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SUMMARY

Fault localization methods seek to identify faulty program statements based on the information provided by
the failing and passing test executions. Spectrum-based methods are among the most popular ones and assist
programmers by assigning suspiciousness values on program statements according to their probability of
being faulty. This paper proposes Metallaxis, a fault localization approach based on mutation analysis. The
innovative part of Metallaxis is that it uses mutants and links them with the faulty program places. Thus,
mutants that are killed mostly by failing tests provide a good indication about the location of a fault. Exper-
imentation using Metallaxis suggests that it is significantly more effective than statement-based approaches.
This is true even in the case where mutation cost-reduction techniques, such as mutant sampling, are facili-
tated. Additionally, results from a controlled experiment show that the use of mutation as a testing technique
provides benefits to the fault localization process. Therefore, fault localization is significantly improved by
using mutation-based tests instead of block-based or branch-based test suites. Finally, evidence in support
of the methods’ scalability is also given. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Detecting, localizing and fixing bugs are essential software development activities. While software
testing forms the main activity for detecting program defects, software debugging is the process of
locating (diagnosing) and fixing the defective program parts. The fault localization process refers
to the problem of identifying defective program parts given test execution failures. It has been rec-
ognized as one of the costlier parts of the debugging process, which justify the important research
effort for automating the fault localization activity.

When considering testing and fault detection, more than two decades of experiments on mutation
testing have demonstrated that detecting artificial defects (e.g. seeded using mutation operators)
allows effective detection of unknown, real ones, compared with more classical test selection cri-
teria (e.g. based on code coverage). Test cases generated using mutations are good candidates for
finding real faults [1, 2].

When looking at diagnosis, mutants as relevant substitutes of real faults could be useful to
improve fault localization activity. This raises the research questions of (a) whether mutants could
provide sufficient guidance for localizing known but not located faults, that is, faults that have
already been detected by some tests but not located in the code, and (b) whether test cases that
are able to kill mutants would enable accurate fault localization.

Fault localization approaches assist the programmers by giving some advice either on the causes
of the failures or on the program locations that are responsible for some program failures. Some
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approaches, such as dynamic slicing [3], produce a set of program statements that influence the out-
put of the program. Delta debugging [4–6] isolates the causes of program failures by examining the
state differences between passing and failing program executions. Other techniques, usually referred
to as coverage based [7, 8], monitor the program execution to gain runtime information, based on
which they specify a suspiciousness rank of the program statements. Researchers have used many
coverage elements such as program statements [9–11], program branches [8, 12], program du-pairs
[13] and possible combinations of them [8, 14]. Empirical evidence has shown that coverage-
based fault localization approaches can be very effective and helpful [11, 15] in diminishing the
debugging effort.

Among the various coverage elements considered as the fault diagnosis techniques, the most
commonly used ones are the program statements and branches. Still, the use of mutants in locat-
ing program faults has drawn little attention by researchers. This might attribute to the general
belief that mutation testing is quite expensive and cannot scale [16]. However, recent advances
have shown that mutation testing can be practical [16, 17] and can be applied on real-world appli-
cations [16–18]. Many efficient and scalable mutation testing tools such as the MiLu [19] and
Javalanche [20] have been built with promising results. Furthermore, integrating mutation anal-
ysis both for testing and fault localization activities may keep the fault diagnosis expenses at a
low level.

Mutation analysis works by introducing defects named mutants in the program under analysis.
Mutation analysis relies on the assumption that most of the mutants form ‘realistic’ faults, even if
artificially seeded. Several empirical results, such as those of Andrews et al. [1], provide evidence
that this assumption is reasonable. Therefore, the following question can be positioned: If mutants’
detection results in revealing ‘unknown’ faults, is the location of mutants able to assist with the
localization of these faults?

The present paper investigates this question and eventually suggests the use of mutation analysis
for fault localization. By utilizing mutants as alternatives to the structural code coverage, a novel
mutation-based fault diagnosis approach can be defined. If validated, this approach may be used to
kill two birds with one stone, meaning that mutation analysis could reconcile testing and diagno-
sis activities, which are usually targeting different objectives (fault detection and fault localization
[21]). Minimizing the effort of the testing process requires the minimization/prioritization of the test
cases, whereas minimizing the fault localization effort requires the maximization of the information
provided by test execution.

This paper proposes Metallaxis-FL, a fault localization approach based on mutation analysis.
Metallaxis is the Greek word for mutation; in English, it is used in the context of describing moth
species basically when they change from worm to moth. The present paper forms an extension of
the authors’ previous work on fault localization [22] and aims at investigating (a) whether mutation
analysis can improve the effectiveness of coverage-based fault localization techniques, (b) whether
the use of mutation testing adequacy criterion can provide a sufficient and suitable set of test cases
to effectively support the fault localization activity and (c) whether mutation alternatives such as
mutant sampling can be utilized to support the fault localization activity. The aforementioned ques-
tions were explored on a set of 11 benchmark programs by using their accompanied test suites and
faulty versions.

The remainder of this paper is organized as follows. Sections 2 and 3 present the underlying con-
cepts and detail the proposed approach. Its evaluation set-up along with empirical results is described
in Sections 4 and 5, respectively. Sections 6 and 7 discuss the proposed technique and its relation
to the literature. Finally, Section 8 identifies some threats to validity, and Section 9 concludes the
paper and reports some possible future directions.

2. MUTATION TESTING AND FAULTY STATEMENTS

Provoking program failures forms the primary aim of the testing process. Programmers, when expe-
riencing such failures, move to the debugging phase that involves two main steps. The first one is to
identify the faulty program places (diagnosis), and the second one is to fix the fault. Testers usually
utilize adequacy or coverage criteria in order to assist them with the testing process. Fault diag-
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nosis techniques prioritize the program places in order to help testers locating faults. This section
summarizes the aforementioned concepts, which underlie the work presented in this paper.

2.1. Code coverage

Software testing process consists in checking the software’s behaviour by executing a set of test
cases. Test adequacy criteria (also called coverage criteria) are defined to help testers select a set
of tests that is small but representative of the whole possible cases. This is achieved by possessing
the requirement on the selected test cases to cover, that is, execute some specific program elements
called test elements. In view of this, different program elements give rise to different criteria, that
is, by setting them as test elements. Program elements such as the program lines, basic blocks, deci-
sions and du-pairs are some of the most popular ones used for testing. The present paper considers
block and decision criteria that require from the test cases to cover-execute all program blocks and
decisions. Testing thoroughness with respect to a test criterion, here referred to as score or coverage
level, is measured on the basis of the ratio of the test elements exercised by the test cases to the total
number of elements required by the test criterion.

2.2. Mutation analysis

Mutation analysis is a fault-based technique. Thus, it introduces some defects named mutants in the
program under analysis. Mutants are produced on the basis of simple syntactic rules, called muta-
tion operators. Mutation testing is performed by executing the mutant programs with a selected set
of test cases and by examining the differences in behaviour between the mutant and the original
program versions. Thus, the mutants can be categorized as killed and live. Killed mutants desig-
nate those that result in outputs different from the original program version, whereas live are the
unkilled mutants.

Mutation is based on the hypothesis of the ‘competent programmer’, that is, the assumption that
programmers produce programs that are nearly ‘correct’ [23] and the ‘coupling effect’ [23]. The
coupling effect states ‘Test data that distinguishes all programs differing from a correct one by only
simple errors is so sensitive that it also implicitly distinguishes more complex errors’. This assump-
tion underlies the approach of the present paper in order to locate real complex faults. By generating
a mutant program, two versions of the same program exist: the original one, sayO , and the mutated
one, say M . If making only one syntactic change to O produces M, it is called first-order mutant.
Otherwise, it is called a higher-order mutant [16]. This paper considers only first-order mutants.
Mutation can be used as a test adequacy criterion and referred to as mutation testing. This is accom-
plished by using mutants as test elements. Thus, the ability of test cases, say t , to distinguish the
output of the mutated version from the original program version is assessed. This distinction is
usually performed by comparing the programs’ outputs, such as O.t/ ¤ M.t/. It is common to
have situations where such cases do not exist. In this case, the mutant M is called equivalent. The
killing mutants’ ratio is called mutation score and measures the adequacy of the test cases with
respect to mutation testing.

A classical criticism of mutation is its high computation cost. Because a vast number of mutants
have to be generated and executed with test cases, huge computational resources are needed. To
overcome this problem, researchers have suggested using various alternatives such as the ‘mutant
sampling’ [24] and the ‘selective mutation’ [25]. In the mutant sampling approach, a small percent-
age of mutants is sampled and considered as being the whole mutant set. In the selective mutation,
only mutants produced by specific operators are considered. Empirical evidence [25, 26] has shown
that both of the aforementioned approaches are capable of constructing high-quality test data. More
details about mutation and its alternatives can be found in [17, 24].

3. RANKING STATEMENTS USING CODE COVERAGE AND MUTATION ANALYSIS

This section discusses the use of coverage and mutant test elements to assist the fault localization
process. We call an ‘un-located fault’ a fault that has been detected by at least one test case but that
has still to be located.
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Table I. The Ochiai formula.

Suspiciousness.e/D failed.e/p
totfailed�.failed.e/Cpassed.e//

where totfailed is the total number of test cases that fail, failed(e)
the number of test cases that cover the code element e and fail, and
passed(e) the number of test cases that cover the code element e
and pass.

3.1. Coverage-based fault localization

Research on fault localization suggests that utilizing the execution traces of the employed test suites
can help in performing this process. These approaches referred to as coverage based [8] record the
executed-covered code elements of the passing and failing test cases. The main idea is that code
elements executed by failing test cases are responsible for the failure. Thus, for each of the consid-
ered program elements, a suspiciousness value is assigned. This value approximates the probability
that a program statement is faulty, and it is calculated on the basis of the frequency that program
elements appear in the failing and passing program executions. Then, the programmer is assisted
to find a fault by inspecting these highlighted elements on the basis of a decreasing suspiciousness
order, that is, starting from the most suspicious one to the least one.

One of the most popular coverage-based methods is Tarantula [10]. The Tarantula technique uses
program statements as coverage elements and computes their suspiciousness by using a formula
similar to the one presented in Table I. It is noted that these values are within the range of [0–1].
Abreu et al. [9] investigated this issue and concluded that a similarity coefficient named Ochiai was
the most effective one. Santelices et al. [8] also report that their experiments supported the use of
this formula; hence, they used it in their approach. The Ochiai suspiciousness calculation formula
for a code element e is presented in Table I. Its application is straightforward once the program
execution traces are available, by measuring the number of failing and passing test cases that cover
each one of the program statements. Then, for all the program statements, a suspiciousness value is
calculated on the basis of the Ochiai formula. Finally, the program statements are ranked according
to their suspiciousness, and they are reported to the user.

3.2. Mutation-based fault localization

The mutation-based fault localization approach identifies suspicious mutants and uses their location
in order to identify the un-located fault statements. The identification of suspicious mutants is based
on their behaviour. A mutant M1 is said to have the same behaviour with another mutant M2 if
M1 and M2 are killed by the same test cases. The degree of similarity on the test cases that kill
the mutants M1 and M2 define the behaviour similarity of these mutants. Generally, the proposed
approach is motivated by the following two observations:

� Mutants-faults located on the same program statements frequently exhibit a similar behaviour.
� Mutants-faults located in diverse program statements exhibit different behaviours. For a ‘hard-

to-kill’ mutant, a test case that kills it is capable of killing the mutants located on the same
statement.

Consider a scenario where the program under test contains an un-located fault. On the basis of
the aforementioned observations, this fault behaves similarly to seeded faults applied at the same
statement. At the same time, faults seeded on other statements behave differently to the un-located
one. Then, within this assumption, the ‘un-located and seeded faults exhibit similar behaviours’; the
identification of an un-located fault may be obtained thanks to a mutant fault at the same location.
Section 3.2 provides an example of the proposed approach illustrating the aforementioned scenario.

The intuition behind the proposed approach is this implicit link between the behaviours of un-
located faults with other local mutants. The behaviour of the un-located faults is identified on the
basis of the passed and failed test cases. Mutants’ behaviour is identified on the basis of the uti-
lized test cases that achieve to kill or not the considered mutants. The similarity between these two
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behaviours establishes the sought implicit link between the un-located faults and mutants. This can
be performed straightforwardly by using the ways in which existing fault localization techniques
quantify the similarity between the structural code elements (such as statements or decisions) and
the un-located faults behaviour. Therefore, by measuring the number of killed mutants by the pass-
ing and failing test executions, one can have an indication about the suspiciousness of those mutants.
This can be computed by applying the Ochiai formula (Table I) with elements (e) representing the
killed mutants. Following the lines of the spectrum fault localization approaches, killed mutants are
treated as covered elements (e), while the live ones are ignored, that is, treated as uncovered ele-
ments. Hence, all the introduced mutants (e), regardless of the statement they belong to, are assigned
with a suspiciousness value.

The Metallaxis approach considers only first-order mutants and relies on the coupling effect in
order to locate complex faults. The use of first-order mutants helps assigning suspiciousness values
to the program statements. Because mutants’ location is known, the suspiciousness values com-
puted for the mutants can be assigned to their respective statements. However, because most of the
program statements involve many mutants, each one having its own suspiciousness, which is the
suspiciousness value of a program statement? In other words, there is a need to assign a suspicious-
ness value to a program statement on the basis of the suspiciousness values of the mutants that are
belonging to this statement. In this paper, the suspiciousness of a statement is equal to the maximum
suspiciousness value of its respective mutants. This is in line with the fault localization methods,
where the most suspicious coverage elements have to be investigated first. Furthermore, the intu-
ition of the proposed approach is that the similarities between the behaviours of the faults and the
mutants are attributed to their location. Depending on the utilized operators, it is possible that some
statements might not have any mutants. These statements are assigned with the worst suspicious-
ness value (the number of program statements). This practice ensures that these statements will be
among the last ones to be inspected reflecting the inability of the approach to highlight the faulty
statement. Generally, the assignment of suspiciousness values on non-mutated statements can be
performed on the basis of the lines suggested by Santelices et al. [8]. Such statements (without sus-
piciousness) can be mapped with the values of the statements that are data or control dependent [8].
However, the need for this practice is not crucial in our case, because mutants operate on most of the
program statements.

3.3. An illustrative example

Consider the example of Figure 1, which illustrates the use of statements and mutants in localizing
faults. This example shows

1. how the examined fault localization approaches work and
2. a concrete scenario of mutant-fault localization using different types of mutants.

To demonstrate how the examined fault localization approaches work, consider the example of
Figure 1, which has been taken from the work of Santelices et al. [8]. This example, program
mid, involves two faults named as Fault 1 and Fault 2. Fault 1 (localized in statement 3) is due
to extra code fragments (y < ´! y < ´ � 1), and Fault 2 (localized in statement 7) is an assign-
ment expression error (m D x ! m D y). The example program has 13 statements (column
Statements) and is tested with six test cases (top of the columns Tests 1–6). Test columns record
the covered test elements, that is, statements and mutants, by the respective test cases (denoted
with ‘X’ for executed statements and with ‘

p
’ for the killed mutants). The columns labeled as

‘#Passed’ and ‘#Failed’ record the number of passing and failing test cases (denoted as passed(e)
and failed(e) in the Ochiai formula of Table I) that cover-kill each program statement-mutant. The
column labeled as ‘Suspiciousness’ record the suspiciousness scores (calculated by the Ochiai
formula, Table I) per statement and mutant. The column labeled as ‘Rank’ record the respec-
tive ranking for all the program statements. The upper part (above the black line) of the figure
corresponds to the statement-based approach, and the lower part of the figure corresponds to the
mutation-based approach.
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Figure 1. Fault localization example using program statements and mutants. The upper part corresponds to
a statement-based approach, while the bottom part corresponds to the mutation-based one. The symbols X

and
p

denote that the test cases (columns) cover-kill the specified statement (rows).

Fault 1 (localized at statement 3) is detected by test cases 2 and 5 (bottom of the columns Tests
1–6). This fault is ranked in the sixth position by the statement-based (upper part of the figure)
fault localization method. The total number of test cases that fail is two and that passed is four.
Because the two failed test cases and the four passed test cases cover this statement, on the basis of
the Ochiai formula, its suspiciousness is calculated as 0.58. Similarly, the suspiciousness of state-
ment 9 is calculated as 0.71 because two failed and two passed test cases cover this statement. The
mutation-based approach precisely localized the fault (ranked in the first position) based on the
relational mutant operator, that is, it changes the instance of relational operators with the other ones.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2013)
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The utilized mutant elements are demonstrated in the column Mutants (left part corresponding to
Fault1), and they are named asM1–M35. Because mutantM1 is killed by the two failing test cases
and not by any of the passed, it has a suspiciousness value of 1.0. Thus, the statement of M1 is
reported as the most suspicious one.

Fault 2 (localized at statement 7) is detected by one test case, and it is ranked in the first position by
both fault localization methods. This statement is covered by one failing and one passed test cases;
thus, the statement-based approach assigns a suspiciousness value of 0.71. The mutation-based
approach localizes this fault by using the numerical constant increment and decrement mutants,
that is, it adds and subtracts a constant value to a program’s variable. The mutant elements used
are presented in the column Mutants (right part corresponding to Fault2), and they are named as
M1–M32. On the basis of the M17 and M18 mutants, which are killed by one failing and one
passed test cases, the faulty statement is ranked in the first position, and it has a suspiciousness
value (0.71).

As pointed out before, after the localization process, the programmer has to check the ranked
statements in a decreasing suspiciousness order in order to find and fix the fault. Hence, if faulty
statements appear at a higher position in the ranked order, this is preferable because less effort is
required to find the error.

Conclusively, Figure 1 demonstrated a scenario of applying spectrum-based fault localization
methods. By using two faults, the process of assigning suspiciousness values to program statements
based on both statement coverage and mutation analysis was also presented.

4. EXPERIMENTAL STUDY

This section discusses the empirical set-up and evaluation of the proposed approach. First, it
describes the definition of the conducted experiment by setting out the research questions under
investigation. Then, details about the selected subjects and tools are given. Finally, a description of
the experimental set-up and analysis is provided.

4.1. Experimental objectives

The present study seeks to empirically investigate the following research questions (RQs):

� RQ1: How effective is the mutation-based fault localization approach? Is this approach more
effective in assisting fault localization process than the statement-based one?
� RQ2: What is the impact of test adequacy criteria on the effectiveness of mutation and

statement-based fault localization techniques? Comment: in this study, block, branch and
mutation adequate test suites were used.
� RQ3: How is the effectiveness of mutation-based fault localization technique affected by using

randomly selected mutant sets? Comment: in this study, random sampling of 10%, 20%, 30%,
40% and 50% mutant sets were used.
� RQ4: How effective is the mutation-based fault localization approach when it is applied on

large software subjects?

Taking into account RQ1 and showing that the effectiveness of fault localization techniques can
be improved will benefit researchers in seeking ways to reduce the program debugging expenses.
Answering RQ2 is important in order to show whether the use of testing adequacy criteria is practical
for the fault localization process. This answer will indicate whether programmers should put effort
on localizing faults directly after experiencing a failure or if they should produce some additional
tests first. Additionally, because mutation-based fault localization relies on the killed mutants, it is
expected to be less effective when these tests are incapable of killing many mutants. Therefore, RQ2
will give an answer whether mutation-based localization approach is worthwhile when employing a
basic testing approach such as block or branch coverage. Research questions RQ3 forms an attempt
towards dealing with the computational demands of mutation analysis. By facilitating only few
mutants, a practical answer to the computational cost of the method can be given. An investigation
on the localization ability of these attempts is carried out. Finally, RQ4 explores the scalability of
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the mutation-based approach on larger programs. By showing that Metallaxis works well on large
programs, the practicality of the approach is established.

4.2. Subject programs, faults and test suite pools

The conducted experiment employed two sets of benchmark programs. The first set is composed
of relatively small subjects, and it was used in order to answer RQ1–RQ3. The second one is
composed of large subjects, and it was used for exploring the scalability of the mutation-based
approach (RQ4).

The first benchmark set is known as the Siemens suite and has been widely used in mutation
testing and fault localization experiments (e.g. [4,8,11,12,14,27]). In the rest of the paper, this pro-
gram set is referred as the Siemens suite or as the benchmark set 1. The suite is composed of seven
programs written in C and is accompanied by test suite pools and a set of 132 faults. These programs
were chosen because of their widespread use in the literature on the one hand and their availability
along with their accompanied tests and fault sets from the Software-artifact Infrastructure Repos-
itory (SIR) at the University of Nebraska–Lincoln [28] on the other. During the experimentation,
one fault was excluded from the considered set, because it did not result in any execution failure, a
mandatory requirement of the fault localization methods. This action was also taken in other sim-
ilar studies (e.g. [8, 11, 27]). Additionally, to validate further the proposed approach, the present
study employs another 100 faulty versions per subject program. These faulty program versions are
produced by randomly selecting some mutants and are denoted as mutant-faults. Mutant-faults as
alternatives to faults in examining the effectiveness of fault localization techniques were also used
in the study of Baudry et al. [21]. The validity of this practice was later investigated by Ali et al.
[15] and found ‘no evidence to suggest that the use of mutants for this purpose is invalid’.

The program suite was initially employed in an empirical study by Hutchins et al. [29] for com-
paring various structural testing criteria. Later, it was extended and adapted appropriately from other
researchers to support their experiments [30]. According to Hutchins et al. [29], the accompanied
set of faults was manually produced by various researchers with the intention of introducing realistic
faults. The accompanied test suites were produced on the basis of a combination of both black and
white box approaches such as random, category partition, statements, decisions and definition–use
pairs, with the aim of producing a comprehensive and suitable for empirical studies test suite. More
details about the construction of the test suite pools can be found in [30].

The second set of benchmarks, referred to as benchmark set 2, is composed of four programs
named as the Gzip, Space, Grep and Flex. These programs have also been used in fault localization
studies such as [31, 32] and can be obtained from the SIR repository. Gzip functions as a utility for
compressing files, Space as an interpreter for an array definition language, Grep as a utility for text
searching and Flex as a lexical analyser. For the present study, the faulty versions of the Space (all
versions), Gzip (v1), Flex (v2) and Grep (v3) programs were used. Unfortunately, not all the faults
were detected by any test from their accompanied test suites when executed in the experimental
environment. This is also reported by other studies using the same programs (e.g. [31, 32]). There-
fore, Gzip has 7, Grep has 8, Flex has 13 and Space has 34 faults that can be detected. For the case
of Space among the 34 detected faults, 12 of them were randomly chosen among those handled by
Gcov, that is, some faults resulted in program failures that prevent Gcov to collect their traces. Thus,
a total number of 40 faults were considered. Table II records details about the program lines of code,
the size of the test pools, the number of faults and the number of mutant-faults per program for both
of the utilized benchmark sets.

4.3. Utilized tools and implementation details

The present study used the Proteum‡ mutation testing system by Maldonado et al. [33] in order to
support the mutation analysis process. Proteum employs mutant operators specially designed for
the unit test of C programs, implemented as suggested by the Agrawal et al. [34] study. To gather

‡Proteum/IM 2.0 was used by utilizing only the unit level operators.
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Table II. Description of the selected subjects.

Number of
Benchmark set Program name Lines of code Whole test suite Number of faults mutant-faults

1

Schedule 296 2650 9 100
Schedule2 263 2710 10 100
Tcas 137 1608 41 100
Totinfo 281 1052 23 100
Printtokens 343 4130 7 100
Printtokens2 355 4115 10 100
Replace 513 5542 32 100

2

Gzip 6576 214 16 —
Space 9564 13585 38 —
Grep 13341 809 18 —
Flex 14120 567 20 —

the required tracing information, a prototype has been implemented on top of the Wet [35] frame-
work in the same lines utilized in [14]. Wet works at machine code instructions’ granularity, and
thus, it collects the required information in terms of instruction instances. The Instruction terms are
mapped to their respective program statements, which are identified on the basis of their line num-
bers. The prototype implements both the statement-based and mutation-based approaches utilizing
the Ochiai formula (given in Table I). Unfortunately, the use of Wet framework restricts the scal-
ability of the proposed approach. To accomplish the scalability study, RQ4, executable statements
and traces were collected using Gcov.§ Gcov is a widely used profiler, also employed in some fault
localization studies such as [31].

The ATAC [36] coverage tool was used for the selection of the Block and Branch test sets from
the accompanied test pools and Proteum [33] for the mutation ones. These tools have also been used
in software testing experiments (e.g. [1,17,26]). Details about the test selection process are given in
the following subsection.

4.4. Experimental regime

The following experiment was set to address the stated RQs.
Regarding RQ1–RQ3, all the Siemens suite subjects, benchmark set 1, (including the faulty ones)

were executed with all the available test cases in order to record the passing and failing executions
of the whole test suite. Then, execution traces of all available test cases per subject program were
collected. These traces were used in order to produce the statement-based fault localization results.
The study of RQ1 and RQ3 was based on these results.

With respect to the mutation-based approach (examined by RQ1), the entire set of utilized mutants
were generated, compiled and executed against the whole provided test suite pool. This process
determined the killed and live mutants per test case, information used by the proposed approach
in order to compute mutant suspiciousness and produce mutation-based fault localization results.
Mutant sampling approach (investigated by RQ3) was performed by selecting and generating at
random only a percentage of the whole set of mutants. Five different sampling ratios were studied
(10%, 20%, 30%, 40% and 50%). In order to avoid any bias from the sampling process, 10 indepen-
dent sets of mutants, per utilized ratio, were sampled. One of the aims of this study, regarding RQ2,
is to investigate the ability of the examined fault localization methods in localizing a detected fault
when using adequate (with respect to testing criterion) test sets. Thus, the utilized test sets should
expose the considered fault and being adequate¶ at the same time. This study considers block, branch
and mutation testing criteria. In order to avoid any side effects through the random selection of test
cases, 10 independent test sets were constructed per studied fault. The test sets were constructed
from the available test suite pool using the procedure of Figure 2. In this figure, the term score refers

§Gcov is a GNU code coverage tool part of GCC.
¶A test set is considered to be adequate if it achieves the same level of coverage with the whole suite.
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Figure 2. Test selection procedure.

to the utilized criterion coverage, such as the block, or branch or the mutation score for the case
of mutation. Additionally, 10 test sets per utilized fault were constructed on the basis of random
selection from the available test pool. Each one of these tests was able to expose its respective fault.
These sets, denoted as Random, were of the same size with the mutation ones and used to determine
whether they have similar effects on fault localization with the mutation ones.

Regarding the scalability of the method, RQ4, the four larger programs, benchmark set 2, were
used. For each of the 40 faults considered, a maximum of 10 test cases, five failing and five passing,
were employed. This provided a good mix of passing and failed test cases. To this end, per examined
fault, five failing test cases were randomly sampled. In some cases, less than five failing tests exist.
In these cases, all the available failing test cases were used. Similarly, five passing tests were ran-
domly sampled from the respective test suite pools. In order to provide a challenging situation for
the fault localization approach, the selection of the passing test cases was performed by sampling
among the cases that execute the faulty statement and are passing. In the lack of five such cases, the
sample was extended, up to five tests, by randomly choosing passing tests.

Only the executable statements were ranked in the present experiment because of the function
of the developed tool (Section 4.3). Additionally, to avoid repeating the mutation analysis process
for all considered faults, the localization process was performed on the original (correct) program
versions by treating the ‘correct’ program as being faulty one and the faulty as being ‘correct’. This
restriction was applied only on the programs of the benchmark set 1 in order to complete the exper-
iment with reasonable resources (vast resources are typically needed by mutation analysis). Thus,
it helped not to repeat the process for each considered fault (the number of faults considered by
the benchmark set 1). It is noted that on the benchmark set 2, the fault localization process was
performed on the faulty programs.

Further, in this experiment, statements with the same suspiciousness value are ranked together at
the upper of their ranks. For instance, statements 8 and 9 of Figure 1 have the highest suspiciousness
value (0.71), for fault 1, but they are both assigned with a rank of 2 (instead of ranks 1 and 2). This
is a typical approach in the literature in this kind of experiments (e.g. [8, 11, 27]).

Comparing the localization methods between the different programs, a score for diagnosis effec-
tiveness should be adopted. The most commonly used score by the literature in such cases is the
one proposed by Jones et al. [11] in evaluating the Tarantula fault localization system. The ‘score’
measures the percentage of executed program statements that need not be checked if statements are
examined by the programmer in a decreasing suspiciousness order. The use of the score is based on
the assumption that the programmer will inspect each program statement until finding the faulty one
on the basis of the order specified by the fault localization tool. Along these lines, the score value is
calculated on the basis of the following formula:

scoreD
total executed statements� rank

total executed statements
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In the aforementioned formula, rank indicates the position of the faulty statement in the ranked
list produced by the fault localization method. Greater score values suggest that less program code
needs inspection by the programmer in order to identify the sought fault. Similarly, the term cost
refers to the ratio of a given rank of a faulty statement to the total number of executed statements. The
effectiveness comparisons between the studied methods were performed using the Mann–Whitney
U -test. The Mann–Whitney U -test examines whether one of the compared approaches tends to have
higher values than the other one, and it is a nonparametric statistical hypothesis test. Thus, it does
not make any assumptions about the underlying populations.

Lastly, some additional concerns were made about the utilized faults and their localization. To
avoid any bias introduced by the mutant-faults and the mutation-based fault localization approach,
the mutant-faults were removed from the considered mutant set utilized by the localization method.
This practice is opposed to the mutation-based fault localization because it decreases the number of
mutants that it uses and hence its effectiveness. In cases of faults that involve omitted statements, it
was assumed that these faults are found if the programmer inspects a statement next to the missing
statement. Otherwise, there will never be such a mutated or executed statement. Similar situation
is experienced in the cases of faults occurring on non-executable statements such as variable ini-
tializations or constant assignment statements. In such cases, the faulty statements will not result
in the suspiciousness list (for both of the utilized approaches). Hence, it was assumed that these
faults will be located whenever the programmer inspects a statement using the constant or the faulty
defined variable.

Conclusively, to address RQ1, the score measures according to both the mutation-based and
statement-based methods were obtained and compared. This was accomplished with the use of the
whole test suite for all the studied faults and mutant-faults. To address RQ2, the effectiveness of the
fault localization methods was analysed on the basis of the selected set of test cases. The experi-
ment considers in total 1310 test sets (131 faults � 10 test sets) and 7000 (700 mutant-faults � 10
test sets) test sets per utilized testing criterion. To address RQ3, results were derived on the basis
of the 50 randomly selected mutant sets (10 sets per sampling ratio). For each one of these mutant
sets, its respective score values were evaluated using the whole test suite for all the studied faults
and mutant-faults. Finally, considering RQ4, the effectiveness values, on the benchmark set 2, is
reported and analysed.

5. EXPERIMENTAL RESULTS

This section reports results on performing statement-based and mutation-based fault localization
methods according to the process specified in the previous section.

5.1. Effectiveness evaluation – (RQ1)

The effectiveness results of mutation-based and statement-based approaches, with respect to RQ1,
are summarized in the graphs of Figure 3. The obtained results are categorized on the basis
of the assigned scores (this practice is also used in [14, 15, 27]) in the following categories:
99–100%, 90–99%, 80–90%, 70–80%, 60–70%, 50–60%, 40–50%, 30–40%, 20–30%, 10–20%
and 0–10%. Tables III and IV in the columns ‘StLoc whole-suite’ and ‘MutLoc whole-suite’ record
the percentage of faults (Table III) and mutant-faults (Table IV) found by the statement-based and
mutation-based approaches per score range, respectively. These results are cumulatively depicted
in the graphs of Figure 3. In these plots, y-axis records the percentage faults that are effectively
localized, while the x-axis the percentage ranges of statements that does not need inspection by the
programmer. It is noted that method curves (data points) appearing higher in the graphs reflect
less effort by the programmer and thus a better fault localization effectiveness. For example, a
programmer is able to effectively localize approximately 0.90 of the total faults when using the
mutation-based approach and only 0.44 with statement-based approach, by inspecting only a 10%
of the programs’ code.|| With respect to faults, mutation-based approach achieved to effectively

||The results consider only the executable statements, not the whole program ones.
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Figure 3. Effectiveness comparison of the mutation-based and statement-based fault localization methods
using the whole test suite.

localize the 0.41, 0.89 and 0.93 of faults in the 99%, 90% 80% categories, while the statement-
based one 0.11, 0.44 and 0.60, respectively. With respect to mutant-faults, mutation-based approach
achieved to effectively localize the 0.30, 0.88 and 0.94 of mutant-faults, while the statement-based
one 0.07, 0.50 and 0.64, respectively. These results indicate that the mutation-based approach out-
performs the statement-based one. This difference is of practical significance: the average score
(average score values of all the examined faults) of the statement-based approach is equal to 77%,
while the mutation-based one 95% with respect to faults. Regarding mutant-faults, these values are
79% and 95% for the statement-based and mutation-based methods, respectively.

Figure 4 depicts the fault localization cost, that is, the percentage of statements that need inspec-
tion by the programmer in order to effectively localize the sought faults, per fault and mutant-fault.
It can be observed, from this graph, that the cost for localizing faults with mutation-based approach
is lower in most cases. Additionally, the difference is considerable for most cases. Regarding the
sample of the 131 faults, mutation-based approach performed better in the 108 cases, worst in 17
cases and had equal effectiveness in six cases. An examination of these 17 cases reveals that in nine
cases, this difference was less than 1%. Only in four cases the statement-based approach was better
by more than 5% but no more than 11%. Considering the sample of 700 mutant-faults, mutation-
based approach performed better in the 545 cases, worst in 113 cases and had equal effectiveness
in 42 cases. These results suggest that whenever the statement-based approach achieves a better
effectiveness, this difference is not so important.

5.2. Testing criteria and fault localization – (RQ2)

Fault localization techniques are dependent on both the employed elements and the utilized test
cases. Consequently, it seems natural to expect that using testing criteria requiring more test cases
(such as mutation testing) will assist the localization of faults. However, because the mutation-based
fault localization method relies on the killed mutants, it is expected (intuitively) to experience a low
effectiveness when many mutants are not killed by the employed tests. Thus, low-quality test suites
such as those coming from block and branch testing should greatly affect the effectiveness of the
localization method.

The results concerning this issue, RQ2, are recorded in Tables III and IV and Figure 5. Tables III
and IV record the ratio of the effectively localized faults at various considered score ranges when
using the Block (Block-suite), Branch (Branch-suite), Mutation (Mut-suite) and Random (Rand-
suite) test suites by employing both statement-based (StLoc) and mutation-based (MutLoc) fault
localization methods. Similarly, Table V records the total average score values for the examined
methods and test suites. A cumulatively view of these data is plotted in the graphs of Figure 5.
Additionally, Tables III and IV record the obtained results for the whole suite (whole-suite). These
results confirm the intuition that the use of ‘more effective at revealing faults’ testing criteria helps
also the localization process. Both localization approaches experience significantly better score val-
ues when utilizing test suites adequate with respect to mutation than those based on random, branch
or block criteria. This situation holds in both the examined cases, regarding mutant-faults and faults.
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Figure 4. Fault localization cost per utilized fault and mutant.

Figure 5. Effectiveness comparison of the mutation-based (MutLoc) and statement-based (StLoc) fault
localization methods by utilizing block, branch and mutation and random test sets.

The most interesting finding of these results is that mutation-based localization approach out-
performs the statement-based one in all cases, even when using block adequate test suites. Further,
it was found that this difference is statistically significant** in all cases. Moreover, mutation-based
approach is more effective with block suites than the statement-based one with the whole suite.
Recall that the whole suite is a relatively huge and comprehensive one (see Section 4.2 for details).
Another interesting finding was the noticeable improvement on the fault localization approaches’
effectiveness, especially that of the mutation-based one, when mutation adequate test suites are
employed. The question that is raised here is whether this improvement is attributed to the size
of the utilized test sets and not to their adequacy. To examine this issue, the average size of the
selected test sets per considered criterion was computed and presented in Table VI. From this table,
it can be seen that there are considerably more tests with respect to mutation than with respect to
branch or block. However, the results of Tables III and IV and Figure 5 reveal that mutation test sets
have an advantage over the random ones. Recall that random test sets are of the same average size
with the mutation ones. Further, this advantage is of statistical significance suggesting that muta-
tion test suites are suitable for assisting fault localization. Considering whether mutation adequate
test suites can be improved to assist further the fault localization process, a comparison between
the mutation test sets and the whole test suite was performed. The results of these hypothesis tests
are recorded in Table VII and suggest that there is a statistically significant difference in the effec-
tiveness of the mutation and the whole test sets. Therefore, there is room for improvement in the
methods’ effectiveness by producing additional test cases. The question that remains is how could
that be achieved.

**Mann–Whitney U -test was used with a statistically significant difference of p < 0.0001.
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Table VI. Average test suite size.

Program name Block tests Branch tests Mutation tests

Schedule 4.54 7.33 28.91
Schedule2 5.66 8.24 35.23
Tcas 5.46 9.34 74.65
Totinfo 6.34 6.66 29.88
Printtokens 9.57 10.54 33.09
Printtokens2 8.62 11.02 28.17
Replace 13.98 18.50 145.92

Table VII. Statistical comparison (p-values) of mutation, random and whole test suites.

MutLoc (Mut-suite) StLoc (Mut-suite) MutLoc (Mut-suite) StLoc (Mut-suite)
versus versus versus versus

MutLoc (Rand-suite) StLoc (Rand-suite) MutLoc (whole-suite) StLoc (whole-suite)

Faults 0.0000 0.0143 0.0465 0.2330
Mutant-faults 0.0000 0.0061 0.0000 0.0000

Figure 6. Mutant sampling approaches in assisting fault localization.

5.3. Mutant sampling evaluation – (RQ3)

Mutation analysis has been identified as a costly technique. To overcome its difficulties, various
mutation alternative techniques have been proposed [17, 24]. The present study examines the use
of mutant sampling in fault localization. Figure 6 presents the effectiveness results of the mutant
sampling technique with sampling ratios 10%, 20%, 30% 40% and 50%. For evaluation reasons,
Figure 6 also plots the results of the whole utilized mutant set (denoted as 100%) and the statement-
based ones. The graphs of Figure 6 suggest that all the examined ratios experience loss in their
effectiveness compared with the whole mutant set. In the case of 10%, this loss is more apparent
than the rest of the utilized approaches, which have a similar effectiveness.

By statistically comparing (Table VIII) the differences between the various sampling ratios, it was
found that only the 10% and 20% sampling ratios have statistically significant differences with the
whole set of mutants. However, the 10% mutant sampling approach outperforms the statement-based
one with great statistical significance (p < 0.0001 with respect to both faults and mutant-faults). On
average, 10% mutant sampling achieved an effectiveness score of approximately 0.89 of the intro-
duced faults, while the statement-based one only the 0.77 of them. Considering mutant-faults, on
average, 0.89 and 0.79 score values were obtained by 10% mutant sampling and statement-based
approaches, respectively. In view of this, it can be argued that mutation alternative methods can be
effectively utilized to assist the fault localization process.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2013)
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Table VIII. Statistical comparison (p-values) of mutation and mutant sampling.

100% vs 10% 100% vs 20% 100% vs 30% 100% vs 40% 100% vs 50%

Faults 0.0002 0.0347 0.2308 0.5701 0.5429
Mutant-faults 0.0000 0.0071 0.2159 0.4721 0.7989

Figure 7. Effectiveness comparison of the mutation-based and statement-based fault localization methods
for the benchmark program set 2.

5.4. Scalability of the approach – (RQ4)

This section explores the ability of the mutation-based approach to localize faults when it is applied
on large subjects as stated by RQ4. To this end, the mutation-based and statement-based approaches
were applied on the benchmark programs of set 2. The cumulative results of these approaches are
summarized in the graph of Figure 7. Following the same lines as in the previously presented results,
the y-axis records the percentage faults that are effectively localized. The x-axis records the percent-
age ranges of statements that do not need inspection by the programmer. Thus, the mutation-based
approach achieved to effectively localize the 0.25, 0.80 and 0.98 of faults in the 99%, 90% and
80% categories, while the statement-based one 0.08, 0.35 and 0.43, respectively. These results indi-
cate that the mutation-based approach outperforms the statement-based one. This difference is of
practical significance: the average score (average score values of all the examined faults) of the
statement-based approach is equal to 79%, while the mutation-based one 95%.

The most interesting finding of the conducted experiment is that the mutation-based approach is
capable of localizing faults on large programs without being affected by their size. Although there
is no fair way to compare the results of the two sets, due to the differences in the construction of the
test suites, an inspection of Figures 3, 5 and 7 reveal the effectiveness similarities between the two
program sets. The approaches have a similar trend on both sets and clearly show the superiority of
the mutation-based one. The similarities are more evident by considering the average score values
of the sets. Thus, considering the set 1, Table V, results in values within the range from 85% to 95%
for the various considered test suites while the set 2 in 95%. Additionally, in Section 5.2, it was
shown that there is a relation between test suite size and the fault localization effectiveness. Thus,
a higher number of test cases results in a higher effectiveness on the fault localization. Because
the set 2 contains much less test cases than the set 1 and the fault localization effectiveness of the
mutation-based approach is almost the same in both sets, this is an indication that the mutation-
based approach is more effective when applied on larger programs. In any case, it can be concluded
that the mutation-based approach behaves similarly on both program sets and significantly better
than the statement-based one.

Figure 8 forms a box-plot representation of the effectiveness of the examined approaches. The
plot contains four boxes per approach, one for each considered program. The y-axis records the
fault localization score. By comparing the two approaches on the basis of these results, it can be
concluded that the mutation-based approach is clearly better than the statement-based one in all the
examined programs. It is not only more effective but much more stable as well. A similar situation
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Figure 8. Effectiveness comparison of the mutation-based and statement-based fault localization methods
for the benchmark program set 2.

appears on all the studied subjects. Finally, by inspecting Figure 8, it becomes evident that whenever
the mutation method is more effective, this indicates a huge difference. In the opposite situation, that
is, when the statement-based approach is better, the difference of the two methods is not important.

6. DISCUSSION

This paper presents the use of mutation analysis in assisting program debugging. Its key insight
is the use of mutants for locating program faults. Generally, Metallaxis makes the assumption that
mutants and faults located on the same program statement exhibit a similar behaviour. Evidence
in support of this assumption was given by the reported experiments where mutant-faults were
effectively localized using other mutants located on the same statements.

Generally, the provided empirical evidence strongly supports the conclusion that Metallaxis is
able to locate program faults effectively. In fact, the results suggest that it significantly outperforms
fault localization based on statement coverage. This difference is mainly attributed to the fact that
when a fault is executed, it is not always manifested to a failure. Because coverage-based fault
localization techniques try to find program statements that correlate with failures, they fail to iden-
tify faults that are frequently executed but not exposed. Mutants have the advantage of handling
this case effectively. This is attributed to the so-called propagation requirement, that is, in order to
be killed; discrepancies introduced by mutants must impact the programs’ output. In practice, this
makes a big difference because it does not treat each program statement equally. It actually treats
program statements according to their sensitivity to impact the programs’ output. On the basis of
this requirement, mutants are able to simulate well the faults’ behaviour [2]. The same idea applies
on the automated oracle generation, as proposed by Fraser and Zeller [37], where important oracles
are considered only those that detect-kill mutants. Here, it must be noted that easy to kill mutants,
that is, killed by the most test cases that executed them, form substitutes to the coverage measures.
Thus, the mutation approach is also capable of locating faults that are easy to expose when they
are executed. Metallaxis has also some additional advantages over the statement-based approaches.
This is its ability to capture the data flow information and therefore differentiate between program
statements belonging on the same basic blocks. Hence, the approach is not dependent on the pro-
gram structure, which usually results in assigning the same statement rankings (in the case of the
statement-based approach) to many statements.

Fault localization is performed after the testing process, and thus, the proposed approach has many
opportunities to reuse information from the testing process. Conversely, if mutation was employed
during the testing phase, then most and perhaps all computationally expensive analysis parts (mutant
executions) will have already been performed. For example, in case of the higher-order mutation,
as proposed by Jia and Harman [16], in the case of automated oracle generation, as proposed by
Fraser and Zeller [37], or in case of the equivalent mutant isolation, as proposed by Kintis et al.
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[38], all required mutant executions will have been performed before the debugging process. Thus,
the fault localization expenses will be negligible. Further, it should be mentioned that equivalent
mutants do not pose any problem to the localization approach. Because these mutants are not killed,
they are ignored by the Ochiai calculation formula. Therefore, they can safely be discarded from
the employed mutant set along with those killable mutants that were not killed by the utilized test
cases. These actions are also performed at the testing phase.

Finally, it is noted that the efficient introduction and execution of the sought mutants is a matter
not addressed by the present paper and has been left open for future research. A possible solution
could be the use of an incremental process. Thus, some mutants could be selected either at random
or on the basis of some of their characteristics, that is, their kind or their suspiciousness value as
computed by lightweight fault localization approaches. Then, their suspiciousness can be calculated,
and the statements with score 1 are reported to the user. Thus, the programmer can start the debug-
ging process before the whole process is finished. In case the fault is not found, then the process
could continue with other mutants.

7. THREATS TO VALIDITY

Considering the results reported in the present paper, some threats to their validity have been
identified.

Regarding the internal validity, that is, unknown factors influencing the reported results, threats
can be attributed to potential bugs in the utilized implementation. Specifically, the generation, com-
pilation, execution and comparison of the programs’ outputs in the experimental environment might
have influenced the results. Errors affecting the generation, compilation and executions of mutants
may result in mutants that do not compile, or run with tests and thus being ignored. Errors affect-
ing the execution and the programs’ output comparison may influence the decision of whether a
mutant is being killed or not. To reduce these threats, several manual checks have been undertaken
on all the utilized subjects. Additionally, the output comparison was performed on the same way in
both faults and mutants enabling a common basis. Furthermore, Proteum has been widely used in
mutation testing experiments, thus giving confidence on the reported results.

The utilized operators give rise to other possible threats. Different implementations of these oper-
ators or using of others may result in different behaviours. However, the present study employed a
wide range of mutant operators (refer to [34] for further details), which where developed for testing
and independent to the present study. Another threat that can be identified is regarding the artificial
test suites used. Because most of the test suites were artificially produced, they might behave differ-
ently than those produced by humans. Yet, there is no evidence supporting such a claim. However,
the researchers created these tests independent to the present study, to support their experimenta-
tion [28–30]. Further, these tests have been extensively used in literature. To reduce this threat,
the present study considers RQ2, where a wide range of different test cases per studied program
was used.

Finally, performing fault localization on the correct and not on the faulty program may also influ-
ence the effectiveness of the approach. However, this practice was applied on all examined fault
localization methods, so its effects imply on all the methods. Additionally, because it was not applied
on the second benchmark set and its results are similar to the first set, it is believed that this threat
is limited.

Regarding the external validity of the study, that is, whether the reported results generalize, a rel-
ative threat can be recognized. The empirical study consists of 11 programs and their accompanied
faults; hence, it cannot be claimed that the results also apply on other programs. Different subjects,
faults and types of faults, such as concurrency bugs, may have an impact on the effectiveness of
Metallaxis. Considering the appropriateness of using mutant-faults, it is noted that Ali et al. [15]
found ‘no evidence to suggest that the use of mutants for this purpose is invalid’. Further studies are
in need to reduce this validity threat. However, the Siemens suite form industrial programs widely
used in this kind of experiments. Also, Space, Gzip, Grep and Flex programs are real-word programs
showing that the proposed approach is effective.
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Considering the construct validity threats of the study, that is, threats attributed to the employed
evaluation metrics, can be identified. Thus, the experimental evaluation based on the ‘Score’ metric
may not be appropriate. Parin and Orso [39] conducted a small case study investigating this issue.
Their results suggest that programmers have difficulties in using the provided rankings. This metric
has been employed because of its extensive use in literature and as a way to compare the exam-
ined approaches. Still, it is difficult to determine whether it is practically useful. Further studies are
required to determine the appropriateness of this metric.

8. RELATED WORK

There are a relatively large number of fault localization approaches appearing in the literature. Here,
a brief discussion on the most representative of them is given.

As it has already been described, Jones et al. [10] developed the Tarantula method, and Abreu
et al. [9] introduced the Ochiai formula. Both these advances were utilized by the proposed
mutation-based approach in order to include mutants. Additional approaches, employing different
program elements such as program branches and definition–use pairs, are the ones of Marsi [13],
Santelices et al. [8] and Yu et al. [14]. Marsi [13] concluded that branches and definition–use pairs
are more effective than statements. However, Santelices [8] showed that there is no approach that
performs better in all cases, hence proposing a combination of methods. On the basis of their results,
Yu et al. [14] proposed a different combination approach. Similarly, Wong et al. [7] proposed a set
of coverage-based heuristics able to improve the effectiveness of Tarantula. In another approach,
Abreu et al. [40] suggested using Bayesian reasoning in assigning suspiciousness values to the pro-
gram spectra. This approach uses a probabilistic model, and thus, it goes a step forward by handling
multiple faults effectively. Baah et al. [32] employed probabilistic analysis in combination with the
structural program dependence (program dependence graph), to assist fault localization. Yoo et al.
[31] suggest using information theory to assist the ‘fault localization prioritization’ problem.

Another related approach that is not using coverage information is the delta debugging method
[4–6]. This method recognizes and isolates input parts responsible for failures [6], recognizes chains
of program states that lead to the failure [5] and links these chains with the faulty code. Recently,
Burger and Zeller [41] proposed a combination of delta debugging and program slicing techniques
to aid the whole debugging process. Their approach produces a test case that involves the minimum
number of objects and method calls related to an examined failure, thus assisting the programmers
in reasoning about the failure. Jeffrey et al. [27] proposed a value profiling method to localize pro-
gram faults. In this approach, variables at each program statement are assigned with different to the
original execution values. These value replacements help identify the faulty statements by observing
the programs’ outputs.

Baudry et al. [21] suggested a different approach to assist fault localization. Instead of using
existing tests in the localization process, they propose to generate and optimize the whole suite
according to an introduced criterion. This criterion was shown to be able to improve the fault diag-
nosis accuracy. This approach is somehow orthogonal to the one proposed in this paper. If tests can
be optimized with respect to fault localization, then the proposed approach can be assisted to drive
such approaches and to, hence, provide better results.

The idea of using mutants to assist the fault localization process was first introduced in the
authors’ prior work on fault localization [22], where it the use of mutation analysis for locating
faults was advocated. The present paper expands the conducted experiments by considering four
additional subjects (Flex, Grep, Gzip and Space) and a set of 700 mutant-faults. Generally, mutation
analysis has been mainly used for testing purposes [17], and thus, very few approaches aim at pro-
gram debugging using mutants. Such a debugging approach is attributed to Debroy and Wong [42]
who suggested using mutants for automatically repairing program faults. The underlying idea of
this work is to check whether a mutant of a faulty program has no failing test cases. In this case, the
mutant is reported as a possible fix of the faulty program. Metallaxis-FL differs from this approach
because it does not require finding a mutant that makes all the test cases pass. In fact, its purpose
is not to fix bugs but to target the general case of fault localization, that is, it always suggests a
possible suspiciousness ranking. Other related approaches include the work of Nica et al. [43]. In
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this approach, mutants were employed in order to generate tests and thus to augment the utilized test
suite. The augmented suite was then used for performing a model-based fault diagnosis [43]. This
work uses mutants as a means of test case generation and not for performing the fault localization
process, which is the main issue addressed by the present paper.

9. CONCLUSIONS AND FUTURE WORK

Supporting both testing and fault localization activities with mutation analysis is the key contri-
bution of this paper. Mutants can be used first for guiding the production of test cases, therefore
identifying program failures, and then in assisting the debugging process.

The work presented in this paper provides a number of insights to the fault diagnosis research.
First, it shows that mutants can be utilized for the effective localization of known but not located
faults. Further, it validates this hypothesis in the cases of block, branch and mutation adequate
test sets and a relatively large and comprehensive test suite leading to the conclusion that mutants
are suitable for both testing and debugging processes. Finally, the practical use of mutation-based
approach via mutant sampling was also investigated and showed that the mutation-based fault
localization method is still effective when used in a degraded situation, using few mutants.

The major contributions made by the present paper can be summarized in the following points:

� The application of mutation analysis in assisting the fault localization process. The obtained
results suggest that mutation-based fault localization is an effective technique, able to locate
more than 80% of the utilized program faults by investigating at most 10% of the executable
program code.
� An experimental comparison of fault localization based on block, branch and mutation-based

tests. Compared with the other criteria, mutation-based test cases significantly improve the
effectiveness of the fault localization approaches.
� An empirical investigation of the practical usage of mutation-based fault localization, with

reduced cost by mutant sampling. With only 10% of the mutants, the approach is still more
effective, statistically significant, than the statement-based approach.

Issues for further investigation include the use of weak mutation [24] as an alternative to
mutation-based fault localization. Because weak mutation has been shown to be quite efficient
[44] with respect to the test execution phase, utilizing it seems to be worthwhile. Additionally, the
combination of the proposed approach with an automatic mutation-based test generation tool, such
as [44–46], will be able to augment the utilized test suite and thus to assist the localization of
program defects.
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