preserving the interfaces (Figure 9). If the
two machines are non-interacting—that is, their properties and events are totally independent
of each other—then a parallel composition can be achieved; otherwise, composition concerns
arise [7].

By applying the first rule, we insert new machines at the interfaces d/_IU and ¢/ _MC of Figure 2,
and then by applying the second rule to merge the two new machines, we obtain the PD for the ‘beep
when mute button is pressed’ feature in Figure 10. The new machine, the Beep Controller, in effect
wraps around the Mute Controller, enabling it to manipulate the behavior of the mute/unmuting
feature through its input and output at dI’_BC and cI_MC. For example, by simply instantaneously
reporting fluent changes and passing on events from d/_IU to dI’_BC and c¢I_MC to cI’_BC, the
Beep Controller can maintain the integrity of the original solution.

However, in order to satisfy the requirement, the Beep Controller has to do more than this
reporting. We will first work through this simple example before giving a general discussion of the
diverse utility of the wrapper mechanism in the requirements engineering context (Section 5.3).

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:973-1002
DOI: 10.1002/spe

S &E SPECIFYING FEATURES OF AN EVOLVING SOFTWARE SYSTEM 991

i1_Su

¢1_MC, c1’_BC, c1_SU Sound S i} p’_S ST T~
" . peaker
c1”_BC Unit N // Beep on \
Mute Beep Mute/)
Controller Controller >\ Unmute
d1’_BC | RN /
nfrared User ~ N -
di_1u Unit i1_UR R Control |o_UR ~ = —"
c1-MC:MC!{setMuteOn, setMuteOff} d1’_BC:BC!{toggleMute}
cl’_BC:BC!{setMuteOn, setMuteOff, makeBeep} d1_IU:IU{toggleMute}
i1_SU:SU!{start AudioStream, stopAudioStream, makeBeepSound} ¢1_-SU:SU!{MuteOn}
c1”_BC:BC!{MuteOn} j1_UR:UR!{signalMuteButton}
p’-S:S!{Beep+NoSound, Beep+—-NoSound} 0.UR:UR!{pressMuteButton}

Figure 10. Problem diagram for the new feature.

Using the approach suggested in Section 3.1, we obtain the specification of the Beep Controller as:

When the event toggleMute at dl_1U is fired, generate the event makeBeep at c1’_BC and
report the value of MuteOn from c¢1_SU to c1” _BC. When either setMuteOn or setMuteOff is
generated at c1_MC, pass on the event to cl’'_BC after 1 time unit.

This specification treats the specification of the Mute Controller as a black box. When toggleMute
is fired, the Beep Controller generates the makeBeep event at the same time, and reports the fact
that toggleMute has been fired to the Mute Controller. It is still up to the Mute Controller to
generate the setMuteOn or setMuteOff event, but the Beep Controller makes sure that these events
are delayed by one time unit to allow time to beep.

Therefore, we can make our specifications modular by treating the existing components as black
boxes and specifying incremental functionality. Although this modularity provides rich traceability
between the requirements and the software component, it may also imply additional complexity of
specifications. How this trade-off should be managed is an interesting practical issue that is beyond
the scope of the paper.

5.2. Formal analysis of the mute controller

In order to show the correctness of this incremental feature, we first formalize the requirement,
domain descriptions and the specification.

5.2.1. The incremental requirement

When formalizing the incremental requirement, for space reasons, we focus on muting and ignore
unmuting, while noting that formalization of the unmuting requirement is not dissimilar.

[HoldsAt(Beep, t) AHoldsAt(NoSound, t +1)] <
Happens(pressMuteButton, t 1) A (R1AT)
—HoldsAt(NoSound, t1) Atl <t <t1+mutedelay

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:973-1002
DOI: 10.1002/spe

992 T. T. TUN ET AL. S &E

The requirement (R121) says that if the TV is muted (within the required time range) as a result
of the user pressing the mute button, the TV should beep once before muting.

5.2.2. Additional problem world properties

First we introduce a new event makeBeep at c¢I’_BC in Figure 10 which when fired initiates a
property of Sound Unit BeepOnce (D15), which holds for exactly one time unit (D16 and D17);
when BeepOnce is true, the event makeBeepSound is fired (D18); and when the event is fired, the
fluent Beep becomes true (D19) for one instant (D20 and D21)

Initiates(makeBeep, BeepOnce, t) (D15)
Happens(autoTermBO, t) <— HoldsAt(BeepOnce, t) (D16)
Terminates(autoTermBO, BeepOnce, t) (D17)
Happens(makeBeepSound, t) < HoldsAt(BeepOnce, t) (D18)
Initiates(makeBeepSound, Beep, t) (D19)
Happens(autoTermB, t) <— HoldsAt(Beep, t) (D20)
Terminates(autoTermB, Beep, t) (D21)

Notice that we have assumed, for the sake of clarity, that the beep lasts a fixed time length, and
the requirement does not constraint the duration of the beep. In cases when the TV hardware allows
beeps of variable durations, and the requirements constrains the duration of the beeps, they can be
handled in the same way as muting and unmmuting.

Finally, we have to resolve how the Beep Controller will report the changes of MuteOn at c1_SU
to cI”_BC. In this particular transformation, the Beep Controller will not delay the reporting of
the fluent (D22)

Report(MuteOn(c1_SU), t, MuteOn(c1” _BC), 0) (D22)

5.2.3. Additional specification
We can now formalize the specification of the Beep Controller as follows:

[Happens(makeBeep(cl'_BC),t)A
PassedOn(setMuteOn(c1_MC), t, setMuteOn(c1’'_BC), 1) A

(S14)
PassedOn(toggleMute(d1_1U), t, toggleMute(d1’_BC),0)] <
Happens(toggleMute(d1_1U), t)

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:973-1002

DOI: 10.1002/spe

S &E SPECIFYING FEATURES OF AN EVOLVING SOFTWARE SYSTEM 993

5.2.4. Adequacy argument

We now give a formal adequacy argument for the above specification. As in the previous case, the
proof relies on uniqueness of names and predicate completion.

Proposition. Let X=(D1) A (D3) A (DSADT)ADIADI0) A (D12) A (D14) A (D15) A (D17)
A(D19) A (D21), A; = (1), Ay = (S1a) A(STADHA (D2) A(DAA(DE)ADS) ADITA(DIZA(DIE)
A (D18) A (D20) A (D22), Q=U [pressMuteButton, autoTermMIP, autoTermMR, signalMuteButton,
toggleMute, setMuteOn, stopAudioStream, startAudioStream, makeBeep, autoTermBO, makeBeep
Sound, autoTermB] A U[ControlWorking, MutelsPressed, MuteRequired, ControlNearTV , MuteOn,
NoSound, BeepOnce, Beep], '=(I2)A---A(16), and EC=(EC1)A(EC?2). Then we have,

CIRC(Z; Initiates, Terminates) A CIRC[A1 A Ay; Happens]A
(P14
QAT AECE(RIA)

Proof. The proof is deductive and, as in the previous case, mutedelay takes the value of 5. We
again follow the steps set out in the previous proof. In the first step, we find the goal to prove as
HoldsAt(Beep, 4) ANHoldsAt(NoSound, 5). For the remaining steps, the tool finds the only model
shown in Figure 11.

The two proofs are similar in many ways. The interesting difference is that at time point 2 when
the machine action is deduced, the tool also finds the event makeBeep being fired at that point.
When combined with (D15) and (EC2), it finds the fluent BeepOnce to be holding at time point 3.
Significantly, the event setMuteOn_cl fired at time point 2 does not have any effect on MuteOn at
time point 3. The event is simply passed on to setMuteOn_ciprime, which sets MuteOn to true at
time point 4, thus, achieving the delay required before muting the sound.

The fluent Beep starts to hold at time point 4, as a result of the event makeBeepSound at time
point 3 and (EC2). Beep is terminated at the next time point, as the fluent NoSound starts to
hold. Therefore, the speaker produces the beep sound before the sound is turned off as required.

0
ControlNearTV() .
ControlWorking() .
Happens (PressMuteButton(), 0).
1
+MuteIsPressed().
Happens (AutoTermMS(), 1).

3

-MuteRequired() .

+BeepOnce () .
Happens (AutoTermBO(), 3).
Happens (MakeBeepSound (), 3).
Happens (SetMuteOn_clprime(), 3).

4

Happens (SignalMute (), 1). -BeepOnce () .
2 +Beep() .
-MuteIsPressed(). +MuteOn() .
+MuteRequired() . Happens (AutoTermB(), 4).
Happens (AutoTermMR(), 2). Happens (Turn0ffSound (), 4).
Happens (MakeBeep(), 2). 5
Happens (SetMuteOn_c1(), 2). -Beep() .
Happens (ToggleMute (), 2). +NoSound () .
P

Figure 11. Tool-generated proof of P1AL

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:973-1002
DOI: 10.1002/spe

994 T. T. TUN ET AL. S &E

Again, the other case of the speaker initially producing no sound can be proved in the same
manner.]

In summary, the discussions so far show that we can extend feature specifications by adding
further predicates and rules into our descriptions without necessarily having to modify the existing
ones directly. This allows us to keep clear mappings between requirements and specifications of
features, and makes automation of proofs more manageable.

5.3. Patterns of wrapping

The wrapping machine has diverse utility, and architectural implications. Introducing the Beep
Controller is not so different from introducing a component in a pipe-and-filter architecture. In
this sense we are working with a model of system development that allows problem and solu-
tion structures to influence each other. We now briefly discuss some patterns of wrapping in our
approach.

5.3.1. Total wrapping

In the mute and beep controllers example, we have allowed the Beep Controller to manipulate
both inputs and outputs of the Mute Controller (Figure 10). This is both a problem space and a
solution space decision. It is a problem space decision, because we have decided that, according to
the requirement, the Beep Controller needs to manipulate d/_IU and c¢I_SU. On the other hand,
this is a solution space decision, because, as we shall see, different styles of wrapping lead to
different implementation architectures.

5.3.2. Partial wrapping

In fact, there are two alternatives to this total wrapping. It is possible to have a wrapper that
manipulates either input or output, but not both, of a component.

Output-only wrapper. In this case, the wrapper manipulates only the output part of a component.
For example, the alternative PD in Figure 12 suggests that the Beep Controller can manipulate
the output of the Mute Controller only. The requirement assumption is that whenever the Mute
Controller generates the setMuteOn event, the Beep Controller should send a makeBeep event to
Sound Unit ahead of the setMuteOn event. This decision has important implications. If the Mute
Controller also generate the setMuteOn in response to events other than the user pressing the
mute button, then the Beep Controller will also generates the makeBeep event on such instances.
The new axioms in our extended domain theory allow us to describe this wrapper neatly as
follows:

[Happens(makeBeep(cl'_BC), t)A
PassedOn(setMuteOn(c1_MC), t, setMuteOn(c1’_BC), 1)] < (P IAZ)

Happens(setMuteOn(c1_-MC), t,)

Input-only wrapper. The wrapper, in this case, manipulates only the input part of a component.
The alternative PD in Figure 13 suggests that the Beep Controller can manipulate the input to the

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:973-1002
DOI: 10.1002/spe

SRzE SPECIFYING FEATURES OF AN EVOLVING SOFTWARE SYSTEM 995

c1’_BC,
1 . '_S
¢1_MC, ¢c1”_BC Beep °1.8U sound |11-SUY P - =<
. Speaker - N
Controller Unit R 7/ Beepon \
Mute b Mute/]
Controller j1_UR 7\ Unmute Vs
m Infrared User ~ y ~ _
- Unit R Control o UR S -
c1_MC:MC!{setMuteOn, setMuteOff} i1_SU:SU!{startAudioStream, stopAudioStream}
c1’_BC:BC!{setMuteOn, setMuteOff, makeBeep} d1.IU:IU{toggleMute}
¢1.SU:SU{MuteOn} j1_UR:UR!{signalMuteButton}
¢1” _BC:BC!{MuteOn} 0-.UR:UR!{pressMuteButton}

p’-S:S{Beep+NoSound, Beep-+-NoSound}

Figure 12. An output-only wrapper for the new feature.

c1_MC, c1_SU

Mute it1_su —
- s P
Controller [T sound Speaker °- - N
c1°_BC Unit N 7 Beepon \
d1’_BC Y Mute/
\ Unmute
AN ’
Beep Infrared User ~ N - - -
Controller 411U Unit i1_UR R Control o_UR
c1_MC:MC!{setMuteOn, setMuteOff, makeBeep} i1.SU:SU!{start AudioStream, stopAudioStream}
¢1.SU:SU!{MuteOn} d1.1U:IU!{toggleMute}
c1’_BC:BC!{setMuteOn, setMuteOff, makeBeep} d1’_BC:BC!{toggleMute}
0_UR:UR!{pressMuteButton} j1_.UR:UR!{signalMuteButton}

p’-S:S!{Beep+NoSound, Beep+—-NoSound}

Figure 13. An input-only wrapper for the new feature.

Mute Controller only. It can do so by, for example, delaying the passing of the event toggleMute
from d1_IU to d1’_BC by one time unit and sending the BeepOnce event to Sound Unit at ¢/’ BC
immediately

PassedOn(toggleMute(d1_1U), t, toggleMute(d1’_BC), 1)A (1A3)
P
Happens(makeBeep(c1'_BC),t) < Happens(toggleMute(d1_1U), 1)

There are several advantages and disadvantages of these different formulations of the Beeping
problem. The choice of a particular solution may be ultimately determined by various constraints
including those of stakeholders. With these examples, we have demonstrated that the transformation
of problem structures opens up these opportunities and allows the developer to explore problem
and solution alternatives.

5.3.3. Other wrappers

In general, wrappers, like other domains, work with client—server-type communications where a
wrapper knows the domain to which it is sending the events (even though the events may be

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:973-1002
DOI: 10.1002/spe

996 T. T. TUN ET AL. S &E

intercepted by another domain) but not the domain from which it is receiving events. Therefore, a
wrapper may not be able to discriminate between same-typed events coming from different sources.
In Figure 13, for example, the Sound Unit does not know whether a makeBeep event is coming
from the Mute Controller or the Beep Controller.

There are cases where the wrapper needs to be sure of the origin of an event to determine a correct
course of action. In some cases, it is possible to deduce this information by allowing the wrapper
to examine both inputs and outputs of possibly several components. In Figure 10, for example, the
Beep Controller ‘knows’ whether a mute/unmute event from the Mute Controller is in response
to a user requested or not. In fact, it beeps, only if it believes that is the case. We call this a selective
wrapper.

Wrappers can also be used as a kind of composition operator, often to resolve conflicting
behavior at runtime. In Section 6, we will make use of this wrapping mechanism when composing
several features.

5.4. Noise suppression feature

We now introduce the last TV feature in our discussion. Figure 14 shows a problem context of
the well-known feature of changing channels, or ‘channel zapping’. The diagram can be under-
stood as follows: when the user presses a channel number of the remote control, the imple-
mented machine, or software component, the Channel Zapper senses it through the infrared unit.
The Channel Zapper then instructs the Tuner~Antenna~Demodulator to change frequency.
Tuner~Antenna~Demodulator then searches for the requested frequency and, if a TV station is
found it allows the signals to flow ‘downstream’ through the switch matrix. Video Decoder and
Sound Unit obtain this feed from Switch Matrix and produce appropriate visual images and sound
on Video Output and Speaker appropriately.

However, there is a problem with simply re-tuning the frequency when the user requests the
channel to change [4]. The problem is to do with audio and visual ‘noises’ that TVs produce
when the tuner is not tuned to a station, as it is the case while Tuner~Antenna~Demodulator
is searching for a new frequency. Therefore, turning the sound off and blanking the screen until a

e_VD
f_SM Video Video
Decoder Output
b_CZ Tuner ~ 9-TAD | switen
Antenna ~ ;)
Matrix i_SuU
Demodulator Sound
Channel o SM Unit Speaker
Zapper .
M UR
|_ Infrared - User ~
d_Iv Unit R Control
b_CZ:CZ!{tuneTo(X)} d_IU:IU!{ChangeChannel(C)}
g-TAD:TAD!{AntennaFeed} j-UR:UR!{ZappingSignalsGenerated }
f_SM:SM!{SwitchVideoFeed} h_SM:SM!{SwitchAudioFeed}
e.VD:VD!{VideoSignals} i.SU:SU{start AudioStream, stopAudioStream}
Figure 14. Problem diagram for channel zapping.
Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:973-1002

DOI: 10.1002/spe

S &E SPECIFYING FEATURES OF AN EVOLVING SOFTWARE SYSTEM 997

stable signal is restored are a regular feature of modern TVs. In the following discussion we will
concentrate on the issue of audio noise suppression.

5.4.1. Requirement

The requirement, concerning the TV audio, for this feature is stated as follows:
Do not produce audio noise during the channel changeover.

The context of this problem in Figure 14 is not clear because the reference phenomena in the
stated requirement are also not clear. To make the problem context clear, we first need to be able to
answer the following question: should noise be suppressed only when the user requests the channel
to change, or should noise be suppressed at every changeover? Since we assume that the user does
not want noise suppression, say, during the TV installation, we take the former to be the case. The
requirement is reformulated again as follows:

When user commanded channel changing happens, mute the sound until the audio feed from
the switch matrix is stable.

5.4.2. Problem world domains

This requirement makes clear that the domains User ~ R Control, Infrared Unit, Video Decoder
and Video Output are not relevant to the problem. Now that we have some understanding of the
problem and its context, we will first attempt to describe it using a PD. However, the problem
cannot be fitted to a frame neatly because we cannot introduce a machine into the existing structure
easily. After applying the transformation rules discussed in Section 5.1 to the interfaces b_CZ and
h_SM, we describe the problem as shown in Figure 15. The problem now becomes simpler: if the
audio feed to the sound unit becomes unstable as a result of the channel changing by the user, the
sound should be muted.

5.4.3. Specification

Once described in this way, we can obtain the following specification for the Noise Suppressor.

When the event tuneTo(X) happens at b_CZ, the event setMuteOn should be fired at c2_NS
immediately, and the event tuneTo(X) should be passed on to b'_NS. The event setMuteOff
should be fired at c2_NS when SwitchAudioFeed becomes stable.

We have now shown how to transform an existing design when specifying incremental features,
and how the soundness and completeness of an incremental specification can be checked with the
help of a logical deduction tool.

6. COMPOSING FEATURES

In our descriptions of the problems so far, we have not taken into account what may happen when
the features are composed: they may be inconsistent and produce conflicting behavior at runtime.

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:973-1002
DOI: 10.1002/spe

998 T. T. TUN ET AL. S &E

b CZ Channel b Cz
B Zapper & K

etc... W \\

N
~N - T T <
b’_NS ~ - ~
- Tuner N Suppress \
I Antenna ~ Noise]
Noi Demodulator 1N
oise ~__ __~-
Suppressor ,ngAD I
h_SM 1
Switch !
Matrix I p_s
1%
Sound I-su
c2_NS, h’_N Unit Speaker
b_CZ:CZ!{tuneTo(X)} b’ _NS:NS!{tuneTo(X)}
h_SM:SM!{SwitchAudioFeed} ¢-TAD:TA!{ AntennaFeed }
h’_NS:NS!{SwitchAudioFeed} c2_NS:NS!{setMuteOn, setMuteOff}
i_SU:SU!{start AudioStream, stopAudioStream} p-S:S!{NoSound}

Figure 15. Problem diagram for noise suppression.

However, we have deferred the composition concerns when decomposing complex problems, and
will consider them when solutions to sub-problems are recomposed in order to create a complete
system [7]. Thus we have observed the separation of concern principle. This is also in line with what
has been called the ‘composition-oriented’ approach to product-line software development [21].

We note that by deferring composition concerns in our decomposition, and only considering
them when we recompose features, we hope to provide a way of dividing complexity and managing
responsibility between those who develop features and those who compose them. Since our compo-
sition approach is not intrusive, i.e. domains representing features are treated as black boxes or
given domains, it can potentially be used to compose features developed by disparate developers.

Suppose that a particular model of TV requires the beep on mute, child lock and noise suppression
features. Methodologically, we detect possible interactions between features by first examining
whether they have any shared domain among them. If problem structures of any two features have
a common domain, we then examine if there is a pair of Initiates and Terminates predicates for any
fluent of the domain, and if the two features can independently generate events with the initiating
and terminating effects on the fluent. If so, there is a potential feature interaction problem [14].
In our example, a possible three-way interaction is detected because (i) the Sound Unit domain
is shared by the three features, (ii) the Sound Unit domain has a fluent MureOn which can be
initiated by the event setMuteOn (D9) and terminated by the event setMuteOff (D10), and (iii) the
events setMuteOn and setMuteOff can be independently generated by Beep Controller, ChLock
Controller and Noise Suppressor.

Having identified the potential interaction between the three features, a compositional wrapper is
introduced and the requirement for the composition is formulated by identifying features or events
that have higher priority over others. For example, if the user mutes the TV and then changes the
channel, presumably it should stay muted after the channel is changed. If the child lock is on, the

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:973-1002
DOI: 10.1002/spe

S &E SPECIFYING FEATURES OF AN EVOLVING SOFTWARE SYSTEM 999

Noise
Suppressor c2_NS
Beep c1’_BC, Compositional
Controller c1’_CW Wrapper
c_CW, c1_SU _
ChLock ¢3.CC , -~
Controller Sound s « _ Prevent
Unit i su peaker <p,s N Conflicts
—_ —
c1’_BC:BC!{setMuteOn, setMuteOff, makeBeep} c.CW:CWH{setMuteOn, setMuteOff, makeBeep}
¢3_CC:CCl{setMuteOn, setMuteOff} c2_NS:NS!{setMuteOn, setMuteOff}
i.SU:SU!{startAudioStream, stopAudioStream} p-S:S!{NoSound}
¢1.SU:SU{MuteOn} c1’”_CW:CW!{MuteOn}

Figure 16. A partial composition diagram for 3-way feature composition.

sound should be muted in all circumstances. The specification of the compositional wrapper is then
derived by declaratively describing the priority rules.

Figure 16 shows a partial composition diagram involving the three features, highlighting relevant
aspects of the problem.

6.1. Composition requirement

The composition requirement Prevent Conflicts may be stated informally as follows:

Child lock has the highest priority: if it is on, keep the sound muted in all circumstances. If
the user wants to mute, mute the sound. If the user wants to unmute, unmute the sound unless
noise suppression has muted. Similarly, if noise suppression wants to mute, mute the sound.
If noise suppression wants to unmute, unmute the sound unless the user has asked to mute.

The requirement is close to the specification, and therefore we will not formalize the requirement,
but specify the compositional wrapper straightaway.

6.2. Specifying compositional wrapper

Specifying compositional wrappers is done declaratively. We will simply state conditions under
which certain events are allowed or not allowed. In order to break down the complexity, we will
specify it step-by-step. First we say that all setMuteOn events from the three features are passed
on to the sound unit (Cla, C1b and Clc).

PassedOn(setMuteOn(c2_NS), t, setMuteOn(c_CW), 0) (Cla)
PassedOn(setMuteOn(c1’_BC), t, setMuteOn(c_CW), 0) (C1b)
PassedOn(setMuteOn(c3_CC), t, setMuteOn(c_CW), 0) (Clo)

The strategy to specify setMuteOff is that by default they are passed on to the sound unit unless
the following conditions for failure are met. Notice that the conditions for failure are defined from
the perspective of each of the three features.

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:973-1002
DOI: 10.1002/spe

1000 T. T. TUN ET AL. S &E

The unmuting event from the child lock feature (ChLock Controller) fails if the noise suppression
feature (Noise Suppressor) has muted since the child lock feature has muted and the noise
suppression feature has not unmuted afterwards:

Happens(setMuteOn(c3_.CC),t1)A
Happens(setMuteOn(c2_N S), t)A
Happens(setMuteOff (c3_-CC),t2)A (C2)
—Happens(setMuteOff (c2_N S),t3)Atl <t <t3<t2—
Fail(setMuteOff (c3_.CC), t2, setMuteOff (c_CW))

Suppose that the child lock is switched on, and the TV activates the noise suppression feature.
While the noise suppression is active, if the user tries to remove the child lock, the unmuting event
will fail and the sound will remain muted. However, if the child lock is switched on, and the user
muted the sound, the child lock will succeed in unmuting. In other words, the last action has to be
muting by the noise suppression feature in order for unmuting of the child lock feature to fail.

The unmuting event from the beeping feature (Beep Controller) fails if the noise suppression
or child lock feature has muted since the beeping feature has muted and they have not unmuted
afterwards. Let ¢23 be either ¢2_NS or ¢3_CC, then we have:

Happens(setMuteOn(c1’'_BC), t1)A
Happens(setMuteOn(c23),t)A
Happens(setMuteOff (c1' _BC),t2)A (C3)
—Happens(setMuteOff (c23),t3)Atl <t <t3<t2—
Fail(setMuteOff (c1' _BC), 12, setMuteOff (c_.CW))

For example, if the child lock or noise suppression feature has muted the sound since the user
has muted, the user’s attempt to unmute will fail.

The unmuting event from the noise suppression feature (Noise Suppressor) fails if the beeping
or child lock feature has muted since the noise suppression feature has muted and they have not
unmuted afterwards. Let ¢13 be either ¢1’_BC or ¢3_CC, then we have:

Happens(setMuteOn(c2_NS), t1)A
Happens(setMuteOn(c13),t)A
Happens(setMuteOff (c2_NS), t2)A (Cc4)
—Happens(setMuteOff (c13),t3)Atl <t <t3<t2—
Fail(setMuteOff (c2_NS), t2, setMuteOff (c_.CW))

Similarly, if the user has muted the sound or switched the child lock on since the noise suppression
feature has muted, noise suppression feature will fail to unmute.

This scheme of describing requirement priority in composition operator has some advantages
over the mechanism we used in [14], in particular: (i) instead of an additional machinery, here we

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:973-1002
DOI: 10.1002/spe

S &E SPECIFYING FEATURES OF AN EVOLVING SOFTWARE SYSTEM 1001

use only EC predicates, (ii) our EC predicates is more expressive because we can, for example,
delay certain events if necessary, rather than fail them at all times, and (iii) here it is not necessary
to specify the length of time during which certain events may fail: for example, it is impossible to
say for how long the user may want to keep the sound muted.

7. CONCLUSIONS

In this paper, we have described an engineering approach to specifying a feature-rich TV software
system in a modular fashion. Our approach involves an extensive application of past knowledge
about problem patterns in software specifications, and formal analysis.

It is an advantage of using the PF approach that we have been able to decompose complex
problems in TV features to simpler and familiar problems. Having done this, specifications of these
features have been derived and analyzed using a list of known concerns. This enables the developer
to capture and reuse past knowledge of solving similar problems. In addition to specifying new
features, we have shown how features for incremental requirements can be specified by transforming
the existing design and introducing wrappers. The wrappers introduced are non-intrusive in the
sense that they treat the existing feature specifications as black-boxes. Guidance on using general
patterns of wrappers has been provided.

Having derived informal specifications of new and incremental features, we have shown how
features can be specified formally, and sometimes incrementally, using the EC and our extension of it.
One of the advantages of using the EC is the general availability of free off-the-shelf tools supporting
various types of automated reasoning. Feature specifications in the EC have been analyzed by the
Discrete EC Reasoner tool to show their soundness and completeness with respect to their problem
world contexts and requirements.

As a result of using this engineering approach, we have derived specifications that are highly
modular. For example, there are clear separations between requirements for new features, require-
ments for incremental features and requirements for their composition, and also their correspon-
dence with respective specifications. This has helped to create mappings between requirements and
features, and between problem and solution structures, to support the evolution of a feature-rich
software system.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for providing detailed and insightful comments.

REFERENCES

—_

. Rajlich V. Changing the paradigm of software engineering. Communications of the ACM 2006; 49(8):67-70.

2. Nuseibeh B. Weaving together requirements and architectures. Computer 2001; 34(3):115-117.

3. Turner CR, Fuggetta A, Lavazza L, Wolf AL. A conceptual basis for feature engineering. Journal of Systems and
Software 1999; 49(1):3-15.

4. van Ommering RC. Horizontal communication: A style to compose control software. Software—Practice and Experience
2003; 33(12):1117-1150.

5. van Ommering R, van der Linden F, Kramer J, Magee J. The koala component model for consumer electronics software.

Computer 2000; 33(3):78-85.

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:973-1002
DOI: 10.1002/spe

1002 T. T. TUN ET AL. S &E

6. Anton Al, Potts C. Functional paleontology: The evolution of user-visible system services. Transactions on Software
Engineering 2003; 29(2):151-166.

7. Jackson M. Problem Frames: Analyzing and Structuring Software Development Problems. ACM Press, Addison Wesley:
New York, Reading, MA, 2001.

8. Mueller ET. Commonsense Reasoning. Morgan Kaufmann: Los Altos, CA, 2006.

9. http://decreasoner.sourceforge.net/ [13 February 2009].

10. Kowalski R, Sergot M. A logic-based calculus of events. New Generation Computing 1986; 4(1):67-95.

11. Shanahan M. The event calculus explained. Artificial Intelligence Today (Lecture Notes in Artificial Intelligence, vol.
1600), Woolridge MJ, Veloso M (eds.). Springer: Berlin, 1999; 409-430.

12. Miller R, Shanahan M. The event calculus in classical logic—alternative axiomatisations. Journal of Electronic
Transactions on Artificial Intelligence 1999; 3:77-105.

13. Classen A, Laney R, Tun TT, Heymans P, Hubaux A. Using the event calculus to reason about problem diagrams.
Proceedings of the 3rd International Workshop on Applications and Advances of Problem Frames. ACM: New York,
NY, U.S.A., 2008; 74-77.

14. Laney R, Tun TT, Jackson M, Nuseibeh B. Composing features by managing inconsistent requirements. Proceedings
of 9th International Conference on Feature Interactions in Telecommunications and Software Systems (ICFI 2007),
Grenoble, France, 2007; 141-156.

15. Li Z, Hall JG, Rapanotti L. From requirements to specifications: A formal approach. Proceedings of the 2006 International
Workshop on Advances and Applications of Problem Frames, Shanghai, China, 2006; 65-70.

16. Rapanotti L, Hall JG, Li Z. Deriving specifications from requirements through problem reduction. IEE Proceedings
Software 2006; 153(5):183-198.

17. Seater R, Jackson D. Requirement progression in problem frames applied to a proton therapy system. Proceedings of
RE’06. IEEE Computer Society: Washington, DC, U.S.A., 2006; 166—175.

18. Tun TT, Laney R, Jackson M, Nuseibeh B. Tool support to derive specifications for conflict-free composition. Technical
Report, 2008/13, Department of Computing, The Open University, 2007.

19. Bayardo RJ Jr, Schrag R. Using CSP look-back techniques to solve real-world SAT instances. AAAI/IAAI, Providence,
RI, 1997; 203-208.

20. http://code.google.com/p/relsat/ [13 February 2009].

21. Bosch J. The challenges of broadening the scope of software product families. Communications of the ACM 2006;
49(12):41-44.

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:973-1002

DOI: 10.1002/spe

