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SUMMARY

This paper presents a methodology to perform passive testing of timed systems. In passive testing the tester
does not interact with the implementation under test. On the contrary, execution traces are observed without
interfering with the behavior of the system. Invariants are used to represent the most relevant expected
properties of the implementation under test. Intuitively, an invariant expresses the fact that each time the
implementation under test performs a given sequence of actions, it must exhibit a behavior in a lapse of time
reflected in the invariant. There are two types of invariants: consequent and observational. The paper gives
two algorithms to decide the correctness of proposed invariants with respect to a given specification and
algorithms to check the correctness of a log, recorded from the implementation under test, with respect to
an invariant. The soundness of this methodology is shown by relating it to an implementation relation.
In addition to the theoretical framework, a tool called PASTE has been developed. This tool helps in the
automation of the passive testing approach since it implements all the algorithms presented in this paper.
PASTE takes advantage of mutation testing techniques in order to evaluate the goodness of an invariant
according to its capability to detect errors in logs generated from mutants. An empirical study where PASTE
was used to analyze a non-trivial system is also reported. Copyright c© 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The complexity of current systems, the large number of people working on them, and the number of
different modules that interact with each other, make it difficult to evaluate their correctness. Testing
techniques [51, 2] allow their users to provide a degree of confidence on the correctness of the
systems. These techniques can be combined with the use of formal methods [40, 26, 29, 60, 25, 59]
in order to semi-automatically perform some tasks involved in testing [70].

The application of formal testing techniques to check the correctness of a system requires to
identify its critical aspects, that is, those characteristics that will make the difference between correct
and incorrect behaviors. While the relevant aspects of some systems only concern what they do, in
some other systems it is equally relevant how they do what they do. Thus, formal testing techniques
started to study other issues such as time and probabilistic information. This paper considers systems
where time plays a fundamental role. It is worth mentioning that there are several proposals for
formal testing of timed systems [44, 17, 28, 65, 21, 47, 46, 24, 71, 73, 27].

In testing, there is usually a distinction between two approaches: passive and active. The main
difference between them is that in active testing a tester can interact with the implementation under
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Figure 1. Graphical presentation of the framework.

test (in short, IUT), while in passive testing the tester simply monitors the behavior of the IUT. Even
though most work on formal testing considers the active approach, it is very frequent that the tester
is unable to interact with the IUT. In particular, such interaction can be difficult in the case of large
systems working 24/7 since this interaction might produce a wrong behavior of the system.

Even though work on passive testing has been carried on for several years, it can be dated back
at least to the 1970s [10], formal passive testing of timed systems did not receive enough attention
until very recently. An initial work [4] introduced the syntax for so-called consequent invariants and
an algorithm to check the correctness of these invariants with respect to a specification. Afterwards,
algorithms to check the correctness of logs recorded from the IUT were presented [5]. This work also
proved that the process is sound in the sense that, given a specification, if a log extracted from an IUT

does not match a correct invariant, then the IUT does not conform to the specification. In addition, a
tool called PASTE was developed. The main goal of this tool is to support the theoretical framework.
In particular, this tool implements all the algorithms presented in these papers. The framework was
extended with a novel approach that makes use of mutation testing techniques as a way to provide a
classification of invariants according to their power to find errors [3]. The process works as follows.
First, mutants are generated from a specification by applying different mutation operators. Then,
these mutants generate logs. If the user has to decide between two correct invariants, then the one
that finds more errors in the logs produced by mutants will be chosen. Since the number of correct
invariants for a specification is potentially infinite, it is very important to have a method to select
among a big number of invariants those which theoretically are more capable to detect errors in
faulty IUTs. The approach is graphically depicted in Figure 1.

It is interesting pointing out some differences and similarities of this passive testing approach and
runtime verification [42], the discipline of computer science that deals with the study, development,
and application of verification techniques to check whether a run of a system under scrutiny
satisfies or violates a given correctness property. Both approaches have the same goal but they
work with different techniques and formalisms. In this paper, a set of invariants formally expresses
a set of properties that have to be checked. If an error is detected when a log extracted from the
IUT is checked against an invariant, then it can be claimed that the IUT does not conform to the
specification. Therefore, before checking the correctness of the collected traces with respect to the
specification, it is necessary to ensure that invariants are correct with respect to the specification.
In contrast, a complete specification is rarely available in runtime verification techniques. On a
different line, if the tester is using an invariant expressing an interesting property of the system and
suddenly access to the system is granted, so that he can become an active tester, it is straightforward
to transform the invariant into test cases. In order to overcome this difficulty, there are approaches
to combine runtime analysis with test case generation [8]. The idea is that for each considered
input sequence, a property generator constructs a set of properties that must hold when the
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FORMAL PASSIVE TESTING OF TIMED SYSTEMS 3

implementation under test is executed with these inputs. Afterwards, the tester must check that
all these properties are satisfied.

This paper represents a revised, enhanced, and extended version of previous work on passive
testing of timed systems [4, 5] and of the mutation testing techniques introduced in PASTE [3].
In addition to put under a common notation the previous work, this paper introduces a novel
type of invariants: observational invariants. These invariants were motivated by the experience
while working with complex case studies where the original notion, that is, consequent invariant,
was inadequate to appropriately assess the correctness of some features of the studied systems.
Consequent invariants can be used to express properties such as

each time that a user asks for login and access is granted in less than ten time
units, if after performing some operations the user asks for disconnection, then he is
disconnected, and this operation is performed in less than twenty time units.

Observational invariants allow users to express properties about actions that were performed
between two differentiated events. For example, it may be necessary to check that the logs extracted
from the IUT fulfill a property such as

a logged user that has been connected to the system at most twenty time units can only
check his profile but cannot change it.

The difference between these two types of properties is that the pattern to define consequent
invariants is “if something happens then something must happen” while observational invariants
express properties such as “if something happens and after a while something else happens, then all
the actions in between must fulfill a certain property.”

In addition to present the syntax and examples of the new type of invariant, the paper also provides
algorithms to check the correctness of observational invariants with respect to a specification, as well
as algorithms to check the correctness of the logs recorded from an IUT with respect to observational
invariants. The soundness of the methods, for both types of invariants, is shown by relating them to
an implementation relation. Finally, PASTE has been extended with the new type of invariants and
their associated algorithms.

The second main contribution of this paper is a complete case study where a non-trivial system,
called SSadmin, is studied. This system allows students to check their marks, to modify their
personal profile and, at the beginning of the academic year, to register the subjects to be taken.
Testers are not allowed to introduce their own set of tests because this could damage the database
structure. So, they cannot perform active testing. Therefore, passive testing techniques must be used
to study the logs recorded from SSadmin.

An additional contribution of this paper is to provide a related work section that reviews most
of the work on formal passive testing with a special emphasis on proposals based on invariants.
This section concludes by pointing out the relation between the passive testing approach presented
in this paper and runtime verification. Finally, a new formal translation procedure from timed
invariants into Extended Finite State Machines is also provided. This translation allows users of
the methodology to rely on a formal semantics for invariants based on a well established formalism.

The rest of the paper is structured as follows. Section 2 reviews the main proposals to perform
formal passive testing and some work on runtime verification. Section 3 introduces the formal
framework to specify timed systems. Section 4 describes consequent and observational invariants.
Section 5 contains the material related to the correctness of the approach: a mismatch of a log with a
correct invariant implies a faulty IUT. This section also gives algorithms to check the correctness of
logs with respect to invariants. Section 6 presents some features of PASTE and an empirical study of
the SSadmin system. Section 7 presents the conclusions. Finally, the appendix of the paper provides
a translation from timed invariants into Extended Finite State Machines.
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2. RELATED WORK

This section briefly reviews previous work on passive testing. Therefore, this section can be
considered as a small survey on the field. First, general monitoring and passive testing techniques,
with a focus on formal approaches, are enumerated and briefly described. Afterwards, the focus
goes to proposals to perform passive testing based on invariants. Finally, some relevant work in the
area of runtime verification is reviewed.

2.1. Monitoring techniques

An initial focus was on developing expert systems capable of diagnosing faults and taking corrective
actions on likely faulty scenarios [76]. The major difficulty here is that the experience of human
experts is generally required to develop these expert systems. Each system or subsystem must be
handled separately, in an ad-hoc fashion, and in the case of new developed systems this method may
pose problems.

A later goal was to look for unifying principles in fault detection and identification [72]. Actually,
many network problems that occur due to intrusion and security violations can be addressed by
using passive testing. This is clear from the observation that unwanted intrusions matter only if
they are successful in changing the input/output behavior of the system under attack. The authors
develop classes of fault detection mechanisms that broadly apply across a variety of communication
systems. This work focuses on a group of very simple observers, capable of detecting almost all
possible faults in the system under observation, excluding deadlock and livelock situations. An
algorithm for constructing these observers and a fast real-time fault detection mechanism used by
each observer was given. Since observers run in parallel and independently, one immediate benefit
of this approach is graceful degradation: one failed observer will not cause the collapse of the fault
management system.

Other work concentrated on providing an algorithm to trace the values of variables and determine
the current state of the system [41]. The authors presented two efficient implementations of their
approach. The first implementation narrowed down the range of each variable as much as possible
whenever additional information could be derived from a transition. A set of range operations was
introduced and several examples were given to illustrate that usage. In the second implementation,
the constraints derived from a transition path are recorded and the executability of the path is verified
by solving these constraints as a system of linear equations/inequalities. These algorithms can deal
with commonly encountered operations on variable values associated with state transitions and also
provide efficient variable value determination for the protocol data portion fault detection.

Passive testing has been used for network fault management [37]. In this line, faults are
detected in a network protocol system by passively observing its input/output behaviors without
interrupting the normal network operations. The authors introduce methods for passive fault
detection in deterministic and nondeterministic Finite State Machines (in short, FSMs). This
work takes into account that it is important for communication networks to detect faults “in-
process”, that is, while the network is in its normal operation. The authors apply their techniques
to the management of a signaling network operating under Signaling System 7 and report on
experimental results, which show the feasibility of applying passive testing to practical systems.
This work has been very influential and its underlying ideas have been applied to other FSM-based
systems [75, 77, 69] and were extended to systems specified as Extended Finite State Machines
(in short, EFSMs) [67, 35, 1, 36, 68, 13] and to systems specified as Communicating Finite State
Machines (in short, CFSM) [48, 49, 50].

Another line of work is to define a general formal model for passive conformance testing, where
FSMs are used to model the protocol control portion, and design and implement fault detection
algorithms for both deterministic and nondeterministic systems [54]. The framework was applied to
detect faults at run-time for the Signaling System 7 protocol.

A systematic study of passive testing of the data portion of protocols was also carried out [35].
Variables contain important information concerning the behavior of protocol systems, in particular,
they determine the system states and their external behaviors. The authors presented two algorithms
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FORMAL PASSIVE TESTING OF TIMED SYSTEMS 5

using an Event-driven EFSM. First, an effective passive testing algorithm for EFSMs was proposed.
Second, an algorithm based on variable determination with the constraints on variables was
presented. This algorithm allows users to trace the values of variables as well as the system state.
However, not all transfer errors can be detected. To overcome this limitation, a new approach based
on backward tracing was proposed [1]. This algorithm is strongly inspired by previous work [35],
but the trace is processed backwards in order to further narrow down the possible configurations
for the beginning of the trace and to continue the exploration in the past of the trace with the help
of the specification. This new algorithm was applied to the Simple Connection Protocol (in short,
SCP) that allows to connect two entities after a negotiation of the quality of service required for the
connection.

An algorithm, inspired on previous work in active testing [39, 38], where heuristics are used to
achieve high coverage of transitions in CFSMs was also developed [64]. Mutation testing techniques
were considered since they have a good performance for a range of particular types of errors. This
approach defines mutation functions with special properties such that only mutants with single faults
need to be considered for test generation. As a case study, the authors modeled the predicate absence
fault type and presented and analyzed the test generation algorithm. The well-known Needham-
Schroeder on mutual authentication protocol [52, 43] was used to illustrate their formal model and
testing algorithms.

A passive testing algorithm has been used to analyze the TCP protocol [74]. Experimental
results show that the protocol had a high transition coverage compared to other testing experiments.
Detailed analysis of the experiments is presented and shows a possible way of combining passive
testing and active testing.

2.2. Passive Testing based on Invariants

This section reviews previous approaches to perform passive testing based on the concept of
invariant, that is, properties that must be fulfilled by any log observed in the IUT. The approach for
passive testing of timed systems presented in this paper builds on top of the approaches presented
in this section, more specifically, on previous work also considering invariants [7, 12].

The classical approach to perform passive testing consists in recording the trace produced by the
implementation under test and trying to find a fault by comparing this trace with the specification.
A novel approach [16] was supported by the following idea: a set of invariants represents the most
relevant expected properties of the implementation under test. Intuitively, an invariant expresses the
fact that each time the implementation under test performs a given sequence of actions, it must
exhibit a behavior reflected in the invariant. The authors use the SCP to assess their theoretical
framework. This first approach was able to partially evaluate the data flow, but not in a very
satisfactory way. At least two drawbacks can be identified. First, invariants were automatically
extracted from the specification. Even though this fact allows users of the methodology to partially
automatize the testing process, the number of derived invariants is so big that in order to put the
approach into practice a manual processing to select relevant invariants is needed. Second, the
grammar used to express invariants was very limited, so that important properties could not be
specified as invariants.

Later work presented a step forward in the use of invariants for passive testing [7]. The authors
proposed that invariants can be, initially, supplied by the expert/tester. Therefore, the first step
consists in checking that invariants are in fact correct with respect to the specification. An algorithm
to check this correctness was provided. The complexity, in the worst case, of the algorithm was linear
with respect to the number of transitions of the specification. Once a set of (correct) invariants was
available, the second step consisted in checking whether the trace produced by the IUT matched the
invariants. In order to do so, a simple adaptation of the classical algorithms for pattern matching on
strings [14, 32] was implemented. This work was extended [12] to study a new type of invariants
(obligation), to present a tool that implements the approach, and to give a complete case study on
the Wireless Application Protocol. It is worth pointing out that this protocol represents a typical
example where active testing cannot be applied since, in general, there is no direct access to the
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interfaces between the different layers. Thus, testers cannot control how internal communications
were established.

The work reported on this paper builds on top of previous work on passive testing of timed
systems. First, the notion of consequent timed invariant and the algorithm for checking the
correctness of this kind of invariants with respect to the specification was introduced [4]. The
correctness of this methodology was formally proved [5] by showing that if an invariant detects
a fault in a log, then the IUT that has produced this log does not conform to the underlying
specification. A novel methodology to classify invariants by using mutation techniques with respect
to the number of detected faults was later defined [3]. This framework was extended to consider
systems where time information is given in terms of probability distribution functions [6]. The
PASTE tool implements all these algorithms and methodologies. This tool can be downloaded
from https://simba.fdi.ucm.es/paste. Formerly, PASTE was developed in Java but the code has
been recently translated into a C++ library in order to improve its performance. This tool has
been used in different scenarios, not only in academic studies. In particular, it has been included
as a module to perform formal passive testing in Osmius, an Open Source monitoring tool (see
http://www.osmius.com/en/product). More details about the PASTE tool are given in Section 6.

2.3. Runtime Verification

This section explains the relation between the passive testing approach presented in this paper
and runtime verification [42]. The main difference between runtime verification and (formal)
passive testing is given by the theoretical tools underlying the application of the techniques.
Runtime verification techniques usually require an implementation under test, an observer of the
program which collects the executions of the target system, and a set of requirements, that is,
causal relations among actions and temporal constraints on their performance, which are often
written in some Linear Temporal Logic (in short, LTL) [56]. Runtime verification techniques can
be used for checking online and offline stored traces, or for solving some problems involved in
concurrency, such us data races [62, 9] and deadlock detection [18]. In particular, the use of
temporal logic for runtime verification has been investigated during the last years for reactive
systems [58, 23, 31, 63, 8, 20].

Temporal logics have served as a model for tools such as MaC [30, 61, 31] and PathExplorer [23],
where a three-valued logic is used, the commercial tool Temporal Rover [19, 15] that supports a
fixed future and past line LTL, and EAGLE [11], which is based on recursive parameterized rule
definitions over three primitive temporal operators. There are some approaches that do not use
temporal logics to represent requirements. Some of them use mathematical predicates to specify
properties [57], or implement algorithms addressing specific problems such as the Eraser tool [62]
that dynamically detects data races.

Dealing with timed systems, some studies focus on introducing logics to represent time, such as
the Metric Temporal Logic [33] and LTL extended with real time constructs embodied by a freeze
quantifier together with atomic clock constraints LTLt [34].

Note that all these languages are, in general, more expressive than the invariants considered in
this paper. The main problem with such expressive languages is that it is far from easy for a (passive
or active) tester used to define relations between applied inputs and observed outputs, to write
properties to be checked against the IUT as a temporal logic formula. On the contrary, the syntax of
invariants is very similar to the usual sequences of inputs and outputs used in model-based testing. In
conclusion, runtime verification techniques can achieve what this passive testing approach based on
invariants can achieve but the theoretical framework would be unnecessarily involved and it would
be more difficult for classical active testers to become passive testers.
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FORMAL PASSIVE TESTING OF TIMED SYSTEMS 7

3. PRELIMINARIES

This section introduces the formalism to specify timed systems. First, the paper gives notation
regarding the definition of time intervals: intervals are used to represent time information and
therefore contain real values greater than or equal to zero.

Definition 1
Any value t ∈ IR+ is a constant time value. For all t ∈ IR+, both t <∞, t+∞ =∞, and∞− t =
∞. The real interval p̂ = [p1, p2] is a time interval if p1 ∈ IR+, p2 ∈ IR+ ∪ {∞}, and p1 < p2. The
set of all time intervals is denoted by IIR+

.
Let p̂ = [p1, p2] and q̂ = [q1, q2] be two time intervals and t be a constant time value. The following

functions can be defined: the addition of time intervals is [p1, p2] + [q1, q2] = [p1 + q1, p2 + q2], the
subset relationship of time intervals is [p1, p2] ⊆ [q1, q2] = (q1 ≤ p1 ∧ q2 ≥ p2), and the Update

function is:

Update([p1, p2], [q1, q2]) =

{
[p1, p2] if [q1, q2] = [0, 0]
[min(p1, q1),max(p2, q2)] if [q1, q2] 6= [0, 0]

ut

Time intervals will be used to express time constraints, associated with the performance of
actions, in the definition of invariants. The idea is that if a time interval [p1, p2] ∈ IIR+

is associated
with a task, then it is expected that this task takes at least p1 time units and at most p2 time units to
be performed. Intervals like [0, p2], [p1,∞], or [0,∞] denote the absence of a temporal lower/upper
bound and the absence of any bound, respectively. Note that there is an abuse of notation in [p1,∞]
and [0,∞] since these intervals represent, in fact, the intervals [p1,∞) and [0,∞).

The formalism used to represent specifications of systems is given in the next definition. The
framework is based on an adaptation of the well-known finite state machine formalism where
constant time is added to transitions. The time value associated with each transition represents the
amount of time that this transition needs to be performed.

Definition 2
A Timed Finite State Machine, in the following TFSM, is a tuple M = (S, I,O, T , s0) where
S is a finite set of states, I is the set of input actions, O is the set of output actions, T ⊆
S × I ×O × IR+ × S is the set of transitions, and s0 ∈ S is the initial state. The set of all TFSMs
will be denoted by SETTFSM.

A machine M is observable if there do not exist two different transitions (s, i, o, t1, s1) and
(s, i, o, t2, s2) belonging to T . ut

Given a transition (s, i, o, t, s′) belonging to T , s and s′ are the initial and final states of the
transition, i and o are the input and output actions, and t is the time that the transition needs to be

completed. Along this paper, s
i/o−−−−→ t s

′ will be a shorthand for (s, i, o, t, s′) ∈ T .
All the machines considered in this paper are observable. Note that the notion of observability

makes possible to have some degree of nondeterminism. For example, a machine can have two

transitions s
i/o1−−−−→ t1 s1 and s

i/o2−−−−→ t2 s2, as far as o1 6= o2.

Example 1
Figure 2 presents a running example of TFSM. Its initial state is s1. Each transition is labeled with the
input that the machine receives, the output that it produces, and the amount of time that the system
needs to produce the output since the reception of the input.

For example, the transition s1
i2/o1−−−−−→3 s2 means that if the machine is at state s1 and it receives

the input i2, then in 3 time units it will produce the output o1 and will move to state s2. ut

The next definition introduces the concepts of trace and log. A trace represents a finite sequence
of actions that the system may perform from any of its states. This notion differs from the usual
one where the sequence is always performed from the initial state. A log represents the historical
evolution of a system.
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Machine M

s1 s2 s3

i1, o1, 6

i1, o3, 6
i2, o1, 3

i2, o2, 5

i1, o1, 7

i1, o2, 4

i1, o1, 5

i2, o1, 7

Figure 2. Example of a TFSM.

Definition 3
Let M = (S, I,O, T , s0) be a TFSM, i1, . . . , ir ∈ I, o1, . . . , or ∈ O, and t1, . . . , tr ∈ IR+. A
sequence e = 〈i1/o1/t1, . . . , ir, /or/tr〉 is a trace of M if there exist a sequence of transitions

s1
i1/o1−−−−−→ t1 s2, s2

i2/o2−−−−−→ t2 s3, . . . , sr
ir/or−−−−−→ tr sr+1 in T . Traces(M) denotes the set of all

traces of M . A log from M is a sequence belonging to Traces(M).
The function LenI/O : (I × O × IR+)? −→ IN is such that for all e = 〈i1/o1/t1, . . . , ir, /or/tr〉,

LenI/O(e) = r. Note that LenI/O(〈〉) = 0.
The function TTM : Traces(M) −→ IR+ is such that for all e = 〈i1/o1/t1, . . . , ir, /or/tr〉,

TTM (e) =
∑r

j=1 tj . ut

Note that traces and logs are indeed simply traces. Nevertheless, two different names are used
to denote the same concept in order to distinguish between objects that, even though they look
similar, have different nature. In this paper, the name trace refers to the finite sequences that the
specification of a system can perform while the term log refers to finite sequences observed from
the IUT. Usually, e1, e2, . . . will denote traces while l1, l2, . . . will denote logs.

Example 2
Consider the TFSMM presented in Figure 2. For instance, both e1 = 〈i1/o1/6, i2/o1/3〉, starting at
state s1, and e2 = 〈i1/o1/5, i2/o2/5〉, starting at state s3, are traces ofM . In addition, TTM (e1) = 9,
TTM (e2) = 10, LenI/O(e1) = 2, and LenI/O(e2) = 2. ut

4. TIMED INVARIANTS

This section introduces the notion of timed invariant. Timed invariants are used to represent the
properties that must be checked against the logs extracted from the IUT. First, after receiving a
set of timed invariants and before checking them against the logs, they must be checked against
the specification; otherwise, the tester might be using an invariant that violates the requirements
expressed by the specification. Another possibility would be to consider that invariants are correct
by definition. In this case the specification could be completely ignored.

This paper uses two different types of timed invariants: Timed consequent invariants and timed
observational invariants. The first type is used to check that an event is performed within certain
time-bounds after a given trace of events has been observed. The second type is used to check that a
given sequence of events is always performed between two given events within certain time-bounds.

4.1. Timed consequent invariant

Timed consequent invariants [4] are a natural extension with time of a previous notion [7, 12].
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Definition 4
Let I,O be two sets of input and output actions, respectively. A sequence φ is a consequent invariant
if φ is defined according to the following EBNF:

φ ::= a/z/p̂, φ | ? /p̂, φ′ | i 7→ O/p̂ B q̂
φ′ ::= i/z/p̂, φ | i 7→ O/p̂ B q̂

In the previous expression, p̂, q̂ ∈ IIR+
, i ∈ I, a ∈ I ∪ {?}, z ∈ O ∪ {?}, and O ⊆ O. The set of

timed consequent invariants for the sets I and O is denoted by ΦI/O. During the rest of the paper,
a generic timed consequent invariant will be represented by α1, . . . , αn, if 7→ O/p̂f B q̂f , where
α1, . . . , αn ∈ ((I ∪ {?} × O ∪ {?}) ∪ {?})× IIR+ , if ∈ I, O ⊆ O, and p̂f and q̂f ∈ IIR+ . ut

Intuitively, the previous EBNF expresses that a timed consequent invariant is a sequence of
symbols. Each component, but the last one, is either an expression a/z/p̂, with a being an input
or the ? wildcard character, z being an output or the ? wildcard character, and p̂ being a timed
interval, or an expression ?/p̂. The special symbol ? represents any input or output. Therefore, for
all a ∈ I ∪ O, a =? holds. In addition, the special symbol ?, whose occurrences are always followed
by an input i, represents any sequence in (I \ {i} × O × IR+)?.

This EBNF imposes two restrictions. First, an invariant cannot contain two consecutive
components ?/p̂1 and ?/p̂2. The second restriction is that an invariant cannot present a component
of the form ?/p̂ followed by a wildcard character ?, that is, the input of the next component must
be an input action i ∈ I. The last component of the invariant, corresponding to the expression
i 7→ O/p̂ B q̂, is an input action followed by a set of output actions and two time restrictions. The
first time interval, that is, p̂, is associated with the last input/output pair of the sequence. The second
time interval, that is, q̂, concerns the sum of the time values associated with all the input/output pairs
appearing in the sequence.

Note that time conditions established in invariants are given by intervals. However, machines
present time information expressed as constant amounts of time. The use of intervals allows testers
to consider that different executions of the same task can take different amounts of time to be
completed. Another reason for the tester to use intervals, even if the system always takes the same
time to perform a certain task, is to consider that the artifacts measuring time are not as precise as
desirable. In this case, an apparently wrong behavior due to bad timing can be in fact correct since
it may happen that the clocks are not working properly. A longer explanation on the use of time
intervals to deal with imprecisions can be found in [45].

The next examples show the intended meaning of consequent timed invariants. In the appendix
of the paper a formal semantics of consequent invariants, by translating them into EFSMs, is given.

Example 3
The following invariant expresses that “after performing i1, either o1 or o2 will be observed within
a time belonging to [2, 8]”:

φ1 = i1 7→ {o1, o2}[2, 8] B [2, 8]

More complex properties can be specified. The following invariant means that “each time that the
input i1 is followed by the output o1 in a time belonging to [6, 7] and a sequence of inputs /outputs
that does not contain the input i2† is performed in a time belonging to [6, 12], then when the input
i2 is observed, it must be followed by the output o1, in a time belonging to [1, 7]. Additionally, the
sum of all time values, from i1 to o1, must belong to [5, 30]”:

φ2 = i1/o1/[6, 7], ?/[6, 12], i2 7→ {o1}[1, 7] B [5, 30]

ut

Since invariants can be defined by a tester, it must be ensured that they are correct with respect
to the specification. Next, the most relevant aspects of the algorithm (shown in Figure 3) to decide

†Note that ? matches any sequence of actions not containing the next input symbol appearing in the invariant, that is, i2
in this case.
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whether an invariant is correct with respect to a specification are presented. The algorithm has two
parts. The first one, corresponding to the first loop of the algorithm, determines the set of states that
can be reached in the specification after matching the first n elements, that is α1, . . . , αn. The second
part, after the first loop, is used to check the restrictions included in the invariant. The algorithm
verifies that for all the states computed in the previous step, if the last input of the invariant can be
performed, then the possible outputs belong to the set of outputs appearing in the set of outputs O.
In addition, the algorithm also checks if the transitions traversed in the specification have associated
a time value that belongs to the corresponding time interval of the invariant and that the sum of all
the time values verifies the last time constraint.

Before starting with the explanation of the algorithm, the following definition introduces some
auxiliary functions to deal with timed consequent invariants. The LenI/O(φ) function computes
the length of a timed consequent invariant. The TailI/O(φ) function returns a timed consequent
invariant removing the first element of φ. The NstarsI/O(φ) function returns the number of
occurrences of the wildcard ? in φ. Finally, the NInpI/O(φ) function returns the next input of
the timed consequent invariant φ.

Definition 5
Let I,O be two sets of input and output actions, respectively. The function LenI/O : ΦI/O −→
IN is such that for all φ = α1, . . . , αn, if 7→ O/p̂f B q̂f ∈ ΦI/O, LenI/O(φ) = n. Note that
LenI/O(if 7→ O/p̂f B q̂f ) = 0.

The function TailI/O : ΦI/O −→ ΦI/O is such that for all φ = α1, . . . , αn, if 7→ O/p̂f B q̂f ∈
ΦI/O:

TailI/O(φ) =

{
if 7→ O/p̂f B q̂f if LenI/O(φ) = 0
α2, . . . , αn, if 7→ O/p̂f B q̂f if LenI/O(φ) > 0

The function NstarsI/O : ΦI/O −→ IN returns the number of occurrences of the wildcard ? in
a consequent timed invariant, that is, for all φ = α1, . . . , αn, if 7→ O/p̂f B q̂f ∈ ΦI/O,

NstarsI/O(φ) =

 0 if LenI/O(φ) = 0
1 + NstarsI/O(TailI/O(φ)) if LenI/O(φ) > 0 ∧ α1 = ?/p̂
NstarsI/O(TailI/O(φ)) if LenI/O(φ) > 0 ∧ α1 6= ?/p̂

The function NInpI/O : ΦI/O −→ I is such that for all φ = α1, . . . , αn, if 7→ O/p̂f B q̂f ∈
ΦI/O:

NInpI/O(φ) =


if if LenI/O(φ) = 0
i1 if α1 = i1/o1/t1 ∧ LenI/O(φ) > 0
NInpI/O(TailI/O(φ)) if α1 = ?/t1 ∧ LenI/O(φ) > 0

ut

The next definition introduces some auxiliary functions to deal with transitions and time intervals.
The AfterCondM (S, I,O, p̂) function computes the set of transitions outgoing from a state in S,
labeled by an input in I and an output in O, and such that the associated time value belongs to the
interval p̂. The SetStatesIM (i) function computes the set of goal states of all transitions of M that
are labeled with the input i.

Definition 6
Let M = (S, I,O, T , s0) be a TFSM. The function AfterCondM : ℘(S)× ℘(I ∪ {?})× ℘(O ∪
{?})× IIR+

−→ ℘(T ) is such that for all Saux ⊆ S, Iaux ⊆ I ∪ {?}, Oaux ⊆ O ∪ {?}, and p̂ ∈
IIR+ :

AfterCondM (Saux, Iaux, Oaux, p̂) =

tr
∣∣∣∣∣∣
∃s ∈ Saux, s′ ∈ S, i ∈ I, a ∈ Iaux, o ∈ O,
z ∈ Oaux, t ∈ IR+ : i = a ∧ o = z ∧ t ∈ p̂ ∧
tr = (s, i, o, t, s′) ∈ T


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Algorithm Correctness Consequent Specification

Data: M = (S, I,O, T , s0) : SETTFSM, φ = α1, . . . , αn, if 7→ O/p̂f B q̂f : ΦI/O

Result: Bool

Initialization of variables

x̄ : array of IIR+ ; x̄← []; Sc ← S;j ← 1;
(* x̄ is an array of size |S| and [0, 0] is the initial value of all positions and Sc is the set of
current states to be evaluated *)

Main loop

while j ≤ LenI/O(φ) ∧ Sc 6= ∅; do
Saux ← ∅;
ȳ ← [];
(* Saux computes the next set of states and ȳ is an array with |S| components, used to
update time information. [0, 0] is the initial value stored in all the positions of the array *)
if αj = ?/p̂j then

while Sc 6= ∅ do
Choose sa ∈ Sc; Sc ← Sc \ {sa};
(z̄, Sindex)← AfterInT(M, sa, NInpI/O(αj , . . . , αn, if 7→ O/p̂f B q̂f ), p̂j);

while Sindex 6= ∅ do
Choose sb ∈ Sindex; Sindex ← Sindex \ {sb};
ȳ[b]← Update(z̄[b], ȳ[b]); Saux ← Saux ∪ {sb};

end
end

else
(* αj = aj/zj/p̂j*)
Taux ← AfterCondM (Sc, {aj}, {zj}, p̂j);
while Taux 6= ∅ do

Choose (sa, i, o, t, sb) ∈ Taux; Taux ← Taux \ {(sa, i, o, t, sb)};
ȳ[b]← Update(x̄[a] + [t, t], ȳ[b]); Saux ← Saux ∪ {sb};

end
end
x̄← ȳ; Sc ← Saux; j ← j + 1;

end
Taux ← AfterCondM (Sc, {if},O, [0,∞]);
error ← (Taux = ∅);
(* Taux contains the set of transitions that can produce errors *)
while Taux 6= ∅ ∧ ¬error do

Choose (sa, if , o, t, s) ∈ Taux; Taux ← Taux \ {(sa, if , o, t, s)};
error ← (o 6∈ O) ∨ (t 6∈ p̂f ) ∨ (x̄ [a] + [t , t ] 6⊆ q̂f );

end
return(¬error);

Figure 3. Correctness of a timed consequent invariant with respect to a specification.
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Algorithm AfterInT

Data: M = (S, I,O, T , s0) : SETTFSM, s : S, i : I, [p1, p2] : IIR+

Result: array of IIR+
× ℘(S)

Initialization of variables

x̄ : array of IIR+
; x̄← [];

(* x̄ is an array of size |S| and [0, 0] is the initial value of all positions*)
Nodes← {(s, {s}, [0, 0])};
Sc ← ∅;
Sterminal ← SetStatesIM (i);
(* Nodes is a set of all nodes of the breadth first search algorithm, Sc is the set of reached
states, and Sterminal with Sc ⊆ Sterminal is the set of possible reached states*)

Main loop

while Nodes 6= ∅ do
Choose (sa, Svisited, [q1, q2]) ∈ Nodes; Nodes← Nodes \ {(sa, Svisited, [q1, q2])};
if sa ∈ Sterminal ∧ [q1, q2] ⊆ [p1, p2] then

Sc ← Sc ∪ {sa};
x̄[a]← Update([q1, q2], x̄[a]);

end
Taux ← AfterCondM ({sa}, I \ {i},O, [0,∞]);
while Taux 6= ∅ do

Choose (sa, i
′, o, t, sb) ∈ Taux; Taux ← Taux \ {(sa, i′, o, t, sb)};

if p2 =∞ then
if q2 6=∞∧ sb ∈ Svisited then

(* A loop is detected *)
Nodes← Nodes ∪ {(sb, Svisited, [q1 + t,∞])};

end
if sb 6∈ Svisited then

Nodes← Nodes ∪ {(sb, Svisited ∪ {sb}, [q1 + t, q2 + t])};
end
if q2 =∞∧ q1 < p1 then

(* A loop (q2 =∞) is executed a finite number of times until the lower bound is
exceeded *)
Nodes← Nodes ∪ {(sb, Svisited ∪ {sb}, [q1 + t, q2])};

end
else

if q2 + t ≤ p2 then
Nodes← Nodes ∪ {(sb, Svisited ∪ {sb}, [q1 + t, q2 + t])};

end
end

end
end
return(x̄, Sc);

Figure 4. Function to compute the set of reached states and the amount of time to reach each of these states.
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The function SetStatesIM : I −→ ℘(S) is such that for all i ∈ I:

SetStatesIM (i) =
{
s′
∣∣ ∃s, s′ ∈ S, o ∈ O, t ∈ IR+ : (s, i, o, t, s′) ∈ T

}
ut

Initially, the algorithm obtains the set of states from which a transition labeled by the first
input/output pair of the invariant can be performed and such that the associated time value belongs
to the interval indicated in the invariant. Then, the algorithm computes the set of states that can
be reached from this initial set of states after performing the transitions. The algorithm repeats
this process until it traverses all the components αj of the invariant φ, with 1 ≤ j ≤ LenI/O(φ),
taking into account the set of states reached in the previous step. Note that there is a distinction
between input/output pairs, possibly including the ? wildcard character, and occurrences of the ?
wildcard character. In the latter case, the AfterInT auxiliary function (shown in Figure 4) computes
the reached states and the amount of time needed to reach each of these states (represented by an
interval). This function does not consider the input/output actions labeling the traversed transitions,
as long as the corresponding input does not appear in the sequence.

The next step of the algorithm make use of the set of transitions that can be executed after
matching the invariant. If this set is empty then the invariant is not correct. The idea is that a
tester should not use an invariant if the sequence of input/output actions cannot be performed by
the specification in the intervals appearing in the invariant.

If the set is not empty then the algorithm computes the set of transitions from these states labeled
with the input if . If this set of transitions is not empty then it means that at least there exists a trace of
the specification that is completed matched by the invariant. The final step of the algorithm checks
that the outputs produced by the transitions outgoing from these states and labeled with the input
if belong to the set of outputs O that appears in the invariant. In addition, the time value associated
with all of these outputs must belong to the time interval p̂f . Finally, that the time associated with
the performance of the whole trace is correct. In order to do it, all the time values associated with the
transitions traversed in the specification are recorded during the previous phases of the algorithm.
Each position of the array x̄ contains an interval with bounds the minimal/maximal time values
that are needed to reach the corresponding states after the whole invariant is traversed. For all the
states having an interval recorded, the algorithm checks if this interval is contained in the interval
appearing in the last position of the invariant, that is, in q̂f .

Let φ be a timed consequent invariant and M = (S, I,O, T , s0) be a TFSM. In the worst case,
the complexity of the algorithm to decide the correctness of φ with respect to M is O(|S| · |T ||S| ·
k + |T | · (s− k)), where k = NstarsI/O(φ) and s = LenI/O(φ). This worst case is computed by
taking into account the following facts. In the first part of the algorithm there is a loop depending
on LenI/O(φ). If the token under evaluation contains the wildcard ? then the AfterInT function
is called |S| times. This function computes a breadth first search algorithm, being its complexity
in O(|T ||S|). But, if the token under evaluation does not contain the wildcard ?, then it perfoms
a loop depending on the set of transitions. Finally, the second part of the algorithm that can be
translated into a for-loop being its complexity in O(T ), and can be omitted.

Definition 7
Let φ be a timed consequent invariant and M be a TFSM. The invariant φ is correct with respect to
M if the algorithm Correctness Consequent Specification(M,φ) returns true. ut
Example 4
Consider the TFSM M presented in Figure 2 and the consequent invariants φ1 = i1 7→
{o1, o2}[2, 8] B [2, 8] and φ2 = i1/o1/[6, 7], ?/[6, 12], i2 7→ {o1}[1, 7] B [5, 30] presented in Exam-
ple 3.

The φ1 invariant is not correct with respect to M because the algorithm
Correctness Consequent Specification(M,φ1) returns false. The first loop of the algorithm
is not performed because LenI/O(φ1) = 0. In the beginning of the second part of the algorithm,
the set of states is Sc = {s1, s2, s3}. The idea is to select those transitions of M outgoing from

states s ∈ Sc and such that their associated input is i1. These transitions are: s1
i1/o1−−−−−→6 s1,
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φ2 = i1/o1/[6,7], ?/[6,12], i2

s1
i1/o1−−−−−→6 s1, s1

i1/o1−−−−−→6 s1

s1
i1/o1−−−−−→6 s1, s1

i1/o3−−−−−→6 s1

s1
i1/o1−−−−−→6 s1, s1

i1/o1−−−−−→6 s1, s1
i1/o1−−−−−→6 s1

s1
i1/o1−−−−−→6 s1, s1

i1/o3−−−−−→6 s1, s1
i1/o3−−−−−→6 s1

s1
i1/o1−−−−−→6 s1, s1

i1/o1−−−−−→6 s1, s1
i1/o3−−−−−→6 s1

s1
i1/o1−−−−−→6 s1, s1

i1/o3−−−−−→6 s1, s1
i1/o1−−−−−→6 s1

s2
i1/o1−−−−−→7 s3, s3

i1/o1−−−−−→5 s2, s2
i1/o1−−−−−→7 s3

s2
i1/o1−−−−−→7 s3, s3

i1/o2−−−−−→4 s2, s2
i1/o1−−−−−→7 s3

Figure 5. Set of traces of M matched by φ2.

s1
i1/o3−−−−−→6 s1, s3

i1/o1−−−−−→5 s2, s3
i1/o2−−−−−→4 s2, and s2

i1/o1−−−−−→7 s3. Due to the fact that there
exists a transition s

i1/o−−−−→ t s
′ in this set such that s ∈ Sc and o 6∈ {o1, o2}, that is, s1

i1/o3−−−−−→6 s1,
the variable error changes its value to true and the algorithm returns false.

The φ2 invariant is correct with respect to M because the algorithm
Correctness Consequent Specification(M,φ2) returns true. The first loop checks the
initial part of the invariant: i1/o1[6, 7], ?/[6, 12]. Once the loop finishes, Sc contains the reached
states while x̄ contains time information regarding the amount of time that the system would
spend if the initial sequence of the invariant would be performed without taking into account the
initial state. Specifically, Sc = {s1, s3} because the considered traces are the ones induced by the
sequences of transitions presented in Figure 5. In this table, the first row (in boldface) separates the
parts of the invariant that are used to match the traces, and the remaining rows show the traces that
are matched.

In addition, x̄[1] = [12, 18] and x̄[3] = [18, 19] (the values 1 and 3 correspond to the states s1 and
s3, respectively). The values of x̄ are computed by adding the time values from the previous traces
and considering the minimum and maximum values of them as the bounds of the interval.

The second phase of the algorithm checks the conditions presented in the invariant, that is
i2 7→ {o1}[1, 7] B [5, 30]. If there exists a transition from a state of Sc starting with i2 and producing

an error. The candidate transitions are s1
i2/o1−−−−−→3 s2 and s3

i2/o1−−−−−→7 s3. The functional restriction
of φ2 holds because o1 ∈ {o1} in both transitions. In addition, the temporal restrictions hold on the
one hand 3 ∈ [1, 7] and 7 ∈ [1, 7] and on the other hand, concerning the complete trace, x̄[1] + [3, 3]
and x̄[3] + [7, 7] belong to [5, 30]. ut

The match predicate relates traces of a specification and timed consequent invariants. A trace
matches a timed consequent invariant if it is correct with respect to both its functional and its
temporal behaviour. In order to deal with traces the function TailM (e) is introduced. This function
removes the first element of the trace e of M .

Definition 8
Let M = (S, I,O, T , s0) be a TFSM. The function TailM : Traces(M) −→ Traces(M) is such
that for all e = 〈i1/o1/t1, . . . , ir/or/tr〉 ∈ Traces(M):

TailM (e) =

{
〈〉 if LenI/O(e) ≤ 1
〈i2/o2/t2, . . . , ir/or/tr〉 if LenI/O(e) > 1

ut
The MatchCM (e, φ) function computes whether the trace e of M matches the timed consequent

invariant φ. This definition uses the MatchC?M (e, i, q̂, t) auxiliary predicate to deal with occurrences
of the ? wildcard character in the invariant with an associated time p̂ being the next input of the
wildcard the action i.
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Definition 9
Let M = (S, I,O, T , s0) be a TFSM. The function MatchC?M : Traces(M)× I × IIR+ × IR+ −→
Traces(M) is such that for all e = 〈i1/o1/t1, . . . , ir/or/tr〉 ∈ Traces(M), i ∈ I, q̂ = [q1, q2] ∈
IIR+

, and t ∈ IR+:

MatchC?M (e, i, q̂, t) =

 〈〉 if (t > q2) ∨ LenI/O(e) = 0 ∨ (i1 = i ∧ t 6∈ q̂)
e if i1 = i ∧ t ∈ q̂
MatchC?M (TailM (e), i, q̂, t+ t1) if t ≤ q2 ∧ i1 6= i

The function MatchCM : Traces(M)× ΦI/O −→ Bool is such that for all e1 =
〈i1/o1/t1, . . . , ir/or/tr〉 ∈ Traces(M) and φ = α1, . . . , αn, if 7→ O/p̂f B q̂f ∈ ΦI/O,
MatchCM (e1, φ) is equal to:

false if (u− 1 < s− k) ∨ ((u > 1) ∧ (s = 0))
i1 = if if u = 1 ∧ s = 0
MatchCM (e2, TailI/O(φ)) if r > 1 ∧ s > 0 ∧ α1 = ?/q̂
i1 = a ∧ o1 = z ∧ t1 ∈ q̂ ∧
MatchCM (TailM (e1), TailI/O(φ)) if r > 1 ∧ s > 0 ∧ α1 = a/z/q̂

where e2 = MatchC?M (e1, NInpI/O(φ), q̂, 0), k = NstarsI/O(φ), s = LenI/O(φ), and u =
LenI/O(e1).

Let M be a TFSM, φ be a timed consequent invariant, and e be a trace of M . The sequence e
matches φ if MatchCM (e, φ) returns true. ut

The concept of matching can be used to give a characterization of the notion of correctness
introduced by the algorithm given in Figure 3.

Lemma 1
Let M be a TFSM and φ = α1, . . . , αn, if 7→ O/p̂f B q̂f be a timed consequent invariant. The
invariant φ is correct with respect toM if there exits e1 ∈ Traces(M) such that e1 matches φ and for
all traces e2 ∈ Traces(M) such that e2 matches φ, the following conditions hold: oLenI/O(e2) ∈ O,
tLenI/O(e2) ∈ p̂f , and TTM (e2) ∈ q̂f . ut

The proof of the previous result is straightforward since it is enough to take into account that
the first loop of the algorithm, presented in Figure 3, computes the matches function introduced in
Definition 9. In particular, the algorithm computes the set of traces of the specification matching
the invariants and stores the reached states in Sc. If there does not exist a matching sequence (first
condition of Lemma 1), then the invariant is not matched, and it produces an error. This situation
is represented in the second part of the algorithm with the assignments error ← (Taux = ∅). After
that, the second condition of Lemma 1 is checked for each matched trace.

4.2. Timed observational invariants

Even though timed consequent invariants allow testers to represent a wide range of properties,
some classes of properties cannot be expressed with them. As already commented in Section 2,
the original untimed framework provided two types of invariants: (simple) invariants and obligation
invariants [12]. While simple invariants allow testers to check properties taking into account what
was observed to ensure that something will happen in the future, obligation invariants allow testers
to check properties concerning events that already were observed.

The previously presented timed consequent invariant framework represents a temporal adaptation
of (simple) invariants. With respect to the temporal adaptation of obligation invariants, the idea is
still to follow the pattern “if one observes something in the future, then something has happened in
the past”. For example, if a disconnection message is observed, then it is necessary to check that the
user previously logged into the system. In this paper, this pattern is slightly modified so that timed
observational invariants can be used to express properties such as “if one observes a certain output
in the future and a certain input was observed in the past, then it is necessary to check that some
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properties hold between these two actions”. For example, if a user logged into the system and after
20 time units he receives the disconnection screen, then it is necessary to check that the user both
introduced the correct password and that he later pressed the disconnection button.

Definition 10
Let I,O be two sets of input and output actions, respectively. The function CInv : I × O −→
(O ∪ {?})× IIR+

× (((I ∪ {?} × O ∪ {?}) ∪ {?})× IIR+
)∗ × I ∪ {?} is such that

CInv(I/O) =

δ
∣∣∣∣∣∣
∃α1, . . . , αn,∈ (((I ∪ {?} × O ∪ {?}) ∪ {?})× IIR+), a ∈ I ∪ {?},
z ∈ O ∪ {?}, m̂ ∈ IIR+

: δ = z/m̂, α1, . . . , αn, a ∧
∀j : 1 ≤ j < n : (αj = ?/p̂) =⇒ (αj+1 6= ?/q̂)


An element of CInv(I/O) will be called a pattern trace. The set of all pattern traces will be
denoted by PATTRI/O. During the rest of the paper, a generic pattern trace will be presented
by δ = z/m̂, α1, . . . , αn, a, where z ∈ O ∪ {?}, m̂ ∈ IIR+

, α1, . . . , αn ∈ (((I ∪ {?} × O ∪ {?}) ∪
{?})× IIR+

) and a ∈ I ∪ {?}.
The sequence µ is called a timed observational invariant, or simply an observational invariant, if

µ is defined according to the following EBNF:

µ ::= i→ β ← o, p̂/q̂

In this expression p̂, q̂ ∈ IIR+
, i ∈ I, β ⊆ CInv(I/O), and o ∈ O. The set of timed observational

invariants for I/O is denoted by ΨI/O. ut

Intuitively, the previous EBNF expresses that a timed observational invariant starts with an input
followed by a set of pattern traces and finishes with an output and two time intervals. A pattern
trace is a sequence of symbols where each of its components but the first and the last ones is either
an expression a/z/p̂, with a being either an input or the wildcard ?, z being either an output or
the wildcard ?, and p̂ being an interval, or an expression ?/p̂. The first component of a pattern
trace is an expression z/p̂, where z is either an output or the wildcard ?, while the last component
of the invariant is either an input or the wildcard ?. The occurrence of two consecutive wildcard
characters ? is not allowed.

Example 5
The invariant µ1 means “whenever the input i2 is observed and in a time belonging to [10, 12] the
output o3 is observed, then it must be checked that the system has performed the output action o2 in
a time belonging to [4, 6], then the system received the input i1, and emitted the output o3 in a time
belonging to [5, 7]”.

µ1 = i2 → {〈o2/[4, 6], i1〉} ← o3, [5, 7]/[10, 12]

A complex timed observational invariant can represent more than one behavior in it. For example,
the invariant

µ2 = i1 →
{

〈o2/[3, 16], i1〉,
〈?/[1, 7], ?/[0,∞], i3〉

}
← o3, [5, 7]/[15, 17]

indicates that “whenever i1 is observed and in the future o3 is observed in a time belonging
to [15, 17], then it must be checked that the behavior of the system between these two actions
conformed to one of the two considered pattern traces. The first one represents that after observing
the input i1, the output o2 will be observed in a time belonging to [3, 16], followed by the input i1
and the output o3 in a time belonging to [5, 7]. The second one represents the fact that after observing
the input i1 followed by a (possibly empty) sequence of input/output pairs without occurrences of
the input i3, and observing the input i3, the output o3 will be observed in a time belonging to [5, 7]”.

ut

Since observational invariants can be defined by a tester, similar to consequent invariants, it
must be checked that they are correct with respect to the specification. The general scheme of the
algorithm that checks the correctness of an observational invariant with respect to a specification
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Algorithm Correctness Observational Specification

Data: M = (S, I,O, T , s0) : SETTFSM, µ = i→ β ← o, p̂/q̂ : ΨI/O

Result: Bool
Struct A {current state : S

ptt : ℘(PATTRI/O × IR+)
ttime : IR+};

Initialization of variables

error ← false;
matched← false;
Nodes← InitialNodes(M,µ);

Main loop

while Nodes 6= ∅ ∧ ¬error do
Choose node ∈ Nodes; Nodes← Nodes \ {node};
(error,matchedaux)← CheckNode(M,µ, node);
if ¬error then

Nodes← Nodes ∪ NewNodes(M,µ, node);
end
matched← matched ∨matchedaux;

end
error ← error ∨ ¬matched;
return(¬error);

Figure 6. Correctness of a timed observational invariant with respect to a specification.

appears in Figure 6. This algorithm makes use of the functions InitialNodes, CheckNode, and
NewNodes defined in Figures 7, 8 and 9 respectively. Next, some additional notation has to be defined
for dealing with pattern traces and timed observational invariants. The LenI/O(δ) function computes
the length of a given pattern trace. The LenI/O(µ) function returns the addition of the lengths of the
pattern traces associated with a timed observational invariants. The TailI/O(δ) function reduces
a give pattern trace into another pattern trace. The NstarsI/O(δ) function returns the number of
occurrences of the wildcard ? in a pattern trace, while the NstarsI/O(µ) function returns the
addition of the number of occurrences of the wildcard ? in the pattern traces associated with a
timed observational invariants. The NInpI/O(δ) function computes the next input associated with a
pattern trace.

Definition 11
Let I and O be two sets of input and output actions respectively. The function LenI/O :
PATTRI/O −→ IN is such that for all δ = z/m̂, α1, . . . , αn, a ∈ PATTRI/O, LenI/O(δ) = n. Note
that this function is overloaded for pattern traces and returns the length of a pattern trace. The
function LenI/O : ΨI/O −→ IN is such that for all µ = i→ β ← o, p̂/q̂ ∈ ΨI/O:

LenI/O(µ) =
∑
δ∈β

LenI/O(δ)

The function TailI/O : PATTRI/O −→ PATTRI/O is such that for all δ = z/m̂, α1, . . . , αn, a ∈
PATTRI/O:
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Algorithm InitialNodes

Data: M = (S, I,O, T , s0) : SETTFSM, µ = i→ β ← o, p̂/q̂ : ΨI/O

Result: ℘(Struct A)

Initialization of variables

Nodes← ∅;
Taux ← AfterCondM (S, {i}, O \ {o}, [0,∞]);

Main loop

while Taux 6= ∅ do
Choose (s, i, oaux, taux, saux) ∈ Taux; Taux ← Taux \ {(s, i, oaux, taux, saux)};
nodenew.current state← saux;
nodenew.ptt← ∅;
nodenew.ttime← taux;
βaux ← β;
while βaux 6= ∅ do

Choose δ ∈ βaux; βaux ← βaux \ {δ};
(* δ = z/m̂, α1, . . . , αn, a *)
if z = oaux ∧ taux ∈ m̂ then

nodenew.ptt← nodenew.ptt ∪ {(δ, 0)};
end

end
Nodes← Nodes ∪ {nodenew};

end
return(Nodes);

Figure 7. Function to compute the set of initial nodes.

TailI/O(δ) =

{
z/m̂, a if LenI/O(δ) = 0
z/m̂, α2, . . . , αn, a if LenI/O(δ) ≥ 1

The function NstarsI/O : PATTRI/O −→ IN is such that for all δ = z/m̂, α1, . . . , αn, a ∈
PATTRI/O:

NstarsI/O(δ) =

 0 if LenI/O(δ) = 0
1 + NstarsI/O(TailI/O(δ)) if LenI/O(δ) > 0 ∧ α1 = ?/p̂
NstarsI/O(TailI/O(δ)) if LenI/O(δ) > 0 ∧ α1 6= ?/p̂

The function NstarsI/O : ΨI/O −→ IN is such that for all µ = i→ β ← o, p̂/q̂ ∈ ΨI/O:

NstarsI/O(µ) =
∑
δ∈β

NstarsI/O(δ)

The function NInpI/O : PATTRI/O −→ I is such that for all δ = z/m̂, α1, . . . , αn, a ∈ PATTRI/O:

NInpI/O(δ) =


a if LenI/O(δ) = 0
i1 if LenI/O(δ) > 0 ∧ α1 = i1/o1/p̂1
NInpI/O(TailI/O(δ)) if LenI/O(δ) > 0 ∧ α1 = ?/p̂1

ut
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Algorithm CheckNode

Data: M = (S, I,O, T , s0) : SETTFSM, µ = i→ β ← o, p̂/q̂ : ΨI/O, node : Struct A
Result: Bool× Bool

Initialization of variables

s← node.current state;
Taux ← AfterCondM ({s}, I, {o}, [0,max (0, q2 − node.ttime)]);
error ← false;
matched← false;

Main loop

while Taux 6= ∅ ∧ ¬error do
Choose (s, iaux, o, taux, saux) ∈ Taux; Taux ← Taux \ {(s, iaux, o, taux, saux)};
if (node.ttime+ taux) ∈ q̂ then

βT ← node.ptt;
checked← false;
while βT 6= ∅ ∧ ¬checked do

Choose (δ, t′) ∈ βT ; βT ← βT \ (δ, t′);
(* δ = z/m̂, α1, . . . , αn, a *)
if LenI/O(δ) = 0 ∨ (LenI/O(δ) = 1 ∧ α1 = ?/m̂′ ∧ a = iaux ∧ t′ ∈ m̂′) then

matched← true;
checked← (a = iaux ∧ taux ∈ p̂);

end
end
error ← ¬checked;

end
end
return(error,matched);

Figure 8. Function to check the correctness of a node.

The Correctness Observational Specification(M,µ) algorithm is essentially a breadth
first search. It begins at the root node and explores all the neighboring nodes. Then, for each of
those adyacent nodes, it explores their unexplored neighbor, and so on, until it finds a mismatch
between the invariant and the specification. An additional structure Struct A is defined to codify
the nodes.

The initial phase of the algorithm calls the InitialNodes function. It computes the initial set of
nodes. Next, the algorithm takes a node and examines it performing the CheckNode function. This
function provides a verdict about the correctness of this node. Finally, if there is not error then using
this node and performing NewNodes function, a new set of nodes is computed.

Let µ = i→ β ← o, p̂/q̂ be a timed observational invariant and M = (S, I,O, T , s0) be a TFSM.
In the worst case, the complexity of the algorithm to decide the correctness of µ with respect to
M is in (|T ||S| · |T | · |β|). This worst case is computed by taking into account the following facts.
The algorithm performs once the function InitialNodes. The complexity of this function is in
O(|T | · |β|). Next, a loop that computes a breadth first search algorithm, beings its complexity
in O(|T ||S|) is perfomed. The functions CheckNode and NewNodes are executed inside this loop.
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Algorithm NewNodes

Data: M = (S, I,O, T , s0) : SETTFSM, µ = i→ β ← o, p̂/q̂ : ΨI/O, node : Struct A
Result: ℘(Struct A)

Initialization of variables

s← node.current state;
Taux ← AfterCondM ({s}, I, O \ {o}, [0, q2 − node.ttime]);
Nodes← ∅;

Main loop

while Taux 6= ∅ do
Choose (s, iaux, oaux, taux, saux) ∈ Taux; Taux ← Taux \ {(s, iaux, oaux, taux, saux)};
nodenew.current state← saux;
nodenew.ptt← ∅;
nodenew.ttime← node.ttime+ taux;
βT ← node.ptt; all← true; βa ← ∅; βb ← ∅;
while βT 6= ∅ do

Choose (δ, t′) ∈ βT ; βT ← βT \ (δ, t′); βa ← βa ∪ {δ};
(* δ = z/m̂, α1, . . . , αn, a *)
if LenI/O(δ) > 0 then

cond1 ← (α1 = a′/z′/[m′1,m
′
2] ∧ a′ = iaux ∧ z′ = oaux ∧ taux ∈ [m′1,m

′
2]);

cond2 ← (α1 = ?/[m′1,m
′
2] ∧ NInpI/O(δ) = iaux ∧ t′ ∈ [m′1,m

′
2]);

cond3 ← (α1 = ?/[m′1,m
′
2] ∧ NInpI/O(δ) 6= iaux ∧ (taux + t′) ≤ m′2);

all← all ∧ (α1 = ?/[m′1,m
′
2]) ∧m′2 =∞;

if cond1 ∨ cond2 then
nodenew.ptt← nodenew.ptt ∪ {(TailI/O(δ), 0)};
βb ← βb ∪ {TailI/O(δ)};

end
if cond3 then

nodenew.ptt← nodenew.ptt ∪ {(δ, taux + t′)};
βb ← βb ∪ {δ};

end
end

end
cond4 ← (q2 =∞);
cond5 ← (nodenew.ttime ≥ q1);
if (¬cond4) ∨ (cond4 ∧ ((¬cond5) ∨ (cond5 ∧ ((βa 6= βb) ∨ (βa = βb ∧ ¬all))))) then

Nodes← Nodes ∪ {nodenew};
end

end
return(Nodes);

Figure 9. Function to generate a set of nodes from another node.
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The complexity of the function CheckNode is in O(|T | · |β|) and the complexity of the function
NewNodes is also in O(|T | · |β|).

Definition 12
Let µ be a timed observational invariant and M be a TFSM. The invariant µ is correct with respect to
M if the algorithm Correctness Observational Specification(M,µ) returns true. ut

Example 6
Consider the TFSMM presented in Figure 2 and the consequent invariants

µ1 = i2 → {〈o2/[4, 6], i1〉} ← o3, [5, 7]/[10, 12]

and

µ2 = i1 →
{

〈o2/[3, 16], i1〉,
〈?/[1, 7], ?/[0,∞], i3〉

}
← o3, [5, 7]/[15, 17]

introduced in Example 5. The invariant µ1 is correct with respect to M while µ2 is incorrect.

Concerning µ1, the algorithm initially computes the first node. It represents s2
i2/o2−−−−−→5 s1. The

next step of the algorithm generates, for the initial node, the next nodes taking into account that
it can produce an error. In this example, only one node is generated. This node represents that
there is a trace matched by the invariant: the one composed from the sequence of transitions

s2
i2/o2−−−−−→5 s1, s1

i1/o3−−−−−→6 s1. The next step of this algorithm checks whether the trace is correct
with respect to the pattern trace o2/[4, 6], i1. Since this trace is checked by this pattern, the invariant
µ1 is correct.

Concerning µ2, the set of traces that must check the invariant is: s3
i1/o2−−−−−→4 s2, s2

i2/o2−−−−−→

5 s1, s1
i1/o3−−−−−→6 s1 and s3

i1/o1−−−−−→5 s2, s2
i2/o2−−−−−→5 s1, s1

i1/o3−−−−−→6 s1. There exists a trace in this

set that does not check a pattern belonging to the invariant. The trace s3
i1/o2−−−−−→4 s2, s2

i2/o2−−−−−→

5 s1, s1
i1/o3−−−−−→6 s1 does not match either o2/[3, 16], i1 or ?[1, 7], ?[0,∞], i3. Therefore, µ2 is

incorrect with respect to M . ut

As in the case of timed consequent invariants, a match relation will be used to provide a formal
alternative characterization of the notion of correctness introduced in Definition 12. Intuitively, a
trace matches an observational invariant if the initial input and the last output match the initial input
and the last output represented in the invariant, respectively, and the addition of all time values
belongs to the time interval presented in the invariant. Some additional notation for dealing with
traces has to be defined. The SetTracesOM (i, p̂, o) function computes the set of traces having as
initial input i, such that output o appears only once at the end of the trace, and such that the sum of
the time values appearing in the timed trace must belong to p̂.

Definition 13
Let M = (S, I,O, T , s0) be a TFSM. The function SetTracesOM : I × IIR+

×O −→
℘(Traces(M)) is such that for all i ∈ I, o ∈ O, and p̂ ∈ IIR+ :

SetTracesOM (i, p̂, o) =

e
∣∣∣∣∣∣
∃i2, . . . , ir ∈ I, o1, . . . , or−1 ∈ O, t1, . . . , tr ∈ IR+, r ≥ 2 :
e = 〈i/o1/t1, i2/o2/t2, . . . , ir/o/tr〉 ∈ Traces(M)∧
∀j : 1 ≤ j < LenI/O(e) : oj 6= o ∧ TTM (e) ∈ p̂


The function MatchOM : Traces(M)×ΨI/O −→ Bool is such that for all e ∈ Traces(M) and

µ ∈ ΨI/O:

MatchOM (e, µ) =

{
true if e ∈ SetTracesOM (i, q̂, o)
false if e 6∈ SetTracesOM (i, q̂, o)

LetM be a TFSM, µ be a timed observational invariant, and e ∈ Traces(M). The trace ematches µ
if MatchOM (e, µ) returns true. ut
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The CheckM (e, δ) function computes whether the trace e of M checks the pattern trace δ. This
definition uses the Check?M (e, i, p̂, t) auxiliary predicate to deal with occurrences of the ? wildcard
character in a time p̂ without performing the input i.

Definition 14
Let M = (S, I,O, T , s0) be a TFSM. The function Check?M : Traces(M)× I × IIR+ × IR+ −→
Traces(M) is such that for all e = 〈i1/o1/t1, . . . , ir/or/tr〉 ∈ Traces(M), i ∈ I, p̂ ∈ IIR+ , and
t ∈ IR+:

Check?M (e, i, p̂, t) =


〈〉 if (t > p2) ∨ (LenI/O(e) = 0)∨

(i1 = i ∧ t 6∈ p̂)
e if i1 = i ∧ t ∈ p̂
Check?M (TailM (e), i, p̂, t+ t1) if t ≤ p2 ∧ i1 6= i

The function CheckM : Traces(M)× PATTRI/O −→ Bool is such that for all e1 ∈ Traces(M)
and δ = z/m̂, α1, . . . , αn, a ∈ PATTRI/O, CheckM (e1, δ) is equal to:

false if (u = 0) ∨ (u > 1 ∧ s = 0) ∨ (u = 1 ∧ s > 0)
i1 = a if u = 1 ∧ s = 0

CheckM (e2, TailI/O(δ)) if u > 1 ∧ s > 0 ∧ α1 = ?/p̂
i1 = a ∧ o1 = z ∧ t1 ∈ p̂ ∧
CheckM (TailM (e1), TailI/O(δ)) if u > 1 ∧ s > 0 ∧ α1 = a/z/p̂

where e2 = Check?M (e1, NInpI/O(δ), p̂, 0), s = LenI/O(δ), and u = LenI/O(e1).
A trace e = 〈i1/o1/t1, . . . , ir/or/tr〉 of M checks the pattern trace δ = z/m̂, α1, . . . , αn, a if

o1 = z, t1 ∈ m̂, and CheckM (〈i2/o2/t2, . . . , ir/or/tr〉, δ) returns true. ut

The previous definitions of matching and checking can be used to give an alternative
characterization of the soundness of a timed observational invariant with respect to a specification.
This notion is based on the idea that if a trace of the specification matches the invariant, then it must
check a pattern trace belonging to β.

Lemma 2
Let M be a TFSM M and µ = i→ β ← o, p̂/q̂ be a timed observational invariant. The invariant
µ is correct with respect to M if the following conditions hold: there exists at least one trace
e ∈ Traces(M) that matches µ and for all trace e ∈ Traces(M) that matches µ there exists δ ∈ β
such that e checks δ. ut

The proof of the previous result is easy and it is based on the following ideas. There are two
conditions in Lemma 2 that must be checked to ensure the correctness of an invariant. The first
one depends on the existence of a matched trace of the specification and the second condition of
Lemma 2 checks that for all matched trace e there exists a pattern trace δ in the invariant such that
e checks δ.

These two conditions are computed together in the algorithm presented in Figure 6. First, the
algorithm computes the tree of matched traces. For each node, the algorithm checks that if the
trace is matched, then there exists a pattern trace of the invariant that checks this trace. Finally, if
the Correctness Observational Specification algorithm returns true, then the invariant is
correct with respect to the specification.

5. CORRECTNESS OF LOGS AGAINST INVARIANTS

This section presents an implementation relation to formally define what a good implementation is
with respect to a specification. The ultimate goal is to show the correctness of the passive testing
approach presented in this paper. The section gives two algorithms: one that checks the conformance
between logs and timed consequent invariants and another one that checks the conformance between
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logs and timed observational invariants. A simple timed implementation relation is considered but
other alternative relations [47] could be easily incorporated to the framework.

Definition 15
Let MS and MI be two TFSMs. MI confMS denotes that Traces(MI) ⊆ Traces(MS). ut

5.1. Correctness of logs against timed consequent invariants

Essentially, a log is incorrect with respect to a timed consequent invariant if there exists a
subsequence of the log that matches the invariant, that is, it is coherent until the last input of the
invariant, but it does not fulfill the requirements expressed in its last part. Therefore, a log is correct
with respect to an invariant if it does not violate any requirement expressed in the invariant.

An algorithm to establish the conformance between logs and timed consequent invariants is
presented. The core of the algorithm is given in Figure 10. The algorithm traverses all the elements
of the log and checks whether each subsequence of it matches the invariant. If this happens, then
the restrictions of the invariant are checked.

Definition 16
Let φ be a timed consequent invariant and l be a log recorded from an IUT. The log l is correct with
respect to φ if the algorithm Correctness Logs Consequent(l, φ) returns true. ut

Let φ be a timed consequent invariant and l be a log recorded from an IUT. The complexity
of the pattern matching strategy is in the worst case O(LenI/O(l)2 · k + LenI/O(l) · (s− k)),
where k = NstarsI/O(φ) and s = LenI/O(φ). Note that even though good algorithms for pattern
matching on strings perform in O(LenI/O(l)) (after the pre-processing phase) this complexity
cannot be achieved because all the occurrences of the pattern in the log must be checked. However,
if the length of the invariant is much smaller than the length of the log and the number of stars is
low, as it is usually the case, the complexity is almost linear with respect to the length of the log.
The next result states the soundness of the approach.

Lemma 3
Let φ be a timed consequent invariant, MI be a TFSM, and l ∈ Traces(MI) be a log of MI . The log
l is correct with respect to φ if for all l′ = 〈ij/oj/tj , . . . , ik/ok/tk〉, with 1 ≤ j ≤ k ≤ LenI/O(l),
such that l′ matches φ, ok ∈ O, tk ∈ p̂f , and TTM (l′) ∈ q̂f . ut

The proof of this result is easy and it is based on the following ideas. A log l is correct with respect
to a timed consequent invariant if each matching sublog l′ of l respects some conditions about its
structure. The Correctness Logs Consequent algorithm implements indeed these conditions (see
Definition 16). The two while loops in Figure 10 compute the sublogs of the log by using the m and
k indexes for the first and last elements, respectively. If the sublog matches the invariant then the
last two lines of the loop check the conditions of Lemma 3.

The following example shows how the sublogs of a log are considered to check the correctness
of the approach.

Example 7
Let l = 〈i1/o1/3, i1/o2/4〉 be a log of a system and φ = i1 7→ {o1}[3, 4] B [3, 4] be a timed
consequent invariant. It is easy to check that 〈i1/o1/3〉 matches φ but l is not correct with respect to
φ since it contains the sublog 〈i1/o2/4〉. ut

Note that the subsequence of the matched log can be longer than the invariant because
invariants can include the wildcard ?. The next result presents the relation among specification,
implementation, logs, and timed consequent invariants. Consider a log recorded from an
implementation and a correct timed consequent invariant with respect to a specification. If the timed
consequent invariant detects an error in the log, then the implementation does not conform to the
specification.

Theorem 1
Let MS and MI be two TFSMs and φ be a correct timed consequent invariant with respect to MS .
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Algorithm Correctness Logs Consequent

Data: l = 〈i1/o1/t1, . . . , ir/or/tr〉 : (I × O × IR+)?,
φ = α1, . . . , αn, if 7→ O/p̂f B q̂f : ΦI/O

Result: Bool

Initialization of variables

error ← false; m← 1;

Main loop

while m ≤ LenI/O(l) ∧ ¬ error do
k ← m; tt← 0; j ← 1; matching ← true;
while j ≤ LenI/O(φ) ∧ k ≤ LenI/O(l) ∧ matching do

if αj = a/z/p̂ then
matching ← (ik = a ∧ ok = z ∧ tk ∈ p̂); tt← tt+ tk; k ← k + 1;

else
(* αj = ?/[p1, p2] *)
tpartial ← 0;
while
k < LenI/O(l) ∧ tpartial < p2 ∧ ik 6= NInpI/O(αj , . . . , αn, if 7→ O/p̂f B q̂f ) do

tpartial ← tpartial + tk; k ← k + 1;
end
tt← tt+ tpartial;
matching ← (ik = NInpI/O(αj , . . . , αn, if 7→ O/p̂f B q̂f ) ∧ tpartial ∈ [p1, p2]);

end
j ← j + 1;

end
(* j = LenI/O(φ) + 1 indicates that the invariant was completely traversed *)
if matching ∧ j = (LenI/O(φ) + 1) ∧ (ik = if ) then

error ← (ok 6∈ O ∨ tk 6∈ p̂f ∨ tt+ tk 6∈ q̂f );
end
m← m+ 1;

end
return(¬error);

Figure 10. Correctness of a log with respect to a timed consequent invariant.

Let l be a log recorded from MI . If l is not correct with respect to φ, then MI confMS does not
hold.
Proof : If l is not correct with respect to φ = α1, . . . , αn, if 7→ O/p̂f B q̂f , then there exists a
subsequence l′ = 〈ij/oj/tj , . . . , ik/ok/tk〉 of l such that l′ matches φ and either ok 6∈ O or tk 6∈ p̂f
or TTM (l′) 6∈ q̂f . If ok 6∈ O, then l′ ∈ Traces(MI) but l′ 6∈ Traces(MS). Thus, MI confMS does
not hold. If tk 6∈ p̂f , then l′ ∈ Traces(MI) but l′ 6∈ Traces(MS). Thus, MI confMS does not
hold. Finally, if TTM (l′) 6∈ q̂f , then l′ 6∈ Traces(MS) because time values of invariants fit those of
the specification. In this case, again, MI confMS does not hold.

ut
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5.2. Correctness of logs against timed observational invariants

This section presents a method to establish the correctness of a log, collected from an IUT, with
respect to a timed observational invariant. The main algorithm is given in Figure 11. The idea is
to traverse the log and decide whether there exists a subsequence e matching the invariant. In this
case, it must be established that at least one pattern trace belonging to β checks it. For this task, the
Checked PatternTrace function, given in Figure 12, is used. If there is not a pattern trace checked
by e, then an error is produced.

Definition 17
Let µ be a timed observational invariant and l be a log of an IUT. The log l is correct with respect
to µ if the algorithm Correctness Logs Observational(l, µ) returns true. ut

Let µ = i→ β ← o, p̂/q̂ be a timed observational invariant and l be a log. This matching strategy
works in the worst case in O(LenI/O(l)3 · k + LenI/O(l)2 · (s− k)), where k = NstarsI/O(µ)
and s = LenI/O(µ). As it was the case with timed consequent invariants, if the invariant is much
shorter than the length of the log and the number of appearances of the wildcard ? is low, as it is
usually the case, then this complexity becomes almost O(LenI/O(l)2). The following result states
the soundness of the approach.

Lemma 4
Let µ be a timed observational invariant,MI be an IUT, and l ∈ Traces(MI) be a log ofMI . The log
l is correct with respect to µ if for all l′ = 〈ij/oj/tj , . . . , ik/ok/tk〉, with 1 ≤ j < k ≤ LenI/O(l),
such that l′ matches µ there exists δ ∈ β such that l′ checks δ. ut

This result is immediate since the algorithm given in Figure 11 initially computes the set of
sublogs that are matched. If this set is empty, then the log is correct; otherwise, for each matched
(sub)log, the algorithm looks for a pattern trace checked by this sublog. This task is carried out by
the Checked PatternTrace function, introduced previously.

In a similar way to timed consequent invariants, it is possible to give a relation among
invariants, implementation, logs, and specification. The idea is again that if there is a correct timed
observational invariant with respect to a specification, then if this invariant detects an error in a log
recorded from an implementation, then this implementation does not conform to the specification.

Theorem 2
Let MS and MI be two TFSMs and µ be a correct timed observational invariant with respect to MS .
Let l be a log recorded from MI . If l is not correct with respect to µ, then MI does not conform to
MS .
Proof : If l is not correct with respect to µ, then there exists a subsequence l′ =
〈ij/oj/tj , . . . , ik/ok/tk〉, with 1 ≤ j < k ≤ LenI/O(l), of l such that l′ matches µ and there does not
exist δ ∈ β such as e checks δ. If µ is correct with respect to MS , then for all trace e ∈ Traces(MS)
that matches µ there exists δ ∈ β such that e checks δ. Thus, l′ ∈ Traces(MI) but l′ 6∈ Traces(MS).
Therefore, MI confMS does not hold.

ut

6. PASTE

This section presents a PASive TEsting tool, called PASTE, that allows users to work with the formal
framework presented in this paper. The original core and the GUI were implemented in JAVA and
initially were a stand-alone project. Later, it was decided to integrate this academic tool as a module
of the monitoring software developed by the Spanish SME Peopleware. In order to improve the
performance of the tool and the possibilities to integrate it with other existing tools, the core of
PASTE was rewritten in C++ and the GUI was adapted accordingly. The tool can be downloaded
from https://simba.fdi.ucm.es/paste.
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Algorithm: Correctness Logs Observational

Data: l = 〈i1/o1/t1, . . . , ir/or/tr〉 : (I × O × IR+)?, µ = i→ β ← o, p̂/q̂ : ΨI/O

Result: Bool

Initialization of variables

error ← false; j ← 1;

Main loop

while j < LenI/O(l) ∧ ¬error do
if ij = i then

tt← tj ; k ← j + 1;
(* tt stores the time of the matched sequence, j computes the initial index of the
matched sequence, and k computes the final index of the matched sequence*)
while k ≤ LenI/O(l) ∧ (ok 6= o) ∧ tt < q2 do

tt← tt+ tk;
k ← k + 1;

end
if ok = o ∧ (tt+ tk) ∈ q̂ then

βaux ← β; cmatching ← false;
(* cmatching holds if 〈ij/oj/tj , . . . , ik/ok/tk〉 checks a pattern trace in β*)
while βaux 6= ∅ ∧ ¬cmatching do

Choose δ ∈ βaux; βaux ← βaux \ {δ};
cmatching ← tk ∈ p̂ ∧ Checked PatternTrace(〈ij/oj/tj , . . . , ik/ok/tk〉, δ)

end
error ← ¬cmatching;

end
end
j ← j + 1;

end
return(¬error);

Figure 11. Correctness of a log with respect to a timed observational invariant.

6.1. Functionalities

PASTE is a tool that allows users to automatize the passive testing methodology presented in this
paper. The tool obtains the data from a database that contains a set of invariants, the logs to be
checked, and, optionally, a specification represented as a TFSM model. First, the information in the
database is transformed into the internal data format of the application. In particular, in this phase
time information of the log is transformed so that it is expressed in the same time units as the
specification and invariants.

Next, the algorithm that checks the correctness of the invariants with respect to the specification
is applied. Invariants have to be checked against the specification before the logs are checked with
respect to the invariants. If the specification is not provided, then the tool considers that the invariants
are correct. Once a correct set of invariants is fixed, it is possible to check the correctness of the logs
with respect to the invariants by executing the corresponding algorithms. If an error is detected, then
PASTE notifies it to the tester.
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Algorithm Checked PatternTrace

Data: l = 〈i1/o1/t1, . . . , ir/or/tr〉 : (I × O × IR+)?, δ = z/m̂, α1, . . . , αn, a : PATTRI/O

Result: Bool

Initialization of variables

checked← (o1 = z) ∧ (t1 ∈ m̂) ∧ (ir = a);
(* checked denotes that the trace continues being checked with respect to the pattern trace*)
k ← 2; j ← 1;

Main loop

while k < LenI/O(l) ∧ checked ∧ j ≤ LenI/O(δ) do
if αj = a/z/p̂ then

checked← (a = ik ∧ z = ok ∧ tk ∈ p̂);
k ← k + 1;

else
(* αj = ?/[p1, p2] *)
tpartial ← 0;
while k < LenI/O(l) ∧ tpartial < p2 ∧ ik 6= NInpI/O(z/m̂, αj , . . . , αn, , a) do

tpartial ← tpartial + tk;
k ← k + 1;

end
checked← (ik = NInpI/O(z/m̂, αj , . . . , αn, , a)) ∧ tpartial ∈ [p1, p2];

end
j ← j + 1;

end
(* Make sure that the complete trace has been checked against the complete pattern trace *)
checked← checked ∧ (k = LenI/O(l)) ∧ (j = LenI/O(δ) + 1);
return (checked);

Figure 12. Function to compute whether a log checks a pattern trace.

In addition to the theoretical framework, PASTE implements a module to provide a measure of
how good a set of invariants is. In order to do it, a methodology based on mutation testing [55, 22,
66, 53] is used. In PASTE, the specification is mutated and for each mutant a log is recorded. These
logs are checked against the set of available invariants in order to determine, based on the obtained
results, their level of fault detection. If the evaluation of the log against an invariant finds an error,
then the invariant kills the mutant that generated this log. The idea is that if an invariant finds many
errors in the logs recorded from mutants, then the probability that it detects an error in a faulty
IUT is higher. Note that only first order mutants are considered, that is, mutants obtained by the
application of one mutation operator. PASTE provides three different mutation operators: Changing
the Goal State of a transition (CGS), Changing Output (CO), and Changing Time (CT). The first
one corresponds to create a mutant of a specification by changing the final state of a transition. The
second mutation operator creates a mutant by changing the output associated to a transition. Finally,
the last one modifies the time value associated with a transition.

Definition 18
Let M = (S, I,O, T , s0) be a TFSM. The changing goal state mutant operator CGSM : T × S −→
SETTFSM, the changing output mutant operator COM : T × O −→ SETTFSM, and the changing time
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Figure 13. A specification MS and three of its mutants.

value mutant operator CTM : T × IR+ −→ SETTFSM are functions to generate mutants such that for
all M = (S, I,O, T , s0) ∈ SETTFSM, tc = (s, i, o, t, s′) ∈ T , sm ∈ S, om ∈ O, α ∈ IR+:

CGSM (tc, sm) = (S, I,O, TCGS, s0),where TCGS = {tr|tr ∈ T ∧ tr 6= tc} ∪ {(s, i, o, t, sm)}

COM (tc, om) = (S, I,O, TCO, s0),where TCO = {tr|tr ∈ T ∧ tr 6= tc} ∪ {(s, i, om, t, s′)}

CTM (tc, α) = (S, I,O, TCT, s0),where TCT = {tr|tr ∈ T ∧ tr 6= tc} ∪ {(s, i, o, t+ α · t, s′)}

Mutants of M are generated after applying mutant operators to M . The set of all mutants of M is
denoted by MUTM . LetM⊆ MUTM be a set of mutants generated from M and consider that a set of
logs is extracted from these mutants. MTrazesM is a set of pairs (mutant, log), where several logs
can be associated with the same mutant. A mutant Mu ∈M is killed by the invariant ψ if there exist
a pair (Mu, l) ∈ MTrazesM such that l is incorrect with respect to ψ. SkmM (ψ, MTrazesM) ⊆M
denotes the set of mutants killed by ψ. Similarly, RemoveM (ψ, MTrazesM) ⊆ MTrazesM returns
those pairs (mutant, log) belonging to MTrazesM such that the mutant has not been killed by ψ. ut

Example 8
Figure 13 presents different TFSMs to illustrate the mutation operators. Consider the machine Mco.

In this case, the CO mutant operator has been applied. The transition s1
i1/o1−−−−−→1 s2 belonging toMS

has been replaced by s1
i1/o2−−−−−→1 s2. In order to build another mutant, the CGS mutant operator can

be applied, for example, to generate the machineMcgs. In this case, the transition s2
i1/o1−−−−−→1 s1 has

been replaced by the transition s2
i1/o1−−−−−→1 s2. Finally, Mct is obtained by applying the CT mutant

operator to MS . In this case, the operator replaces the time value associated with the transition

s1
i2/o2−−−−−→3 s1 by 6. ut
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Figure 14. Specification of SSadmin using a TFSM model.

6.2. The system SSadmin

This section presents the results obtained from the experiments that were performed to estimate the
quality of a set of the invariants. Figure 14 presents the specification of the system: SSadmin. This
system is used by students to check their marks, their student information profile, to send emails, to
fill questionnaires and, at the beginning of the academic year, to register their subjects. This paper
considers a simplified version of the system. Essentially, data is not used but the main features
concerning the input/output behavior of the system are included.

The sets of input and output actions, I and O, are given in Figure 14. The initial state, s0,
corresponds to the point in which the users connect to the system. The nodes represent the states
of the model and the edges represent its transitions. T0 is the subset of depicted transitions. For
the sake of clarity, not all the transitions are included in the figure since this would overload the
graph. Specifically, the transitions corresponding to the functionality that allows users to return to
option scr by introducing the return option input at some states have been removed. These
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transitions are given by the set

T1 = {si
i12/o2−−−−−→10 s2 | si ∈ {s4, s5, s8, s13, s19}}

Thus, the set of transitions of SSadmin corresponds to the union of these two sets of transitions,
that is, T = T0 ∪ T1.

Next, the standard interaction between a student and SSadmin is described. Note that the
specification is described from the point of view of the system while this example is presented
from the point of view of the student because it is more intuitive. Thus, inputs of the student are
outputs of the system and vice versa. The behavior of the system has been divided in five different
stages. The first one corresponds to the connection phase. When students connect, the system
shows the welcome scr message. At this point, students can log into the system. If an erroneous
login is introduced, then the system returns the error user message. If the student introduces
the correct login, then the system will show option scr. At this screen, the student can log out
by answering disconnection and the system will return to welcome scr. The time values
associated with the processes of connection and disconnection are 30 and 15 time units, respectively.
The difference between these amounts is due to the fact that during the login phase the system must
access the database for checking the correctness of the provided information. When the student logs
out, it is not necessary to interact with the database.

The second stage includes the most frequent operations performed by students: checking marks
and accessing and modifying personal profiles. When a student is connected to SSadmin, if she
introduces profile, then the system will show the profile scr. Then, the student is able
to change some personal information, such as her e-mail and telephone number. Each data that
she might change is introduced by the data action and the system replies by showing the
profile scr. When the student updates her information, she can either save the changes or
cancel the operation. Both actions lead to the updating scr and when the student introduces
return option the system will show the option scr. The second operation of this stage
corresponds to checking the marks. The student can access them by using the marks action and the
system will show marks scr. In order to return to the option scr the student must introduce
the return option action. The time values associated with these transitions reflect the difference
between the values which are extracted from the disk and the values which are in temporal memory.
For example, when the students are modifying their profile, the changes are not stored until the users
save them. Thus, the access to this data is faster.

The third stage corresponds to the register feature. This feature is available only at the
beginning of an academic course and allows the student to register their subjects. This is one
of the most important and critical parts of SSadmin. After the student logs into the system,
she must introduce register and the system will show the register scr. The time
associated with this transition is 200. This amount of time is due to the fact that the system
has to search and filter the available subjects for the student. In order to choose the subjects,
the student must introduce the data subject. When she finishes the process and introduces
save registration the system will display either confirmation scr, if the registration
was correct, or no confirmation scr, if there was an error.

The fourth stage corresponds to the internal mail capability that allows a student to send messages
to other students. These messages can include attachments. In order to send a message, the student
must introduce send msg. The system will show the msg scr, where the student can write the
text of the message. This action is performed by write msg and the screen returned by the system
is msg written. After writing the message, the student can either send the message, by applying
the input send, or attach a file, by performing the input attachF. The second option leads the
student to the attached scr where she can attach the file. After the student introduces the
send input, the system will ask the student whether she confirms the sending of the message. The
student confirms the sending, by applying the input save and send, or cancels it, by answering
cancel and exit. In both cases, the system will show the ok msg screen.

The last stage corresponds to the questionnaire feature. This feature allows SSadmin to obtain
some feedback in order to improve future versions of the system based on user experiences. The
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Figure 15. Specification of SSadmin in PASTE.

action sel quest leads the student to the sequential presentation of the questionnaire screens:
question 1, question 2, question 3, and question 4. The student will navigate them
by answering either sel true or sel false. Finally, Figure 15 partially shows the SSadmin

specification.

6.3. A set of invariants for SSadmin

The first invariant denotes the property that after login, if a user eventually disconnects from the
system then the welcome scr must be displayed.

Invar1 =
login/option scr/[20, 40],
?/[0,∞],disconnection

7→
{
welcome scr

}
/[14.5, 15.5] B [35,∞]

In addition to the functional behavior, the Invar1 invariant establishes that the observation of
login and the display of option scr must belong to the interval [20, 40]. Similarly, the amount
of time elapsed between the input disconnection and the output welcome scr must be
greater than 14.5 and less than or equal to 15.5. Finally, the sum of all the time values observed
between login and welcome scr must be greater than 35. The next invariant can be used to
observe two different behaviors after the specified input:

Invar2 = login 7→
{

option scr,
error user

}
/[29.5, 30.5] B [29.5, 30.5]

Intuitively, this invariant expresses that after observing an occurrence of login in the log it
is necessary to observe either option scr or error user. Moreover, the amount of time
associated with these actions must belong to the time interval [29.5, 30.5]. The next invariant focuses
on the profile option:

Invar3 = data/profile scr/[10, 20],save 7→ {updating scr}/[29.5, 30.5] B [40, 50]

This invariant denotes that after inserting the last update of the data in the system and save
all the changes, the updating scr must be displayed. In addition, the total amount of time to
perform this process must belong to the interval [40, 50]. Note that the delay tolerated by the last
timed restriction can be different from the sum of all time intervals presented in the invariant. For
example, [10, 20] + [29.5, 30.5] 6= [40, 50].

Finally, the invariant Invar4 describes the fact that if a student is at the option scr and she
inserts the marks input, then the marks scr must appear before a certain amount of time passes:

Copyright c© 2011 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2011)
Prepared using stvrauth.cls DOI: 10.1002/stvr
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Figure 16. Correctness of invariants and generation of mutants for SSadmin in PASTE.

Invar4 =?/option scr/[5, 35],marks 7→ {marks scr}/[29.5, 30.5] B [39, 70]

Next, some observational invariants are introduced. The next one expresses that whenever a user
connect to SSadmin, if she observes the option scr in a lapse of time belonging to [20, 80],
she previously introduced the login. It could happen either that the login was correct and the
option scr was displayed or that the user introduced an erroneous login and she had to try
another login before the option scr was displayed.

ω5a = 〈welcome scr/[10, 20],login〉

ω5b = 〈welcome scr/[10, 20],login/error user/[25, 35],login〉

Invar5 = connect→ {ω5a, ω5b} ← option scr, [29.5, 30.5]/[20, 80]

Note that the correctness of this invariant depends on the time interval associated with the
performance of the whole sequence that is, [20, 80]. The next invariant represents some possible
actions, in a time belonging to [15, 100], that a student can perform when she sends a message, that
is, the sequence of actions observed between the introduction of write msg by the student and
the moment when the system shows the msg sent screen. The student can either write msg and
send it or write msg the message and attachF to this message before to send it.

ω6a = 〈msg written/[14.5, 15.5],send〉

ω6b = 〈msg written/[14.5, 15.5],attachF/attached scr[14.5, 15.5],send〉

Invar6 = write msg→ {ω6a, ω6b} ← msg sent, [14.5, 15.5]/[15, 100]

The observational invariant Invar7 can be used to check the questionnaire option. If a student
sel quest to fulfill it and after a non empty sequence of actions in a time belonging to [30, 160]
the quest sent option appears, then the student has started the questionnaire.

ω7 = 〈question 1/[14.5, 15.5], ?/[20, 35],send quest〉

Invar7 = sel quest→ {ω7} ← quest sent, [19.5, 20.5]/[30, 160]
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Computation time (in cycles of CPU) to check the correctness of the invariants with respect to the
specification.

Invar1 Invar2 Invar3 Invar4 Invar5 Invar6 Invar7 Invar8
Correctness Alg. 0c. 10000c. 0c. 0c. 0c. 0c. 113000c. 114000c.

Computation time (in cycles of CPU) to check the correctness of the traces with respect to each
invariant.

Invar/Length 100tokens 1000tokens 10000tokens 100000tokens 1000000tokens
Invar1 600c. 4800c. 11600c. 92500c. 915500c.
Invar2 700c. 1200c. 3200c. 16500c. 83100c.
Invar3 700c. 1400c. 4700c. 19900c. 133500c.
Invar4 400c. 1000c. 5900c. 26200c. 189600c.
Invar5 0c. 100c. 2900c. 25600c. 218300c.
Invar6 0c. 600c. 6500c. 29700c. 299300c.
Invar7 0c. 700c. 2400c. 36400c. 359700c.
Invar8 0c. 1500c. 8300c. 74900c. 744800c.

Figure 17. Computation time for correctness algorithms in PASTE.

Instead of using the wildcard ? character in Invar7, it is possible to describe all the possible
question/answer situations. The Invar8 invariant, similar to the Invar7 invariant, focuses on checking
the questionnaire option. The main difference with respect to Invar7 is that in Invar8 all the
possibilities are explicitly described, that is, the 16 different possibilities of answering true/false
to each of the four questions are included. Even though Invar7 and Invar8 have similar behavior, the
empirical results will show that their power of error detection is different.

ω8a =
〈question 1/[14.5, 15.5],sel true/question 2[7.5, 8.5],

sel true/question 3[7.5, 8.5],sel true/question 4[7.5, 8.5],
sel true/quest finished[7.5, 8.5],send quest〉

. . .

ω8p =
〈question 1/[14.5, 15.5],sel false/question 2[7.5, 8.5],

sel false/question 3[7.5, 8.5],sel false/question 4[7.5, 8.5],
sel false/quest finished[7.5, 8.5],send quest〉

Invar8 = sel quest→ {ω8a, . . . , ω8p} ← quest sent, [19.5, 20.5]/[30, 160]

6.4. Estimation of power fault detection

Once a set of invariants is defined, it is necessary to check the correctness of this suite with respect
to the specification. Benchmark results are presented in Figure 17. Note that the values presented
in the figure represent the average of performing the experiments 100 times and the time value
represent the number of clock ticks elapsed since the program was launched. In these experiments,
there are exactly 1000000 clock cycles per second. As an additional remark, the time for computing
the correctness of the observational invariants depends on the number of pattern traces that they
have. In this case, Invar7 and Invar8 have a similar number and , therefore, similar performance
is observed. Moreover, the time for checking the correctness of logs with respect to consequent
invariants strongly depends on the appearance of the wildcard ?, as in the case of Invar1, while
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# Mutants Invar1 Invar2 Invar3 Invar4
# - % # - % # - % # - %

CO 19 - 2.77% 36 - 5.26% 19 - 2.77% 19 - 2.77%
CGS 0 - 0% 0 - 0% 0 - 0% 0 - 0%
CT 2 - 2.77% 4 - 5.55% 2 - 2.77% 2 - 2.77%

# Mutants Invar5 Invar6 Invar7 Invar8
# - % # - % # - % # - %

CO 19 - 2.77% 38 - 5.55% 25 - 3.65% 169 - 24.7%
CGS 16 - 2.33% 9 - 1.31% 130 - 19% 136 - 19.88%
CT 2 - 2.77% 8 - 11.11% 4 - 5.55% 20 - 27.77%

Figure 18. Mutants killed by each of the invariants.

in the case of observational invariants, it depends on the length of the invariant, being Invar8 the
longest one.

Next, the results obtained from the application of the mutation methodology for estimating a
measure of the effectiveness of the invariants detecting errors are reported. In order to do this, the
different mutation operators were applied to the specification of SSadmin. First, the CO operator
was applied to all the transitions, modifying the associated output with each output available in
the specification. Next, the CGS operator was used, resulting in the modification of the final state
of the transitions of the specification. An exhaustive set of mutants was generated. However, this
is not possible when the CT operator is applied. In this case, the amount of possible mutants is
astronomic. Thus, it is necessary to establish a finite number of changes for each fixed time value.
The right hand side of Figure 16 presents the screen displayed when this functionality is selected by
the user. Consider the transition (s, i, o, t, s′). If the CT mutant operator is applied to this transition
with two deviations α and−α. Two different mutants are obtained: one of them presents the mutated
transition (s, i, o, t+ α · t, s′) and the other one the transition (s, i, o, t− α · t, s′).

Once the generation of mutants has finished, a list of all mutants is compiled. The mutants are
sorted by the mutation operator used to generate them. In PASTE, for each mutant, it is possible to
access the mutated transition, the new transition generated for this mutant, and the logs collected
from the mutant.

For each mutant a log consisting of 10.000 interactions was collected. The size of the logs was
limited due to the following two considerations. First, it was observed that if the invariants did not
find an error soon then they were not able to find errors later. Second, the full set of collected logs
requires 1.8GB, what can be considered a reasonable size.

Figure 18 presents the data corresponding to the logs obtained from the application of the CO,
CGS, and CT operators. Regarding the CO mutation operator, timed consequent invariants and timed
observational invariants do not present materially different behaviors concerning the number of
mutants killed. There is an exception: Invar8. This fact is due to the number of pattern traces
considered in this invariant. Note that occurrences of the wildcard ? in pattern traces reduces the
number of killed mutants. This situation happens in the case of Invar6 and Invar7. With respect
to the length of consequent invariants, it is concluded that the shorter the length of the invariant, the
higher the number of killed mutants. Note that the length of the Invar1 invariant is different from
the length of invariants Invar3 and Invar4, but they detect the same number of mutants. The reason
is that Invar1 contains an occurrence of the wildcard ? together with the time interval [0,∞] and
this pair matches any possible non-empty sequence of actions.

Concerning the results obtained from the logs recorded from the mutants generated by
applications of the mutation operator CGS, it is worth pointing out that timed consequent invariants
are not able to kill any mutant. The reason is that the application of the CGS operator does not
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20 40 60 80 120 140 4000 5000 6000
Invar1 8 8 9 10 12 14 21 21 21
Invar2 35 37 37 37 40 40 40 40 40
Invar3 5 6 6 8 9 9 21 21 21
Invar4 9 12 15 19 19 20 21 21 21
Invar5 37 37 37 37 37 37 37 37 37
Invar6 23 33 39 43 45 47 55 55 55
Invar7 37 50 57 64 75 80 158 159 159
Invar8 94 145 185 210 230 240 320 325 325

Figure 19. Mutants killed by each invariant according to the length of the logs.

affect the functional behavior of the system, that is, the mutation only changes the final state of a
transition, not the input/output/time that labels it. Regarding timed observational invariants, all of
them are able to kill mutants: Invar8 and Invar7 kill almost the same number of mutants. It has
been observed that the longer the pattern traces associated with the observational invariant are, the
higher their capacity to detect errors in logs.

Next, the results obtained when considering the logs derived from the application of the mutation
operator CT are analyzed. The proportion of killed mutants is less than the one obtained with the
other mutation operators. As it was mentioned before, the number of CT mutants is less than the
number of the other mutants, specifically, it is equal to 2 · |T |. However, this relation changes when
the percentage of killed mutants is considered. The results obtained from all the invariants with
respect to the CT mutation operator are better than the ones obtained for the CO mutation operator.
Furthermore, the percentage is, in general, a little better than that for the CGS mutation operator.

Finally, the table presented in Figure 19 shows the results obtained by taking into account the
invariants and the length of the logs. It can be concluded that timed observational invariants need
logs of at least 5.000 interactions to be effective, while timed consequent invariants produce some
useful results already with logs of size 100.

6.5. Metrics and heuristics

This section introduces a metric to compare sets of invariants. The core of the method is a heuristic
to obtain the set of the n most representative invariants out of a (possibly huge) set of invariants.
Essentially, an invariant suite is better than another one if the former kills more mutants than the
latter. Even though the underlying idea is very simple and it can be indeed used as a first approach
to compare invariants suite, a direct implementation of this approach cannot be effectively realized
since it would require to generate the powerset of the initial set of invariants, with the consequent
exponential explosion. Therefore, it is necessary to look for approximate solutions that can be
computed in polynomial time. The main idea of the heuristic is to implement a greedy algorithm
that in each iteration includes in the partial solution the best invariant still available. Even though
this approach does not guarantee that the best set of invariants will be returned, the experiments
show that the obtained suites are close enough to the optimal solution. The heuristic consists of the
following steps.

1. Generate from the specification m mutants. From each mutant a set of logs is collected.
2. Check the correctness of each log with respect to each invariant.
3. Compute the number of mutants killed by each invariant.
4. Obtain the invariant ψ that kills more mutants and add it to the solution.
5. Delete ψ from the invariant suite. Delete the mutants killed by ψ from the set of mutants.
6. Jump to step 3 until the solution has n elements.

This heuristic is a greedy solution. Note that invariants have to be sorted after each iteration
since their goodness depend on their performance against the set of mutants. Also note that since
this set is reduced after each iteration, the initial sorting of the invariants cannot be used along the
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execution of the algorithm. The main consequence of sorting each interaction is that this algorithm
works in the worst case in O(NConsq · C1 + NObs · C2 + n · (NConsq + NObs)), where NConsq and
NObs denote respectively the number of consequent and observational invariants in the suite.
Additional C1 and C2 denote respectively the complexity of checking a consequent and observational
invariant, that is C1 = |S| · |T ||S| · k + |T | · (s− k), where k = NstarsI/O(φ) and s = LenI/O(φ),
and C2 = |T ||S| · |T | · |β|. Finally, n is the number of invariants that will be selected.

Definition 19
Let M = (S, I,O, T , s0) be a TFSM. The function BestM : ℘(ΨI/O ∪ ΦI/O)× ℘(MTrazesM ) −→
ΨI/O ∪ ΦI/O is such that given a set of invariants and a set of pairs (mutant,log) returns one
of the invariants that kills more mutants. Given M ∈ SETTFSM, K ⊆ (ΨI/O ∪ ΦI/O) and LM ⊆
MTrazesM , this function is defined as:

BestM (K,LM) = ψ
∣∣ ψ ∈ K ∧ ∀ρ ∈ K, ρ 6= ψ : |SkmM (ψ,LM)| ≥ |SkmM (ρ, LM)|

The function MReprM : IN× ℘(ΨI/O ∪ ΦI/O)× ℘(MTrazesM ) −→ ℘(ΨI/O ∪ ΦI/O) returns a
set of representative invariants with respect to a set of pairs (mutant,log). For any M ∈ SETTFSM,
n ∈ IN, K ⊆ (ΨI/O ∪ ΦI/O) and LM ⊆ MTrazesM , MReprM (n,K,LM) is defined as:

 ∅ if n = 0
{ψ′} if n = 1
{ψ′} ∪ MReprM (n− 1,K \ {ψ′}, RemoveM (ψ′, LM)) if n > 1

where ψ′ = BestM (K,LM).
ut

Note that MReprM is non-deterministic: if several invariants kill the same number of mutants it
non-deterministically chooses one of them. Also note that the definition of MReprM is consistent
since once BestM selects one invariant, this invariant is used in all possible branches of the
definition. The following abstract example informally shows how the heuristic works.

Example 9
Let M be a specification and K = {ψ1, . . . , ψ8} be a set of eight correct invariants with respect to
M . Let LM be a set of (mutant, log) pairs produced from 14 mutants of M . These mutants are
denoted by M1, . . . ,M14. The next table shows the relation between the set of invariants and the
mutants that they kill. A token in the position [i, j] of the matrix represents that the invariant ψi
killed the mutant Mj , that is, found an error in a log generated by the mutant.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14

ψ1 • • • • • • • • • •
ψ2 • • • • • • • • •
ψ3 • • • • • •
ψ4 • • • • • • •
ψ5 • • • • •
ψ6 • • • • •
ψ7 • • • • •
ψ8 • • • • • •

If the heuristic is applied to select the n most representative invariants, the obtained results are:
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MReprM (1,K, LM) = {ψ1}
MReprM (2,K, LM) = {ψ1, ψ4}
MReprM (3,K, LM) = {ψ1, ψ4, ψ2}
MReprM (4,K, LM) = {ψ1, ψ4, ψ2, ψ3}
MReprM (5,K, LM) = {ψ1, ψ4, ψ2, ψ3, ψ5}
MReprM (6,K, LM) = {ψ1, ψ4, ψ2, ψ3, ψ5, ψ6}
MReprM (7,K, LM) = {ψ1, ψ4, ψ2, ψ3, ψ5, ψ6, ψ7}
MReprM (8,K, LM) = {ψ1, ψ4, ψ2, ψ3, ψ5, ψ6, ψ7, ψ8}

Note that the solutions provided by the heuristic are good, but sometimes there exists a better
option. For example, the real set of the two more representative invariants is not {ψ1, ψ4} but
{ψ2, ψ3}. ut

The heuristic has been applied to the running system SSadmin presented in this paper. Consider
the set of 8 invariants previously introduced in Subsection 6.3: INVAR = {Invar1, . . . , Invar8}. A
total of 1.440 mutants were generated from the SSadmin specification and a log of length 10.000
was produced for each mutant. Let LM = ((e1,M1), . . . , (e1.440,M1.440)) be the set of considered
(mutant, log) pairs. The heuristic provided the following results:

MReprSSadmin(1, INVAR, LM) = {Invar8}
MReprSSadmin(2, INVAR, LM) = {Invar8, Invar6}
MReprSSadmin(3, INVAR, LM) = {Invar8, Invar6, Invar2}
MReprSSadmin(4, INVAR, LM) = {Invar8, Invar6, Invar2, Invar5}
MReprSSadmin(5, INVAR, LM) = {Invar8, Invar6, Invar2, Invar5, Invar4}
MReprSSadmin(6, INVAR, LM) = {Invar8, Invar6, Invar2, Invar5, Invar4, Invar3}
MReprSSadmin(7, INVAR, LM) = {Invar8, Invar6, Invar2, Invar5, Invar4, Invar3, Invar1}
MReprSSadmin(8, INVAR, LM) = {Invar8, Invar6, Invar2, Invar5, Invar4, Invar3, Invar1, Invar7}

The method shows that the best invariant is Invar8. Note that according to Figure 18, the
two invariants that kill more mutants are Invar7 and Invar8, but when MRepr(2, INVAR, LM) is
computed, the result does not correspond to this pair of invariants. This situation means that many
of the mutants killed by Invar7 are also killed by Invar8. Thus, if only two invariants have to be
selected to check the correctness of the system, using Invar7 and Invar8 is less effective than using
Invar6 and Invar8.

7. CONCLUSIONS

This paper presents a revised, enhanced, and extended version of previous work on passive testing
of timed systems [4, 5]. The formal model to represent systems is a timed extension of the classical
finite state machines model. Timed invariants are used to find errors on logs extracted from the IUT.
This paper introduced a novel type of invariant that allows testers to study interesting properties that
could not be represented with the original notion. In addition to present the syntax of invariants, the
paper also provides algorithms to check the correctness of invariants with respect to a specification
and algorithms to check the correctness of the logs recorded from an IUT with respect to invariants.
The soundness of the approach is shown by relating it to an implementation relation.

This paper also reports on the PASTE tool, a tool that can be used to put in practice the theoretical
results. In particular, this tool implements all the algorithms presented in this paper. The main task
of the tool is to automate the process of checking the correctness of invariants with respect to a
specification and determining whether logs extracted from an IUT are correct with respect to a given
invariant.

Taking as initial step previous ideas [3], the paper provides an approach that uses mutation
testing techniques as a way to classify invariants according to their power to find errors. In this
methodology, specifications are mutated by using three mutation operators. Then, different logs, that
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simulate real faults, are extracted from the mutants. These logs are used to evaluate the capabilities
of the invariants proposed by the tester to find errors and estimate their effectiveness. The reported
experiments show that timed observational invariants are able to detect more errors than timed
consequent invariants. However, there are some errors that can be found only by timed consequent
invariants. Therefore, the best approach is to use a set of invariants that keeps an appropriate balance
between consequent and observational invariants.

Even though this paper presents a complete framework, so that there is not much room for
extensions, it is possible to continue the research on formal passive testing of timed systems.
Specifically, a first line of work is to evaluate invariants in a completely different environment.
There is initial work on the application of the techniques presented in this paper to detect malicious
patterns that can indicate threats to the integrity of the system. Since PASTE is a very light-weight
tool, so that it does not overload the system where it is running, it would be interesting to use it as a
personal anti-virus since the user can specify the patterns that he is looking for.
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as communicating FSMs. In 12th Annual Joint Conf. of the IEEE Computer and Communications Societies.
Networking: Foundation for the Future, INFOCOM’93, pages 115–127. IEEE Computer Society Press, 1993.

40. D. Lee and M. Yannakakis. Principles and methods of testing finite state machines: A survey. Proceedings of the
IEEE, 84(8):1090–1123, 1996.

41. S. Lee and K. G. Shin. Probabilistic diagnosis of multiprocessor systems. ACM Computer Surveys, 26(1):121–139,
1994.

42. M. Leucker and C. Schallhart. A brief account of runtime verification. Journal of Logic and Algebraic
Programming, 78(5):293–303, 2009.

43. G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In 2nd Int. Workshop on
Tools and Algorithms for Construction and Analysis of Systems, TACAS’96, LNCS 1055, pages 147–166. Springer,
1996.

44. D. Mandrioli, S. Morasca, and A. Morzenti. Generating test cases for real time systems from logic specifications.
ACM Transactions on Computer Systems, 13(4):356–398, 1995.
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APPENDIX: TRANSLATION OF INVARIANTS TO AN ALTERNATIVE SEMANTIC MODEL

This section provides a method to transform timed consequent invariants into a specific class of
Extended Finite State Machines (in short, EFSM). This formalism is an extension of the Finite
State Machine formalism, where variables and conditions over these variables are introduced. The
machines used in this paper need only two variables. These variables deal, respectively, with the
time associated with occurrences of the ? wildcard character and with the total time invested by the
subsequences of the processed log. The only difference with respect to the original EFSM formalism
is the inclusion of a specific error state. This translation provides a formal semantics of consequent
invariants by translating them into an EFSM. Therefore, it helps to understand the meaning of these
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invariants since it relies on a well-know formalism. The concepts related to invariants and traces/logs
(e.g. correctness of a log with respect to a consequent invariant) are also adapted to this translation.
The translation for observational invariants is not included because it follows a similar pattern: it
essentially consists in repeating the translation process for each pattern trace.

Definition 20
An Extended Finite State Machine is a tuple M = (S, I,O, T r, sin, x̄, se) where S is a finite set of
states, I is the set of input actions, O is the set of output actions, Tr is the set of transitions, sin is
the initial state, x̄ ∈ IR2

+ is the pair of initial values of the variables, and se is the error state. The
set of all EFSM will be denoted by SETEFSM.

A transition is a tuple (s, i, o,Q, Z, s′) where s, s′ ∈ S are the initial and final state of the
transition, i ∈ I and o ∈ O are the input and output actions associated with the transition, Q :
IR2

+ −→ Bool is a predicate on the set of variables and Z : IR2
+ −→ IR2

+ is a transformation over
the variables.

A configuration in M is a pair (s, x̄0), where s ∈ S is the current state and x̄0 ∈ IR2
+ is the tuple

containing the current values of the variables. The initial configuration of M is (sin, x̄). ut

Given a configuration (s, x̄0), a transition (s, i, o,Q, Z, s′) denotes that if the input i is received
and Q(x̄0) holds then the output o will be produced and the new configuration will be (s′, Z(x̄0)).

As it was previously said, these machines have only two variables. During the rest of the appendix
the variables considered in the machine will be denoted by x1 and x2. Next, the method for
transforming a timed consequent invariant into an EFSM is given. Given an invariant φ, Mφ denotes
the EFSM associated with this invariant.

Definition 21
The function Construct : SETEFSM× S × ΦI/O −→ SETEFSM is such that for all M =
(S, I,O, T r, sin, x̄) ∈ SETEFSM , s ∈ S, and φ = α1, . . . , αn, if 7→ O/p̂f B q̂f ∈ ΦI/O:
If (LenI/O(φ) = 0) then return Mφ = (S, I,O, T rφ, sin, x̄, se) where

• Trφ = Tr ∪
⋃5
i=1 Tri with

Tr1 = {(s, if , o, x2 + t ∈ q̂f ∧ t ∈ p̂f , (0, 0), sin)|o ∈ O}
Tr2 = {(s, if , o, x2 + t /∈ q̂f ∨ t /∈ p̂f , x̄, se)|o ∈ O}
Tr3 = {(s, if , o, true, x̄, se)|o /∈ O}
Tr4 = {(s, i, o, true, (0, 0), sin)|i ∈ I ∧ i 6= if ∧ o ∈ O}
Tr5 = {(se, i, o, true, x̄, se|i ∈ I ∧ o ∈ O}

If (LenI/O(φ) = 1 ∧ α1 = ?/[p?1, p
?
2] ) then return Mφ = (S, I,O, T rφ, sin, x̄, se) where

• Trφ = Tr ∪
⋃7
i=1 Tri with

Tr1 = {(s, i, o, x1 + t ≤ p?2, (x1 := x1 + t, x2 := x2 + t), s)|i ∈ I ∧ i 6= if ∧ o ∈ O}
Tr2 = {(s, i, o, x1 + t > p?2, (0, 0), sin)|i ∈ I ∧ i 6= if ∧ o ∈ O}
Tr3 = {(s, if , o, x1 ≥ p?1 ∧ x2 + t ∈ q̂f ∧ t ∈ p̂f , (0, 0), sin)|o ∈ O}
Tr4 = {(s, if , o, x1 ≥ p?1 ∧ (x2 + t /∈ q̂f ∨ t /∈ p̂f ), x̄, se)|o ∈ O}
Tr5 = {(s, if , o, x1 ≥ p?1, x̄, se)|o /∈ O}
Tr6 = {(s, if , o, x1 < p?1, (0, 0), sin)|o ∈ O}
Tr7 = {(se, i, o, true, x̄, se)|i ∈ I ∧ o ∈ O}

If (LenI/O(φ) > 0 ∧ α1 = a/z/p̂) then return Construct(Mφ, sα, (α2, . . . , αn, if 7→ O/p̂f B
q̂f )) where Mφ = (Sα, I,O, T rφ, sin, x̄, se) with

• Sα = S ∪ {sα} such that sα /∈ S is a fresh state
• Trφ = Tr ∪

⋃3
i=1 Tri with

Tr1 = {(s, i, o, t ∈ p̂, x2 := x2 + t, sα)|i ∈ I ∧ a = i ∧ o ∈ O ∧ z = o}
Tr2 = {(s, i, o, t /∈ p̂, (0, 0), sin)|i ∈ I ∧ a = i ∧ o ∈ O ∧ z = o}
Tr3 = {(s, i, o, true, (0, 0), sin)|i ∈ I ∧ o ∈ O ∧ (a 6= i ∨ z 6= o)}

If (LenI/O(φ) ≥ 2 ∧ α1 = ?/[p1, p2] ∧ α2 = a/z/p̂) then return
Construct(Mφ, sα, (α3, . . . , αn, if 7→ O/p̂f B q̂f )) where Mφ = (Sα, I,O, T rφ, sin, x̄, se)
with
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φ = i1/?/[3, 7], ?[20, 79], i1/o2/[5, 4], i3 7→ {o7, o8} B [3, 14], [20, 88]

sin s1

s2

se

Tr1, T r2

Tr3

Tr6

Tr4, T r5
Tr7

Tr8, T r9

Tr10, T r11

Tr12

Tr1 = {(sin, i, o, true, (0, 0), sin)|i ∈ I \ {i1} ∧ o ∈ O}
Tr2 = {(sin, i1, o, t 6∈ [3, 7], (0, 0), sin)|o ∈ O}
Tr3 = {(sin, i1, o, t ∈ [3, 7], x2 := x2 + t, s1)|o ∈ O}
Tr4 = {(s1, i1, o, x1 < 20 ∨ t 6∈ [5, 4], (0, 0), sin)|o ∈ O}
Tr5 = {(s1, i, o, x1 + t > 79, (0, 0), sin)|i ∈ I \ {i1} ∧ o ∈ O}
Tr6 = {(s1, i, o, x1 + t ≤ 79, x1 := x1 + t ∧ x2 := x2 + t, s1)|i ∈ I \ {i1} ∧ o ∈ O}
Tr7 = {(s1, i1/o2, t ∈ [5, 4] ∧ x1 ≥ 20, x1 := 0 ∧ x2 := x2 + t, s2)}
Tr8 = {(s2, i, o, true, (0, 0), sin)|i ∈ I \ {i3} ∧ o ∈ O}
Tr9 = {(s2, i3, o, (x2 + t) ∈ [20, 88] ∧ t ∈ [3, 14], (0, 0), sin)|o ∈ {o7, o8}}
Tr10 = {(s2, i3, o, true, x̄, se)|o ∈ O \ {o7, o8}}
Tr11 = {(s2, i3, o, x2 + t 6∈ [20, 88] ∨ t 6∈ [3, 14], x̄, se)|o ∈ O}
Tr12 = {(se, i, o, true, x̄, se)|i ∈ I ∧ o ∈ O}

Figure 20. Example of Extended Finite State Machine associated to an invariant.

• Sα = S ∪ {sα} such that sα /∈ S
• Trφ = Tr ∪

⋃4
i=1 Tri with

Tr1 = {(s, i, o, x1 + t ≤ p2, (x1 := x1 + t, x2 := x2 + t), s)|i ∈ I ∧ i 6= a ∧ o ∈ O}
Tr2 = {(s, i, o, x1 + t > p2, (0, 0), sin)|i ∈ I ∧ i 6= a ∧ o ∈ O}
Tr3 = {(s, i, o, true, (0, 0), sin)|i ∈ I ∧ i = a ∧ o ∈ O}
Tr4 = {(s, i, o, x1 ≥ p1 ∧ t ∈ p̂, (x1 := 0, x2 := x2 + t), sα)|i ∈ I ∧ a = i ∧ o ∈ O ∧ z = o}

ut

An informal explanation of the Construct function follows. Intuitively, the spine of the returned
machine represents the trace reflected in the invariant. The rest of the transitions correspond to the
set of alternative behaviors. The invariant is traversed and, for each of its components, transitions
that reflect the expected and unexpected behaviors expressed in the invariant are generated.
The initial call for the transformation of an invariant φ is Construct(Mφ, sin, φ), where Mφ =
({sin, se}, I,O, ∅, sin, (0, 0), se). This machine initially has only two states, that is, the initial and
the error states, while the set of transitions is empty. The process finishes when the last component
of the invariant, that is, if 7→ O/p̂f B q̂f , is reached and processed. Depending on the component
of the invariant that is being processed, the function generates a different set of transitions. The first
and second options present the set of transitions produced for the last component of the invariant.
Therefore, they do not include a recursive call. In addition to the set of transitions produced to deal
with the behavior reflected in the invariant, a set of transitions for managing the possible errors
are included. If the component corresponds to an expression a/z/p̂, then a set of transitions is
produced for dealing with the conditions related to the expected/unexpected input/output actions and
the temporal restriction associated with them. If the component corresponds to a wildcard ?, then
the function generates transitions that control the time associated with the sequences of input/output
actions that do not contain the input of the next component of the invariant. Note that the input
actions that can be matched with the wildcard ? must be different from the input of the next
component in the invariant. In this case, the function transforms not only the wildcard ? component
but also the next one.

The concepts related to correctness of consequent invariants with respect to traces/logs can be
easily adapted to this translation. Given a specification M and a timed consequent invariant Mφ, the
invariant φ is correct with respect to the specification M if the following two conditions hold:

• There does not exist a trace in Traces(M) that when applied to Mφ reaches the error state
and
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• there is a transition labeled by if/o1, x2 + t ∈ q̂f ∧ t ∈ p̂f , (0, 0) with o1 ∈ O that is traversed
at least once.

Note that this transition is triggered only when the last component of the invariant is found in the
trace and the conditions represented in it are fulfilled. Intuitively, this means that there exists a trace
that contains the pattern expressed in the invariant. Finally, a log is correct with respect to a timed
consequent invariant Mφ, if when the log is applied to Mφ the last state reached is not the error
state. Figure 20 shows an example of this translation.
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