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Abstract 
 

To remain viable and thrive, software organizations must rapidly adapt to frequent, and often rather far-

ranging, changes to their operational context. These changes typically concern many factors, including the 

nature of the organization’s marketplace in general, its customers’ demands, and its business needs. In 

today’s most highly dynamic contexts, such as web services development, other changes create additional, 

severe challenges. Most critical are changes to the technology in which a software product is written or 

which the software product has to control or use to provide its functionality. These product-support 

technology changes are frequently relatively ‘small’ and incremental. They are, therefore, often handled by 

relatively ‘small,’ incremental changes to the organization’s software processes. However, the frequency of 

these changes is high, and their impact is elevated by time-to-market and requirements change demands. The 

net result is an extremely challenging need to create and manage a large number of customized process 

variants, collectively having more commonalities than differences, and incorporating experience-based, 

proven ‘best practices’. This paper describes a tool-based approach to coping with product-support 

technology changes. The approach utilizes established capabilities such as descriptive process modeling and 

the creation of reference models. It incorporates a new, innovative, tool-based capability to analyze 

commonalities and differences among processes. The paper includes an example-based evaluation of the 

approach in the domain of Wireless Internet Services as well as a discussion of its potentially broader 

application. 
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1. Introduction 



 
Survival in today’s highly dynamic business environments requires that organizations continuously adapt 

their processes. Success and growth ! rather than mere survival ! require that this adaptation be rapid 

enough to realize the competitive advantage offered by new business opportunities. Business models must be 

rapidly changed or newly developed; the organization’s work force must be quickly updated and trained. 

Most challenging, however, is rapid adjustment to changes in the organization’s process-support technology. 

For organizations providing software products (software organizations), this includes the technology used to 

develop their products as well as the technology the products must control or use to provide their 

functionality. In many software-dependent areas, for example the Wireless Internet, single process-support 

technology changes are small and incremental, but quite frequent. The result of such changes can be a set of 

processes that vary in relatively minor ways. However, organizations suffer severe problems when such 

changes are introduced arbitrarily, irrationally, and in uncontrolled ways. They could, for example, be the 

cause of drastic deviations from project plans.  

 One way to control the proliferation of variations and its attendant risks is to carry forward knowledge 

about what worked and what did not work in the past. In other words, software organizations working in this 

area must be agile, but this agility should be based on prior experience rather than being merely based on 

intuition (Boehm 2002). Process changes should be to the best possible extent beneficial for the organization’s 

future work. 

This raises the question: How can a software organization cope with product-support technology changes 

by rapidly creating customized software development processes containing proven ‘best practices’? 

The rationale for our work is that understanding an organization’s current and past practices, describing the 

processes underlying these practices, and being able to identify variations and reasons for variations will 

certainly help software organizations address this question.  

The basis for our approach is the creation of customizable, domain-specific process models (i.e., reference 

process models) through the bottom-up identification of process variations. The overall approach can be seen 

in Figure 1, and is described with details in (Becker-Kornstaedt et al. 2002). The mentioned article describes a 

validated method on how to gain process knowledge for an upcoming field fast and incrementally. It is not the 



scope of this paper to detail the overall approach. Briefly, the method can be used for designing an adaptable 

software development process based on existing practices from related domains, industrial piloting, and 

expert knowledge. Its main steps are:  

– Set up pilots - Suitable pilot projects are determined and organized.  

– Perform pilots - The pilot projects are conducted.  

– Observe and model processes - The processes as performed in the pilot projects are observed and 

modeled.  

– Identify and evaluate processes and practices from related fields - This information will be used to 

complete the reference process model where it is incomplete.  

– Analyze commonalities and differences - Commonalities and differences between the different process 

models are analyzed in order to identify process variants and justifications for them. This must 

recognize differences in the application domain as well as goals and contexts of the pilot projects.  

– Create comprehensive process model - The models for the processes used in the pilot projects as well 

as practices and processes from related fields are integrated to create a comprehensive process model 

(Ocampo et al. 2003). The resulting comprehensive process model can be seen as a reference process 

model, because it is intended to be used as a reference for developers and managers that provides a 

starting point for developing a customized process meeting the requirements for a set of product-

support technologies. 

The focus of this paper is to present a tool-supported technique for performing the activity analyze 

commonalities and differences (part of the overall approach), which can be helpful in practical situations 

where software organizations must compare a set of process models in a systematic way, in order to 

understand their context-dependant variations.  

Capabilities for identifying best practices and process variations might be valuable for software 

organizations in other areas, too, such as: 

- Process measurement: Metrics that reflect process similarities and differences could be important for 

guiding process improvement. 

- Process training: Identifying the gaps between desired and actual processes could improve workforce 



training.  

- Tailoring guidance: Notations for describing common and alternative process parts could support 

tailoring. 

- Outsourcing: Commonality analysis could provide a basis for integrating processes between an 

outsourcing organization and organizations it outsources to. 

- Executive decision making: Notations for assigning value to variations can be important for managers of 

software organizations for deciding how to change a software project so that it may proceed more 

effectively and efficiently. 

The following sections discuss the background for our work, describe the details of the technique we have 

developed, provide a preliminary validation (in terms of an example of its use), and discuss possible future 

work. 

2. Background 

The following section presents commonality analyses performed in related fields as well as a description of 

the context of the work.  

2.1. Related Work 

In the database world, the problem of integrating schemas of existing databases from the perspectives of 

different users (database schema integration) is addressed by (Batini et al. 1992). Products from this database 

integration are: a global database schema, data mapping from global to local databases, and mapping of 

querying transactions from local to global databases. Semantic relationships between database schema X1 and 

database schema X2 are defined as: identical, equivalent, compatible, and incompatible. The schemas are 

analyzed and compared in order to uncover conflicts. Any situation where the representations of X1 and X2 

are not identical is considered to be a conflict between X1 and X2. The representations of the schemas are 

used to compare them, but there is no defined method to do this comparison.  

Integration of design specifications has been examined by (Feather 1989), (Leite and Freeman 1991), 

(Robinson 1989). These approaches have in common that they integrate pairs of specifications and use 

specification formalisms, and that their goal is to reduce the complexity of the global specification. The 

analyst compares components of both specifications and declares them equivalent or not. A special formalism 



is used in order to conclude when a component X1 is equivalent to component X2. Conflicts are uncovered 

when ambiguities and inconsistencies are detected between pairs of specifications. Negotiations are needed 

between developers in order to identify and resolve conflicts. Once the integration has been accomplished, 

there is no way to extract the original views from the final specification, which is not the case with the 

technique presented in this article. 

In the product line world, identifying commonalities and differences is an accepted, wide-spread practice 

when comparing systems (Coplien et al. 1998). Usually, common elements are reused and variations are 

hidden, in the most appropriate way, in order to produce a family of products. In order to understand the 

extent of commonality and variability in a family of products, the proposed steps are: 

– Establish the scope - The collection of objects under consideration.  

– Identify commonalities and variations - Similar attribute values across the family members are 

identified. Variants of the attribute values are identified. The attribute values justify the variants. 

– Bound variations - A range of values for the variants is defined.  

– Exploit commonalities and accommodate variations - The results of the commonality analysis are 

grouped into procedures, inheritance, and parametric polymorphism. 

In the process modeling world, there exist some approaches to integrating partial process models (views) 

into a descriptive process model when persons covering different roles describe their perspectives of a large 

software process within one single organization (Turgeon and Madhavhji 1996), (Verlage 1998). In these 

approaches, variations are often seen as inconsistencies or as imprecision, and therefore, trigger questions that 

lead to a review of the views that will eliminate these inconsistencies. The final goal is to obtain a multi-view-

consistent comprehensive process model. In our approach, some of the rules discussed in (Verlage 1998) are 

adapted to the SPEARMINT® environment (Becker-Kornstaedt et al. 2000) and applied in order to create a 

model with common best practices and variations to be used as reference within a specific domain. 

In the process modeling world, creating reference models is often done in a top-down fashion using 

prescriptive process models. Prescriptive process models describe how a product should be developed. 

Prescriptive process models are generic (i.e., do not define specific approaches to carrying out activities), and 

do not describe a company’s actual processes.  



The commonality analysis technique we propose can be seen as analogous to the commonality analysis of 

products in product line approaches. It relies on descriptive, rather than prescriptive, process modeling to 

create a reference model, utilizing several capabilities found in multi-view modeling approaches (such as rule-

based comparisons).  

2.2. Context 

The technique was developed and evaluated as part of the WISE (Wireless Internet Services Engineering) 

project. The project aimed at producing integrated methods and COTS components (commercial off-the-shelf 

software) and open source to engineer services on the Wireless Internet. The components include a service 

management component and an agent-based negotiation component. Two pilot services, i.e., a financial 

information service and a multi-player game, were developed by different organizations. The project lasted 30 

months and an iterative, incremental development style was applied: three iterations were performed of 

roughly 9 months each. In iteration 1, a first version of the planned pilot services was built using GPRS 

(General Packet Radio Service). At the same time, a first version of methods and tools was developed. In 

iteration 2, a richer second version of the pilots was developed on GPRS, using the first version of methods 

and tools. In parallel, an improved second version of methods and tools was developed. In iteration 3, the 

final version of the pilots was developed on UMTS (Universal Mobile Telecommunications System), using 

methods and tools from the second iteration. Also, a final version of methods and tools was developed. One of 

WISE’s objectives was to develop a reference process model that may be used by software organizations for 

creating Wireless Internet Services. In order to achieve this objective, it was decided to use the empirical 

approach, i.e., the observation of realistic pilot projects, techniques, and processes, described previously in the 

introduction section of this article (see Figure 1). The SPEARMINT® tool has been used in order to document 

and manage the pilots’ descriptive process models. The decision for using it relied on previous industrial case 

studies with the tool, where its value has been proven (Becker-Kornstaedt et al. 2001). The following section 

will present in detail the technique for identifying commonalities and differences between processes.  

3. Technique 

The technique proposed here is based on the assumptions that the same notation must be used to describe the 

process models to be compared, and that the level of abstraction of the process models to be compared must 



be similar.    

In order to perform a commonality analysis, the models must be rigorous. This may be achieved, for 

example, by using electronic process guide (EPG) capabilities with graphical views (Becker-Kornstaedt et al. 

2000).  

In order to validate the proposed commonality analysis technique, this technique was performed both 

manually and by using a specifically developed tool, SPEARSIM.  

3.1. Manual Commonality Analysis 

By using electronic process guides (EPGs), the process engineer can identify whether two parts of different 

process models are similar. For example, looking at Figure 2, it can be seen that there are two processes with 

the same name (Test acceptance), both in pilot 1 and in pilot 2. Additionally, the structure of the processes is 

similar. In both cases, there is a similar product to be tested as input (Release system and Tested product), and 

a similar report as output (Defect list and Test report). Once similar process parts are identified, the process 

engineer reads the definition of the processes and products related to these parts. After reading and analyzing 

the descriptions, the process engineer makes the assumption that two or more processes or sub-processes are 

similar or different.  

The process engineer has to check the descriptions of processes, products, roles, and tools in order to 

establish an assumption that they are similar. The next step is to check the assumption by reviewing the 

identified commonalities with the process performers, that is, the observed developers, in order to obtain a 

common agreement on the commonalities, i.e., establishing facts. If the activities are not similar, then the next 

step is to find possible reasons for the variation. The reasons can usually be found in the context of the 

process, which is described in the characterization vector (see Table 1). The characterization vector describes 

the environment in which the process model was elicited. The characterization vector shown in Table 1 is the 

result of the activity set up pilots (see Figure 1). 

3.2. Tool-supported Commonality Analysis 

The tool SPEARSIM has been designed to support a process engineer in comparing large and complex 

processes.  SPEARSIM is implemented as a plug-in for SPEAMINT® (Becker-Kornstaedt et al. 2000). The 

tool analyzes the similarity of two process models using a set of rules, which are derived from the heuristics 



applied by Verlage in the context of the Multi View Modeling Language (MVP-L) (Verlage 1998). The rules 

formalize different similarity aspects that may occur between entities of two process models and, 

consequently differ, in their degree of complexity: on the one hand, simple rules can be used to compare 

entity names (such as process or product identifiers) and help to identify synonyms and homonyms; on the 

other hand, more complex rules can be used to compare the aggregation structure of products and processes. 

Figure 3 shows an overview of the rules defined and their dependencies. The dependencies, represented by 

arrows, show that the computation of complex similarities rests upon data computed by simpler rules.  

In the following, the individual rules are discussed in more detail: 

Name – This rule is applied to compute the similarity of products/processes based on the similarity of their 

names. This rule computes text similarity according to the Levenshtein distance (Levenshtein 1966). The 

Levenshtein distance (LD) is a measure of the similarity between two strings, which we will refer to as the 

source string (s) and the target string (t). The distance is the number of deletions, insertions, or substitutions 

required to transform s into t. For example, If s is "test" and t is "test", then LD(s, t) = 0, because no 

transformations are needed. The strings are already identical. If s is "test" and t is "tent", then LD(s,t) = 1, 

because one substitution (change "s" to "n") is sufficient to transform s into t. The greater the Levenshtein 

distance, the more different the strings are. This rule provides the basis for the entire computation at the 

beginning of the analysis process. 

SC (Structure Compatibility) - The SC rule can be applied on two sets of processes or products. The value 

computed by SC represents the degree of homogeneity of the two sets, i.e., how well the entities of one set 

match the entities of the other set. For example, given two sets A = {a, b, c} and B = {d, e, f} where b and f are 

the only identical entities between the two sets, i.e., the number of matches is m = 1 and the maximal number 

of matches is n = 3, the similarity value returned by SC is computed as: 
3
1

=
n
m

. 

PcH (Process Hierarchy) - The PcH rule computes similarities between processes by analyzing the 

hierarchy of their sub-processes. Since a comparison of the entire aggregation tree can become very complex, 

the computation is only concerned with the first three hierarchy levels of the tree structure. The PcH rule 

extracts the greatest Name similarity among the sub-processes of two processes, for example, PcH(p1, p2)=1, 



if {“write test cases”, “implement test cases”, “run test cases”} are the sub processes of p1 and {“code test 

cases”, “run test cases”} are the sub-processes of p2, since Name(“run test cases”, “run test cases”)=1. 

PdS (Product Structure) – The similarities between two processes are computed by the PdS rule resting 

upon the homogeneity of the sets of products the two processes access, i.e., the products they produce, 

consume, or modify. The PdS rule applies the SC rule: continuing with the example discussed under the SC 

rule, PdS(p1, p2)=
3

1
=SC(A,B) holds if A and B are the sets of products accessed by the processes p1 and p2, 

respectively. 

PcS (Process Structure) - The PcS computes similarity assumptions between two processes resting upon 

the homogeneity of the sets of sub-processes they aggregate. The PcS rule, like the PdS, applies the SC rule. 

In this case, PcS(p1, p2)= 
3

1
=SC(A,B) holds if A and B are the sets of sub-processes of the processes p1 and 

p2, respectively. 

PcM (Process Model) - The similarity values are computed by the PcM rule by building a weighted sum of 

the rules PdS, PcS, and PcH, 

i.e., ),(),(),(),( 21212121 ppPcHwppPcSwppPdSwppPcM PcHPcSPdS ⋅+⋅+⋅= where 

0.1=++ PcHPcSPdS www  are the weights set by the process engineer to influence the relevance of the related 

rules in the computation. 

In order to influence certain aspects of the models assumed to be relevant according to the given context, 

the process engineer is able to influence the importance of the different rules by setting parameters (weights) 

in the tool.  

Once all the weights are set, the process engineer can trigger a first computation of similarities to be 

performed by the tool. The tool quantifies the similarity of two process models using the rules and shows 

them to the process engineer in the form of similarity assumptions.  

The process engineer may need to read the descriptions of the compared parts of the process, in order to 

have an adequate basis upon which to understand these assumptions. If this is not enough, the process 

engineer should interview the process model owners, (e.g., in the WISE project, these were the developers) in 



order to better understand the assumptions made by the tool.  

The process engineer converts assumptions into facts by accepting or rejecting the assumptions computed 

by the tool.  A fact is represented by either an equal symbol (=) or a difference symbol (≠). Once the facts are 

established, the tool can use them to re-analyze the two models and present a new set of assumptions to the 

process engineer, who decides whether to continue with a new iteration by establishing new facts or whether 

to stop the comparison. In order to achieve a sharper picture, the process engineer can trim the weights once 

again, and try to get most of the greatest similarities computed for the pairs expected to be identical, most of 

the lowest similarities for the pairs expected to be completely different and, at the same time, maximize the 

difference between great and low similarities. 

Figure 4 shows an excerpt of the table of commonalities: In this case, the process engineer has turned all 

the assumptions into facts. Activities like elicit first requirements and gather requirements were concluded to 

be similar. On the other hand, activities like documenting from pilot 1 were different from any activity of pilot 

2. The resulting table of commonalities can be used in reviews with developers to build the comprehensive 

process model. Expected great similarity values indicate evidence of a common path between the compared 

processes. Unexpected similarity values characterize the most interesting pairs of process entities, since they 

could indicate variations between the compared processes.  

4. Validation 

This section presents a preliminary validation (proof of concept) of the proposed approach by providing an 

example of its use. The following example was performed in order to validate the suitability of the semi-

automatic commonality analysis in a real environment (like the WISE project), by comparing its results with 

the results from the manual commonality analysis.  

Within the WISE project, two different software development lifecycles applied by two different 

organizations, with 10 and 12 sub-processes, respectively, were compared. In a first step, a manual 

comparison was performed and pairs of similar process parts were documented as shown in the examples 

appearing in Figure 2. In a second step, the SPEARSIM tool was used. Similarity facts between products were 

established by the process engineer according to the content and purpose of the documents manipulated by the 

different processes.  



In a third step, a computation was performed in order to analyze commonalities between the processes 

within each phase. Finally, another computation was performed in order to analyze commonalities between 

the different phases of the two development processes.  

Figure 5 presents a view of the similarity values generated by SPEARSIM, showing the similarities 

between phases.  

The phases of both models were settled in a chronological order in the diagram. As a consequence, the 

greatest similarities were expected along the main diagonal (highlighted by the ellipse). Parts of the diagram 

not matching the expectations are an indicator of either variations in the two processes (in the case of low 

similarity values among the main diagonal) or too optimistic tool computations (in the case of great similarity 

values in other areas of the diagram). Figure 5 shows the greatest commonalities in the requirements as well 

as in the test phases of the two development processes. These results were also observed in the manual 

analysis, an example of which can be seen in Figure 2, where basic activities of the testing phase of both 

pilots’ processes were declared similar. A mismatch of the development phase (pilot 1) and the coding phase 

(pilot 2) shows where to expect the greatest differences between the two development processes. The main 

reasons for the differences were found in the maturity of the software development organizations responsible 

for the development of the pilot services as well as in the different final products, a WML (Wireless Markup 

Language)-based information system in the case of pilot project 1, and a distributed game implemented in 

Java in the case of pilot project 2. The great similarities between the requirements and the test phases of the 

two processes, respectively, indicate an example of an optimistic similarity computation due to the underlying 

similarity of the products manipulated by these phases (i.e., products concerning requirements).  

Figure 6 shows the similarities computed between the underlying processes, which are arranged on the 

axes in a chronological order. The weights were chosen in order to consider only the structure of the products 

accessed by the constituent processes: As the processes were almost not aggregated or the aggregations were 

not comparable further, an analysis of their structures was avoided. Although a more complex situation is 

given here, in this case, most of the greatest similarity values are also arranged, as expected, along the main 

diagonal of the diagram.  

The life cycle model applied for Pilot 1 does not include any process for the planning of tests. The 



unexpected great similarity values between the process Pilot 2 - plan tests and the processes approve 

requirements, design technical infrastructure, specify requirements, develop pilots, design web site, and 

create technical infrastructure in Pilot 1 can be explained by the similarity of the requirements-related 

documents accessed by these processes. 

The whole process lasted approximately 30 hours from the identification of similar and different parts in 

the EPGs until the identification of reasons for variations. The whole commonality analysis performed with 

the help of SPEARSIM lasted about 15 hours.  One fact observed in this proof of concept was that the time 

spent on the manual analysis was about one half of the time spent with the help of the semiautomatic tool. 

However, we cannot rely on this for drawing any conclusion, especially because performing first the manual 

analysis and then the automatic analysis has an impact that remains uncertain. This is the subject of further 

research. Even though more data should be collected in future research work, it was observed that the tool, 

through its visualization capabilities, offers a comprehensive map of commonalities and differences that 

certainly helps to visualize where processes are more different. This has been pointed out by the process 

engineers who performed the example as an important factor that makes the work easier when using the tool 

support. 

The previous discussion suggests that the similarity values delivered by the tool are true. However, further 

research should concentrate on developing metrics for measuring how accurate these similarity calculations 

are. 

5. The Reference Process Model 
 

Although the similarity values provided in the previous section may appear obvious, the objective of this 

commonality analysis went further, because we intended to uncover process similarities across different pilot 

projects (i.e., final products) in one domain (e.g., Wireless Internet Services), which we can then nominate as 

‘best practices’ that should appear in any customized version of the reference process, as well as variations to 

be taken into account under special context characteristics. Having evidence of common practices across 

projects certainly provides a basis for making the assumption that such a practice can be declared a ‘best 

practice’. However, this is not always the case. Variations can as well be nominated as ‘best practices’ by 

developers. In the end, developers are the responsible of accepting or rejecting the nomination of a ‘best 



practice’, and introducing it into the reference process model. The following is an example of how the results 

from the commonality analysis were used for creating the reference process model in the context of the WISE 

project.  

Table 2 presents two symbols needed to understand the reference process model descriptions. The new 

symbols are used for grouping those sets of processes that are considered optional or alternative in the 

reference process model. Those sets of processes that were considered similar after the commonality analysis 

were named basic/common activities, and were not grouped into these boxes. Processes that were grouped 

into the optional boxes were the following:  

– Processes for which no similar process was found in the process model used for comparison. 

– Processes that were not followed by developers during the previous development iteration. Usually, 

these were processes that had to be skipped due to time constraints, but that were considered important 

by developers.  

Processes that were grouped into the alternative boxes were the following: 

– Processes with similar purposes that were found in the process model used for comparison but whose 

steps, tasks, or means to fulfill that purpose were different.  

Figures 7 and 8 illustrate the use of the optional and alternative boxes in a product flow graph.  

Figure 7 is one snapshot taken from the main view of the WISE reference process model. This snapshot 

shows merged experience-based, proven common practices and variations. Based on the results of the 

commonality analysis and with constant feedback from pilot partners, the process engineer merged, for 

example, the requirements phases from both processes, into one common part in the reference process named 

requirements phase. The same was done with the coding phase and testing phase. On the other hand, pilot 1 

did not present evidence of performing the activities build test framework or plan tests, therefore, it was 

considered different by the process engineer and pilot partners and merged into the reference process model 

as a variation of the process. 

Figure 8 presents two alternative boxes corresponding to the integration/releasing activities of both pilots. 

By simply looking at the activities on the EPGs, they could be declared common, because of their similar 

names and structures. However, after reading the compared activities descriptions, they were kept separated 



and included in the reference process model as alternatives. For example, the activity integration testing 

present in the ALT1a box was performed between developers and market experts and therefore, was quite 

different from the integrate code activity from ALT1b, where only developers dealt with the integration.  It 

can also be seen that the documenting activity was inserted as optional inside ALT1a. This is due to the fact 

that documenting was part of the process model of one of the pilots, whereas nothing similar was found in the 

process model used for comparison.  

6. Summary and Outlook 
 

The technique presented in this article is helpful for managing the comparison of large, complex processes, 

and the rules are applicable for processes in the same organization as well as in different organizations. 

Nevertheless, in the course of the exercise discussed in the previous section, we noticed that some 

assumptions made by the tool were not as concise as we expected. This suggests that it would be good to 

perform further research on similarity computation rules, in particular, rules followed intuitively by process 

engineers, in real practice, to determine best practices and process variations. Also, some additional process 

attributes (e.g., measures, estimates, standards applicable, pre-/post-conditions, etc.) are not considered in the 

actual version of the tool. Future research may then address the following questions: What are other rules to 

determine process similarity and dissimilarity? When should these rules be applied, and when not? Which 

degree of process complexity requires automated similarity analysis? Which metrics can be applied for 

measuring accuracy of similarity values? Which other values for establishing facts (e.g., very similar, similar, 

low similarity, no commonality) could be used? 

Regarding the creation of the reference process model, it was revealed that appropriate notations for 

describing generic process knowledge (i.e., adaptable process models and adaptation rules) are needed. 

Optional product flows, for instance, are difficult to represent in existing notations. An attempt to represent 

this information was developed and used for describing the Reference Process Model. Experiences on 

understanding this approach are still being collected. 

The resulting reference process model together with the characterization vector describing the context in 

which the model was created can be used by software development managers or software process managers 

for understanding, analyzing, defining a strategy, or defining a process in order to develop Wireless Internet 



Services. In fact, in the context of the WISE project, this is exactly what was done. After each of the three 

iterations where pilot services were developed, the processes were compared through a commonality analysis, 

and the reference process model was updated (or created, in the case of the first iteration). The resulting 

reference process model was then used as input for the next iteration. 
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Figure 1. Empirically based approach for creating software development process models. 



 

Figure 2. Manual commonality analysis (excerpt). 



Table 1. Characterization vectors 

Customization 
factor 

Characteristic Project 1 Project 2 

Domain       
characteristics 

Application 
type 

Information system Computation intensive 
system 

Business area Mobile online trading    
services 

Mobile online entertainment 
services 

Development 
characteristics 

Project type Client System 
adaptation 

Client New development 
Server New development 

Transport    
protocol 

GPRS/UMTS GPRS/UMTS 

Implementation 
language 

WML, J2ME Client: J2ME 
Server: J2EE 

Enterprise    
characteristics 

Organizational 
context 

Investnet-Italy Motorola GSM- Italy 
VTT- Finland 

Role Service   provider, 
content   provider, 
service    developer 

Technology provider, service    
developer 
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Figure 3. Rules overview. 



 
 

Figure 4. Commonalities table (excerpt) 



 

Figure 5. Commonality values among phases. 



 

Figure 6. Commonalities among technical processes. 



Table 2. Entities and Icons 

Entity Icon 
Alternative Box 

 
Optional Box 

 
 



 
Figure 7. Reference Process (excerpt). 



 

Figure 8. Integrating/Releasing Process.  

 


