
!!!!!!!!!!!
This is an author-generated version.!!
The final publication is available at www.interscience.wiley.com!!
DOI: 10.1002/spip.229!
Link: http://onlinelibrary.wiley.com/doi/10.1002/spip.229/abstract!!
Bibliographic information:!!
Alexis Ocampo, Fabio Bella, Jürgen Münch. Software Process Commonality Analysis. International
Journal on Software Process: Improvement and Practice, 10(3):273-285, 2005.

Software Process Commonality Analysis

Alexis Ocampo, Fabio Bella, and Jürgen Münch
Fraunhofer Institute for Experimental Software Engineering,

 Sauerwiesen 6, 67661 Kaiserslautern, Germany
Tel: + 49 (0) 63 01 707 167, Fax: + 49 (0) 63 01 707 200

{ocampo, muench, bella}@iese.fraunhofer.de

Abstract

To remain viable and thrive, software organizations must rapidly adapt to frequent, and often rather far-

ranging, changes to their operational context. These changes typically concern many factors, including the

nature of the organization’s marketplace in general, its customers’ demands, and its business needs. In

today’s most highly dynamic contexts, such as web services development, other changes create additional,

severe challenges. Most critical are changes to the technology in which a software product is written or

which the software product has to control or use to provide its functionality. These product-support

technology changes are frequently relatively ‘small’ and incremental. They are, therefore, often handled by

relatively ‘small,’ incremental changes to the organization’s software processes. However, the frequency of

these changes is high, and their impact is elevated by time-to-market and requirements change demands. The

net result is an extremely challenging need to create and manage a large number of customized process

variants, collectively having more commonalities than differences, and incorporating experience-based,

proven ‘best practices’. This paper describes a tool-based approach to coping with product-support

technology changes. The approach utilizes established capabilities such as descriptive process modeling and

the creation of reference models. It incorporates a new, innovative, tool-based capability to analyze

commonalities and differences among processes. The paper includes an example-based evaluation of the

approach in the domain of Wireless Internet Services as well as a discussion of its potentially broader

application.

Keywords - Software Reference Process, Commonality Analysis, Variability, Software Process Modeling.

1. Introduction

Survival in today’s highly dynamic business environments requires that organizations continuously adapt

their processes. Success and growth ! rather than mere survival ! require that this adaptation be rapid

enough to realize the competitive advantage offered by new business opportunities. Business models must be

rapidly changed or newly developed; the organization’s work force must be quickly updated and trained.

Most challenging, however, is rapid adjustment to changes in the organization’s process-support technology.

For organizations providing software products (software organizations), this includes the technology used to

develop their products as well as the technology the products must control or use to provide their

functionality. In many software-dependent areas, for example the Wireless Internet, single process-support

technology changes are small and incremental, but quite frequent. The result of such changes can be a set of

processes that vary in relatively minor ways. However, organizations suffer severe problems when such

changes are introduced arbitrarily, irrationally, and in uncontrolled ways. They could, for example, be the

cause of drastic deviations from project plans.

 One way to control the proliferation of variations and its attendant risks is to carry forward knowledge

about what worked and what did not work in the past. In other words, software organizations working in this

area must be agile, but this agility should be based on prior experience rather than being merely based on

intuition (Boehm 2002). Process changes should be to the best possible extent beneficial for the organization’s

future work.

This raises the question: How can a software organization cope with product-support technology changes

by rapidly creating customized software development processes containing proven ‘best practices’?

The rationale for our work is that understanding an organization’s current and past practices, describing the

processes underlying these practices, and being able to identify variations and reasons for variations will

certainly help software organizations address this question.

The basis for our approach is the creation of customizable, domain-specific process models (i.e., reference

process models) through the bottom-up identification of process variations. The overall approach can be seen

in Figure 1, and is described with details in (Becker-Kornstaedt et al. 2002). The mentioned article describes a

validated method on how to gain process knowledge for an upcoming field fast and incrementally. It is not the

scope of this paper to detail the overall approach. Briefly, the method can be used for designing an adaptable

software development process based on existing practices from related domains, industrial piloting, and

expert knowledge. Its main steps are:

– Set up pilots - Suitable pilot projects are determined and organized.

– Perform pilots - The pilot projects are conducted.

– Observe and model processes - The processes as performed in the pilot projects are observed and

modeled.

– Identify and evaluate processes and practices from related fields - This information will be used to

complete the reference process model where it is incomplete.

– Analyze commonalities and differences - Commonalities and differences between the different process

models are analyzed in order to identify process variants and justifications for them. This must

recognize differences in the application domain as well as goals and contexts of the pilot projects.

– Create comprehensive process model - The models for the processes used in the pilot projects as well

as practices and processes from related fields are integrated to create a comprehensive process model

(Ocampo et al. 2003). The resulting comprehensive process model can be seen as a reference process

model, because it is intended to be used as a reference for developers and managers that provides a

starting point for developing a customized process meeting the requirements for a set of product-

support technologies.

The focus of this paper is to present a tool-supported technique for performing the activity analyze

commonalities and differences (part of the overall approach), which can be helpful in practical situations

where software organizations must compare a set of process models in a systematic way, in order to

understand their context-dependant variations.

Capabilities for identifying best practices and process variations might be valuable for software

organizations in other areas, too, such as:

- Process measurement: Metrics that reflect process similarities and differences could be important for

guiding process improvement.

- Process training: Identifying the gaps between desired and actual processes could improve workforce

training.

- Tailoring guidance: Notations for describing common and alternative process parts could support

tailoring.

- Outsourcing: Commonality analysis could provide a basis for integrating processes between an

outsourcing organization and organizations it outsources to.

- Executive decision making: Notations for assigning value to variations can be important for managers of

software organizations for deciding how to change a software project so that it may proceed more

effectively and efficiently.

The following sections discuss the background for our work, describe the details of the technique we have

developed, provide a preliminary validation (in terms of an example of its use), and discuss possible future

work.

2. Background

The following section presents commonality analyses performed in related fields as well as a description of

the context of the work.

2.1. Related Work

In the database world, the problem of integrating schemas of existing databases from the perspectives of

different users (database schema integration) is addressed by (Batini et al. 1992). Products from this database

integration are: a global database schema, data mapping from global to local databases, and mapping of

querying transactions from local to global databases. Semantic relationships between database schema X1 and

database schema X2 are defined as: identical, equivalent, compatible, and incompatible. The schemas are

analyzed and compared in order to uncover conflicts. Any situation where the representations of X1 and X2

are not identical is considered to be a conflict between X1 and X2. The representations of the schemas are

used to compare them, but there is no defined method to do this comparison.

Integration of design specifications has been examined by (Feather 1989), (Leite and Freeman 1991),

(Robinson 1989). These approaches have in common that they integrate pairs of specifications and use

specification formalisms, and that their goal is to reduce the complexity of the global specification. The

analyst compares components of both specifications and declares them equivalent or not. A special formalism

is used in order to conclude when a component X1 is equivalent to component X2. Conflicts are uncovered

when ambiguities and inconsistencies are detected between pairs of specifications. Negotiations are needed

between developers in order to identify and resolve conflicts. Once the integration has been accomplished,

there is no way to extract the original views from the final specification, which is not the case with the

technique presented in this article.

In the product line world, identifying commonalities and differences is an accepted, wide-spread practice

when comparing systems (Coplien et al. 1998). Usually, common elements are reused and variations are

hidden, in the most appropriate way, in order to produce a family of products. In order to understand the

extent of commonality and variability in a family of products, the proposed steps are:

– Establish the scope - The collection of objects under consideration.

– Identify commonalities and variations - Similar attribute values across the family members are

identified. Variants of the attribute values are identified. The attribute values justify the variants.

– Bound variations - A range of values for the variants is defined.

– Exploit commonalities and accommodate variations - The results of the commonality analysis are

grouped into procedures, inheritance, and parametric polymorphism.

In the process modeling world, there exist some approaches to integrating partial process models (views)

into a descriptive process model when persons covering different roles describe their perspectives of a large

software process within one single organization (Turgeon and Madhavhji 1996), (Verlage 1998). In these

approaches, variations are often seen as inconsistencies or as imprecision, and therefore, trigger questions that

lead to a review of the views that will eliminate these inconsistencies. The final goal is to obtain a multi-view-

consistent comprehensive process model. In our approach, some of the rules discussed in (Verlage 1998) are

adapted to the SPEARMINT® environment (Becker-Kornstaedt et al. 2000) and applied in order to create a

model with common best practices and variations to be used as reference within a specific domain.

In the process modeling world, creating reference models is often done in a top-down fashion using

prescriptive process models. Prescriptive process models describe how a product should be developed.

Prescriptive process models are generic (i.e., do not define specific approaches to carrying out activities), and

do not describe a company’s actual processes.

The commonality analysis technique we propose can be seen as analogous to the commonality analysis of

products in product line approaches. It relies on descriptive, rather than prescriptive, process modeling to

create a reference model, utilizing several capabilities found in multi-view modeling approaches (such as rule-

based comparisons).

2.2. Context

The technique was developed and evaluated as part of the WISE (Wireless Internet Services Engineering)

project. The project aimed at producing integrated methods and COTS components (commercial off-the-shelf

software) and open source to engineer services on the Wireless Internet. The components include a service

management component and an agent-based negotiation component. Two pilot services, i.e., a financial

information service and a multi-player game, were developed by different organizations. The project lasted 30

months and an iterative, incremental development style was applied: three iterations were performed of

roughly 9 months each. In iteration 1, a first version of the planned pilot services was built using GPRS

(General Packet Radio Service). At the same time, a first version of methods and tools was developed. In

iteration 2, a richer second version of the pilots was developed on GPRS, using the first version of methods

and tools. In parallel, an improved second version of methods and tools was developed. In iteration 3, the

final version of the pilots was developed on UMTS (Universal Mobile Telecommunications System), using

methods and tools from the second iteration. Also, a final version of methods and tools was developed. One of

WISE’s objectives was to develop a reference process model that may be used by software organizations for

creating Wireless Internet Services. In order to achieve this objective, it was decided to use the empirical

approach, i.e., the observation of realistic pilot projects, techniques, and processes, described previously in the

introduction section of this article (see Figure 1). The SPEARMINT® tool has been used in order to document

and manage the pilots’ descriptive process models. The decision for using it relied on previous industrial case

studies with the tool, where its value has been proven (Becker-Kornstaedt et al. 2001). The following section

will present in detail the technique for identifying commonalities and differences between processes.

3. Technique

The technique proposed here is based on the assumptions that the same notation must be used to describe the

process models to be compared, and that the level of abstraction of the process models to be compared must

be similar.

In order to perform a commonality analysis, the models must be rigorous. This may be achieved, for

example, by using electronic process guide (EPG) capabilities with graphical views (Becker-Kornstaedt et al.

2000).

In order to validate the proposed commonality analysis technique, this technique was performed both

manually and by using a specifically developed tool, SPEARSIM.

3.1. Manual Commonality Analysis

By using electronic process guides (EPGs), the process engineer can identify whether two parts of different

process models are similar. For example, looking at Figure 2, it can be seen that there are two processes with

the same name (Test acceptance), both in pilot 1 and in pilot 2. Additionally, the structure of the processes is

similar. In both cases, there is a similar product to be tested as input (Release system and Tested product), and

a similar report as output (Defect list and Test report). Once similar process parts are identified, the process

engineer reads the definition of the processes and products related to these parts. After reading and analyzing

the descriptions, the process engineer makes the assumption that two or more processes or sub-processes are

similar or different.

The process engineer has to check the descriptions of processes, products, roles, and tools in order to

establish an assumption that they are similar. The next step is to check the assumption by reviewing the

identified commonalities with the process performers, that is, the observed developers, in order to obtain a

common agreement on the commonalities, i.e., establishing facts. If the activities are not similar, then the next

step is to find possible reasons for the variation. The reasons can usually be found in the context of the

process, which is described in the characterization vector (see Table 1). The characterization vector describes

the environment in which the process model was elicited. The characterization vector shown in Table 1 is the

result of the activity set up pilots (see Figure 1).

3.2. Tool-supported Commonality Analysis

The tool SPEARSIM has been designed to support a process engineer in comparing large and complex

processes. SPEARSIM is implemented as a plug-in for SPEAMINT® (Becker-Kornstaedt et al. 2000). The

tool analyzes the similarity of two process models using a set of rules, which are derived from the heuristics

applied by Verlage in the context of the Multi View Modeling Language (MVP-L) (Verlage 1998). The rules

formalize different similarity aspects that may occur between entities of two process models and,

consequently differ, in their degree of complexity: on the one hand, simple rules can be used to compare

entity names (such as process or product identifiers) and help to identify synonyms and homonyms; on the

other hand, more complex rules can be used to compare the aggregation structure of products and processes.

Figure 3 shows an overview of the rules defined and their dependencies. The dependencies, represented by

arrows, show that the computation of complex similarities rests upon data computed by simpler rules.

In the following, the individual rules are discussed in more detail:

Name – This rule is applied to compute the similarity of products/processes based on the similarity of their

names. This rule computes text similarity according to the Levenshtein distance (Levenshtein 1966). The

Levenshtein distance (LD) is a measure of the similarity between two strings, which we will refer to as the

source string (s) and the target string (t). The distance is the number of deletions, insertions, or substitutions

required to transform s into t. For example, If s is "test" and t is "test", then LD(s, t) = 0, because no

transformations are needed. The strings are already identical. If s is "test" and t is "tent", then LD(s,t) = 1,

because one substitution (change "s" to "n") is sufficient to transform s into t. The greater the Levenshtein

distance, the more different the strings are. This rule provides the basis for the entire computation at the

beginning of the analysis process.

SC (Structure Compatibility) - The SC rule can be applied on two sets of processes or products. The value

computed by SC represents the degree of homogeneity of the two sets, i.e., how well the entities of one set

match the entities of the other set. For example, given two sets A = {a, b, c} and B = {d, e, f} where b and f are

the only identical entities between the two sets, i.e., the number of matches is m = 1 and the maximal number

of matches is n = 3, the similarity value returned by SC is computed as:
3
1

=
n
m

.

PcH (Process Hierarchy) - The PcH rule computes similarities between processes by analyzing the

hierarchy of their sub-processes. Since a comparison of the entire aggregation tree can become very complex,

the computation is only concerned with the first three hierarchy levels of the tree structure. The PcH rule

extracts the greatest Name similarity among the sub-processes of two processes, for example, PcH(p1, p2)=1,

if {“write test cases”, “implement test cases”, “run test cases”} are the sub processes of p1 and {“code test

cases”, “run test cases”} are the sub-processes of p2, since Name(“run test cases”, “run test cases”)=1.

PdS (Product Structure) – The similarities between two processes are computed by the PdS rule resting

upon the homogeneity of the sets of products the two processes access, i.e., the products they produce,

consume, or modify. The PdS rule applies the SC rule: continuing with the example discussed under the SC

rule, PdS(p1, p2)=
3

1
=SC(A,B) holds if A and B are the sets of products accessed by the processes p1 and p2,

respectively.

PcS (Process Structure) - The PcS computes similarity assumptions between two processes resting upon

the homogeneity of the sets of sub-processes they aggregate. The PcS rule, like the PdS, applies the SC rule.

In this case, PcS(p1, p2)=
3

1
=SC(A,B) holds if A and B are the sets of sub-processes of the processes p1 and

p2, respectively.

PcM (Process Model) - The similarity values are computed by the PcM rule by building a weighted sum of

the rules PdS, PcS, and PcH,

i.e.,),(),(),(),(21212121 ppPcHwppPcSwppPdSwppPcM PcHPcSPdS ⋅+⋅+⋅= where

0.1=++ PcHPcSPdS www are the weights set by the process engineer to influence the relevance of the related

rules in the computation.

In order to influence certain aspects of the models assumed to be relevant according to the given context,

the process engineer is able to influence the importance of the different rules by setting parameters (weights)

in the tool.

Once all the weights are set, the process engineer can trigger a first computation of similarities to be

performed by the tool. The tool quantifies the similarity of two process models using the rules and shows

them to the process engineer in the form of similarity assumptions.

The process engineer may need to read the descriptions of the compared parts of the process, in order to

have an adequate basis upon which to understand these assumptions. If this is not enough, the process

engineer should interview the process model owners, (e.g., in the WISE project, these were the developers) in

order to better understand the assumptions made by the tool.

The process engineer converts assumptions into facts by accepting or rejecting the assumptions computed

by the tool. A fact is represented by either an equal symbol (=) or a difference symbol (≠). Once the facts are

established, the tool can use them to re-analyze the two models and present a new set of assumptions to the

process engineer, who decides whether to continue with a new iteration by establishing new facts or whether

to stop the comparison. In order to achieve a sharper picture, the process engineer can trim the weights once

again, and try to get most of the greatest similarities computed for the pairs expected to be identical, most of

the lowest similarities for the pairs expected to be completely different and, at the same time, maximize the

difference between great and low similarities.

Figure 4 shows an excerpt of the table of commonalities: In this case, the process engineer has turned all

the assumptions into facts. Activities like elicit first requirements and gather requirements were concluded to

be similar. On the other hand, activities like documenting from pilot 1 were different from any activity of pilot

2. The resulting table of commonalities can be used in reviews with developers to build the comprehensive

process model. Expected great similarity values indicate evidence of a common path between the compared

processes. Unexpected similarity values characterize the most interesting pairs of process entities, since they

could indicate variations between the compared processes.

4. Validation

This section presents a preliminary validation (proof of concept) of the proposed approach by providing an

example of its use. The following example was performed in order to validate the suitability of the semi-

automatic commonality analysis in a real environment (like the WISE project), by comparing its results with

the results from the manual commonality analysis.

Within the WISE project, two different software development lifecycles applied by two different

organizations, with 10 and 12 sub-processes, respectively, were compared. In a first step, a manual

comparison was performed and pairs of similar process parts were documented as shown in the examples

appearing in Figure 2. In a second step, the SPEARSIM tool was used. Similarity facts between products were

established by the process engineer according to the content and purpose of the documents manipulated by the

different processes.

In a third step, a computation was performed in order to analyze commonalities between the processes

within each phase. Finally, another computation was performed in order to analyze commonalities between

the different phases of the two development processes.

Figure 5 presents a view of the similarity values generated by SPEARSIM, showing the similarities

between phases.

The phases of both models were settled in a chronological order in the diagram. As a consequence, the

greatest similarities were expected along the main diagonal (highlighted by the ellipse). Parts of the diagram

not matching the expectations are an indicator of either variations in the two processes (in the case of low

similarity values among the main diagonal) or too optimistic tool computations (in the case of great similarity

values in other areas of the diagram). Figure 5 shows the greatest commonalities in the requirements as well

as in the test phases of the two development processes. These results were also observed in the manual

analysis, an example of which can be seen in Figure 2, where basic activities of the testing phase of both

pilots’ processes were declared similar. A mismatch of the development phase (pilot 1) and the coding phase

(pilot 2) shows where to expect the greatest differences between the two development processes. The main

reasons for the differences were found in the maturity of the software development organizations responsible

for the development of the pilot services as well as in the different final products, a WML (Wireless Markup

Language)-based information system in the case of pilot project 1, and a distributed game implemented in

Java in the case of pilot project 2. The great similarities between the requirements and the test phases of the

two processes, respectively, indicate an example of an optimistic similarity computation due to the underlying

similarity of the products manipulated by these phases (i.e., products concerning requirements).

Figure 6 shows the similarities computed between the underlying processes, which are arranged on the

axes in a chronological order. The weights were chosen in order to consider only the structure of the products

accessed by the constituent processes: As the processes were almost not aggregated or the aggregations were

not comparable further, an analysis of their structures was avoided. Although a more complex situation is

given here, in this case, most of the greatest similarity values are also arranged, as expected, along the main

diagonal of the diagram.

The life cycle model applied for Pilot 1 does not include any process for the planning of tests. The

unexpected great similarity values between the process Pilot 2 - plan tests and the processes approve

requirements, design technical infrastructure, specify requirements, develop pilots, design web site, and

create technical infrastructure in Pilot 1 can be explained by the similarity of the requirements-related

documents accessed by these processes.

The whole process lasted approximately 30 hours from the identification of similar and different parts in

the EPGs until the identification of reasons for variations. The whole commonality analysis performed with

the help of SPEARSIM lasted about 15 hours. One fact observed in this proof of concept was that the time

spent on the manual analysis was about one half of the time spent with the help of the semiautomatic tool.

However, we cannot rely on this for drawing any conclusion, especially because performing first the manual

analysis and then the automatic analysis has an impact that remains uncertain. This is the subject of further

research. Even though more data should be collected in future research work, it was observed that the tool,

through its visualization capabilities, offers a comprehensive map of commonalities and differences that

certainly helps to visualize where processes are more different. This has been pointed out by the process

engineers who performed the example as an important factor that makes the work easier when using the tool

support.

The previous discussion suggests that the similarity values delivered by the tool are true. However, further

research should concentrate on developing metrics for measuring how accurate these similarity calculations

are.

5. The Reference Process Model

Although the similarity values provided in the previous section may appear obvious, the objective of this

commonality analysis went further, because we intended to uncover process similarities across different pilot

projects (i.e., final products) in one domain (e.g., Wireless Internet Services), which we can then nominate as

‘best practices’ that should appear in any customized version of the reference process, as well as variations to

be taken into account under special context characteristics. Having evidence of common practices across

projects certainly provides a basis for making the assumption that such a practice can be declared a ‘best

practice’. However, this is not always the case. Variations can as well be nominated as ‘best practices’ by

developers. In the end, developers are the responsible of accepting or rejecting the nomination of a ‘best

practice’, and introducing it into the reference process model. The following is an example of how the results

from the commonality analysis were used for creating the reference process model in the context of the WISE

project.

Table 2 presents two symbols needed to understand the reference process model descriptions. The new

symbols are used for grouping those sets of processes that are considered optional or alternative in the

reference process model. Those sets of processes that were considered similar after the commonality analysis

were named basic/common activities, and were not grouped into these boxes. Processes that were grouped

into the optional boxes were the following:

– Processes for which no similar process was found in the process model used for comparison.

– Processes that were not followed by developers during the previous development iteration. Usually,

these were processes that had to be skipped due to time constraints, but that were considered important

by developers.

Processes that were grouped into the alternative boxes were the following:

– Processes with similar purposes that were found in the process model used for comparison but whose

steps, tasks, or means to fulfill that purpose were different.

Figures 7 and 8 illustrate the use of the optional and alternative boxes in a product flow graph.

Figure 7 is one snapshot taken from the main view of the WISE reference process model. This snapshot

shows merged experience-based, proven common practices and variations. Based on the results of the

commonality analysis and with constant feedback from pilot partners, the process engineer merged, for

example, the requirements phases from both processes, into one common part in the reference process named

requirements phase. The same was done with the coding phase and testing phase. On the other hand, pilot 1

did not present evidence of performing the activities build test framework or plan tests, therefore, it was

considered different by the process engineer and pilot partners and merged into the reference process model

as a variation of the process.

Figure 8 presents two alternative boxes corresponding to the integration/releasing activities of both pilots.

By simply looking at the activities on the EPGs, they could be declared common, because of their similar

names and structures. However, after reading the compared activities descriptions, they were kept separated

and included in the reference process model as alternatives. For example, the activity integration testing

present in the ALT1a box was performed between developers and market experts and therefore, was quite

different from the integrate code activity from ALT1b, where only developers dealt with the integration. It

can also be seen that the documenting activity was inserted as optional inside ALT1a. This is due to the fact

that documenting was part of the process model of one of the pilots, whereas nothing similar was found in the

process model used for comparison.

6. Summary and Outlook

The technique presented in this article is helpful for managing the comparison of large, complex processes,

and the rules are applicable for processes in the same organization as well as in different organizations.

Nevertheless, in the course of the exercise discussed in the previous section, we noticed that some

assumptions made by the tool were not as concise as we expected. This suggests that it would be good to

perform further research on similarity computation rules, in particular, rules followed intuitively by process

engineers, in real practice, to determine best practices and process variations. Also, some additional process

attributes (e.g., measures, estimates, standards applicable, pre-/post-conditions, etc.) are not considered in the

actual version of the tool. Future research may then address the following questions: What are other rules to

determine process similarity and dissimilarity? When should these rules be applied, and when not? Which

degree of process complexity requires automated similarity analysis? Which metrics can be applied for

measuring accuracy of similarity values? Which other values for establishing facts (e.g., very similar, similar,

low similarity, no commonality) could be used?

Regarding the creation of the reference process model, it was revealed that appropriate notations for

describing generic process knowledge (i.e., adaptable process models and adaptation rules) are needed.

Optional product flows, for instance, are difficult to represent in existing notations. An attempt to represent

this information was developed and used for describing the Reference Process Model. Experiences on

understanding this approach are still being collected.

The resulting reference process model together with the characterization vector describing the context in

which the model was created can be used by software development managers or software process managers

for understanding, analyzing, defining a strategy, or defining a process in order to develop Wireless Internet

Services. In fact, in the context of the WISE project, this is exactly what was done. After each of the three

iterations where pilot services were developed, the processes were compared through a commonality analysis,

and the reference process model was updated (or created, in the case of the first iteration). The resulting

reference process model was then used as input for the next iteration.

Acknowledgments

This work has been funded by the European Commission in the context of the WISE project (No. IST-

2000-30028). We would like to thank the WISE consortium, especially the pilot partners, for many fruitful

and interesting interactions. We would also like to thank Dr. William E. Riddle for his valuable comments on

the article, and Sonnhild Namingha from the Fraunhofer Institute for Experimental Software Engineering

(IESE) for reviewing the first version of the article.

References

Batini C, Ceri S, Navathe S.B. 1992. Conceptual Data Base Design: An Entity-Relationship Approach.

Benjamin Cummings: Redwood City.

Becker-Kornstaedt U, Boggio D, Münch J, Ocampo A, Palladino G. 2002. Empirically Driven Design of

Software Development Processes for Wireless Internet Services. PROFES 2002: Proceedings of the Fourth

International Conference on Product-Focused Software Processes Improvement. Lecture Notes in Computer

Science: 351-366.

Becker-Kornstaedt, Ulrike; Neu, Holger; Hirche, Gunter. 2001. Software Process Technology Transfer. Using

a Formal Process Notation to Capture a Software Process in Industry. EWSPT'2001: Proceedings of the 8th

European Workshop on Software Process Technology: 63-76.

Becker-Kornstaedt U, Scott L, Zettel J. 2000. Process Engineering with Spearmint/EPG. ICSE’00:

Proceedings of the 22nd International Conference on Software Engineering: 791.

Boehm B. 2002. Get Ready for Agile Methods, with care. IEEE Computer 35(1): 64-69.

Coplien J, Hoffman D, Weiss D. 1998. Commonality and Variability in Software Engineering. IEEE Software

15(6): 37-45.

Feather M.S. 1989. Detecting Interference when Merging Specification Evolutions. Proceedings of the Fifth

International Workshop on Software Specification and Design: 169-176.

Leite J.S.P., Freeman P.A. 1991. Requirements Validation through Viewpoint Resolution. IEEE Transactions

on Software Engineering 17(12):1253-1269.

Levenshtein V.I. 1966. Binary Codes Capable of Correcting Deletions, Insertions and Reversals. Doklady

Akademii Nauk SSSR 10(8): 707-710.

Ocampo A, Boggio D, Münch J, Palladino G. 2003.Toward a Reference Process for Developing Wireless

Internet Services. IEEE Transactions on Software Engineering 29(12): 1122-1134.

Robinson W.N. 1989. Integrating Multiple Specifications Using Domain Goals. Proceedings of the Fifth

International Workshop on Software Specification and Design: 219-226.

Turgeon J, Madhavhji H.N. 1996. A Systematic, View-Based Approach to Eliciting Process Models.

EWSPT05: Proceedings of the European Workshop on Software Process Technology: 276-282.

Verlage M. 1998. An Approach for Capturing Large Software Development Processes by Integration of

Views Modeled Independently. SEKE: Proceedings of the Tenth International Conference on Software

Engineering and Knowledge Engineering: 227-235

Figure 1. Empirically based approach for creating software development process models.

Figure 2. Manual commonality analysis (excerpt).

Table 1. Characterization vectors

Customization
factor

Characteristic Project 1 Project 2

Domain
characteristics

Application
type

Information system Computation intensive
system

Business area Mobile online trading
services

Mobile online entertainment
services

Development
characteristics

Project type Client System
adaptation

Client New development
Server New development

Transport
protocol

GPRS/UMTS GPRS/UMTS

Implementation
language

WML, J2ME Client: J2ME
Server: J2EE

Enterprise
characteristics

Organizational
context

Investnet-Italy Motorola GSM- Italy
VTT- Finland

Role Service provider,
content provider,
service developer

Technology provider, service
developer

PcM

Name

SC

PcHPcSPdS

Figure 3. Rules overview.

Figure 4. Commonalities table (excerpt)

Figure 5. Commonality values among phases.

Figure 6. Commonalities among technical processes.

Table 2. Entities and Icons

Entity Icon
Alternative Box

Optional Box

Figure 7. Reference Process (excerpt).

Figure 8. Integrating/Releasing Process.

